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Abstract. We investigate a modular convex Nash equilibrium problem involving nonsmooth functions

acting on linear mixtures of strategies, as well as smooth coupling functions. An asynchronous block-

iterative decomposition method is proposed to solve it.

1 Introduction

We consider a noncooperative game with p players indexed by I = {1, . . . , p}, in which the strategy

xi of player i ∈ I lies in a real Hilbert space Hi. A strategy profile is a point x = (xi)i∈I in the

Hilbert direct sum H =
⊕

i∈I Hi, and the associated profile of the players other than i ∈ I is the

vector xri = (xj)j∈Ir{i} in Hri =
⊕

j∈Ir{i}Hj. For every i ∈ I and every (xi,y) ∈ Hi × H, we

set (xi;yri) = (y1, . . . , yi−1, xi, yi+1, . . . , yp). Given a real Hilbert space H, we denote by Γ0(H) the

class of lower semicontinuous convex functions ϕ : H → ]−∞,+∞] which are proper in the sense that

domϕ =
{
x ∈ H | ϕ(x) < +∞

}
6= ∅.

A fundamental equilibrium notion was introduced by Nash in [30, 31] to describe a state in which

the loss of each player cannot be reduced by unilateral deviation. A general formulation of the Nash

equilibrium problem is

find x ∈ H such that (∀i ∈ I) xi ∈ Argmin ℓi( · ;xri), (1.1)

where ℓi : H → ]−∞,+∞] is the global loss function of player i ∈ I. We make the following assump-

tion: for every i ∈ I and every x ∈ H, the function ℓi( · ;xri) is convex. Such convex Nash equilibrium

problems have been studied since the early 1970s [7]; see [4, 8, 9, 13, 17, 20, 21, 24, 25, 28, 37]

for further work. We consider the following modular formulation of (1.1), wherein the functions

(ℓi)i∈I are decomposed into elementary components. This decomposition will provide more modeling

flexibility and lead to efficient solution methods.

*Contact author: P. L. Combettes. Email: plc@math.ncsu.edu. Phone: +1 919 515 2671. This work was supported by

the National Science Foundation under grant DMS-1818946.

1



Problem 1.1 Let (Hi)i∈I and (Gk)k∈K be finite families of real Hilbert spaces, and set H =
⊕

i∈I Hi

and G =
⊕

k∈K Gk. Suppose that the following are satisfied:

[a] For every i ∈ I, ϕi ∈ Γ0(Hi).

[b] For every i ∈ I, fi : H → R is such that, for every x ∈ H, fi( · ;xri) : Hi → R is convex and

differentiable, and we denote its gradient at xi by ∇ifi(x). Further, the operator G : H →
H : x 7→ (∇ifi(x))i∈I is monotone and Lipschitzian.

[c] For every k ∈ K, gk ∈ Γ0(Gk) and Lk : H → Gk is linear and bounded.

The goal is to

find x ∈ H such that (∀i ∈ I) xi ∈ Argminϕi + fi( · ;xri) +
∑

k∈K

(gk ◦Lk)( · ;xri). (1.2)

In Problem 1.1, the individual loss of player i ∈ I is a nondifferentiable function ϕi, while his joint

loss is decomposed into a differentiable function fi and a sum of nonsmooth functions (gk)k∈K acting

on linear mixtures of the strategies. To the best of our knowledge, such a general formulation of a

convex Nash equilibrium has not been considered in the literature. As will be seen in Section 3, it

constitutes a flexible framework that subsumes a variety of existing equilibrium models. In Section 4,

we embed Problem 1.1 in an inclusion problem in the bigger space H ⊕ G, and we employ the new

problem to provide conditions for the existence of solutions to (1.2). This embedding is also exploited

in Section 5 to devise an asynchronous block-iterative algorithm to solve Problem 1.1. The proposed

method features several innovations that are particularly relevant in large-scale problems: first, each

function and each linear operator in (1.2) is activated separately; second, only a subgroup of functions

needs to be activated at any iteration; third, the computations are asynchronous in the sense that the

result of calculations initiated at earlier iterations can be incorporated at the current one.

