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Abstract. We investigate a modular convex Nash equilibrium problem involving nonsmooth functions
acting on linear mixtures of strategies, as well as smooth coupling functions. An asynchronous block-
iterative decomposition method is proposed to solve it.

1 Introduction

We consider a noncooperative game with p players indexed by I = {1,...,p}, in which the strategy
x; of player i € I lies in a real Hilbert space H;. A strategy profile is a point = (z;);cs in the
Hilbert direct sum H = ,.; H;, and the associated profile of the players other than i € I is the
vector x«; = (zj)jerfiy i Hoi = @jer gy H;- For every i € I and every (z;,y) € Hi x H, we
set (xi;y;) = (Y1,---,Yi—1,%i, Yit1,---,Yp). Given a real Hilbert space H, we denote by I'y(H) the
class of lower semicontinuous convex functions ¢: H — |—o0, +00] which are proper in the sense that
domyp = {z € H | p(z) < +oo} # 2.

A fundamental equilibrium notion was introduced by Nash in [30, 31] to describe a state in which
the loss of each player cannot be reduced by unilateral deviation. A general formulation of the Nash
equilibrium problem is

find € H such that (Vi € I) x; € Argmin¥4;(-;x;), (1.1)

where £;: H — |—o0, +0o0] is the global loss function of player i € I. We make the following assump-
tion: for every i € I and every x € H, the function ¢;(-; x.;) is convex. Such convex Nash equilibrium
problems have been studied since the early 1970s [7]; see [4, 8, 9, 13, 17, 20, 21, 24, 25, 28, 37]
for further work. We consider the following modular formulation of (1.1), wherein the functions
(£;)icr are decomposed into elementary components. This decomposition will provide more modeling
flexibility and lead to efficient solution methods.

“Contact author: P. L. Combettes. Email: plc@math.ncsu.edu. Phone: +1 919 515 2671. This work was supported by
the National Science Foundation under grant DMS-1818946.



Problem 1.1 Let (#;);cr and (G )rek be finite families of real Hilbert spaces, and set H = @, ; H;
and G = @, ;- Gx- Suppose that the following are satisfied:

[a] Foreveryi € I, ¢; € T'o(H,;).

[b] For every i € I, f;: H — R is such that, for every x € H, f;(-;x.;): H; — R is convex and
differentiable, and we denote its gradient at x; by V,f;(x). Further, the operator G: H —
H: x— (Vifi(x))icr is monotone and Lipschitzian.

[c] Forevery k € K, gi € I'9(Gx) and Ly : H — Gy, is linear and bounded.
The goal is to

find © € H such that (Vi € I) z; € Argming; + f;(-;x;) + Z(gk o Lp)(-;2;). (1.2)
keK

In Problem 1.1, the individual loss of player i € I is a nondifferentiable function ¢;, while his joint
loss is decomposed into a differentiable function f; and a sum of nonsmooth functions (gx)xcx acting
on linear mixtures of the strategies. To the best of our knowledge, such a general formulation of a
convex Nash equilibrium has not been considered in the literature. As will be seen in Section 3, it
constitutes a flexible framework that subsumes a variety of existing equilibrium models. In Section 4,
we embed Problem 1.1 in an inclusion problem in the bigger space H @ G, and we employ the new
problem to provide conditions for the existence of solutions to (1.2). This embedding is also exploited
in Section 5 to devise an asynchronous block-iterative algorithm to solve Problem 1.1. The proposed
method features several innovations that are particularly relevant in large-scale problems: first, each
function and each linear operator in (1.2) is activated separately; second, only a subgroup of functions
needs to be activated at any iteration; third, the computations are asynchronous in the sense that the
result of calculations initiated at earlier iterations can be incorporated at the current one.

