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Abstract
Labelling incident postmortems with the root causes is essen-
tial for aggregate analysis, which can reveal common problem
areas, trends, patterns, and risks that may cause future inci-
dents. A common practice is to manually label postmortems
with a single root cause based on an ad hoc taxonomy of root
cause tags. However, this manual process is error-prone, a sin-
gle root cause is inadequate to capture all contributing factors
behind an incident, and ad hoc taxonomies do not reflect the
diverse categories of root causes.

In this paper, we address this problem with a three-pronged
approach. First, we conduct an extensive multi-year analysis
of over 2000 incidents from more than 450 services in Mi-
crosoft Azure to understand all the factors that contributed to
the incidents. Second, based on the empirical study, we pro-
pose a novel hierarchical and comprehensive taxonomy of po-
tential contributing factors for production incidents. Lastly,
we develop an automated tool that can assist humans in the
labelling process. We present empirical evaluation and a user
study that show the effectiveness of our approach. To the best
of our knowledge, this is the largest and most comprehensive
study of production incident postmortem reports yet. We also
make our taxonomy publicly available.

1 Introduction

Cloud platforms and services, despite the best efforts of
cloud providers, still suffer from production incidents and out-
ages [13,15]. To improve reliability, cloud providers must first
discover and resolve existing reliability risks [14]. Aggregat-
ing root causes of past incidents based on their post-incident
reports (PIRs) is one effective approach to uncover common
problem areas, trends, patterns, and risks (e.g., the most com-
mon root causes in the last year). Likewise, bucketing past in-
cidents by their root causes can help on-call engineers (OCEs)
to quickly retrieve and learn common mitigation strategies for
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a given root cause category. Such tasks are crucial for large-
scale cloud platforms like Microsoft Azure that continuously
strive to improve reliability by learning from past incidents
caused by diverse factors.

PIRs are commonly written in natural language, with lit-
tle structure. This makes the tasks of aggregating or bucket-
ing past reports challenging, especially at a large-scale. One
common practice to address this is to label each PIR with a
root cause tag representing the category of its root cause. For
example, a PIR for an incident caused by a code bug in the
network driver can be tagged as “Network.Driver.Code.Bug”.
This enables quick and accurate aggregation of and retrieval
from a large collection of PIRs simply based on their root
cause tags instead of expensive and potentially inaccurate
natural language processing of the PIR contents. For exam-
ple, the tags can enable quickly answering questions such as:
“how frequently did network driver code bugs cause incidents
in the past year?” and “how were such bugs mitigated?”

Challenges and limitations. There are two key challenges in
effectively labelling PIRs with root cause tags (more in §2).

The first challenge is to decide what root cause tags to
use to label the PIRs. A well-defined taxonomy of root cause
tags is essential for labelling PIRs consistently, otherwise dif-
ferent teams may tag the same root cause differently, hin-
dering the cross-team aggregation analysis. A well-designed
taxonomy for a large-scale cloud system such as Microsoft
Azure should balance two competing objectives: it should be
comprehensive enough to cover the myriad of potential root
causes, yet compact enough for the OCEs to navigate and use
easily. Moreover, it should be fine-grained enough to surface
actionable insights from across many services.

Designing such a taxonomy is nontrivial. Several re-
cent works analyzed production incidents and proposed tax-
onomies to capture their root causes. However, most of these
works focus on specific root cause categories, such as soft-
ware bugs [4, 5, 11, 19, 21, 40], and thus their taxonomies are
not comprehensive enough to cover other types of failures
(e.g., hardware failures). Some other works consider multi-
ple types of root causes, but they target specific services or



systems, such as big-data systems [38], a business data pro-
cessing platform [9], or a particular cloud service [13, 14],
rather than a large-scale cloud system. Moreover, existing tax-
onomies are not fine-grained enough to represent all the root
causes we observe in Azure incidents.

Prior to our work, individual service teams in Microsoft
designed their own root cause taxonomies based on domain
knowledge. However, due to the lack of a comprehensive root
cause labelling, many potential root causes were not antici-
pated when the taxonomies were designed. Consequently, a
large portion of PIRs, whose root causes were not covered by
existing taxonomies, were labelled with “Other” instead of
more informative root cause tags (see §2 for more details).

The second challenge concerns how to select root cause
tags for incidents. Currently, this is done manually—an in-
dividual (OCE) reads lengthy incident and post-incident re-
ports, identifies the root cause, and chooses a suitable tag
from a taxonomy that is often a long flat list of tags. This man-
ual process is error-prone and can result in inconsistent tags
across incidents—at Microsoft, tens of thousands of OCEs
with varying levels of expertise and different interpretations
of root cause tags conduct root cause analysis. We manually
examined a small sample of 1241 PIRs and found that 29%
of the OCE-assigned tags are incorrect. This problem might
be mitigated if root cause tagging is done by a small group of
experts through a stringent procedure, but this is infeasible at
large scale systems like Microsoft Azure.

Contributions. In this work, we make the following three
contributions that address the challenges described above.

First, we manually analyze over 2000 high-impact produc-
tion incidents from 468 services in Microsoft Azure to identify
a comprehensive set of root cause categories behind incidents
in a large-scale cloud system. We carefully read the incident
and post-incident reports and, if needed, consult the engineers
from the affected service teams. Unlike previous empirical
analyses of production incidents [4,5,9–11,14,21,38,40], we
aim to identify not only a single root cause, but all factors con-
tributing to the incidents. This analysis took more than four
person-years and identifies 346 distinct root cause categories
spanning all aspects of a production service, such as hardware
and software, infrastructure and application, code and configu-
ration, and so on. To the best of our knowledge, this is the most
comprehensive empirical analysis of production incidents in
cloud systems, considering the scale of incidents and affected
services, the depth of analysis, and the diversity of root causes.

Our empirical analysis (§3) reveals several novel and inter-
esting findings. For example, we show that most production
incidents in real-world cloud systems involve multiple con-
tributing factors; hence, preventing such incidents does not al-
ways require addressing all the causal factors, but only one (or
a small subset) of them. This contrasts with existing research
that focuses on a single root cause of an incident [10, 13, 21].
This finding implies that tagging a PIR with a single root
cause does not capture the full picture of what caused the inci-

dent. Our analysis also shows that incidents result from many
diverse factors spanning hardware and software, infrastruc-
ture and application, code and configuration, and so on. This,
again, contrasts with existing research that focuses on a lim-
ited set of factors [4, 5, 9–11, 14, 19, 21, 38, 40]. We also show
that the set of root causes evolves over time: new root causes
emerge as new services or hardware are deployed, suggesting
the need for a continuous root cause labelling effort. While
our findings stem from analysis of incidents at Microsoft
Azure, we believe that they generalize to similar large-scale
systems and impact root cause analysis procedures at large.