2 Notation

General background on monotone operators and related notions can be found in [6]. Let H be a real

Hilbert space. We denote by 2H the power set of H and by Id the identity operator on H. Let A : H →
2H. The domain of A is domA =

{
x ∈ H | Ax 6= ∅

}
, the range of A is ranA =

⋃
x∈domAAx, the graph

of A is graA =
{
(x, x∗) ∈ H ×H | x∗ ∈ Ax

}
, the set of zeros of A is zerA =

{
x ∈ H | 0 ∈ Ax

}
, the

inverse of A is A−1 : H → 2H : x∗ 7→
{
x ∈ H | x∗ ∈ Ax

}
, and the resolvent of A is JA = (Id + A)−1.

Now suppose that A is monotone, that is,

(
∀(x, x∗) ∈ graA

)(
∀(y, y∗) ∈ graA

)
〈x− y | x∗ − y∗〉 > 0. (2.1)

Then A is maximally monotone if, for every monotone operator Ã : H → 2H, graA ⊂ gra Ã ⇒ A = Ã;

A is strongly monotone with constant α ∈ ]0,+∞[ if A− αId is monotone; and A is 3∗ monotone if

(∀x ∈ domA)(∀x∗ ∈ ranA) sup
(y,y∗)∈graA

〈x− y | y∗ − x∗〉 < +∞. (2.2)

Let ϕ ∈ Γ0(H). Then ϕ is supercoercive if lim‖x‖→+∞ ϕ(x)/‖x‖ = +∞ and uniformly convex if there

exists an increasing function φ : [0,+∞[ → [0,+∞] that vanishes only at 0 such that
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(∀x ∈ domϕ)(∀y ∈ domϕ)(∀α ∈ ]0, 1[)

ϕ
(
αx+ (1 − α)y

)
+ α(1 − α)φ

(
‖x − y‖

)
6 αϕ(x) + (1 − α)ϕ(y). (2.3)

For every x ∈ H, proxϕx denotes the unique minimizer of ϕ+ (1/2)‖· − x‖2. The subdifferential of ϕ
is the maximally monotone operator

∂ϕ : H → 2H : x 7→
{
x∗ ∈ H | (∀y ∈ H) 〈y − x | x∗〉+ ϕ(x) 6 ϕ(y)

}
. (2.4)

Finally, given a nonempty convex subset C of H, the indicator function of C is

ιC : H → [0,+∞] : x 7→

{
0, if x ∈ C;

+∞, otherwise,
(2.5)

and the strong relative interior of C is

sriC =



x ∈ C

∣∣∣∣∣∣

⋃

λ∈ ]0,+∞[

λ(C − x) is a closed vector subspace of H



 . (2.6)

3 Instantiations of Problem 1.1

Throughout this section, H is a real Hilbert space. We illustrate the wide span of Problem 1.1 by

showing that common formulations encountered in various fields can be recast as special cases of it.

Example 3.1 (quadratic coupling) Let I be a nonempty finite set. For every i ∈ I, let ϕi ∈ Γ0(H),
let Λi be a nonempty finite set, let (ωi,ℓ,j)ℓ∈Λi,j∈Ir{i} be in [0,+∞[, and let (κi,ℓ)ℓ∈Λi

be in ]0,+∞[.
Additionally, set H =

⊕
i∈I H. The problem is to

find x ∈ H such that (∀i ∈ I) xi ∈ Argminϕi +
∑

ℓ∈Λi

κi,ℓ
2

∥∥∥∥∥ · −
∑

j∈Ir{i}

ωi,ℓ,jxj

∥∥∥∥∥

2

. (3.1)

It is assumed that

(∀x ∈ H)(∀y ∈ H)
∑

i∈I

∑

ℓ∈Λi

κi,ℓ

〈
xi − yi

∣∣∣∣ xi − yi −
∑

j∈Ir{i}

ωi,ℓ,j(xj − yj)

〉
> 0. (3.2)

Define

(∀i ∈ I) fi : H → R : x 7→
∑

ℓ∈Λi

κi,ℓ
2

∥∥∥∥∥xi −
∑

j∈Ir{i}

ωi,ℓ,jxj

∥∥∥∥∥

2

. (3.3)

Then, for every i ∈ I and every x ∈ H, fi( · ;xri) is convex and differentiable with

∇ifi(x) =
∑

ℓ∈Λi

κi,ℓ

(
xi −

∑

j∈Ir{i}

ωi,ℓ,jxj

)
. (3.4)

Hence, in view of (3.2), the operator G : H → H : x 7→ (∇ifi(x))i∈I is monotone and Lipschitzian.