2 Notation

General background on monotone operators and related notions can be found in [6]. Let A be a real
Hilbert space. We denote by 2% the power set of 7 and by Id the identity operator on H. Let A: H —
2. The domain of Aisdom A = {z € | Az # @}, the range of Aisran A = |J,gom 4 Az, the graph
of Ais grad = {(z,2*) € H x H | «* € Az}, the set of zeros of A is zer A = {z € H | 0 € Az}, the
inverse of Ais A~': % — 2": z* — {z € H | 2* € Az}, and the resolvent of A is J4 = (Id + A)~%.
Now suppose that A is monotone, that is,

(V(z,z*) € grad)(V(y,y*) e grad) (z—yl|z*—y*) >0. (2.1)

Then A is maximally monotone if, for every monotone operator A: H — 2%, graA C grad = A = 4;
A is strongly monotone with constant « € |0, +oo] if A — ald is monotone; and A is 3* monotone if

(Vz € dom A)(Vz* € ran A) sup  (z—y |y —z¥) < Fo0. (2.2)

Let ¢ € T'g(#H). Then ¢ is supercoercive if lim ;1o ()/||2]] = +0o and uniformly convex if there
exists an increasing function ¢: [0, +o0o[ — [0, +o0] that vanishes only at 0 such that



(Vo € dom ¢)(Vy € dom¢)(Va € ]0, 1])
ooz + (1 —a)y) + ol —a)o(llz —yll) < ap(z) + (1 — a)py). (2.3)

For every x € H, prox ,z denotes the unique minimizer of ¢ + (1/2)|- — z||%. The subdifferential of ¢
is the maximally monotone operator

dp:H =2 {a*eH | (VWWeH) (y—z|2") + ) <p(y)} (2.4)

Finally, given a nonempty convex subset C' of , the indicator function of C' is
if )
to: H—[0,400] : {0’ ' IG_C’ (2.5)
400, otherwise,

and the strong relative interior of C' is

sriC = {z eC U A(C — z) is a closed vector subspace of ’H} . (2.6)

A€]0,400[

3 Instantiations of Problem 1.1

Throughout this section, H is a real Hilbert space. We illustrate the wide span of Problem 1.1 by
showing that common formulations encountered in various fields can be recast as special cases of it.

Example 3.1 (quadratic coupling) Let I be a nonempty finite set. For every i € I, let p; € I'o(H),
let A; be a nonempty finite set, let (w; ¢ j)ecn, jer- (i} be in [0,+oc[, and let (;¢)ren, be in 0, +oo[.
Additionally, set H = €, ; H. The problem is to

el
2
. . . Ki 0
find @ € H such that (Vi € I) z; € Argminp; + Z - || | Z Wi 0T (3.1)
Leh; JEIN{3i}

It is assumed that

(Ve e H)(Vy € H) Z Z Hi,g<1‘z‘ —yi | @i —yi — Z wi g, (T5 — yj)> > 0. (3.2)

i€l LeN; jeI~{i}
Define
2
. Ki
(Viel) fi:’H—>R:xr—>Z 5 xz—z Wi 0T (3.3)
ZEAZ' ]EI\{Z}

Then, for every i € I and every © € H, f;(-; ;) is convex and differentiable with

Vifi(z) = Z Ki <$z - Z wi,e,jﬁvj)- (3.4)

leh; jeI~{i}

Hence, in view of (3.2), the operator G: H — H: x — (V,f;(x))ics is monotone and Lipschitzian.
Thus, (3.1) is a special case of (1.2) with K = @ and (Vi € I) H; = H. This scenario unifies models
found in [1, 2, 20].



Example 3.2 In (3.1), suppose that, for every ¢ € I, C; is a nonempty closed convex subset of #;,
i = c;, Ay = {1}, and ;1 = 1. Then (3.1) becomes

2
find = € H such that (Vi € I) z; € Argming, Z Wil % (3.5)
JEIN{i}
In addition, (3.2) is satisfied when
(\V/j € I) ZZEI\{j}wlvly.] <L

which places us in the setting of Example 3.1. The formulation (3.5)-(3.6) unifies models found in

[5].