Second, we propose a comprehensive taxonomy, the Azure
Reliability Tagging System (ARTS), that organizes the root
cause categories derived from our analysis. For ease-of-use,
our taxonomy is organized hierarchically, with each leaf node
representing a root cause tag describing a factor contributing
to an incident. We expect that the root causes generalize to
other cloud services and we open-source our taxonomy for
the use of other researchers and practitioners.1

Finally, to reduce manual errors and inconsistencies in tag-
ging PIRs, we developed AutoARTS, a tool that leverages
machine-learning-based algorithms to assist humans. Au-
toARTS performs two key tasks: (1) it applies a multi-label
classification technique to automatically analyze a PIR (writ-
ten in natural language) and to extract multiple contributing
factors and their corresponding tags from our proposed taxon-
omy; and (2) it generates a concise text snippet (from the PIR)
that summarizes the relevant context for the factors. The snip-
pet allows a human to quickly review the suggested tags with-
out reading lengthy incident reports or PIRs. We describe how
we adapt existing ML techniques for this purpose. Our empir-
ical evaluation with real PIRs and a user study demonstrates
the effectiveness of our approach. Specifically, our multi-label
classification achieves an F1 score of 0.89. In the user study,
our text snippets (contexts) received a score of 4.6 out of 5 (5
being ‘very useful’), contained no unnecessary details, and
helped an expert identify two additional contributing factors
(in a set of ten incidents) that they had originally missed.

Deployment status. Most of the 468 services whose pro-
duction incidents we analyze have been deployed as part of
Microsoft Azure for several years. High-impact incidents in
these services have been analyzed and labelled with ARTS
tags since November 2020. The labels, available to all ser-
vices in Azure, are regularly aggregated to identify key prob-
lem areas and to devise actionable insights (examples in §4).

2 Background and motivation

2.1 Background

Incident Reports. Incidents are unplanned outages that im-
pact production services and their users. The severity of an in-

1ARTS Taxonomy: https://autoarts-rca-taxonomy.github.io



cident may vary based on aspects such as the criticality of the
affected services and the number of impacted users. As de-
scribed in [31], an incident’s life-cycle is a complex process
involving several steps such as detection, triaging, diagnosis,
root cause analysis, mitigation, and resolution. An incident
report documents important information related to these vari-
ous steps. At Microsoft, an incident report can be created by
impacted users as well as by automated monitors and it usu-
ally contains the following: (1) a concise title, (2) a summary
of the incident, highlighting some events in the timeline from
detection to mitigation, (3) engineers’ discussion thread to
share relevant information corresponding to the incident’s res-
olution, and (4) several other fields such as severity, owning
team, time to mitigation, mitigation steps, etc.
Post-Incident Reports (PIR). After an incident is resolved,
a best practice is to conduct a retrospective or postmortem
analysis of the incident to produce a post-incident report
(PIR). In a PIR, the service team reflects on what went wrong,
why it went wrong, what they learned from it, and how to
avoid similar incidents in the future. At Microsoft, a PIR is a
natural language document and it contains sections such as
(1) root cause summary that describes all root causes, (2) five-
whys [34] that iteratively drills-down the cause-and-effect
relationships of various contributing factors, (3) preventive
measures for similar future incidents, and so on. Generating a
PIR requires significant effort, and hence, only the incidents
with high severity are required to have them at Microsoft.
Root cause labelling. A critical component of a PIR is its root
cause tag that represents the root cause categories of the inci-
dent as determined by a postmortem analysis. For example,
a root cause tag “Authoring.Code.Bug.RaceCondition” indi-
cates that the incident is caused by a race condition in soft-
ware code. Such concise labelling allows one to efficiently
and accurately aggregate and summarize a large number of
historical PIRs solely based on their tags, without expensive
and potentially error-prone natural language processing of
the PIR contents. These aggregate results are regularly re-
viewed by the engineering leadership to find global trends
(e.g., frequent root cause categories), which guide business
decisions such as prioritizing engineering investments. These
tags also simplify information retrieval and knowledge shar-
ing: an engineer seeking to actively mitigate an ongoing in-
cident caused by a network driver can quickly retrieve and
consult past PIRs with root cause tag Network.Driver. For ef-
fectiveness of aggregation and retrieval, it is important that
the root cause analysis and labelling process is accurate.

At Microsoft, authors of incident reports or PIRs can label
their reports with root cause tags selected from taxonomies of
root cause categories that are predefined by domain experts.

2.2 Challenges in root cause labelling
We analyze a sample of ≈ 1.7M root cause analyses in Mi-
crosoft, across all its services, to understand the challenges in

root cause labelling. We now summarize the key findings.

Finding 1. Existing taxonomies, although designed by domain
experts, are not comprehensive enough.

This is due to the lack of a comprehensive study of root
causes, many potential root cause categories are missed or not
anticipated when a taxonomy is designed. As an implication,
a PIR author may not find a suitable predefined root cause
tag to describe the current incident. In our sample of root
cause analyses, ≈ 20% incidents are labelled as ‘Other’ and
≈ 58% are labelled with categories containing ‘Other’ (e.g.,
‘Network - Other’), implying that their root causes are not
covered or only partially covered by the existing taxonomies.
Such ‘Other‘ tags are not useful in the aforementioned root
cause aggregation and retrieval tasks.

Finding 2. Existing manual root cause labelling process is
expensive and error-prone.

Root cause label of an incident is often determined based
on its PIR and incident report. These documents are usually
long (4542 words per incident in our sample) and complex (on
average, ≈ 9 engineers engaged in discussion exchanging 20
comments). Thoroughly understanding these long documents
to identify all contributing factors behind an incident, and
then selecting from predefined root cause labels that represent
the factors, is a nontrivial task.

Even when the root cause is understood, PIR authors may
make mistakes in choosing the correct tag. This can happen
due to multiple factors. Existing taxonomies at Microsoft are
flat long lists, making it difficult to navigate through them
and to pick the right tags. Moreover, many individuals are in-
volved in the rootcausing efforts. For example, we observe
34K distinct individuals involved in a sample of 600K PIRs
in Microsoft. This large number of individuals are likely to
have varying degrees of expertise and different interpretations
of root cause tags. This is further exacerbated by ambiguous
or confusing tags in the taxonomy (e.g., ‘Network’ and ‘Dat-
acenter - Network’). All these factors can contribute to in-
consistent and/or inaccurate labels. We manually examined
a small sample of 1241 PIRs and found that 29% of the as-
signed tags are incorrect.

Our goals. In this paper we address the challenges above
with a three-pronged approach. First, to address the first chal-
lenge above, we conduct an extensive multi-year analysis to
identify a wide variety of fine-grained root causes of 2000+
production incidents from across 450+ services in Microsoft
Azure. Second, based on this analysis, we propose a novel
hierarchical and comprehensive taxonomy of potential con-
tributing factors behind the incidents (§4). Third, to address
the second challenge above, we develop an automated tool
that can assist a human by presenting necessary context from
PIRs that identify contributing factors to reduce cognitive
load and improving accuracy in the root cause labelling pro-
cess by suggesting tags from the taxonomy (§5).