Thus, (3.1) is a special case of (1.2) with K = ∅ and (∀i ∈ I) Hi = H. This scenario unifies models

found in [1, 2, 20].
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Example 3.2 In (3.1), suppose that, for every i ∈ I, Ci is a nonempty closed convex subset of Hi,

ϕi = ιCi
, Λi = {1}, and κi,1 = 1. Then (3.1) becomes

find x ∈ H such that (∀i ∈ I) xi ∈ ArgminCi

∥∥∥∥∥ · −
∑

j∈Ir{i}

ωi,1,jxj

∥∥∥∥∥

2

. (3.5)

In addition, (3.2) is satisfied when

{
(∀i ∈ I)

∑
j∈Ir{i} ωi,1,j 6 1

(∀j ∈ I)
∑

i∈Ir{j} ωi,1,j 6 1,
(3.6)

which places us in the setting of Example 3.1. The formulation (3.5)–(3.6) unifies models found in

[5].

Example 3.3 (minimax) Let I be a finite set and suppose that ∅ 6= J ⊂ I. Let (Hi)i∈I be real Hilbert

spaces, and set U =
⊕

i∈IrJ Hi and V =
⊕

j∈J Hj. For every i ∈ I, let ϕi ∈ Γ0(Hi). Further, let

L : U ⊕V → R be differentiable with a Lipschitzian gradient and such that, for every u ∈ U and every

v ∈ V , the functions −L(u, ·) and L( · ,v) are convex. Consider the multivariate minimax problem

minimize
u∈U

maximize
v∈V

∑

i∈IrJ

ϕi(ui) +L(u,v)−
∑

j∈J

ϕj(vj). (3.7)

Now set H = U ⊕ V and define

(∀i ∈ I) fi : H → R : (u,v) 7→

{
L(u,v), if i ∈ I r J ;

−L(u,v), if i ∈ J.
(3.8)

Then H =
⊕

i∈I Hi and (3.7) can be put in the form

find x ∈ H such that (∀i ∈ I) xi ∈ Argminϕi + fi( · ;xri). (3.9)

Let us verify Problem 1.1[b]. On the one hand, we have

(∀i ∈ I)(∀x ∈ H) ∇ifi(x) =

{
∇iL(x), if i ∈ I r J ;

−∇iL(x), if i ∈ J.
(3.10)

Hence, the operator

G : H → H : x 7→
(
∇ifi(x)

)
i∈I

=
((

∇iL(x)
)
i∈IrJ

,
(
−∇jL(x)

)
j∈J

)
(3.11)

is monotone [33, 34] and Lipschitzian. Consequently, (3.7) is an instantiation of (1.2). Special cases

of (3.7) under the above assumptions can be found in [20, 27, 32, 35, 38, 39].

Example 3.4 (“generalized” Nash equilibria) Consider the setting of Problem 1.1 where [a] and [c]

are respectively specialized to

[a’] For every i ∈ I, ϕi = ιCi
, where Ci is a nonempty closed convex subset of Hi.

[c’] K = {1} and g1 = ιD1 , where D1 is a nonempty closed convex subset of G1.
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Then (1.2) reduces to

find x ∈ H such that (∀i ∈ I) xi ∈ Argmin Ci
fi( · ;xri) + (ιD1 ◦L1)( · ;xri). (3.12)

This formulation is often referred to as a generalized Nash equilibrium; see, e.g., [24, 28, 29]. How-

ever, as noted in [36], it is really a standard Nash equilibrium in the sense of (1.1) since functions are

allowed to take the value +∞.

