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Abstract
Embodied AI agents that search for objects in
large environments such as households often need
to make efficient decisions by predicting object lo-
cations based on partial information. We pose this
as a new type of link prediction problem: link
prediction on partially observable dynamic
graphs. Our graph is a representation of a scene
in which rooms and objects are nodes, and their
relationships are encoded in the edges; only parts
of the changing graph are known to the agent at
each timestep. This partial observability poses a
challenge to existing link prediction approaches,
which we address. We propose a novel state repre-
sentation – Scene Graph Memory (SGM) – with
captures the agent’s accumulated set of observa-
tions, as well as a neural net architecture called a
Node Edge Predictor (NEP) that extracts informa-
tion from the SGM to search efficiently. We eval-
uate our method in the Dynamic House Simulator,
a new benchmark that creates diverse dynamic
graphs following the semantic patterns typically
seen at homes, and show that NEP can be trained
to predict the locations of objects in a variety of
environments with diverse object movement dy-
namics, outperforming baselines both in terms of
new scene adaptability and overall accuracy. The
codebase and more can be found this URL.

1. Introduction
Temporal link prediction is the problem of estimating the
likelihood of edges being present in the future in a dynam-
ically changing graph based on past observed instances
of the full graph (Divakaran & Mohan, 2020). This type
of problem appears when analyzing social networks, com-
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munication networks, or even biological networks. We
investigate a novel instance of this problem: temporal link
prediction with partial observability, i.e. when the past
observations of the graph contain only parts of it. This
setting maps naturally to a common problem in embodied
AI: using past sensor observations to predict the state of a
dynamic environment represented by a graph. Graphs are
used frequently as the state representation of large scenes
in the form of scene graphs (Johnson et al., 2015; Armeni
et al., 2019; Ravichandran et al., 2022a; Hughes et al., 2022),
a relational object-centric representation where nodes are
objects or rooms, and edges encode relationships such as
inside or onTop. Link prediction could be applied to
partially observed, dynamic scene graphs to infer relation-
ships between pairs of objects enabling various downstream
decision-making tasks for which scene graphs have been
shown to be useful such as navigation (Amiri et al., 2022;
Santos & Romero, 2022), manipulation (Agia et al., 2022;
Zhu et al., 2021) and object search (Ravichandran et al.,
2022a; Xu et al., 2022).

In this paper, we study link prediction in dynamic, partially
observable graphs with a focus on using this formalism
to perform object search with an embodied AI agent in a
large scene. Although this is a popular problem, most past
works assumes a static scene with the agent having no prior
memory of it, whereas we focus on dynamic scenes with
a continually learning agent. For that, we first propose a
novel state representation named a scene graph memory
(SGM) that encodes the nodes and edges the agent has
observed—including those that may no longer be true—in
a single graph with reference to the time the nodes and
edges were lastly observed. The SGM enables the agent to
gradually build up a representation of all of its observations,
which can then be the input to a link prediction model.

Existing solutions for dynamic link prediction assume full
observability (knowing all the nodes and edges in graphs
from prior timesteps) and are not well suited to this new
kind of link prediction problem. Therefore, we introduce
a novel solution for dynamic link prediction in partial
observable settings based on a neural net architecture we
call a Node Edge Predictor (NEP). The NEP is designed
to predict the likelihood of a single node’s edges with a
self-attention mechanism that “compares” them.
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Figure 1. Our problem setup and proposed method: an agent is queried to find target objects in an unknown dynamic household
environment where objects change location over time and objects may be added or removed – a specific instance of the general problem
of link prediction in partially observable dynamic graphs. The agent can observe subsets of the true scene graph, which are aggregated
in a Scene Graph Memory which is then passed into the Node Edge Predictor model that produces observation-conditioned posterior
probabilities of where the query object is. Finally, the agent uses the posterior probabilities to decide on its next action.

Lastly, we address the lack of existing benchmarks for
link prediction with partially observable graphs by intro-
ducing the Dynamic House Simulator. Existing simulators
for evaluating embodied agents in household environments
(Li et al., 2021a; Shen et al., 2021; Savva et al., 2019; Gan
et al., 2020; Deitke et al., 2022) change only by actions
of the embodied AI agent, whereas the Dynamic House
Simulator enables sampling diverse dynamic scenes that
realistically evolve over time.

In summary, the contribution of our work is three-fold:

• We propose a new state representation, the Scene Graph
Memory, to enable embodied agents to aggregate their
observations of a dynamic environment over time.

• We introduce a novel neural net architecture, the Node
Edge Predictor, and show it can be used to perform link
prediction learning on dynamic, partially observable
graphs. To the best of our knowledge, this is the first
solution to this type of problem.

• We present the Dynamic House Simulator, a novel
benchmark to evaluate embodied agent performance in
dynamic, partially observable environments, and show
that our proposed method significantly outperforms mul-
tiple baselines.

2. Related Work
Temporal link prediction: Link prediction is the problem
of predicting the likelihood of unknown links (edges) in
graphs. While the community has studied the problem ex-
tensively in static graphs (we refer to Kumar et al. (2020)
for a comprehensive review), link prediction in dynamic
graphs, or temporal link prediction as it is also known, is
also an important emerging problem (Divakaran & Mohan,
2020). Recently, there has been an increasing amount of

approaches based on graph neural networks (GNNs) for non-
temporal (Zheng et al., 2021; Opolka & Lió, 2022; Zhao
et al., 2022; Atzeni et al., 2021) as well as temporal link
prediction (Qu et al., 2020; Lei et al., 2019; Skarding et al.,
2022; Singh et al., 2021) due to the capabilities of GNNs
to encode and efficiently propagate graph information for
inference. Several works also combine GNNs with trans-
formers (Yang et al., 2021; Jin et al., 2022), which we also
do with our Node Edge Predictor.

We focus on a modified version of the temporal link predic-
tion problem. Motivated by challenges embodied AI agents
typically face, we add the property of partial observabil-
ity: only subsets of the prior input graphs are known. This
makes the problem significantly more challenging, as the
model must make its predictions based on less information.
Furthermore, our problem formulation allows for not just
the edges but also the nodes in the graph to be dynamic,
which has rarely been the case in prior work (Haghani &
Keyvanpour, 2017; Ran et al., 2022). To our knowledge,
this is the first work to introduce the problem of temporal
link prediction on partially observable dynamic graphs.

Modeling object relations in embodied AI research: Of-
ten in embodied AI tasks, the relations between objects in
the environment provide critical information for decision-
making. Previous works have designed various data struc-
tures or representations that embed co-occurrence statistics
between objects such as probabilistic semantic maps (Li &
Meng, 2012; Veiga et al., 2016), graphical models (Kim
& Suh, 2019; Kollar & Roy, 2009; Aydemir et al., 2013;
Lorbach et al., 2014), hierarchical models (Pronobis et al.,
2017), extended POMDPs (Zheng et al., 2022), and scene
graphs (Kurenkov et al., 2021).