3 Empirical Analysis of Production Incidents

3.1 Goals and Methodology

There exists several empirical studies of production incidents
in large-scale cloud systems [4, 5, 9–11, 14, 21, 38, 40]. We
have two goals that differentiate our study from them. First,
we do not restrict our analysis to a limited set of root cause
categories (e.g., software bugs [4,5,11,19,21,40]) or specific
services/platforms (e.g., big-data systems [38]). Second, for
each incident, we try to identify not a single root cause, but all
factors contributing to the incidents. These two goals enable
us to identify a wide-range of contributing factors behind
incidents happening in large number of services/platforms.

We analyze 2051 high-impact incidents in 468 Microsoft
Azure services. We carefully analyze each incident by care-
fully reading and understanding its incident report and PIR,
the discussion comments, and even the work items (e.g., bug
fix, system upgrade) that are created due to the incident. When
something is not clear, we reach out to the incident owners
to clarify. As a part of the analysis, we not only identify the
contributing factors causing the incident but also extract text
snippets or context from the incident and PIR which helps ex-
plain and justify the identified root cause tag for future refer-
ence and validation. Every week, we peer review a randomly
selected subset of incidents to help us refine our collective
understanding of tag usage, promote learning and improve ac-
curacy. If we identify a new category of root causes, which is
not covered by existing tags, we then propose new tags which
are internally reviewed before getting introduced to the tax-
onomy. For any tag in the taxonomy, we also provide it’s de-
scription in natural language for future reference. This data
lives in an internal database which can be easily joined with
incident databases and visualization reports are created for
easy data analysis based on various pivots such as contribut-
ing factors, services, incident impact, etc. We also meet with
the engineering teams on a weekly basis, and review our data
both for accuracy and to share insights that result in reliabil-
ity improvements.

Our root cause analysis effort is guided by several prin-
ciples: (1) Our analysis is intellectually honest so that indi-
vidual teams that conduct their own postmortem analysis (to
identify a single root cause) feel psychologically safe, val-
ued, and included; (2) Our analyses have meaningful depth
because we start by capturing customer pain and go down to
“work as done” by our engineers; (3) We focus on both depth
and breadth of incident analysis enabling us to highlight the-
matic learning that broadly improves Azure services and the
underlying cloud platform; (4) Our findings are turned into
new standards or updates to existing standards and are action-
able and useful because they address customer pain; and (5)
While learning is important; continuous learning is necessary
and crucial.

The above process is required to ensure high quality of root
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Figure 1: Distribution of incidents across number of dis-
tinct contributing factors (shown until 10 factors).

cause analysis. However, it needs significant manual effort.
Since 2020, we have analyzed 2051 incidents in 468 Azure
services with a team of 2-4 members.

3.2 Analysis Results

We here present several interesting findings from our analysis.

Finding 3. Incidents are often caused by multiple contributing
factors working together instead of an isolated root cause.

This is contrary to prior work [13, 15, 16, 21] that focus on
identifying a single root cause per incident. Consider, for ex-
ample, a real incident where a service became unavailable af-
ter a single customer continuously pushed a load that was 60x
greater than what the service was scaled to handle. The orig-
inal PIR author chose the root cause label “Service – Load
Threshold.” This itself is not an inaccurate root cause when
forced to pick only one cause. However, there are many more
factors involved in this incident: (1) there was an inrush of
load from a single customer, (2) there was a lack of throt-
tling on the customer end as well as the service end, (3) in-
creased load significantly increased CPU and heap usage and
thread count at the server, which lead to failed requests with
exceptions, (4) the exception handling didn’t release some re-
sources that were allocated by the failed requests, leading to
resource leaks, (5) there were no automated watchdogs to de-
tect early symptoms of the outage (or resource leaks), and (6)
the team was unable to access their own metrics during the
outage since the metrics were collocated with the service. In
contrast, our analysis of the incident identifies all these fac-
tors and the corresponding tags in our taxonomy.

Figure 1 shows the distribution of the number of contribut-
ing factors behind each incident. As shown, over 75% of inci-
dents have been caused by more than one contributing factors.
And, more than 50% of the incidents have 4 or more contribut-
ing factors. On average, each incident has ≈ 3.6 factors. This
reaffirms the need for holistically analyzing the incidents to
understand all the contributing factors.

The presence of multiple contributing factors per incident
has important implications. On one hand, identifying the pos-
sibility of such incidents before deployment to production
with integration and end-to-end tests is challenging since test-



Category Description Frequency TTM (Hrs)
Detection Issues related to detecting problems before they affect production 61% 50
Authoring Issues in authoring artifacts like code, config, troubleshooting guides, etc. 50% 58

Dependency Issues in a dependency the service has, most typically another service
but can also be some things where a boundary between teams is present 37% 16

Architecture Issues in how the service is architected and likely where any work
to fix would require changes to the architecture of the service 20% 33

Deployment Issues related to deployment of code or config 20% 27
Process Any issue caused by human errors, a flawed process or the lack of a process 18% 123

Load Any issue caused by the service not being able to handle changes in load 14% 13
Auth An authentication or authorization related issue 7% 21

Performance An issue that caused excess latency 6% 16
Datacenter Events (hardware, installations, power interruption, etc.) in the datacenter 4% 70

Table 1: High-level root cause categories from ARTS taxonomy with their descriptions, frequency of occurrence in our
analysis and mean Time-To-Mitigate (TTM) for incidents caused by their sub-categories.

ing needs to be performed in the presence of multiple poten-
tial contributing factors (e.g., high load and no throttling and
no monitoring of early symptoms). On the other hand, pre-
venting such an incident does not always require addressing
all the causal factors, but only one (or a small subset) of them.
For example, the aforementioned incident could have been
prevented by using proper throttling mechanism, or by fixing
the resource leak bug, or by having monitors that can restart
the service on early symptoms of resource leaks. This insight
presents a unique opportunity to fix the incidents (by address-
ing the easiest causal factor); but it requires identification of
all the causal factors (as we do) instead of identifying a single
root cause.
Finding 4. A wide-variety of factors contribute to production
incidents.

Our analysis identified a wide range of factors, including
hardware, software, code bugs, underlying infrastructure to
external dependency issues, configuration errors, deployment
issues, and so on. Specifically, we have identified 346 root
cause categories (i.e., contributing factors) for the 2051 inci-
dents we analyzed. Table 1 shows the high-level root cause
categories, each of which contains many finer-grained sub-
categories. The full list of categories and their respective fre-
quencies observed in our analysis can be found in https://
autoarts-rca-taxonomy.github.io. This contrasts our
study with prior works that focus on a small set of root causes
such as code bugs [4, 5, 11, 19, 21, 40].
Finding 5. New root-cause categories keep appearing over
time.