Example 3.5 (PDE model) Let Ω be a nonempty open bounded subset of RN . In Example 3.4, sup-

pose that, for every i ∈ I, Hi = L2(Ω). Let z ∈ L2(Ω), let (Ωi)i∈I be nonempty open subsets of Ω with

characteristic functions (1Ωi
)i∈I , and, for every x ∈ H, let Sx be the unique weak solution in H1

0 (Ω)
of the Dirichlet boundary value problem [23, Chapter IV.2.1]




−∆y = z +

∑

i∈I

1Ωi
xi, on Ω;

y = 0, on bdryΩ.

(3.13)

For every i ∈ I, let ri ∈ Hi, let αi ∈ ]0,+∞[, and suppose that

fi : x 7→
αi

2
‖xi‖

2
Hi

+
1

2
‖Sx− ri‖

2
Hi

. (3.14)

In addition, suppose that G1 = H1
0 (Ω) and L1 = S −S0. Then we recover frameworks investigated in

[9, 29].

Example 3.6 (multivariate minimization) Consider the setting of Problem 1.1 where [b] and [c]

are respectively specialized to

[b’] For every i ∈ I, fi = f , where f : H → R is a differentiable convex function such that G = ∇f

is Lipschitzian.

[c’] For every k ∈ K, gk : Gk → R is convex and Gâteaux differentiable, and Lk : H → Gk : x 7→∑
j∈I Lk,jxj where, for every j ∈ I, Lk,j : Hj → Gk is linear and bounded.

Then (1.2) reduces to the multivariate minimization problem

minimize
x∈H

∑

i∈I

ϕi(xi) + f(x) +
∑

k∈K

gk

(
∑

j∈I

Lk,jxj

)
. (3.15)

Instances of this problem are found in [3, 4, 11, 12, 14, 22, 26].

4 Existence of solutions

Our first existence result revolves around an embedding of Problem 1.1 in a larger inclusion problem

in the space H⊕ G.

5



Proposition 4.1 Consider the setting of Problem 1.1 and set (∀i ∈ I) Πi : H → Hi : x 7→ xi. Suppose

that (x,v∗) ∈ H⊕ G satisfies




(∀i ∈ I) −∇ifi(x)−

∑

k∈K

Πi(L
∗
kv

∗
k) ∈ ∂ϕi(xi)

(∀k ∈ K) Lkx ∈ ∂g∗k(v
∗
k).

(4.1)

Then x solves (1.2).

Proof. Take i ∈ I and set

fi = fi( · ;xri), si = (0;xri), and (∀k ∈ K) g̃k = (gk ◦Lk)( · ;xri). (4.2)

Then, by Problem 1.1[b], fi : Hi → R is convex and Gâteaux differentiable, and ∇fi(xi) = ∇ifi(x).
At the same time,

(∀k ∈ K)(∀xi ∈ Hi) g̃k(xi) = (gk ◦Lk)(Π
∗
i xi + si) = gk(Lk(Π

∗
i xi) +Lksi) (4.3)

and it thus results from [6, Proposition 16.6(ii)] that

(∀k ∈ K)(∀xi ∈ Hi) (Πi ◦L
∗
k)
(
∂gk(Lk(Π

∗
i xi) +Lksi)

)
⊂ ∂g̃k(xi). (4.4)

In particular,

(∀k ∈ K) (Πi ◦L
∗
k)
(
∂gk(Lkx)

)
= (Πi ◦L

∗
k)
(
∂gk
(
Lk(Π

∗
i xi) +Lksi

))
⊂ ∂g̃k(xi). (4.5)

Hence, we deduce from (4.1) and [6, Proposition 16.6(ii)] that

0 ∈ ∂ϕi(xi) +∇ifi(x) +
∑

k∈K

Πi(L
∗
kv

∗
k)

⊂ ∂ϕi(xi) +∇fi(xi) +
∑

k∈K

(Πi ◦L
∗
k)
(
∂gk(Lkx)

)

⊂ ∂ϕi(xi) +∇fi(xi) +
∑

k∈K

∂g̃k(xi)

⊂ ∂

(
ϕi + fi +

∑

k∈K

g̃k

)
(xi). (4.6)

Consequently, appealing to Fermat’s rule [6, Theorem 16.3] and (4.2), we arrive at

xi ∈ Argminϕi + fi( · ;xri) +
∑

k∈K

(gk ◦Lk)( · ;xri), (4.7)

which completes the proof.