Although object co-occurrence statistics can be learned by
the agent from scratch in an environment, it is beneficial
to extract such statistics prior to agent deployment from

2



Modeling Dynamic Environments with Scene Graph Memory

knowledge sources that capture commonsense about ob-
ject relations, such as hand-coded priors (Lorbach et al.,
2014), online text (Zhou et al., 2012) or image (Kollar &
Roy, 2009) datasets, or curated knowledge base (Toro et al.,
2014). We introduce a novel way to extract a scene graph
specific co-occurrence statistics through counting of ob-
served object relations in the simulated environments of
iGibson and ProcThor (Li et al., 2021a; Deitke et al., 2022).

Modeling object locations in scenes: As summarized
in Crespo et al. (2020), graphs have commonly been used
in the embodied AI literature as memory for tasks that re-
quire semantic information. We highlight several recent
works that are particularly related to ours. Wu et al. (2019)
also uses observations to build a Bayesian probabilistic re-
lation graph of the room connectivity in novel houses, but
is focused on static environments with no objects, and does
not used link prediction. Kurenkov et al. (2021) also uses
link prediction on a scene graph for finding objects, but
does so in the context of static scenes without the need to
learn object dynamics. Du et al. (2022) also attempts to
capture the dynamics of object movement by maintaining
an object-based memory and training attention-based neural
networks, but focuses on visual rather than semantic infor-
mation and within a much smaller number of locations and
objects than us. Rudra et al. (2022) also produces proba-
bilities over object locations but does so with a contextual
bandits approach over vantage points with no use explicit
memory, and for just three comparatively simple environ-
ments. Lastly and most related, the concurrent work of Patel
& Chernova (2022) also learns a predictive model of object
dynamics with the use of scene graphs and GNNs as well as
a household simulator, but assumes full knowledge of past
states of the environment rather than dealing with partial
observability, does not use the graph as a form of memory,
does not make use of linguistic cues for generalization, and
focuses on realistically simulating five households rather
than procedural generation of any number of households.

3. Problem Formulation
The standard temporal link prediction problem for dynamic
graphs is defined as follows (Liben-Nowell & Kleinberg,
2003; Divakaran & Mohan, 2020): The state of a dynamic
graph at time t is represented as Gt = (V,Et), where Et

is the set of edges present at time t and V are the nodes.
Given past observations of the state of G from time step 0 to
t, G0, ..., Gt, the goal is to predict the presence of all future
edges in the next step, Et+1.

Our problem formulation (see Fig. 1) is a derivation of the
above with three major differences. First, the set of nodes in
the graph can change between timesteps, so that Vt 6= Vt+1.
Second, we assume partial observability; instead of having
full access to past graph states, G0, ..., Gt, our agent has

only access to partial observations of these states, O0, ..., Ot.
Each partial observation, Ot = (V O

t , E
O
t ), contains the

current state of a subset of the nodes, V O
t ✓ V , and the

edges, EO
t ✓ Et. The content of an observation, O, is task-

dependent; in our embodied AI context it will be the result
of agent actions, representing a realistic sensing operation.

The third difference is in the scope of the prediction: instead
of attempting at estimating the state of all edges, our goal
is to predict the state of a subset of the edges, EQ

t ✓ Et+1.
We assume this subset is associated with query nodes V Q

t

of interest for a downstream task. The query edges as well
as the query node may or may not have been seen in a past
observation and may or may not change from Gt to Gt+1.
This is a natural setup in several embodied AI tasks such
as object search, where the agent does not need to infer
the state of the entire environment but only the relevant
information to find a specific target objects.

Object search with temporal link prediction in dynamic,
partially observable graphs: While our method is appli-
cable to temporal link prediction with any form of graph
information, we focus on the problem of reasoning about
scene graphs in household environments. In this domain, the
nodes in a given scene graph are hierarchically organized:
at the top are the room nodes, then furniture nodes, and then
object nodes. The edges represent the kinematic relations
between nodes, such as inside and onTop. The edges
between furniture nodes and object nodes are dynamic, and
the underlying environment dynamics modify the edges
according to some unknown probability distribution. In
other words, objects “move” over time as they do in real
household settings populated by humans.

Given this household context, the observations O0, ..., Ot

consist of one or more furniture nodes along with the objects
connected to these furniture nodes with an edge. The goal
of our agent is to correctly predict the furniture node that
is connected to a target object node. The agent can choose
furniture nodes to receive an observation from, which repre-
sents it exploring to observe where objects are. The agent’s
observations are noisy: some objects may not be observed
even if connected to the chosen furniture node. This simu-
lates realistic perception that may fail to detect objects due
to occlusions or other factors.

4. Method
To study and address the dynamic link prediction problem
with partial observability, our work includes several compo-
nents: (1) The Dynamic House Simulator – a mechanism to
simulate household environments with diverse object lay-
outs and distributions, (2) Scene Graph Memory (SGM) –
a state representation to aggregate agent observations and
serve as a basis for learning to predict where objects are, and
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(3) Node Edge Predictor (NEP) – a novel neural network
architecture that is best suited for predicting the presence of
query edges in the scene graph.

4.1. Dynamic House Simulator

Algorithm 1 Dynamic House Simulator Algorithm
Require: Initial prior probability graph P

prior

for i = 0, 1, . . . ,M do
Create a noisy copy of P prior: P i  P

prior +N
i
class

Sample object instances from P
i and create scene

graph SG
i
0 at its initial state (t = 0)

Create environment dynamics: T i  P
i +N

i
instance

Define a new env instance: Env
i = {SGi

0, T
i}

end for
for t = 1, 2, . . . , tend do

for i = 0, 1, . . . ,M do
Evolve scene graph: SGi

t  T
i(SGi

t�1)
end for

end for

Due to there not being a well suited benchmark for our task,
we created the Dynamic House Simulator to benchmark link
prediction in dynamic, partially observable graphs in the
context of object search in households. There exist several
simulation frameworks for embodied AI in household envi-
ronments (Li et al., 2021a; Shen et al., 2021; Savva et al.,
2019; Gan et al., 2020; Deitke et al., 2022) but none of
them simulate the object movement that results from other
agents such as humans interacting and changing object lo-
cations. Our simulator supports sampling a wide variety of
household environments with a distinct set of initial objects,
locations, and patterns of object movement over time.

Priors graph. The first component of the simulator is
a graph encoding the probabilities of room-furniture and
furniture-object relationships for all households (Fig 5). We
call this our prior probabilities graph P

prior because it rep-
resents the commonsense knowledge about any given house-
hold environment prior to observing it. The probability of
an object being inside or onTop a piece of furniture
depends on which room the furniture is in. We compute
these probabilities via simple counting of the presence of
relationships in different environments of iGibson 2.0 (Li
et al., 2021a) and ProcTHOR-10k (Deitke et al., 2022), two
simulators with realistic object placements in house envi-
ronments, but the prior could come from any source of
furniture-object-room distribution such as a large language
model.

After obtaining the prior probabilities, we manually annotate
each node in P

prior with the following attributes: a set of
adjectives that could describe the object or piece of furniture
(e.g. “blue”, “metal”, etc.), the min/max number of the
object in the environment, and how likely the object is to

move between furniture or to disappear from or appear in
the environment over time. These attributes enable more
varied and realistic simulation of the household environment.
Additional details can be found in the Appendix (Sec. A).