Example 3.3 (minimax) Let I be a finite set and suppose that @ # J C I. Let (H,;);cr be real Hilbert
spaces, and set U = P, ;. ;H;and V = @jeJ H;. For every i € I, let ¢; € I'o(H;). Further, let
L:UDVY — R be differentiable with a Lipschitzian gradient and such that, for every u € U and every
v € V, the functions —L(u, -) and £(-,v) are convex. Consider the multivariate minimax problem

minimize maximize g i(u;) + L(u,v) E ©;j(vj). (3.7)
ueld vey .
ielINJ jeJ

Now set H = U @ V and define

) L(u,v), if iel~J;

Viel) fi:H—-R:(u,v)~— {—il(u,)'v), Fied (3.8)
Then H = @,.; H; and (3.7) can be put in the form

find € H suchthat (Vi € I) z; € Argminp; + f;(-; ). (3.9)
Let us verify Problem 1.1[b]. On the one hand, we have

ViL(x), ifiel~J;

Vie (Ve e H) Vfi(x) = {_vii:()m% e (3.10)
Hence, the operator

G:H > Hiw (Vifi@),, = (VL@),y (-VL(@), ) 3.11)

is monotone [33, 34] and Lipschitzian. Consequently, (3.7) is an instantiation of (1.2). Special cases
of (3.7) under the above assumptions can be found in [20, 27, 32, 35, 38, 39].

Example 3.4 (“generalized” Nash equilibria) Consider the setting of Problem 1.1 where [a] and [c]
are respectively specialized to

[a’] Foreveryi € I, ¢; = ic,, where C; is a nonempty closed convex subset of #;.

[c] K ={1} and g; = tp,, where D; is a nonempty closed convex subset of G;.
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Then (1.2) reduces to
find @ € H suchthat (Vi e I) x; € Argming, f;(-;x) + (tp, o L1)(-; ). (3.12)

This formulation is often referred to as a generalized Nash equilibrium; see, e.g., [24, 28, 29]. How-
ever, as noted in [36], it is really a standard Nash equilibrium in the sense of (1.1) since functions are
allowed to take the value +oo.

Example 3.5 (PDE model) Let Q2 be a nonempty open bounded subset of R". In Example 3.4, sup-
pose that, for every i € I, H; = L?(Q). Let z € L?(2), let (Q;);c; be nonempty open subsets of { with
characteristic functions (1q, );cs, and, for every « € H, let Sz be the unique weak solution in H&(Q)
of the Dirichlet boundary value problem [23, Chapter IV.2.1]

—Ay:zﬁ—ZlQimi, on 2;
i€l (3.13)
y=0, on bdry (.

For every i € I, let r; € H;, let o; € |0, +0o0[, and suppose that
o 1
fir o Sl + 518 — il (3.14)

In addition, suppose that G; = H&(Q) and L; = S — S0. Then we recover frameworks investigated in
[9, 29].

Example 3.6 (multivariate minimization) Consider the setting of Problem 1.1 where [b] and [c]
are respectively specialized to

[b’] For everyi € I, f; = f, where f: H — R is a differentiable convex function such that G = V f
is Lipschitzian.

[c'] For every k € K, gi: G. — R is convex and Géateaux differentiable, and L,: H — Gi: © —
Zjel Ly, jx; where, for every j € I, Ly, j: H; — Gy, is linear and bounded.

Then (1.2) reduces to the multivariate minimization problem

minimize > gilw) + f@) + D g (ZLM%). (3.15)

i€l keK jeI

Instances of this problem are found in [3, 4, 11, 12, 14, 22, 26].

4 Existence of solutions

Our first existence result revolves around an embedding of Problem 1.1 in a larger inclusion problem
in the space H & G.



Proposition 4.1 Consider the setting of Problem 1.1 and set (Vi € I) 11;: H — H;:  — x;. Suppose
that (z,v*) € H & G satisfies

(Viel) —Vifi@®@ — > IL(L;T}) € 0pi(T:)

keK (4.1)
(Vk € K) Lix € 0g;(73).

Then T solves (1.2).

Proof. Take i € I and set
fi=fi(®a), si=(07), and (Vk€ K) gk = (g9k © Li)(-;T ). (4.2)

Then, by Problem 1.1[b], f;: H; — R is convex and Gateaux differentiable, and V f;(Z;) = V; f;(Z).
At the same time,

(Vk € K)(Vz; € Hi)  gr(zi) = (g o L) (I x5 +5;) = gi(Li (I ;) 4+ Ly5;) (4.3)
and it thus results from [6, Proposition 16.6(ii)] that
(Vkﬁ € K)(V:CZ S Hz) (Hi o LZ)(a‘gk(Lk(Hsz) + Lkgi)) - Oﬁk(azl) 4.4)