We are now in a position to provide specific existence conditions.

Proposition 4.2 Consider the setting of Problem 1.1, set

C =
{
(Lkx− yk)k∈K | (∀i ∈ I) xi ∈ domϕi and (∀k ∈ K) yk ∈ dom gk

}
, (4.8)

and let Z ⊂ H⊕ G be the set of solutions to (4.1). Suppose that 0 ∈ sriC and that one of the following

is satisfied:
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(i) For every i ∈ I, one of the following holds:

1/ ∂ϕi is surjective.

2/ ϕi is supercoercive.

3/ domϕi is bounded.

4/ ϕi is uniformly convex.

(ii) G : H → H : x 7→ (∇ifi(x))i∈I is 3∗ monotone and surjective.

Then Z 6= ∅ and Problem 1.1 has a solution.

Proof. Define





A : H → 2H : x 7→×i∈I ∂ϕi(xi)

B : G → 2G : y 7→×k∈K ∂gk(yk)

L : H → G : x 7→ (Lkx)k∈K

(4.9)

and

T : H → 2H : x 7→ Ax+L∗
(
B(Lx)

)
+Gx. (4.10)

Note that the adjoint of L is

L∗ : G → H : v∗ 7→
∑

k∈K

L∗
kv

∗
k. (4.11)

Now suppose that x ∈ zerT . Then there exists v∗ ∈ B(Lx) such that −Gx − L∗v∗ ∈ Ax or,

equivalently, by Problem 1.1[b] and (4.11), (∀i ∈ I) −∇ifi(x) −
∑

k∈K Πi(L
∗
kv

∗
k) ∈ ∂ϕi(xi). Further,

(4.9) yields v∗k ∈ ∂gk(Lkx). Altogether, in view of (4.1) and Proposition 4.1, we have established the

implications

zerT 6= ∅ ⇒ Z 6= ∅ ⇒ Problem 1.1 has a solution. (4.12)

Therefore, it suffices to show that zerT 6= ∅. To do so, define





ϕ : H → ]−∞,+∞] : x 7→
∑

i∈I ϕi(xi)

g : G → ]−∞,+∞] : y 7→
∑

k∈K gk(yk)

Q = A+L∗ ◦B ◦L.

(4.13)

Then, by (4.9) and [6, Proposition 16.9], A = ∂ϕ and B = ∂g. In turn, since (4.8) and (4.9) imply

that 0 ∈ sriC = sri(L(domϕ)−dom g), we derive from [6, Theorem 16.47(i)] that Q = ∂(ϕ+g ◦L).
Therefore, in view of [6, Theorem 20.25 and Example 25.13],

A, B, and Q are maximally monotone and 3∗ monotone. (4.14)

(i): Fix temporarily i ∈ I. By [6, Theorem 20.25], ∂ϕi is maximally monotone. First, if (i)2/ holds,

then [6, Corollary 16.30, and Propositions 14.15 and 16.27] entail that ran ∂ϕi = dom ∂ϕ∗
i = Hi and,

hence, (i)1/ holds. Second, if (i)3/ holds, then dom ∂ϕi ⊂ domϕi is bounded and, therefore, it follows
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from [6, Corollary 21.25] that (i)1/ holds. Finally, if (i)4/ holds, then [6, Proposition 17.26(ii)]

implies that (i)2/ holds and, in turn, that (i)1/ holds. Altogether, it is enough to show that

[
(∀i ∈ I) ∂ϕi is surjective

]
⇒ zerT 6= ∅. (4.15)

Assume that the operators (∂ϕi)i∈I are surjective and set

P = −Q−1 ◦ (−Id) +G−1. (4.16)

Then we derive from (4.9) that A is surjective. On the other hand, [10, Proposition 6] asserts that

L∗ ◦B ◦L is 3∗ monotone. Hence, (4.14) and [6, Corollary 25.27(i)] yields

domQ−1 = ranQ = H. (4.17)

In turn, since Q−1 and G−1 are maximally monotone, [6, Theorem 25.3] implies that P is likewise.