As software and hardware systems evolve, novel root
causes appear to contribute to their incidents. For example,
when a service migrates to a containerized environment, its
incidents may be caused by container-related factors. Simi-
larly, when a service takes a new external dependency, it may
start experiencing incidents caused by factors related to the
failures of the new dependency. We analyze incidents in the
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Figure 2: Average number of incidents successfully tagged
until a new root cause tag is introduced across quarters.

same timeline as they appear and we create root cause cate-
gories incrementally—we create a new category only if none
of the existing ones can precisely represent a new root cause.
We observe that even though many common root cause cate-
gories (e.g., code bugs) appear in early incidents that we an-
alyze, a few categories appear only in much later incidents
(e.g., those happening two years after the first incident we an-
alyzed). Figure 2 shows how often such new categories ap-
pear in our analysis. As shown, even after 1.5 years, new root
cause categories appear, albeit with a smaller rate (i.e., we can
tag higher number of incidents successfully before we need
to introduce a new root cause category). The fact that novel
root cause categories keep appearing implies that root cause
labelling needs to be a continuous process to identify (and
take actions on) emerging root cause categories. This calls for
an automated solution.
Finding 6. Lack of monitoring (i.e., observability) is the most
common factor behind incidents.

Table 1 shows the distribution of various contributing fac-
tors behind the incidents we analyzed (only high-level factors
are shown). As shown, Detection is the most common con-
tributing factor leading to outages. Detection related issues
represent missing observability signals that prevent us from
detecting early symptoms of problems, many of which could
have been avoided, e.g., by rebooting the service, if their early



Contributing Factor Frequency
Detection.Monitoring.MissingAlert 34%

Authoring.Code.Bug.Change 25%
Detection.Monitoring.InsufficientTelemetry 18%
Detection.Validation.MissingTestCoverage 17%
Detection.Monitoring.CodeDeployment.

InsufficientHealthSignal 9%

Authoring.Documentation.
NoOrInsufficientTSG 9%

Architecture.SinglePointOfFailure 8%
Authoring.Code.Bug.Latent 7%

Detection.Monitoring.Synthetic 6%
Deployment.Mitigation.ManualTouch 5%

Table 2: Distribution of top 10 most frequent contributing
factors in our analysis from the ARTS taxonomy.

symptoms were detected. We also analyzed finer-grained con-
tributing factors from ARTS taxonomy. Table 2 shows distri-
butions of the top ten contributing factors (a contributing fac-
tor X.Y.Z means factor Z is a specific case of factor Y, which is
a specific case of factor X). As shown, Missing Alerts, which
is a specific case of Monitoring, which is a specific case of De-
tection, is the most common contributing factor. Insufficient
telemetry captured from services is also a major contribut-
ing factor which also prevents from deploying automated
alerts. An organizational policy on collecting key telemetry
and defining automated watchdogs informed by this aggre-
gate analysis can mitigate incidents (or severity) in the future.

We also analyze the most frequently co-occurring root
causes to identify the pairs that jointly cause incidents. The
two most frequent pairs are “Authoring.Code.Bug.Change"
& “Detection.Monitoring.MissingAlert" (15%) and “Author-
ing.Code.Bug.Change" & “Detection.Validation.MissingTest-
Coverage" (11%). This aligns with our experience that many
production incidents are caused by buggy code changes that
are deployed without proper monitoring and testing.

Finding 7. Incidents caused by deployment and datacenter
related issues are the most time consuming to mitigate.

In incident management, TTM is defined as the time
elapsed between the start of the incident and when its cus-
tomer impact was completely resolved. The higher the TTM,
the more the customer impact and dissatisfaction. From Ta-
ble 1, we can see that incidents caused by Process and Data-
center related root causes have the highest mean TTM. Pro-
cess related incidents have a high TTM because these inci-
dents are caused by human errors and lack of standard oper-
ating procedures which result in non-trivial hard-to-resolve
issues (e.g., accidental deletion of a database). Datacenter re-
lated incidents are caused primarily due to hardware failures
which are quite complex given that there are multiple layers
of capacity buffers all of which need to fail before an incident
is caused by hardware issues.

4 Root Cause Taxonomy

We organize the root cause categories identified in our empir-
ical study as a taxonomy of reliability tags that can be used to
label PIRs of incidents.
Design goals. We have the following design goals in design-
ing the taxonomy. First, the taxonomy should be comprehen-
sive enough to capture not only the primary root causes of
past incidents in Azure, but also other (secondary) contribut-
ing factors. Second, in order to avoid having a taxonomy too
large to be easily used in practice, the taxonomy should be
sufficient and it should include only the root causes found in
past incidents. This implies that the taxonomy is continuously
and organically grown to include new categories as they are
discovered. Third, the tags should be unambiguous, to enable
high-quality annotations. Finally, the taxonomy is organized
hierarchically, for ease of labelling and updates.
The ARTS taxonomy. We achieve the goals with a novel tax-
onomy called ARTS (Azure Reliability Tagging System) tax-
onomy. The taxonomy is built on top of the root cause cate-
gories identified by our empirical analysis described before.
We start with a small number of tags representing orthogonal
categories of themes (such as datacenter issues and authenti-
cation issues) and grow it horizontally to include new themes
and vertically to include more specific sub-themes as new in-
cidents are analyzed and existing themes/sub-themes deem
inadequate. We have established a continuous feedback loop
based process for building the ARTS taxonomy and tagging
of new incidents on an ongoing basis.

For ease-of-use, we organize the ARTS taxonomy hierar-
chically, by grouping related sub-themes under one common
theme. Currently it consists of four levels and contains 346
root cause categories identified from our empirical analysis.
The top level consists of ten broad themes (shown in Table 1),
each of which consists of multiple sub-themes. There are 346
leaf nodes, each representing a root cause tag with the name
obtained by concatenating the names of the path from the root
to the leaf node. For example, the root cause of “a gap in pre-
production detection due to missing integration tests” is rep-
resented with the tag “Detection.IntegrationTest.Missing" in
which “Missing” is the most precise leaf-level tag. The hier-
archical taxonomy naturally distinguishes between problem
spaces at different granularities. In this example, if the root
cause is that the integration tests existed but were skipped
somehow, that representative tag would have the leaf-level
tag “NotRun” instead of “Missing”.

As mentioned, the taxonomy is grown as new root causes
are identified in newly analyzed incidents. Figure 2 shows
how the taxonomy has been growing over time, with the y-
axis showing the average number of incidents analyzed until
a new tag needed to be introduced in ARTS. A larger value
indicates better stability of the taxonomy: many incidents
can be analyzed with existing tags. As shown, over time, the
taxonomy can be seen becoming stable. Specifically, in the



most recent quarter, only one new tag needed to be introduced
after analyzing ≈ 20 incidents (i.e., after using ≈ 70 existing
tags) on average. We hope to see significantly more stability
in coming months.