Scene sampling and evolving. The priors probabilities,
P

prior, are the basis for the simulator algorithm to sample
diverse dynamic environments in the form of scene graphs,
which we now describe (Alg. 1 and Fig. 5). To sample
an environment instance, Env

i, we first inject class-level
noise, N i

class, to the prior graph to obtain the environment-
specific relation probabilities, P i. The class-level noise is
a function of object class, furniture class, and relationship
type. For example, for the specific environment Env

i, a jar
has an 80% probability of being inside a shelf and a 20%
probability of being inside a cabinet. The specifics of noise
generation are included in the Appendix (Sec. A).

Then, the initial scene graph SG
i
0 will be sampled based

on P
i in a procedural manner. Given the minimum and

maximum bounds, P i is used to first sample a set of rooms,
then a set of furniture items within each room, and then
objects for each piece of furniture. Note that there might
be multiple instances of the same object type in SG

i
0. To

capture the fact that different instances of the same object
type are distinct in their appearance or material, each sam-
pled node is associated with a description, in addition to its
type. The description is generated by randomly sampling
a subset of adjectives from the prior graph. For instance, a
“mug” node may get the description “large red mug”.

After this, we create the environment-specific object relation
change probabilities, or dynamics for short, T i by injecting
instance-level noise N

i
instance into P

i. The instance-level
noise N i

instance is a function of object description, furniture
description, and relationship type. For example, a “large red
mug” has a 50%, 30%, 5%, 15% chance of being inside of
shelf 1, shelf 2, cabinet 1, and cabinet 2 respectively.

At each timestep, the dynamics T i will be used to modify the
scene by changing the furniture-object relations in the scene
graph SG

i
t to create SG

i
t+1. T i can also potentially add or

remove an object instance based on P
i. As a result, each

environment is defined in terms of its unique initial scene
graph and unique object dynamics Env

i = {SGi
0, T

i},
which conceptually corresponds to a unique household.

iGridson. We implement a gridworld version of iGibson
2.0 (Li et al., 2021a), named iGridson, to ground the agent
in an environment with support for 3D-object relations. In
particular, given an initial scene graph, iGridson instantiates
an environment such that every object in the environment
corresponds to a node in the scene graph, and the objects are
sampled to satisfy all edge relationships in the scene graph.
The environment evolves according to the object dynamics.
More details are included in the Appendix (Sec. F).
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Figure 2. iGridson, our gridworld implementation of the iGibson
2.0 (Li et al., 2021a) simulator. An example household scene with
four rooms is shown here with various furniture items and objects.

4.2. Scene Graph Memory (SGM)

As described in Sec. 3, the goal of the agent is to predict the
probability of query edges in each scene graph SG

i
t. Since

each environment has distinct probability distributions P i

and T
i, the agent needs to make use of the observations from

the environment Oi
0...O

i
t to estimate these environment-

specific distributions. We propose the Scene Graph Memory
(SGM) data structure to enable the agents to do so.

To simplify notation, the following applies to an agent
operating in a specific environment Env

i. At timestep
t, an instance of a Scene Graph Memory SGMt =
(V SGM

t , E
SGM
t ) is composed of a set of nodes and edges

of the same type as in the environment scene graphs. The
SGM nodes V

SGM
t = (

St
n=0 V

O
n )

S
V

Q
t are made up of

all the observed nodes, as well as the set of query nodes
– the latter may not or may not be a subset of the former,
since the query may be related to objects that agent has not
seen before. The SGM edges ESGM

t = (
St

n=0 E
O
n )

S
E

H
t

are made up of all the observed edges up until timestep t,
and any new hypothetical edges. Hypothetical edges are
edges the agent can predict for the query nodes without
actually having observed them according to some function
E

H
t = fh(V

Q
t ); these are needed when dealing with queries

of nodes that have not been observed yet or have few ob-
served edges. fh could be implemented in various ways; we
implement it by adding an edge to the SGM for every edge
in P

prior with a probability above a certain threshold.

Each node and edge in the SGM is associated with features
reflecting the semantic properties of the object or relation-
ship it represents as well its observed dynamics. Semantic
properties are captured by word embedding associated with
the node’s rooms, furniture, or object label (eg “mug”).
We use the 96-dimensional Tok2Vec vectors optimized on
en core web sm from the spaCy python package (Hon-
nibal & Montani, 2017). These semantic features are useful
for recognizing nodes that are likely to share similar edges.
The observed “temporal” features include the time since a

Figure 3. Node Edge Predictor (NEP) model architecture (GCN
and HEAT variants). See the Appendix (Sec. B) for details on the
node and edge features.

node or edge has been observed, the number of times it has
been observed, its state change frequency, and more. These
observed features are necessary for the model to learn the
environment-specific dynamics. More details are included
in the Appendix (Sec. B).

A useful property of using the SGM representation is that
it collapses the sequence of observations O0, ..., Ot into a
single graph. Thus, unlike prior works that relied on hard-
to-optimize recurrent models, we only need our model to
reason about SGMt.

4.3. Node Edge Predictor (NEP)

Model architecture. We are concerned with predicting the
probabilities of query edges, with a focus on the case when
these edges all connect to a single node. This motivates our
design for the Node Edge Predictor (NEP) model (Fig. 3).

NEP consists of four modules: node embedding, edge em-
bedding, feature fusion, and edge classification. The node
and edge embedding layers consist of a three-layer MLP
with ReLU activations. The node embedding layers also op-
tionally include graph convolutional layers after the MLP. In
other words, we first embed the raw input features for nodes
and edges and then optionally perform message passing to
propagate the embedded features across the graph.

We evaluate three variants of the model with different node
embedding modules: NEP-MLP includes no graph convo-
lution layers, NEP-GCN performs a two-layer graph convo-
lution operation on top of the MLP embedding, and NEP-
HEAT (Mo et al., 2021) replaces the graph convolution
layers with heterogeneous edge-enhanced graph attentional
(HEAT) operators, which condition the attention computed
for message passing on both the node and edge features.
NEP-HEAT is chosen as our primary variant because we
expect that edge-conditioned attention will allow for more
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effective feature propagation. HEAT was originally de-
signed for trajectory prediction of traffic, so this is the first
time it is being applied to link prediction.

After creating embeddings for all nodes and edges, we fuse
the features of each pair of nodes associated with a query
edge by averaging the nodes’ embeddings and then concate-
nating that with the edge’s embedding. Since different query
nodes have different numbers of edges, we pad the input ten-
sors for each batch before fusion. Lastly, the batch of fused
features is passed to a 2-layer transformer encoder (Vaswani
et al., 2017). The self-attention layers in the transformer en-
able the model to evaluate all the query edges jointly, which
is important for cases in which a node’s edges are mutually
exclusive. NEP’s use of a GNN followed by a transformer
is most similar to GraphFormer from Yang et al. (2021)
Heterformer from Jin et al. (2022), but differs in that NEP
uses the transfomer only on the embedded query edges, as
opposed to the costlier use of transformers in alteration with
GNN layers. Lastly, the transformer’s output are passed
through a 3-layer MLP with a Sigmoid activation in order
to yield the output logits across all edge candidates.

Model training. For each training iteration, we randomly
sample a batch of SGMs from the training dataset, and batch
all the query edges from each SGM. The loss is computed
by calculating the Binary Cross-Entropy between the logits
and the ground-truth labels. We optimize for binary classifi-
cation per edge as opposed to N-way classification because
a given node may have multiple edges that are true. Because
the number of true edges is far lower than false edges, we
multiply the losses corresponding to false edges by the ratio
of true edges to false edges before backpropagation.