Furthermore, we observe that

domG−1 ⊂ H = dom
(
−Q−1 ◦ (−Id)

)
(4.18)

and, by virtue of (4.14) and [6, Proposition 25.19(i)], that −Q−1 ◦ (−Id) is 3∗ monotone. Therefore,

since ranG−1 = domG = H, [6, Corollary 25.27(ii)] entails that P is surjective and, in turn, that

zerP 6= ∅. Consequently, [6, Proposition 26.33(iii)] asserts that zerT 6= ∅.

(ii): Since G is maximally monotone and domG = H, it results from (4.14) and [6, Theorem 25.3]

that T = Q+G is maximally monotone. Hence, since G is surjective, we derive from (4.14) and [6,

Corollary 25.27(i)] that T is surjective and, therefore, that zerT 6= ∅.

Remark 4.3 Sufficient conditions for 0 ∈ sriC to hold in Proposition 4.2 can be found in [18, Propo-

sition 5.3].

5 Algorithm

The main result of this section is the following theorem, where we introduce an asynchronous block-

iterative algorithm to solve Problem 1.1 and prove its convergence.

Theorem 5.1 Consider the setting of Problem 1.1 and set (∀i ∈ I) Πi : H → Hi : x 7→ xi. Let (χi)i∈I be

a family in [0,+∞[ such that

(∀x ∈ H)(∀y ∈ H) 〈x− y | Gx−Gy〉 6
∑

i∈I

χi‖xi − yi‖
2, (5.1)

let α ∈ ]0,+∞[ and ε ∈ ]0, 1[ be such that 1/ε > α + maxi∈I χi, let (λn)n∈N be in [ε, 2− ε], and let

D ∈ N. Suppose that the following are satisfied:

[a] There exists (x,v∗) ∈ H⊕ G such that (4.1) holds.

[b] For every i ∈ I, xi,0 ∈ Hi and, for every n ∈ N, γi,n ∈ [ε, 1/(χi + α)] and ci(n) ∈ N satisfies

n−D 6 ci(n) 6 n.

[c] For every k ∈ K, v∗k,0 ∈ Gk and, for every n ∈ N, µk,n ∈ [α, 1/ε] and dk(n) ∈ N satisfies n −D 6

dk(n) 6 n.
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[d] (In)n∈N are nonempty subsets of I and (Kn)n∈N are nonempty subsets of K such that

I0 = I, K0 = K, and (∃m ∈ N)(∀n ∈ N)

n+m⋃

j=n

Ij = I and

n+m⋃

j=n

Kj = K. (5.2)

Further, set L : H → G : x 7→ (Lkx)k∈K . Iterate

for n = 0, 1, . . .

for every i ∈ In

x∗i,n = xi,ci(n) − γi,ci(n)

(
∇ifi(xci(n)) +

∑
k∈K Πi

(
L∗

kv
∗
k,ci(n)

))

ai,n = proxγi,ci(n)ϕi
x∗i,n

a∗i,n = γ−1
i,ci(n)

(x∗i,n − ai,n)

for every i ∈ I r In⌊
(ai,n, a

∗
i,n) = (ai,n−1, a

∗
i,n−1)

for every k ∈ Kn
y∗k,n = µk,dk(n)v

∗
k,dk(n)

+Lkxdk(n)

bk,n = proxµk,dk(n)gk
y∗k,n

b∗k,n = µ−1
k,dk(n)

(y∗k,n − bk,n)

for every k ∈ K rKn⌊
(bk,n, b

∗
k,n) = (bk,n−1, b

∗
k,n−1)

t∗n = a∗
n +Gan +L∗b∗n

tn = bn −Lan

πn = 〈an − xn | t∗n〉+ 〈tn | b∗n − v∗
n〉

if πn < 0
αn = λnπn/

(
‖tn‖

2 + ‖t∗n‖
2
)

xn+1 = xn + αnt
∗
n

v∗
n+1 = v∗

n + αntn
else⌊ (

xn+1,v
∗
n+1

)
= (xn,v

∗
n).

(5.3)

Then (xn)n∈N converges weakly to a solution to Problem 1.1.

The salient features of the proposed algorithm are the following:

• Decomposition: In (5.3), the functions (ϕi)i∈I and (gk)k∈K are activated separately via their

proximity operators.