In particular,
(Vk € K) (I o L) (Ogx (Lx®)) = (II; 0 L) (3% (L (ILT;) + L/ﬁz)) C gk (Ts). (4.5)
Hence, we deduce from (4.1) and [6, Proposition 16.6(ii)] that

0 € 9¢i(T;) + Vif;(®) + > (L)
keK

C 9pi(T;) + Vfi(:) + D (I o Lj) (9gn (L))
keK

C 8@01(:6@ + sz xz Z agk
keK

- 5(%‘ +hEY §k> (Ti). (4.6)
keK
Consequently, appealing to Fermat’s rule [6, Theorem 16.3] and (4.2), we arrive at
Z; € Argming; + f(T) + D (gk o Li) (), (4.7)
keK

which completes the proof. 0O

We are now in a position to provide specific existence conditions.
Proposition 4.2 Consider the setting of Problem 1.1, set
C = {(Lk.’B — yk)keK ‘ (VZ S I) x; € dOl’l’lgOi and (V/{? S K) Y € domgk}, (4.8)

and let Z C H @ G be the set of solutions to (4.1). Suppose that 0 € sri C and that one of the following
is satisfied:



(i) For every i € I, one of the following holds:

1/ Oy; is surjective.
2/ (; is supercoercive.
3/ dom y; is bounded.

4/ ; is uniformly convex.

(i) G: H — H: x— (V;f;(x))ics is 3" monotone and surjective.
Then Z # & and Problem 1.1 has a solution.
Proof. Define

A:H 2%z X 0pi(n))
B: G —29: Y= Xick 09k (Yr) 4.9
L:H— g: xTr — (Lka:)keK

and
T:H —2": 2~ Az + L*(B(Lz)) + Gz. (4.10)
Note that the adjoint of L is

L*: G- H: v~ Y Liv. (4.11)
keK
Now suppose that T € zerT. Then there exists v* € B(Lx) such that -Gz — L*v* € AT or,
equivalently, by Problem 1.1[b] and (4.11), (Vi € I) —=V; f;(®) — > e Hi(L;7}) € Op;(T;). Further,
(4.9) yields 7}, € 0gr(Lyx). Altogether, in view of (4.1) and Proposition 4.1, we have established the
implications

zetT#9 = Z+#+@ = Problem 1.1 has a solution. 4.12)

Therefore, it suffices to show that zer T' ## &. To do so, define

p:H = ]—00,+00] : = Y i)
g: G — |-00,4+00] Yy = D pcx 9r(Yr) (4.13)
Q=A+L"oBolL.

Then, by (4.9) and [6, Proposition 16.9], A = d¢ and B = dg. In turn, since (4.8) and (4.9) imply
that 0 € sri C' = sri(L(dom ) — dom g), we derive from [6, Theorem 16.47(i)] that Q = (¢ +goL).
Therefore, in view of [6, Theorem 20.25 and Example 25.13],

A, B, and Q are maximally monotone and 3" monotone. 4.14)
(i): Fix temporarily i € I. By [6, Theorem 20.25], d¢p; is maximally monotone. First, if (i)2/ holds,

then [6, Corollary 16.30, and Propositions 14.15 and 16.27] entail that ran dp; = dom dy; = H; and,
hence, (i)1/ holds. Second, if (i)3/ holds, then dom d¢; C dom ¢; is bounded and, therefore, it follows
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from [6, Corollary 21.25] that (i)1/ holds. Finally, if (i)4/ holds, then [6, Proposition 17.26(ii)]
implies that (i)2/ holds and, in turn, that (i)1/ holds. Altogether, it is enough to show that

[ (Vi eI) dy; is surjective | = zerT # @. (4.15)
Assume that the operators (9y;);cs are surjective and set
P=-Q'lo(-1d)+G L (4.16)

Then we derive from (4.9) that A is surjective. On the other hand, [10, Proposition 6] asserts that
L* o B o L is 3* monotone. Hence, (4.14) and [6, Corollary 25.27(i)] yields

domQ ! =ranQ = H. 4.17)

In turn, since Q! and G~! are maximally monotone, [6, Theorem 25.3] implies that P is likewise.
Furthermore, we observe that

domG™' C H =dom (-Q ' o (-Id)) (4.18)

and, by virtue of (4.14) and [6, Proposition 25.19(i)], that — Q! o (—Id) is 3* monotone. Therefore,
since ran G~ ! = dom G = H, [6, Corollary 25.27(ii)] entails that P is surjective and, in turn, that
zer P # @. Consequently, [6, Proposition 26.33(iii)] asserts that zer T' # &.