5. Experimental Setup
We design our experiments to test whether the proposed
NES models can outperform alternative approaches across
three downstream tasks that involve link prediction.

5.1. Training Data Collection

In order to train the model, we first collect data by having
an agent gather observations in a variety of training envi-
ronments. The agent’s goal is to complete the same object
search task that the SGM model is meant to help with, and
can follow any policy during data collection, such as the
heuristic baselines explained below. As the agent tries the
complete the task, it gathers observations and constructs
SGMs along the way. Besides the features described above,
each query edge in the SGM

i
t is also annotated with a label

– true or false – which corresponds to whether this edge
is actually present in the ground-truth scene graph. Each
node is also labeled as being a query node or not. Once a
variety of SGMs with labels have been collected, they can

be aggregated into an offline dataset for model training.

5.2. Tasks and Metrics

We define three tasks with associated metrics as the basis of
our experiments.

Predict Object Location: At every timestep, the agent
must predict the location (furniture node) of an object with
a particular description. The agent is then able to observe
the node it has predicted and its associated object nodes,
regardless of whether its output is correct. The metric for
the task is accuracy – whether the agent correctly predicted
a furniture node that is connected to an object with the
correct description. This task is designed to evaluate how
well an embodied agent may work in practice in an un-
known environment; predicting the correct location of a
given query object is essential for downstream tasks like
household chores.

Predict Relative Location Likelihood: At every timestep,
the agent is queried for multiple objects and is required to
predict the likelihood of each location that each object can
be at. The metric for the task is the Normalized Discounted
Cumulative Gain (NDCG), a popular method for measuring
the quality of a set of search results(Järvelin & Kekäläinen,
2002). We choose this metric as we primarily care about the
agent correctly predicting the ranking of the location options
rather than the exact values in T . The agent is then able to
observe the mostly likely nodes for each query node, as in
the previous task. Compared to the previous task, this task
and metric provide a more holistic evaluation of how well
the agent models the entire environment at every timestep.

Find Object: The prior two tasks involve a single prediction
at each time step. This task has the same objective as predict
location, but the agent is now allowed multiple sequential
choices. After each location choice, the agent can observe
the location and update its internal state before making the
prediction for the next action. The environment is static
during this, so exhaustive search will always succeed. The
metric for this task is the number of actions it takes to pick
a correct node.

5.3. Baselines

We compare our models with six heuristic-based models as
well as the most highly relevant prior work.

These are the heuristic baselines: Random: Randomly
chooses an edge among all options. Frequentist: Records
the number of times edges have been observed to be true and
false, and chooses the option with the highest ratio of true ob-
servations to total observations. Priors: Chooses the most
likely option according to P

prior. Myopic: Always chooses
the last location each object was observed at, or at random
if the object has not been observed. Bayesian: Treats each
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edge in the SGM as having a distinct beta-binomial probabil-
ity distribution. We create the distributions with a beta prior
based on P

prior and compute the posterior distribution by
treating observations as a sequence of Bernoulli trials. More
details in the Appendix (Sec. D). Oracle: Uses ground
truth knowledge about the dynamics of the scene as well as
memory of past observed object locations to make the best
choice possible.

Lastly, we also compare to the HMS model from Kurenkov
et al. This model was also designed for link prediction
in the context of scene graphs, but in the context of static
scenes. Thus, it is a good point of comparison for our
revised problem definition. Compared to our model, it does
not use the SGM representation and uses a standard GCN
neural net rather than the NEP.

6. Experiment Results
We evaluate our NEP variants against all baselines on the
test set (unseen environments) for all three tasks. We train
each NEP model with a dataset of 10,000 SGMs collected
over 100 different environments, with 100 steps being taken
per environment. The data collection is done by having the
Bayesian baseline do the relevant task while creating and
storing SGM graphs along the way.

6.1. Task Performance

Figure 4. The average accuracy and variance for the Predict Object
Location task, averaged across 100 different environments. The
x-axis is the environment steps. The y-axis is smoothed with
averaging over 10 steps. NEP results are with the HEAT variant.

The main results can be seen in Fig. 4 and Table 1. We have
the following observations.

First, as seen in Fig. 4, the use of SGM enables the NEP
to improve over time, unlike models that completely rely
on the prior information and do not make any use of ob-
servations (Priors and HMS). The model also outperforms
the baselines that do make use of observations (Frequentist,

Myopic, and Bayesian), which we hypothesize is due to
the NEP’s understanding of object semantics, use of GNN-
based feature propagation, and the self-attention mechanism
that allows for edge comparisons.

Second, the priors embedded in the SGM as well as learned
semantic patterns make the NEP able perform better than
all heuristics from the outset. This gives NEP a head start
compared to the models that purely rely on observations
made during test time (Myopic and Frequentist). These
baselines do approach the performance of NEP over time,
since eventually it’s possible to model the dynamics per-
fectly. However, NEP still has the advantage of faster and
better adaptation to new environments.

Third, NEP also significantly outperforms the Bayesian
method, which is given access to both the priors and obser-
vations over time. We believe this is because the Bayesian
approach reasons on a per-edge basis, whereas NEP is able
to propagate information about edge features with the use of
a GNN and fuse information about query edges with the use
of self-attention. Thus, it is possible to share information
about the dynamics of nodes with similar semantics.

Lastly, the detailed results in Table 1 demonstrate several
things. As could be expected, making the environment dy-
namic both in terms of object location and object presence
makes the tasks harder, compared to always dealing with
the same set of objects. The HEAT NEP variant gener-
ally performs best, but the simpler GCN variant performs
slightly better on the predict relative likelihood task, pos-
sibly because producing a ranking of edges is easier than
specifically predicting the most likely edge. Lastly, the first
two tasks do correspond to better downstream performance
on finding objects through a sequence of actions, as is our
ultimate goal.

The results support our initial hypothesis that combining
the proposed representation (SGM) with the NEP model
is suitable for the temporal link prediction tasks in our set-
ting, as this combination allows generalization to unseen
environments as well as online adaptation.

6.2. Ablations

We further perform several ablation studies to test the rel-
ative importance of the components in our model (Fig. 3).
The results are shown in Table 2. It is evident that all of our
model designs contribute significantly to the model perfor-
mance. The prior probability information is most critical,
not only because it is included in node edge, but crucially
also because it is used for selection of hypothetical edges;
with no priors, hypothetical edges are sampled at random
and so may not include the true object location. Even though
the priors do not match the test environments’ true dynamics,
they are highly beneficial for improving performance.
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Table 1. The mean accuracy and standard deviation (averaged across 100 runs/environments) are shown for three tasks and different
environment conditions. Lower is better for Predict Object Location and Find Object. Dynamic nodes refer to whether nodes are added
and removed throughout scene evolution, which makes the problem significantly more challenging.