• Block-iterative implementation: At iteration n, we require that only the subfamilies of func-

tions (ϕi)i∈In and (gk)k∈Kn
be activated, as opposed to all of them as in standard splitting meth-

ods. To guarantee convergence, we ask in condition [d] of Theorem 5.1 that each of these

functions be activated frequently enough.

• Asynchronous implementation: Given i ∈ I and k ∈ K, the asynchronous character of the

algorithm is materialized by the variables ci(n) and dk(n) which signal when the underlying

computations incorporated at iteration n were initiated. Conditions [b] and [c] of Theorem 5.1

ask that the lag between the initiation and the incorporation of such computations do not exceed

9



D iterations. The synchronous implementation is obtained when ci(n) = n and dk(n) = n in

(5.3). The introduction of asynchronous and block-iterative techniques in monotone operator

splitting were initiated in [19].

In order to prove Theorem 5.1, we need to establish some preliminary properties.

Proposition 5.2 Let (Xi)i∈I be a finite family of real Hilbert spaces with Hilbert direct sum X =
⊕

i∈I Xi.

For every i ∈ I, let Pi : Xi → 2Xi be maximally monotone and let Qi : X → Xi. It is assumed that

Q : X → X : x 7→ (Qix)i∈I is monotone and Lipschitzian, and that the problem

find x ∈ X such that (∀i ∈ I) 0 ∈ Pixi +Qix (5.4)

has a solution. Let (χi)i∈I be a family in [0,+∞[ such that

(∀x ∈ X )(∀y ∈ X ) 〈x− y | Qx−Qy〉 6
∑

i∈I

χi‖xi − yi‖
2, (5.5)

let α ∈ ]0,+∞[, let ε ∈ ]0, 1[ be such that 1/ε > α + maxi∈I χi, and let D ∈ N. For every i ∈ I, let

xi,0 ∈ Xi and, for every n ∈ N, let γi,n ∈ [ε, 1/(χi + α)], let λn ∈ [ε, 2 − ε], and let di(n) ∈ N be such that

n−D 6 di(n) 6 n. (5.6)

In addition, let (In)n∈N be nonempty subsets of I such that

I0 = I and (∃m ∈ N)(∀n ∈ N)
n+m⋃

j=n

Ij = I. (5.7)

Iterate

for n = 0, 1, . . .

for every i ∈ In
x∗i,n = xi,di(n) − γi,di(n)Qixdi(n)

pi,n = Jγi,di(n)Pi
x∗i,n

p∗i,n = γ−1
i,di(n)

(x∗i,n − pi,n)

for every i ∈ I r In⌊
(pi,n, p

∗
i,n) = (pi,n−1, p

∗
i,n−1)

s∗n = p∗
n +Qpn

πn = 〈pn − xn | s∗n〉
if πn < 0⌊

αn = λnπn/‖s
∗
n‖

2

xn+1 = xn + αns
∗
n

else⌊
xn+1 = xn.

(5.8)

Then the following hold:

(i) (∀i ∈ I) xi,n − pi,n → 0.

(ii) (xn)n∈N converges weakly to a solution to (5.4).
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Proof. Define

M : X → 2X : x 7→ Qx+×
i∈I

Pixi. (5.9)

It follows from [6, Proposition 20.23] that the operator x 7→×i∈I Pixi is maximally monotone. Thus,

since Q is maximally monotone by [6, Corollary 20.28], we deduce from [6, Corollary 25.5(i)] that

M is maximally monotone. Further, since (5.4) has a solution, zerM 6= ∅. Set

(∀i ∈ I)(∀n ∈ N) δi(n) = max
{
j ∈ N | j 6 n and i ∈ Ij

}
and δi(n) = di

(
δi(n)

)
, (5.10)

and define

(∀n ∈ N) Kn : X → X : x 7→
(
γ−1
i,δi(n)

xi
)
i∈I

−Qx. (5.11)

In addition, let χ be a Lipschitz constant of Q. Then, the operators (Kn)n∈N are Lipschitzian with

constant β =
√

2(ε−2 + χ2). At the same time, for every n ∈ N, we derive from (5.11) and (5.5) that