(ii): Since G is maximally monotone and dom G = H,, it results from (4.14) and [6, Theorem 25.3]
that T' = @ + G is maximally monotone. Hence, since G is surjective, we derive from (4.14) and [6,
Corollary 25.27(i)] that T is surjective and, therefore, that zer T # @. 0O

Remark 4.3 Sufficient conditions for 0 € sri C' to hold in Proposition 4.2 can be found in [18, Propo-
sition 5.3].

5 Algorithm

The main result of this section is the following theorem, where we introduce an asynchronous block-
iterative algorithm to solve Problem 1.1 and prove its convergence.

Theorem 5.1 Consider the setting of Problem 1.1 and set (Vi € I) I1;: H — H;: « — x;. Let (x;)ier be
a family in [0, +oo] such that

VeeH)(VyeH) (x—y|Gxr—Gy) < ZXi”xi — %, (5.1)
iel
let a € ]0,4+00[ and € € ]0, 1] be such that 1/ > « + max;er Xi, let (A\n)nen be in [e,2 — ], and let
D € N. Suppose that the following are satisfied:
[a] There exists (z,v*) € H @ G such that (4.1) holds.

[b] For every i € I, z;9 € H; and, for every n € N, v;,, € [e,1/(xi + @)] and ¢;(n) € N satisfies
n—D < c¢(n) <n.

[c] Forevery k € K, Vko € Gy and, for every n € N, py,, € [o,1/¢] and di(n) € N satisfies n — D <
di(n) < n.



[d] (I,,)nen are nonempty subsets of I and (K,,)nen are nonempty subsets of K such that

n+m n+m

Iy=1I, Ko=K, and 3meN)VneN) (JIj=Iand |J K;=K. (5.2)
j=n j=n

Further; set L: H — G: © — (Lyx)rck. Iterate
forn=0,1,...
foreveryi € I,

;'k,n = i ci(n) — Vici(n) <vzfz(xcl(n)) + ZkeK IT; (szz,cl(n))>
a;n = prox

X

*
’Y'L,ci(n)@ixivn
* * .
ai,n - ’YLc,Lr(n) (xi,n - alyn)
foreveryie I\ I,
| (@in,a},) = (Gin-1,07,_1)
forevery k € K,
* *
Yk = Hiedi () Vi dy(n) T LETdy ()

_ *
bkv” - prox#k,dk () 9k Ik,n

* -1 *
bk,n = Mk,dk(n) (yk,n B bk,n) (5.3)
forevery k € K \ K,
L (bk,n, b;;,n) = (bkm—l’ b;::,nfl)
tr =a; + Ga, + L"b},

t,=0b, — La,
T = (@n — Ty | t) + (tn | by, — ;)
if m, <0

Qn = )‘nﬂn/(thHQ + ||t2||2)
Tpt+l = Ty + ant)
vy 1= Uy + oty

else

L ($n+1”v2+1) = (ch,’v:;).

Then (x,,)nen converges weakly to a solution to Problem 1.1.
The salient features of the proposed algorithm are the following:

* Decomposition: In (5.3), the functions (y;)icr and (gx)rex are activated separately via their
proximity operators.

* Block-iterative implementation: At iteration n, we require that only the subfamilies of func-
tions (y;)ier, and (gx)kek, be activated, as opposed to all of them as in standard splitting meth-
ods. To guarantee convergence, we ask in condition [d] of Theorem 5.1 that each of these
functions be activated frequently enough.

* Asynchronous implementation: Given i € [ and k € K, the asynchronous character of the
algorithm is materialized by the variables ¢;(n) and di(n) which signal when the underlying
computations incorporated at iteration n were initiated. Conditions [b] and [c] of Theorem 5.1
ask that the lag between the initiation and the incorporation of such computations do not exceed
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D iterations. The synchronous implementation is obtained when ¢;(n) = n and dig(n) = n in
(5.3). The introduction of asynchronous and block-iterative techniques in monotone operator
splitting were initiated in [19].