For lack of space, we omit further discussion about 346
leaf nodes in the taxonomy. However, we open source the
taxonomy, with all tags and their descriptions, at https:
//autoarts-rca-taxonomy.github.io. We believe our
open-source effort will foster future research and allow prac-
titioners use our taxonomy. Even though the ARTS taxonomy
is developed based on incidents in Azure, we believe that its
categories are general enough to be used in any large-scale
cloud system.

Deployment Status. The ARTS taxonomy and PIRs labelled
with ARTS tags have been available to Microsoft engineers
since when we started building it (November 2020). It en-
ables various service teams within Microsoft Azure to sys-
tematically look at past incidents. The learnings have been
valuable, especially for service teams without the required ex-
pertise or resources to dig deep into their service reliability.
They have enabled engineering teams prioritize work items
and often times this also results in creation of new engineer-
ing standards and tools. For example, lack of unit testing was
a common factor contributing to many incidents in a large or-
ganization in Azure—incidents were caused by bugs in code
that was not tested (or poorly tested). This caused the orga-
nization to enforce the policy that all checked-in code must
have sufficient tests to achieve a certain code coverage. Lack
of throttling was another factor highlighted by aggregating
ARTS labels; this started a new engineering group with the
goal of building a common throttling service that all Azure ser-
vices can easily use. Last but not the least, engineering teams
emphasize on using more extensive monitoring/observability
tools, since as ARTS labelling showed, adequate monitoring
could prevent many incidents.

Overall, Microsoft engineers found the ARTS labels in their
PIRs useful. Here we show samples of the verbatim feedback
from the service owners at Microsoft: “Tracking incidents
against a known set of root causes is extremely useful. Your
effort has enabled us to make data-driven decisions, and al-
ready produced several benefits in a short time." “Your data
established clearly that services that have high maturity in
certificate management had fewer outages. This validated that
our investment across Azure is in the right direction." “The
ARTS report is an important resource for us for data driven
planning related to Azure Quality."

5 AutoARTS for Automated Labelling

As mentioned before, identifying and labelling PIRs with their
root causes is expensive and error-prone. To reduce the cost
and errors, we have developed an automated tool called Au-
toARTS that can assist a human in the labelling process with

two important tasks. First, it uses a multi-label classification
technique to automatically analyze an incident’s PIR (written
in natural language) and to identify multiple contributing fac-
tors and their representative ARTS tags. Second, it can pro-
duce a short text snippet (from the PIR) that captures impor-
tant context explaining the factors. The snippet enables a hu-
man to easily review the selected tags without reading lengthy
incident reports or PIRs. We now describe how AutoARTS
performs these two tasks by using ML techniques. Figure 3
shows the architecture and components of AutoARTS.

5.1 Automatic identification of ARTS tags

AutoARTS uses multi-label text classification to classify a
PIR into a set of ARTS tags. One key challenge we face is that
conventional multi-label text classification algorithms that
treat each class as opaque and independent, require sufficient
labelled data for each class to achieve good accuracy. How-
ever, even though we have a reasonable collection of labelled
data, many of the fine-grained classes (i.e., ARTS contributing
factors) contain very few labelled samples (i.e., PIRs). Specif-
ically, 68% classes have fewer than 10 labelled samples in our
dataset, which can adversely affect classification accuracy.

To address this, we leverage the hierarchical relationship
between root cause labels by encoding the taxonomy struc-
ture using Graph Convolutional Networks [18]. Exploiting
the structure of the taxonomy enables transfer of knowledge
from the categories with adequate labels to categories with
few labels (§6.2). In particular, we apply a hierarchical text
classification model called HiAGM [42]. Contrary to the con-
ventional multi-label text classification methods that disre-
gards the holistic label structure for label correlation features,
this model attempts to fully utilize the mutual interactions be-
tween the text feature space and label space, as well as label
dependencies. As an illustration, consider the root cause tax-
onomy in Figure 3. The “Authoring.Code.Change" category
only contains 13 samples, making training difficult owing to
the small amount of labelled samples. However, by modeling
the root cause taxonomy as a graph, we can transfer knowl-
edge from “Authoring.Code.Bug", which has 733 labels, to
“Authoring.Code.Change" since they share the features of
their same parent root cause category, “Authoring.Code".

Given a Post-Incident report x = (w1,w2, . . . ,wn) with n to-
kens, the sequence of token embedding is initially fed into a
bidirectional GRU neural network [6] to extract text contex-
tual features. Following the GRU model, multiple CNN lay-
ers are employed to generate the n-gram features. The top-k
max pooling layer is then applied to obtain the overall text
representation S ∈ Rn×dc that highlights the key information,
where n is the top-k output dimension of CNN layers and dc
represents the embedding dimension.

To model the ARTS taxonomy, we formulate the taxonomic
hierarchy as a directed acyclic graph G = {V,Et ,Eb}, where
V refers to the set of label nodes. Et and Eb represent the top-
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Figure 3: Overview of our Context Extraction and Hierarchical root cause Classification using Post-Incident reports.

down and bottom-up hierarchy paths respectively. To encode
the hierarchy graph, a GCN-based hierarchy encoder [18],
Hierarchy-GCN, is used to aggregate data flows within the
top-down, bottom-up and self-loop edges based on the associ-
ated neighborhood of each node. The GCN-based graph en-
coder adapts the convolution concept from images to graphs,
in which the graph convolutional operator can effectively con-
volve the multi-order neighborhood information by forming
multiple propagation steps during the forward pass. For each
node, the feature information is aggregated by the node fea-
ture from all the neighbors, including the node itself, to lever-
age the graph structure of label taxonomy.

Next, we aggregate the features of texts and labels together
using a label-wise attention mechanism [37]. Specifically, the
attention αk j, which indicates how informative the j-th text
feature is for the k-th label, is calculated as follows:

αk j =
es jhT

k

∑
n
j=1 es jhT

k
, (1)

where s j is the j-th text feature of the root cause input and
hk represents the k-th node in the label hierarchy. The label-
aligned text feature vk =∑

n
i=1 αkisi for the k-th label is then ob-

tained and fed into a classifier for hierarchical label prediction.
Finally, we flatten the label hierarchy by treating all nodes

as leaf nodes for multi-label classification, regardless of
whether a node is a leaf or an internal node. A binary cross-
entropy loss function is employed to train the model using
the ground truth and predicted sigmoid score for each label.
In additional, a recursive regularization for the parameters of
the final fully connected layer is used to encourage classes
nearby in the hierarchy to share similar model parameters.

Lr = ∑
i∈C

∑
j∈child(i)

1
2
∥wi −w j∥2, (2)

where the node j is the child of node i in the label hierarchy.