Task Predict Object Location " Predict Relative Location Likelihood " Find Object #
Dynamic Nodes? Y N Y N Y N

Random 0.046 ± 0.005 0.044 ± 0.005 0.381 ± 0.001 0.384 ± 0.001 8.769 ± 1.092 8.750 ± 1.100
Priors 0.159 ± 0.019 0.180 ± 0.025 0.536 ± 0.001 0.546 ± 0.002 5.911 ± 1.433 5.869 ± 1.438

Frequentist 0.271 ± 0.029 0.315 ± 0.038 0.668 ± 0.001 0.728 ± 0.002 4.550 ± 1.571 4.218 ± 1.624
Myopic 0.282 ± 0.030 0.339 ± 0.043 0.029 ± 0.000 0.017 ± 0.000 6.333 ± 2.202 6.048 ± 2.186
HMS 0.194 ± 0.023 0.210 ± 0.033 0.529 ± 0.001 0.582 ± 0.002 5.357 ± 1.379 5.254 ± 1.458

Bayesian 0.286 ± 0.028 0.308 ± 0.034 0.699 ± 0.002 0.725 ± 0.0 02 3.469 ± 0.761 3.610 ± 0.970
NEP-MLP 0.302 ± 0.032 0.336 ± 0.038 0.661 ± 0.002 0.736± 0.002 3.650 ± 1.035 3.445 ± 0.948
NEP-GCN 0.324 ± 0.034 0.359 ± 0.041 0.728 ± 0.001 0.792 ± 0.002 3.629 ± 1.042 3.191 ± 0.866

NEP-HEAT 0.351 ± 0.033 0.391 ± 0.041 0.724 ± 0.002 0.783 ± 0.002 3.570 ± 1.032 3.186 ± 0.910
Oracle 0.454 ± 0.039 0.475 ± 0.063 0.932 ± 0.002 0.939 ± 0.002 3.001 ± 0.772 2.921 ± 0.764

Table 2. Ablation study results. The mean accuracy and variance
(averaged across 100 runs/environment) are reported for for the
Predict Object Location task with dynamic nodes. Higher is better.

NEP-MLP NEP-GCN NEP-HEAT

Full Model 0.302 ± 0.032 0.324 ± 0.034 0.351 ± 0.033
(-) Prior probability 0.260 ± 0.028 0.233 ± 0.024 0.267 ± 0.029
(-) Transformer 0.263 ± 0.028 0.310 ± 0.034 0.314 ± 0.032
(-) Temporal features 0.288 ± 0.032 0.320 ± 0.033 0.322 ± 0.031
(-) Semantic features 0.263 ± 0.027 0.322 ± 0.030 0.328 ± 0.030

The use of the transformer layers, a key aspect of the NEP
model, turns out to be the second most important design
choice. This validates our hypothesis that it is useful to
perform self-attention over query edges prior to predicting
their likelihoods. Interestingly, temporal features are the
most important for the HEAT variant, suggesting it makes
the most use of them for adapting to novel environments.
Lastly, semantic features in the SGM turn out to be the
least important, perhaps because temporal features alone are
sufficient to infer semantics.

6.3. Downstream Task Performance in iGridson

We also evaluate the agent’s performance on the Find Ob-
ject task in the iGridson environment shown in Fig 2. The
quantitative results are shown in Table 3. This environment
contains only 21 furniture locations, so the agent is suc-
cessful if it predicts the correct location by searching up to
roughly half the options. Unlike the Find Object in Table 1,
the iGridson representation includes a spatial layout rather
than just a symbolic one. Therefore, it is possible to com-
pute the path length the agent traverses across all its actions.
The NEP method is always able to find the object, and does
so within fewer actions and shorter paths. The variances
for these metrics are surprisingly high, potentially because
some objects are much harder to find than others. We hope
to explore performance in iGridson more in the future.

Table 3. Mean success rate, number of actions, and path length
(± standard deviation) to reach the query objects in the iGridson
environment averaged over 10k runs. The agent is given at most
10 actions to reach the target object.

Success Rate # of Actions Path Length

Random 0.57 9.36 ± 4.09 141.74 ± 63.86
Myopic 0.57 9.31 ± 4.14 140.92 ± 64.40

Bayesian 0.84 5.06 ± 4.50 70.90 ± 63.06
NEP-HEAT 1.00 1.56 ± 0.86 30.05 ± 24.67

7. Conclusion
We proposed a new problem setup, temporal link predic-
tion for dynamic and partially observable graphs, as well
as a first solution to this problem in the context of object
search in embodied AI. Our work includes a new bench-
mark, the Dynamic House Simulator, where it is possible
to evaluate model performance on dynamic link prediction
in the embodied AI context. Our solution to predict object
locations and environment dynamics efficiently includes
a new representation, Scene Graph Memory (SGM), and
a novel net learned architecture, the Node Edge Predictor
(NEP). Our SGM-based models significantly outperform all
the alternative approaches due to their ability to (1) learn
scene statistics (commonsense knowledge about object re-
lations) during training, and (2) adapt online by leveraging
noisy, partial observations. These features help embodied
AI agents perform object searches in unseen, dynamic, and
partially observable environments, as well as link prediction
models with partially observable graphs in general.
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Opolka, F. and Lió, P. Bayesian link prediction with deep
graph convolutional gaussian processes. In International

Conference on Artificial Intelligence and Statistics, pp.
4835–4852. PMLR, 2022.

Pal, A., Qiu, Y., and Christensen, H. Learning hierarchical
relationships for object-goal navigation. In Conference

on Robot Learning, pp. 517–528. PMLR, 2021.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison,
M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L.,
Bai, J., and Chintala, S. Pytorch: An imperative style,
high-performance deep learning library. In Advances

in Neural Information Processing Systems 32, pp. 8024–
8035. Curran Associates, Inc., 2019.

Patel, M. and Chernova, S. Proactive robot assistance
via spatio-temporal object modeling. arXiv preprint

arXiv:2211.15501, 2022.

Pronobis, A., Riccio, F., and Rao, R. P. Deep spatial affor-
dance hierarchy: Spatial knowledge representation for
planning in large-scale environments. In ICAPS 2017

Workshop on Planning and Robotics, pp. 1–9, 2017.

Qu, L., Zhu, H., Duan, Q., and Shi, Y. Continuous-time link
prediction via temporal dependent graph neural network.
In Proceedings of The Web Conference 2020, pp. 3026–
3032, 2020.

Ran, Y., Liu, S.-Y., Yu, X., Shang, K.-K., and Jia, T. Pre-
dicting future links with new nodes in temporal academic
networks. Journal of Physics: Complexity, 3(1):015006,
2022.

Ravichandran, Z., Peng, L., Hughes, N., Griffith, J. D.,
and Carlone, L. Hierarchical representations and explicit
memory: Learning effective navigation policies on 3d
scene graphs using graph neural networks. In IEEE Inter-

national Conference on Robotics and Automation (ICRA),
2022a.

Ravichandran, Z., Peng, L., Hughes, N., Griffith, J. D.,
and Carlone, L. Hierarchical representations and explicit
memory: Learning effective navigation policies on 3d
scene graphs using graph neural networks. In 2022 Inter-

national Conference on Robotics and Automation (ICRA),
pp. 9272–9279. IEEE, 2022b.

Rudra, S., Goel, S., Santara, A., Gentile, C., Perron, L.,
Xia, F., Sindhwani, V., Parada, C., and Aggarwal, G. A
contextual bandit approach for learning to plan in envi-
ronments with probabilistic goal configurations. arXiv

preprint arXiv:2211.16309, 2022.