In order to prove Theorem 5.1, we need to establish some preliminary properties.

Proposition 5.2 Let (X;);c1 be a finite family of real Hilbert spaces with Hilbert direct sum X = @, ; &i.
For every i € I, let P;: X; — 2% be maximally monotone and let Q;: X — X;. It is assumed that
Q: X - X: x— (Q;x);cr is monotone and Lipschitzian, and that the problem

find x € X suchthat (Vi €l) 0 € Px; + Qix (5.4)

has a solution. Let (x;)e1 be a family in [0, +o0[ such that

(Vo e X)(VyeX) (x—y|Qz—Qy) <Y xillwi—uil? (5.5)

i€l
let o € ]0,400], let € € ]0,1[ be such that 1/e > o + max;er x;, and let D € N. For every i € I, let
xi0 € X; and, foreveryn € N, let v, ,, € [e,1/(xi + o)), let A\, € [e,2 — €], and let d;(n) € N be such that

n— D < d;j(n) < n. (5.6)

In addition, let (I,),en be nonempty subsets of 1 such that

n+m

Iy=T and (3meN)(VneN) [JI;=1 (5.7)
j=n

Iterate

forn=0,1,...
foreveryiel,
T} = Tidi(n) — Vids (n) QiTd; (n)
Pijn = J’Yi,di(n)Pi‘T;k,n
p;'k,n = ’Y;dl(n) (x;k,n - pi,n)
foreveryi e I\ 1,
| (PinsP5p) = (Pin—1:PF 1)
s, =p, +Qp,
T = (Pp — Zn | 57)
if m, <0
\‘ an = At /|85
Tyt = Ty + S}
else
L LTp+1 = Tp.

(5.8)

Then the following hold:

(D) (\V/Z € ]I) Tin — Pin — 0.

(i) (@n)nen converges weakly to a solution to (5.4).
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Proof. Define

M: X - 2% 2 Qe+ X P, (5.9)
i€l

It follows from [6, Proposition 20.23] that the operator « Xier Piwi is maximally monotone. Thus,
since @ is maximally monotone by [6, Corollary 20.28], we deduce from [6, Corollary 25.5(i)] that
M is maximally monotone. Further, since (5.4) has a solution, zer M # &. Set

(Vie)(VneN) §(n)=max{j eN|j<n and i€l;} and &(n)=d;(;(n)), (5.10)
and define
(VneN) K,: X > X:xz+— (’szn x,)zeﬂ Q. (5.11D)

In addition, let y be a Lipschitz constant of Q. Then, the operators (K, ),cn are Lipschitzian with
constant 3 = /2(e~2 4+ x?2). At the same time, for every n € N, we derive from (5.11) and (5.5) that

(Ve e X)(Vy e X) (z—y| Kz —Ky) =) 7yl —ul’—(z-y|Qx—Qy)
i€l
> 06+ )l —uil®> = xillw — ill?
i€l 1€l
=alz -yl (5.12)

and, in turn, that K, is a-strongly monotone and maximally monotone [6, Corollary 20.28]. Hence,
for every n € N, [6, Proposition 22.11(ii)] implies that there exists x,, € X such that

(7;51¢(n)x;‘k,3i(n))z‘e]l = K, Zn. (5.13)
Therefore, we infer from (5.8), (5.10), (5.9), and (5.11) that

(VvneN) p, (p% 5 n))ie]I (5.14)

= (S, (mPE3, (n ))z‘e]l

= (Kn + M) ( z‘,lei(n)ngi(n))ie]I
= (Ko + M)~ (Knn). o

On the other hand, by (5.8), (5.10), (5.13), (5.14), and (5.11),
(VneN) s, =p,+Qp,
= (p;'k,gi(n))ie]l +Qp,
- (7{511-(”) (9”:,&(”) - pi,gi(n)))ieﬂ +Qp,

= (’Yz'_alr( )x;kz.(n))ieu - ('Yz_,(sli(n)Piji(n))ieﬂ +Qp,
K, - Kop,. (5.16)
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Thus, (5.8) can be recast as

forn=0,1,...
p, = (K, + M) (K,z,)
s;kz = K,z, — Knpn
if (p, —x, | s},) <0
Ay, — T | S5) (5.17)
* |12 s
sl

Tn+1 = Tp + n

else
L Tpt+1 = Tp.