5.2 Context Extraction from PIR
The objective of context extraction is to extract key text snip-
pets from a given Post-Incident Report (PIR) for on-call en-

gineers to comprehend the contributing factors of an inci-
dent without reading the complete lengthy report. Many text
summarization techniques exist. Abstractive summarization,
where summaries may contain generated sentences, is not a
good fit for us since our goal is to select and highlight exist-
ing texts in the PIR, as is done by extractive summarization.
However, existing language models such as BERT [8] and
XLNet [36] are trained on large corpuses such as Wikipedia
articles, etc., where the syntax and semantics of the language
used is quite different from what is observed in PIRs due to
domain-specific usage of words (e.g., ‘Fabric’ in networking
terminology vs clothing) and different vocabulary. Moreover,
existing extractive summarization models are trained on and
their traditional usage in summarizing text documents, which
is different from context extraction from PIRs. Our experi-
mental evaluation in §6.3 shows that they perform poorly. We
therefore finetune an existing model called Pegasus [39] with
our labelled data (from our empirical study described before).

In Pegasus, important sentences are removed or masked
from an input text and are generated together as one output
sequence from the other remaining sentences, similar to an
extractive summary. Hence, Pegasus is amenable for context
extraction from PIRs, because we can mask the key sentences
identified in our analysis (§3.1) to finetune the model param-
eters. Using the standard Transformer encoder-decoder, Pe-
gasus model is pre-trained on two enormous text corpora: 1)
Colossal and Cleaned version of Common Crawl (C4) [27],
which comprises of text from 350 million web pages with
a size of 750 gigabytes; 2) HugeNews [39], a dataset of 1.5
billion news articles gathered from 2013 to 2019. Similar to
MLM tasks for predicting masked tokens, a new pre-training
task called Gap Sentences Generation (GSG), is applied to fill
the masked sentences. Three different strategies are applied
for selecting m gap sentences without replacement from a doc-
ument. The first method is to uniformly select m sentences at
random, whereas the second strategy is to simply select the
first m sentences. The aforementioned two strategies are com-
bined with the Principal strategy, in which top-m scored sen-
tences are chosen based on their significance as measured by
rouge score [20] without the selected sentence. Formally, the



The root cause of this monitor alert was that a lot of subscriptions 
could not deploy VMs on indiacentral region. 
… … (omit 132 words)
This problem occurred because the traffic that was re routed to 
AZSM could not be handled. This problem occurred on 
indiacentral prod b and indiacentral prod b. As part of increasing 
inventory we have introduced news sets of AMD clusters. The 
AZSM services on these clusters still needed some configuration 
and build out related processed to be completed. Hence these 
clusters stamps could not handled the traffic re routed to them. 
The traffic was routed as part of default behavior. We are going to 
change this. The Fabricator clusters started taking tenant traffic 
even though their corresponding Az SM clusters weren’t ready. 
This was done as part of flighting on Broad clusters. India Central 
was one of the region for this flighting. We did not anticipate a 
case where new build out clusters would not be able to take the 
new traffic. This was detected as part of the API failure monitor. 
We will be working on adding more robust feature specific 
monitoring and more strict rollout to not encounter this failure 
again.

Figure 4: Context extraction from a redacted PIR. Green
sentences are extracted by both our model and human
expert, red are extracted by model only and blue are ex-
tracted by human only.

score si of the i-th sentence xi can be expressed as follows:

si = rouge
(
xi,D\{xi}

)
, (3)

where the D is the set of all the sentences in the document
and rouge function is a commonly employed metric for evalu-
ating how good an automatically produced summary against
a reference summary.

Even though Pegasus has been pre-trained on massive
datasets, it is not trained to generate context from root cause
descriptions in software engineering domain. To completely
comprehend the context extraction task in our domain, we uti-
lize the human-labeled context to further fine-tune the Pega-
sus model as a sequence-to-sequence task.

Based on the empirical results in §6.3, we found the Pe-
gasus model can outperform the state-of-the-art abstractive
summarization technique on our dataset for the reasons listed
below. The human-labeled contexts are chosen straight from
the original root cause details with no alteration to the phrase
structure. Pegasus, an abstractive summarization model that
pre-trained on the Gap Sentences Generation task, may im-
mediately replicate the important sentences from the input,
resulting in a higher overall rouge score than the traditional
abstractive technique.

Figure 4 illustrates an example of context extraction from a
PIR report consisting of 328 words. The human-labeled con-
text is shown in blue and green, whereas the context extracted
from Pegasus is shown in the green and red. This example
shows that ≈50% tokens can be filtered, which can consider-
ably enhance the efficiency with which on-call engineers read
the PIR report. Also, we discover that the extracted context
from Pegasus has a high recall compared to the human labels,
allowing engineers to seldom overlook vital information.

Section Micro-F1 Weighted-F1
Whole PIR 0.55 0.40

Title 0.53 0.45
Summary 0.47 0.46

RC-Details 0.52 0.45
5-Whys 0.54 0.40

Discussion 0.53 0.40
Mitigation 0.47 0.40

RC-Details + 5-Whys 0.56 0.42

Table 3: Study on the utility of different PIR sections in
top-level root cause classification using Random Forests.

6 Evaluation

We now empirically evaluate the performance of AutoARTS.

Dataset. Our dataset consists of 1120 PIRs that are expert-
annotated with ARTS root cause tags and contextual sen-
tences to justify them. We use stratified sampling to divide this
dataset into train(72%) and validation(8%) splits to train and
tune the hyperparameters of different models and test(20%)
split to report the results with the trained models.

Data Pre-processing. We found that engineers often included
various types of data such as debugging queries issued on
logs, error messages, stack traces, screenshots, etc., in PIRs
(also identified in [31]). These add significant noise to the vo-
cabulary of the language processed by NLP models, without
contributing to performance. We carefully remove such noise
with regular-expression based filters and only select alpha-
betic text for our evaluation. For experiments in §6.1, we also
use the NLTK [3] library to remove stop-words and extract
stems of words to construct vocabulary.

Evaluation Metrics. For root cause classification, we use
micro-F1 score to analyze performance across different in-
cidents with multiple labels. We also use weighted-F1 score
to analyze performance across different classes since our
dataset is imbalanced as shown in Table 1. For context extrac-
tion, we use ROUGE (Recall-Oriented Understudy of Gisting
Evaluation) [20] and BLEU (Bi-Lingual Evaluation Under-
study) [25] scores to evaluate the similarity of extracted con-
text against the ground truth. Rouge-N score is based on the
percentage (higher the better) of N-grams from the ground
truth that are present in the extracted context. BLEU-N score
indicates the percentage of N-grams from the extracted con-
text that are present in the ground truth. Rouge-L F1-score is
based on the longest common subsequence (not necessarily
consecutive) between the extracted context and target context.

6.1 Featurization and Feature Selection
R1: Given the input text sequence length limitations of DL
models, what information should be used from PIRs?