Santos, I. B. d. A. and Romero, R. A. A deep reinforce-
ment learning approach with visual semantic navigation
with memory for mobile robots in indoor home context.
Journal of Intelligent & Robotic Systems, 104(3):1–21,
2022.

Savva, M., Kadian, A., Maksymets, O., Zhao, Y., Wijmans,
E., Jain, B., Straub, J., Liu, J., Koltun, V., Malik, J.,
et al. Habitat: A platform for embodied ai research. In
Proceedings of the IEEE/CVF International Conference

on Computer Vision, pp. 9339–9347, 2019.

Seymour, Z., Mithun, N. C., Chiu, H.-P., Samarasekera, S.,
and Kumar, R. Graphmapper: Efficient visual navigation
by scene graph generation. In 2022 26th International

Conference on Pattern Recognition (ICPR), pp. 4146–
4153. IEEE, 2022.

10

https://arxiv.org/abs/2106.07161
https://arxiv.org/abs/2106.07161


Modeling Dynamic Environments with Scene Graph Memory

Shen, B., Xia, F., Li, C., Martı́n-Martı́n, R., Fan, L.,
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A. Dynamic House Simulator
A visual representation of Alg. 1 is shown in Fig 5.

Figure 5. Illustration of Dynamic House Simulator scene Sampling and Evolving process. As outlined in Sec. 3 and Algo. 1, for each
environment Envi, we first inject object class-level noise N i

class to the global prior P prior to generate environment-specific relation
probabilities P i. The initial scene graph SGi

0 will be sampled based on P i in a procedural manner. Then we inject object instance-level
noise N i

instance into the environment-specific relation probabilities P i to generate the environment dynamics T i, which will evolve the
scene graph across time steps.

Object placement probabilities For ProcThor-10k, we counted the occurrences of object relationships and normalized to
get point probabilities. iGibson already includes the probabilities as metadata, so we use that directly. For relationships
that are in both, we use the ProcThor-10k. We compute object placement probabilities for ProcThor-10k by counting the
number of occurrences in each relationship type within the 10,000 published train environments and normalizing the counts
of all room-furniture relationships and furniture-object relationships. Specifically, we create counts of furniture-object edges
counts per room and divide by the sum of all object instance in each room. iGibson 2.0 already encodes such probabilities in
its metadata, so we only need to average the F-O probabilities for the coarse graph. We filter out any furniture nodes with
fewer than 3 outgoing edges to focus computation on simulating busier aspects of the environment. The resulting Pprior

graphs is visualized in Fig. 6.

We also create a the “coarse” version of the priors graph in which furniture-object edges are counted irrespective of rooms
and divided by the sum of all object instances. The resulting Pprior graphs is visualized in Fig. 7. We did not use these
priors in our experiments, since they lead to object dynamics that are strictly simpler than the “detailed” priors and therefore
the results were less informative.

Sampling noise There are two types of class-level noise: sparsification and randomization. Sparsification means we zero
out probabilities for some edges, e.g. a certain object will never be inside a certain piece of furniture. If an edge’s probability
is not zeroed out, we then randomly scale it up or down by a certain amount. After the application of noise, all edge
probabilities for the object are normalized. The goal is to make each environment instance have its own specific locations
for various objects. In our experiments we use a probability of 25% for both zeroing out edges and as the maximum and
minimum by which probabilities may be scaled.

Environment Sampling An environment consists of 1 floor, 4 rooms (kitchen, living room, bedroom, bathroom), 8 furniture
items per room, and 6 objects per piece of furniture. While our approach is compatible with different counts for each
category, we chose this specific ratio (floor:room:furniture:item) to standardize our experiments. The furniture and object
items are sampled from the candidate lists in Table 4 and Table 5. Adjectives are additional descriptors belonging to an
adjective category such as size or color which are then sampled and attached to both furniture and objects by the following
procedure. First, the number of adjective categories to attach to a given object or furniture items is sampled from a uniform
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Figure 6. The household object placement probability priors. Nodes at the top correspond to rooms, nodes at the middle correspond to
furniture, and nodes at the bottom correspond to objects. Node color a unique room, furniture, or object label. Edge color represents the
likelihood of a piece of furniture being sampled for a room or the likelihood of an object being sampled for a piece of furniture, with
darker edges having a higher likelihood. To improve visualization, a node with a given label is created per room that it is connected to.

Figure 7. The “coarse” household object placement probability priors. The layout and use of color is the same as in Fig. 6. In the
this version of the priors, the furniture-object relationships (i.e. edges at the bottom level) are independent from the room-furniture
relationships (i.e. edges on the top level). Nodes with a given label are not replicated per room, meaning that each node represents a
distinct room, furniture, or object type. Some nodes have primarily white edges because they have a large number of outgoing edges,
which makes the probability of each edge lower compared to nodes with few outgoing edges.
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distribution between 1 and the maximum number of categories. Then a specific adjective is uniformly sampled for each of
these categories. This can result in multiple distinct objects sharing the same class existing in the scene, such as a ”small
green bag” or a ”large red bag”.

Evolution of the environment The evolution of the environment is determined by the move frequency and add/remove
probability outlined in Table 5. First objects are removed based on the remove probability, with a constraint that the object
count cannot dip below 95% of the original object count. In the second step, 5% of all objects are moved. The distribution
of which objects move is determined by the move frequency of the individual move probabilities based on the object class as
outlined in Table 5. Finally, we iterate over every possible object and spawn objects according to the add probability with
the constraint that the total number of objects in the scene cannot be higher than 105% of the initial object count.

B. SGM representation
The SGM consists of a set of node (V SGM

t ) and edges (ESGM
t ). The node features are the following:

• The text embedding for the node is the 96-dimensional Tok2Vec vectors optimized on en core web sm from the
spaCy python package (Honnibal & Montani, 2017): 96 dimensional vector of floats in the range 0.0-1.0.

• The number of timesteps since the node was last observed: integer scalar in the range 0-100 (max timesteps).

• The number of times the node was observed: integer scalar in the range 0-100.

• The number of timesteps since the object was observed to have moved, which occurs during an evolution of the
environment. This requires the agent to have observed the object to at least twice: integer scalar in the range 0-100.

• The observed frequency for which an object has moved: scalar with value in the range 0.0-1.0.

• The node type (’house’, ’floor’, ’room’, ’furniture’, ’object’): 5 dimensional 1-hot vector.

The edge features are the following:

• The cosine similarity between the Tok2Vec text embedding of the edge’s two nodes: scalar in the range 0.0-1.0.

• The number of timesteps since the edge was last observed: Integer scalar in the range 0-100.

• The number of timesteps since the observed last state change: scalar with the value 0.0 or 1.0.

• The number of times the edge was observed: integer scalar in the range 0-100.

• The number of times the edge state was observed to be true (present in the scene graph): integer scalar in the range
0-100.

• The frequency with which the edge observed to be true (present in the scene graph): scalar in the range 0.0-1.0.

• The number of times the edge state was observed to have changed: integer scalar in the range 0-100.

• The last observed state of the edge: scalar with value 0.0 or 1.0.

• The prior probability that the edge exists derived from the ProcThor-10k and iGibson datasets: scalar with value in the
range 0.0-1.0.