Therefore, [15, Theorem 4.2(i)] yields », o [|Zn+1 — x,||> < 4+00. On the one hand, in view of [16,
Lemma A.3], we deduce from (5.7) and (5.10) that (Vi € I) Zs,(mn) — Tn — 0. On the other hand,
for every n € N, every x € X, and every y € X, we deduce from (5.12) and the Cauchy-Schwarz
inequality that afz — y||> < (z —y | K,z — K,v) < ||z — y|| | K,z — K,y||, from which it follows
that

aflz -yl < [ Kz — Kayll. (5.18)
Hence, using (5.13), (5.8), (5.11), and the fact that @ is x-Lipschitzian, we get
O‘ZH%n - a’nHZ < || Knzn — KnanZ
= (i oy @i5s0) = i, ) Qi) ) s = iy im — Qi) sy |
il
<27 |6y — @il + | Qim0 — Quws, o)1)
i€l
< 22(5_2 + XQ)HCC(S,(n) - mnH2
i€l
= 0. (5.19)

Thus, we conclude via [15, Theorem 4.2(ii) and Remark 4.3] that (x,),cn converges weakly to a
point in zer M, i.e., a solution to (5.4). Further, it is shown in the proof of [15, Theorem 4.2(ii)] that
K,z,— K,p, — 0. Hence, we derive from (5.18) and (5.19) that ||z,,—p,,|| < ||Tn—Zn ||+ ||Zn—p,| <
|zn — Zpl| + (1/0) || KnZn — Knpy,|| — 0. O

We are now ready to prove Theorem 5.1.
Proof. Consider the system of monotone inclusions

(Vi e I) 0€pi(zi) + Vifi(®) + X per Ti(Livy)

5.20
(Vk € K) 0 € 9g;(vi) — Lyz. ( )

find (x,v*) € H & G such that {
We assume, without loss of generality, that I and K are disjoint subsets of N. Then, in view of (4.11),
(5.20) is a special case of (5.4) where I = I U K and

(ViEI) XZ':/HZ‘ and Pi:agpl'
(Vk‘ € K) X = G and P, = 89;; (5.21)
Q: (z,v") = (Gx + L*v*,—Lx).
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Note that @ is Lipschitzian and that, for every (z,v*) € H ® G and every (y, w*) € H @ G, it follows
from (5.1) that

((@,0%) = (y,w") | Qx,v") - Qy,w")) = (@ —y | Gz — Gy) <Y _xillwi —will>.  (5.22)
el

In addition, for every n € N and every k € K, upon setting z; . = v} ./ d,(n)> We deduce from
(5.3) that

2 = Vhdyn) F My () L6 ) (5.23)
and from [6, Theorem 14.3(ii) and Example 23.3] that

* *
kn — prox —1 Zk,n -

* _ Xk
Mk,dk(n)gi P *kn and bkvn_'ukydk(n)(zk,n k,n)' (5.24)

“’;;Mn)
Hence, (5.3) is a realization of (5.8) in the context of (5.21) with
[((vneN) I,=I,UK, ]| and [(Vke€K) xx=0 and v, = p; | . (5.25)

Moreover, we observe that & # Z is the set of solutions to (5.20). Hence, Proposition 5.2(ii) implies
that (z,, v}),en converges weakly to a point (x,v*) € Z. By Proposition 4.1, « solves (1.2). 0O

Remark 5.3 By invoking [15, Theorem 4.8] and arguing as in the proof of Proposition 5.2, we obtain
a strongly convergent counterpart of Proposition 5.2 which, in turn, yields a strongly convergent
version of Theorem 5.1.

Remark 5.4 Consider the proof of Theorem 5.1. We deduce from Proposition 5.2(i) that x,, —a,, — 0
and, thus, that a,, — x. Moreover, by (5.3), given i € I, the sequence (a;,)nen lies in dom dy; C
dom ;. In particular, if a constraint on z; is enforced via ¢; = (¢;, then (a; »,)nen converges weakly to
the ith component of a solution = while being feasible in the sense that C; > a; , — ;.
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