Sophisticated DL language models impose constraints on
input sequence length (e.g., 512 tokens for BERT [8]). The



Model ROUGE BLEU
Rouge-1 Rouge-2 Rouge-L BLEU BLEU-1 BLEU-2 BLEU-3

Pegasus - Pretrained 32.55 18.72 24.30 9.61 18.03 10.31 8.93
Pegasus - Finetuned 45.46 35.65 38.43 24.60 32.19 24.98 23.41

T5 - Pretrained 34.38 23.31 28.03 10.06 15.68 10.83 9.43
T5 - Finetuned 41.63 33.86 35.76 23.81 29.81 24.10 22.70

BERT-cased - Pretrained 40.05 27.03 31.01 18.62 28.43 18.95 16.83
BERT-cased - Finetuned 40.08 27.35 31.20 18.80 28.32 19.03 16.95

BERT-uncased - Pretrained 39.52 26.58 30.74 17.63 27.47 17.98 15.89
BERT-uncased - Finetuned 39.92 27.44 31.57 18.64 28.08 18.91 16.90

Table 4: Performance of Pegasus and T5 models with their corresponding pre-trained versions and fine-tuned versions.
We also present performance of unsupervised clustering based approach for extractive summarization using BERT.

Model Micro-F1 Weighted-F1
HiAGM 83.16 89.63

HiAGM_Flat 45.40 68.66
BERT_MLC 42.29 46.85

Table 5: Performance of HiAGM compared to using flat-
tened root cause taxonomy (HiAGM_Flat) and a finetuned-
BERT based multilabel classifier (BERT_MLC).

Model Test Perplexity Test Accuracy
BERT-uncased 7.57 34.83%

BERT-cased 6.69 35.26%

Table 6: Performance of MLM based pre-finetuning and
OCE-assigned root cause based finetuning of BERT.

limit is much smaller than our preprocessed PIRs (avg. length
of ≈ 1900 words). However, a PIR is organized into multiple
sections and we conduct an ablation study by featurizing each
section in the PIR into Bag-of-Words encodings and classify
them to top-level root cause categories using a Random Forest
classifier. Table 3 highlights that “root cause details” and “5-
Whys” sections achieve better micro-F1(1.8% higher) and
weighted-F1 (5% higher) scores compared to using the whole
PIR. These sections capture information relevant to root cause
classification and by only using them, we minimize sequence
length to meet constraints imposed by DL models.

6.2 Hierarchical Classification

R2: Is the hierarchical nature of our taxonomy beneficial
in leveraging relationships between root causes to classify
incidents?

Table 5 compares the level-3 root cause classification per-
formance of our trained HiAGM model against a flattened
version of our hierarchical taxonomy (HiAGM_Flat), where
we remove parent-child relationships between different root
causes in the taxonomy and consider all the root causes tags
to be opaque and independent of each other. We also com-
pare HiAGM against a multi-label classifier (BERT_MLC)

with the flattened version of the taxonomy using finetuned
BERT [8] model (details in §6.4) to encode the PIR text.
We observe that HiAGM performs significantly better (31%
higher weighted-F1 measure) than HiAGM_Flat indicating
the utility of GCN to leverage neighboring relationships be-
tween root causes and the need for root cause taxonomies to
be hierarchical. HiAGM performs significantly better (91%
higher weighted-F1 measure) than BERT_MLC along with
HiAGM_Flat (47% higher weighted-F1 measure), demonstrat-
ing no utility in finetuning existing language models on PIRs.

6.3 Context Extraction

R3: How do supervised (abstractive and extractive) or
unsupervised (extractive) summarization approaches fare
for context extraction? Is finetuning necessary for context
extraction and does it work with limited data?

Using the train and validation splits of the dataset, we fine-
tune Pegasus for 15 epochs and T5 (3 Billion parameters) [27]
for 7 epochs and report the results on the test set. Table 4 com-
pares the performance of finetuned Pegasus model against
baseline approaches using T5 and clustering-based extrac-
tive summarization [23] using BERT. We can clearly see
that our finetuned Pegasus model achieves the highest perfor-
mance across various ROUGE and BLEU metrics. We ob-
serve a significant (58.15%) improvement in Rouge-L score
as a result of finetuning Pegasus, because pre-trained version
of Pegasus is trained on significantly different domains of
language such as news articles, etc., and is trained to sum-
marize them, which is different from context extraction. We
also observe a 7.6% increase in ROUGE-L score compared to
the finetuned-T5 model, because Pegasus extracts sequences
of text from the PIR as opposed to T5 which generates new
sequences of words, which might not represent the content
present in the PIR which is where engineers derive their con-
text from. Finetuned-Pegasus performs significantly higher
(21.73%) than unsupervised clustering based summarization
approaches using finetuned-BERT, because summary of the
PIR doesn’t represent the context.



Metric Response Description
(Q1) Usefulness of generated context to identify

contributing factors 4.6/5 1 - Not useful at all, 5 - Very useful

(Q2) # Contexts generated with unnecessary details 0/10 No unnecessary details in generated contexts
(Q3) # New Rootcauses from generated contexts 2 False negatives identified by AutoARTS

(Q4) # Examples with a crucial Rootcause tag missing
in classification 7/10 Crucial contributing factor missing from predictions

Table 7: Quantitative user feedback from an expert over the effectiveness of AutoARTS across context generation and
root cause classification tasks over a randomly chosen set of 10 incidents.

6.4 Fine-tuning Language Models

R4: Can existing language models like BERT be finetuned
to model software incident reports?

We conducted Masked Language Modeling(MLM) based
pre-finetuning of BERT to fit our domain-specific language
model, using 110K PIRs (un-tagged due to scale) from several
Microsoft services. We then finetuned the models by lever-
aging the OCE-assigned “root cause Category” tag (which
are chosen from the predefined taxonomies in Microsoft) of
each of the PIRs. As mentioned in §2, OCE-assigned root
cause category tags are not accurate; however, they are avail-
able at a large scale and this classification task is semantically
the closest to our target classification task using the ARTS
taxonomy. Table 6 shows the results for both pre-finetuning
and finetuning tasks, highlighting a high perplexity of 7.57
for BERT-uncased (perplexed between choosing 8 candidate
words for a blank in a given sentence) and poor classification
accuracy (≈ 35%) on the finetuning task. Errors in tagging
of PIRs (by OCEs) coupled with lack of sufficient training
data makes finetuning language models infeasible. Due to
space constraints, we omit the results from other variations of
BERT, but we had similar experience with them.

7 User Study

To evaluate the utility of AutoARTS, we randomly sampled 10
example incidents and the tool’s generated contexts, the cor-
responding root cause categories and presented them to one
of the leads that developed the ARTS taxonomy (by studying
PIRs). These were examples that were tagged by them in the
past that are not used for training any of our models. The goal
of this study is to understand, for each example: (Q1) How
useful the generated context is in identifying all the contribut-
ing factors that they identified, (Q2) If the generated context
has extra details that are not useful for identifying contribut-
ing factors (to evaluate the succinctness of our generated con-
texts), (Q3) Whether the generated context can help them iden-
tify any new contributing factor that they have not identified
previously (to evaluate the generalization of the model’s out-
puts beyond accidental False Negatives in ground-truth) and
(Q4) Whether the tool missed the most important contribut-

ing factors (to evaluate the importance of False Negatives).
Although we quantitatively evaluated the syntactic similar-

ity of generated contexts to the ground truth, the developer
study helps us understand if they are semantically similar and
ultimately usable by a human (OCE). Similarly for Root cause
classification task, the relative severity of each individual con-
tributing factor is not identifiable from ground truth (no rank-
ing). Q4 helps us understand if the predicted contributing fac-
tors miss any crucial tag from the ARTS taxonomy.