• The edge type (’in’, ’contains’, ’onTop’, ’under’): 4 dimensional 1-hot vector.

All features are concatenated to form the feature vectors of nodes and edges. Prior to concatenation, temporal features
(integers in the range 0-100) are first normalized to be roughly in the range 0.0-1.0 via multiplication by a manually derived
scaling factor. For nodes this factor is average scene graph num nodes(200)/(steps per scene(100) ⇤ 10.0), and for
edges this is average scene graph num edges(500)/(steps per scene(100) ⇤ 10.0).

C. Training hyperparameters
Implementation All models are implemented and trained using PyTorch (Paszke et al., 2019) and PyTorch-Geometric (Fey
& Lenssen, 2019). Unless otherwise stated, we use the default parameters of these two packages.
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Model parameters The node embedding network and edge embedding networks are two-layer feedforward neural networks
with 64 units and ReLU activations following each layer. The HEAT and GCN graph neural networks have one graph
convolution layer with 64 units. The transformer encoder is a standard self-attention model with 2 heads with a 64 unit
feedforward network.

Training parameters The model was trained for 25 epochs with a batch size of 100. The Adam optimizer was used with a
learning rate of 1⇥ 10�4.

D. Task and Baseline Implementation Details
Detection error For all tasks, we simulate detection error by randomly skipping 25% of the objects during observation.

Choice of query object For the predict object location task, the query object is sampled at random either from the set of
objects that has moved since the last step or from all object nodes. In the former case, the node is sampled uniformly, and in
the latter case, it is sampled with a weight proportional to its movement probability. This ensures the agent sometimes has to
predict the location of an object that is guaranteed to have been moved since it was last observed, which is a capability we
wish to be able to evaluate.

Bayesian policy The bayesian baseline is based on a Bernoulli model with a beta prior. The beta prior parameters are
computed to match a desired variance. Given prior probability µ and desired variance v, the compute the following:

↵ µ
2 ⇥

⇣
1�µ
v �

1
µ

⌘

�  ↵⇥
⇣

1
µ � 1

⌘

This variance is chosen to be relatively large (0.05) to reflect that the priors don’t in general match the dynamics of
environments. The posterior predictive for an edge being true is then computed as follows:

↵n  ↵+
PN

n=1 xn

�n  N �
PN

n=1 xn + �

p ↵n
↵n+�n

E. Additional Discussion
E.1. Combining our method with Reinforcement Learning

Multiple approaches have been proposed for integrating scene graphs with RL agents for navigation tasks, and as scene
graph memory is the same sort of data structure it can be used in the RL scenario in the same sorts of ways. Examples of
such approaches include (Ravichandran et al., 2022b; Li et al., 2021b; Seymour et al., 2022; Pal et al., 2021). As in these
works, the SGM data structure can be used as input to the RL agent alongside its raw observations to aid the agent’s decision
making. Further, these works all utilize GNN layers to process the scene graphs as part of the policy network, and our NEP
architecture could be used to fulfill this purpose. We performed some exploratory experiments in training an RL agent in the
iGridson environment, and found convergence to be non-trivial. Therefore, we leave this problem to future work.

E.2. The complexity of Dynamic House Simulator tasks

While our simulator may seem simple, the environments the simulator generates are in many ways more complicated than
any existing benchmarks for object search. Concretely, our generated environments are complex in terms of:

• Diversity of scenes – most benchmarks in this space only support a set number of pre-generated scenes, whereas ours
can generate endless scene variations through controllable sampling

• Size of scenes – per Appendix A, our experiments are conducted in scenes with 4 rooms, 32 furniture items, and 192
objects. Prior benchmarks are typically limited to smaller spaces with significantly fewer objects.

• Variety of furniture and object types - our simulator supports over 20 furniture types and over 100 object types, with
most of them having 3 or more possible modifying adjectives. This is far larger than the furniture or object variety in
other benchmarks.

• Dynamics evolution - no other benchmark supports continual evolution of the scene state.
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While our experiments focus on demonstrating results for symbolic scene graphs and the semi-realistic 2D iGridson
environment, the approach we take for the latter can be directly extended to object search in realistic 3D spaces, as discuss
next.

E.3. Applicability of our approach to realistic 3D embodied object search

Our work abstracts away the challenges of perception and navigation that are part of embodied object search in order to
focus on the problem of modeling dynamics with the use of memory. Complementary to our focus, many recent works
have demonstrated impressive performance on embodied instances of this problem that do require robust perception and
navigation, but do not require modeling of environment dynamics of long term memory. A possible future direction for
our research is to demonstrate the usefulness of scene graph memory and the node edge predictor model in the context of
realistic embodied instances of this problem that these works address.

One possible approach for doing this is a direct extension of our approach for implementing the iGridson agent discussed in
section 6.3 and Appendix F. Analogous to our 2D iGridson agent implementation, an agent can continually maintain a scene
graph memory via processing of embodied observations, and then use NEP predictions to decide on navigation goals, which
can be achieved via robust point-goal navigation. The works cited above could likely form the basis for implementing the
necessary perception and point-goal navigation. In particular, the recent paper “Long-term object search using incremental
scene graph updating” (Zhou et al., 2022) demonstrated the feasibility of incremental scene graph updating from visual
observations, which can be directly extended to incrementally building scene graph memory.

Our simulator can also form the basis for adding dynamic objects to the benchmarks used in prior works (Trivedi et al., 2019;
?; Yi et al., 2020; Bear et al., 2020; Zhou et al., 2022). As we demonstrate with the iGridson component of our simulator, it
is possible to translate the symbolic scene graphs of the environment into embodied spaces. While we only demonstrate
this for the simplified 2D setting, the same approach can be extended to more realistic 3D simulators by sampling object
placements according to the scene graph. For instance, iGibson 2.0 (Li et al., 2021a) supports sampling object placements to
satisfy object placement constraints. The primary difficulty with implementing this would be acquiring sufficient 3D assets
for all the objects our simulator supports.

F. iGridson Embodied Environment Details
The iGridson simulator is a 2D embodiment of a home environment laid out in a grid format, built using the minigrid
library (Chevalier-Boisvert et al., 2018). It enables translating the scene graphs generating by the Dynamic House Simulator
into a spatial arrangement, which is what embodied agents actually have to deal with.

As shown in Fig.2, the environment has a fixed layout of the home with four rooms, each with a predetermined number
and type of furniture objects. In total, the environment consists of 21 furniture objects spread across different rooms, all of
which remains static throughout the evolution of the environment. A set of objects are then placed on top of these furniture
objects, and are dynamically moved to a different furniture at each time step based on their priors and specific dynamics as
described in section 4.1. Note that in our experiments, the overall set of objects itself is static. That is, no new objects are
added to the environment, nor are any existing objects removed, they simply move from one furniture object to another.