We quantify response to Q1 on a Likert scale of 1 to 5,
where 1 meant ’not useful at all’ and 5 meant ’Very useful’.
Q2-Q4 were answered as a binary Yes/No, by providing clari-
fying responses wherever necessary for sanity check. Table 7
shows the utility of the tool based on the subject’s responses
to Q1-Q4. We find from the study that the contexts generated
by the tool are extremely useful in identifying all the con-
tributing factors and they are succinct enough without pre-
senting additional information that is not useful in identifying
contributing factors. In addition to this, we also found that our
tool helped the subject find 2 new root cause tags that should
have been assigned to these incidents in the past, highlighting
the difficulty in manually sifting through postmortem reports
to identify contributing factors.

At the end of the experiment, the subject was asked to an-
swer on a scale of 1-5 (5 being very useful, 1 being not useful
at all), indicating the overall usefulness of our tool to assist
them in their task based on the 10 examples. The subject rated
our tool ‘above 4.5’. In addition to this, the subject’s verbatim
feedback on our tool — ‘This tool is very useful from con-
text generator perspective for the root cause classification
task. From the Tags perspective, if we had 4th level for
just code change related tags this is very useful for change
management standards team. Need to fix the dependency
tags related logic as it’s defaulting to “Data Bricks”. Over
all I am very happy with this tool’ — highlights the utility of
our context generation and the lapses in automated root cause
classification. The imbalance in tag distribution over our train-
ing set resulted in misclassifying incidents with tags that do
not have sufficient supporting training samples. Overall, the
feedback indicates the promise for deploying the tool for prac-
tical use in assisting engineers by providing enough context
from PIRs to assign root cause tags from ARTS taxonomy.



8 Related Work

Rootcause analysis of past incidents. Rootcause analysis
of incidents and outages and defining taxonomies to capture
their root causes has been a popular topic of study in the soft-
ware engineering and systems community. We find that prior
work can be categorized into two major buckets. The first cat-
egory of prior work focuses on specific type of production
issues such as software bugs [4, 5, 11, 19, 21, 40] or network
issues [14]. The other category focuses on specific services or
systems such as big-data systems [38], business data process-
ing platform [9], high performance computing [17, 29] and a
specific cloud service [13]. In contrast, we consider a large-
scale cloud system consisting of many hundreds of services
and all types of failures including hardware and software, in-
frastructure and application, software code and configuration,
and so on. The scale of our study also differentiates us from
existing studies (e.g., 152 incidents from 1 service considered
in [13], 100 incidents from networking service in [14]). To the
best of our knowledge, this is the most comprehensive effort
of analyzing production incidents and building a fine-grained
taxonomy. Prior work that propose solutions to simplify the
task of actively identifying the root cause of a failure [10, 32]
are orthogonal to our focus.
Text Summarization & Root cause classification. Text sum-
marization [33] is the task of rewriting a long document
into a condensed form while retaining its essential mean-
ing, hence reducing the burden to read through lengthy docu-
ments. The most prevalent paradigms for summarization are
extractive and abstractive based approaches. When generat-
ing summaries, abstractive summarization approaches [35]
are typically considered as a sequence-to-sequence learning
problem [24, 26, 30], whereas extractive summarization meth-
ods [12, 41] extract key sentences as summary directly from
the text. In our context extraction task, we utilize the gap sen-
tence based summarization technique not to condense the PIR
context, but to extract essential text snippets describing dif-
ferent contributing factors. Saha et al. [28] construct a causal
knowledge graph from postmortem reports but do not gener-
ate consistent root-cause tags for incidents. This can lead to
ambiguous and non-uniform tagging of similar incidents, as
we observed from manual tagging using different taxonomies
(in Finding 2).

Prior work focused on diagnosing different kinds of inci-
dents such as, Rex [22] suggests changes in potential mis-
configurations using syntax trees, DeepAnalyze [32] identi-
fies culprit frame in Windows Error Reporting (WER) crash
stack traces, Orca [2] identifies buggy commits using differen-
tial code analysis and provenance tracking, Revelio [10] gen-
erates debugging queries for root cause analysis using logs
and user reports, SoftNER [31] analyzes postmortem reports
to extract entities. To the best of our knowledge we are the
first to classify incident postmortems into an extensive high-
granularity taxonomy.

9 Discussion

Generality of AutoARTS. Postmortems are routinely con-
ducted in large scale production cloud systems to document
learnings from incidents, similar to PIRs in Microsoft Azure
(e.g., Google [14], AWS [1], and Cloudfare [7]). These post-
mortem reports may have different structures and content
across different clous systems, but they all contain natural lan-
guage descriptions of root cause diagnosis of incidents. Since
the ARTS taxonomy is based on a diverse and large set of ser-
vices and incidents, and AutoARTS is trained on postmortems,
we believe that they can benefit other cloud systems.

Evolution of Taxonomy. Our open-sourced ARTS taxonomy
captures a wide range of contributing factors, but new factors
may emerge and the taxonomy may evolve. Therefore, we
deliberately separate context generation and classification
in AutoARTS so that new categories can be detected from
the generated contexts (Table 7). When a new category is
identified, the HiAGM model of AutoARTS can be finetuned
for the new tags only (which takes a few minutes). We also
hope others can contribute to the growth of ARTS taxonomy.

10 Conclusion

Incident postmortems are treasure troves of rich insights and
retrospective analyses of them reveals actionable insights to
improve reliability and availability of large-scale production
systems. Unfortunately, it’s not done at scale today because of
the manual effort required in analyzing them. We developed
a novel hierarchical and comprehensive taxonomy based on
a painstaking extensive multi-year analysis of 2000+ severe
incidents across 450+ Microsoft Azure services. To make this
taxonomy accessible and assist engineers in analyzing post-
mortem reports, we proposed techniques to extract key con-
text from postmortems and automatic classification to iden-
tify all the contributing factors for an incident and presented
our findings. To the best of our knowledge, this is the largest
study of production incident postmortem reports yet.

We envision that this paper enhances the audiences’ under-
standing of contributing factors for production incidents and
fosters future research by leveraging the open-sourced taxon-
omy for root cause labelling. Our experimental findings show
promise in assisting engineers with classifying postmortem
reports and we intend to fully automate this task incorporat-
ing engineers’ feedback and leverage larger training datasets
in future work.
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