Our experiments in this environment follow the Find Object task, wherein each agent is given multiple attempts to find
a target object. If the agent correctly predicts the furniture object on which the object is placed, we count the event as a
success and the task is terminated. In this setup, given a target object, the agent makes N predictions of furniture objects,
which are sequentially visited by the agent. The cost returned by the environment is therefore the total path length traversed
by the agent in an episode, and the number of attempts it took to find the target object (N + 1 if object could not be found
in N steps). It should be noted that the path length itself is not a direct indicator of performance, as the furniture node on
which an object is placed can sometimes be far away from the agent’s current position. Hence, the optimal solution in this
case would incur a high path length. As a result, even optimal agents which can find the target object in a few steps can have
a high variance for the average path length when aggregated over thousands of episodes.
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Table 4. Furniture types used in Dynamic House Sim and their associated metadata
label # possible adjectives sample probability max count # edges
counter 3 0.80 3 27
table 1 0.80 3 17
shelf 7 0.80 10 6
fridge 3 0.90 2 30
top cabinet 3 0.50 10 8
coffee table 4 0.60 3 34
cooktop 3 0.90 1 3
counter top 5 0.80 3 67
dining table 7 1.00 1 74
chair 7 0.75 12 40
tv stand 2 1.00 1 33
sofa 1 0.75 2 18
bed 3 0.90 2 17
dresser 7 0.75 3 36
toilet 1 1.00 1 15
sink 2 1.00 2 6
shelving unit 4 0.50 4 28
desk 7 0.70 4 30
chair 4 0.60 2 17
side table 7 0.70 3 64
chairs 7 0.75 12 40
couch 1 0.75 2 18

Table 5: Objects types used in Dynamic House Sim and their associated metadata

label # adjectives sample prob max count move frequency add/remove prob # edges
apple 2 0.80 15 0.40 0.20 9
box 6 0.70 4 0.40 0.01 11
cereal 9 0.50 4 0.20 0.10 2
dishtowel 11 0.75 8 0.20 0.00 1
flour 8 0.80 4 0.20 0.10 2
jar 10 0.75 6 0.15 0.05 3
kettle 6 0.75 4 0.40 0.00 4
lettuce 1 0.80 5 0.10 0.01 3
milk 6 0.80 2 0.10 0.10 2
mug 10 0.80 12 0.60 0.01 11
oil 9 0.80 4 0.10 0.05 2
pasta 6 0.75 8 0.10 0.00 2
rice 11 0.20 6 0.15 0.00 2
soda 12 0.50 8 0.10 0.10 2
ladle 9 0.80 6 0.40 0.00 1
toy 3 0.80 12 0.50 0.01 0
egg 2 0.80 12 0.05 0.10 2
spray bottle 6 0.50 4 0.33 0.00 6
salt shaker 4 0.50 2 0.25 0.00 3
wine bottle 7 0.40 6 0.10 0.10 3
potato 1 0.75 8 0.10 0.00 3
pencil 4 0.50 12 0.50 0.01 11
soap bottle 7 0.50 4 0.10 0.01 4
plate 7 0.80 12 0.40 0.00 9
fork 6 0.80 8 0.20 0.20 3
book 7 0.80 20 0.20 0.01 14
pan 9 0.75 6 0.20 0.05 2
towel roll 2 0.75 4 0.25 0.00 3
butter knife 2 0.75 4 0.20 0.01 3
spoon 9 0.75 16 0.20 0.00 2
watch 4 0.50 2 0.40 0.00 8
phone 7 0.75 2 0.90 0.00 13
pen 6 0.75 8 0.50 0.00 9
credit card 4 0.50 4 0.20 0.10 9
candle 8 0.60 12 0.40 0.20 6
tissue box 6 0.20 4 0.10 0.10 5
newspaper 8 0.60 5 0.60 0.20 12
remote control 4 0.75 4 0.75 0.00 12
house plant 8 0.75 12 0.01 0.01 8
laptop 13 0.60 4 0.75 0.10 12
desk lamp 4 0.50 4 0.01 0.01 7
alarm clock 4 0.20 1 0.01 0.00 13
soap bar 7 0.50 4 0.15 0.01 2
toilet paper 1 0.50 4 0.10 0.00 1
baseball bat 2 0.20 1 0.20 0.00 8
dish sponge 7 0.80 4 0.10 0.01 4
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tennis racket 1 0.25 4 0.20 0.00 5
basket ball 1 0.20 1 0.20 0.00 11
coffee machine 3 0.60 2 0.01 0.00 2
knife 1 0.60 12 0.20 0.01 2
bread 4 0.50 4 0.14 0.10 2
cup 11 0.80 16 0.40 0.10 3
pot 9 0.50 4 0.10 0.00 4
bottle 11 0.90 15 0.25 0.10 5
toaster 2 0.80 1 0.01 0.00 2
cloth 8 0.90 6 0.20 0.01 2
microwave 2 0.80 1 0.00 0.00 2
apples 2 0.80 15 0.40 0.20 9
oranges 2 0.80 15 0.40 0.20 9
bananas 2 0.80 15 0.40 0.20 9
orange 2 0.80 15 0.40 0.20 9
banana 2 0.80 15 0.40 0.20 9
lemon 2 0.80 15 0.40 0.20 9
garlic 2 0.80 15 0.40 0.20 9
peach 2 0.80 15 0.40 0.20 9
grapes 2 0.80 15 0.40 0.20 9
avocado 2 0.80 15 0.40 0.20 9
towels 11 0.75 8 0.20 0.00 1
beet 1 0.80 5 0.10 0.01 3
radish 1 0.80 5 0.10 0.01 3
eggplant 1 0.80 5 0.10 0.01 3
basil 1 0.80 5 0.10 0.01 3
tomato 1 0.80 5 0.10 0.01 3
kale 1 0.80 5 0.10 0.01 3
squash 1 0.80 5 0.10 0.01 3
yogurt 6 0.80 2 0.10 0.10 2
whole fat milk 6 0.80 2 0.10 0.10 2
zero fat milk 6 0.80 2 0.10 0.10 2
pop 12 0.50 8 0.10 0.10 2
teddy bear 3 0.80 12 0.50 0.01 0
legos 3 0.80 12 0.50 0.01 0
action figure 3 0.80 12 0.50 0.01 0
dinosaur 3 0.80 12 0.50 0.01 0
jigsaw 3 0.80 12 0.50 0.01 0
animal 3 0.80 12 0.50 0.01 0
butter 2 0.80 12 0.05 0.10 2
pepper shaker 4 0.50 2 0.25 0.00 3
paprika shaker 4 0.50 2 0.25 0.00 3
bottle of soap 7 0.50 4 0.10 0.01 4
plates 7 0.80 12 0.40 0.00 9
binder 7 0.80 20 0.20 0.01 14
document 7 0.80 20 0.20 0.01 14
books 7 0.80 20 0.20 0.01 14
binders 7 0.80 20 0.20 0.01 14
documents 7 0.80 20 0.20 0.01 14
spoons 9 0.75 16 0.20 0.00 2
smartphone 7 0.75 2 0.90 0.00 13
wallet 4 0.50 4 0.20 0.10 9
debit card 4 0.50 4 0.20 0.10 9
candles 8 0.60 12 0.40 0.20 6
box of tissues 6 0.20 4 0.10 0.10 5
pc 13 0.60 4 0.75 0.10 12
bar of soap 7 0.50 4 0.15 0.01 2
soap 7 0.50 4 0.15 0.01 2
dish soap 7 0.80 4 0.10 0.01 4
sponge 7 0.80 4 0.10 0.01 4
baguette 4 0.50 4 0.14 0.10 2
bottles 11 0.90 15 0.25 0.10 5
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