(∀x ∈ X )(∀y ∈ X ) 〈x− y | Knx−Kny〉 =
∑

i∈I

γ−1
i,δi(n)

‖xi − yi‖
2 − 〈x− y | Qx−Qy〉

>
∑

i∈I

(χi + α)‖xi − yi‖
2 −

∑

i∈I

χi‖xi − yi‖
2

= α‖x− y‖2 (5.12)

and, in turn, that Kn is α-strongly monotone and maximally monotone [6, Corollary 20.28]. Hence,

for every n ∈ N, [6, Proposition 22.11(ii)] implies that there exists x̃n ∈ X such that

(
γ−1
i,δi(n)

x∗
i,δi(n)

)
i∈I

= Knx̃n. (5.13)

Therefore, we infer from (5.8), (5.10), (5.9), and (5.11) that

(∀n ∈ N) pn =
(
pi,δi(n)

)
i∈I

(5.14)

=
(
Jγi,δi(n)Pi

x∗
i,δi(n)

)
i∈I

= (Kn +M)−1
(
γ−1
i,δi(n)

x∗
i,δi(n)

)
i∈I

= (Kn +M)−1
(
Knx̃n

)
. (5.15)

On the other hand, by (5.8), (5.10), (5.13), (5.14), and (5.11),

(∀n ∈ N) s∗n = p∗
n +Qpn

=
(
p∗
i,δi(n)

)
i∈I

+Qpn

=
(
γ−1
i,δi(n)

(
x∗
i,δi(n)

− pi,δi(n)
))

i∈I
+Qpn

=
(
γ−1
i,δi(n)

x∗
i,δi(n)

)
i∈I

−
(
γ−1
i,δi(n)

pi,δi(n)
)
i∈I

+Qpn

= Knx̃n −Knpn. (5.16)
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Thus, (5.8) can be recast as

for n = 0, 1, . . .

pn = (Kn +M )−1
(
Knx̃n

)

s∗n = Knx̃n −Knpn

if 〈pn − xn | s∗n〉 < 0⌊
xn+1 = xn +

λn〈pn − xn | s∗n〉

‖s∗n‖
2

s∗n

else⌊
xn+1 = xn.

(5.17)

Therefore, [15, Theorem 4.2(i)] yields
∑

n∈N ‖xn+1 − xn‖
2 < +∞. On the one hand, in view of [16,

Lemma A.3], we deduce from (5.7) and (5.10) that (∀i ∈ I) xδi(n) − xn → 0. On the other hand,

for every n ∈ N, every x ∈ X , and every y ∈ X , we deduce from (5.12) and the Cauchy–Schwarz

inequality that α‖x − y‖2 6 〈x− y | Knx−Kny〉 6 ‖x − y‖ ‖Knx − Kny‖, from which it follows

that

α‖x− y‖ 6 ‖Knx−Kny‖. (5.18)

Hence, using (5.13), (5.8), (5.11), and the fact that Q is χ-Lipschitzian, we get

α2‖x̃n − xn‖
2
6 ‖Knx̃n −Knxn‖

2

=
∥∥(γ−1

i,δi(n)

(
xi,δi(n) − γi,δi(n)Qixδi(n)

))
i∈I

−
(
γ−1
i,δi(n)

xi,n −Qixn

)
i∈I

∥∥2

=
∑

i∈I

∥∥γ−1
i,δi(n)

(
xi,δi(n) − xi,n

)
+
(
Qixn −Qixδi(n)

)∥∥2

6
∑

i∈I

2
(
ε−2
∥∥xi,δi(n) − xi,n

∥∥2 +
∥∥Qixn −Qixδi(n)

∥∥2)

6
∑

i∈I

2(ε−2 + χ2)
∥∥xδi(n) − xn

∥∥2

→ 0. (5.19)

Thus, we conclude via [15, Theorem 4.2(ii) and Remark 4.3] that (xn)n∈N converges weakly to a

point in zerM , i.e., a solution to (5.4). Further, it is shown in the proof of [15, Theorem 4.2(ii)] that

Knx̃n−Knpn → 0. Hence, we derive from (5.18) and (5.19) that ‖xn−pn‖ 6 ‖xn−x̃n‖+‖x̃n−pn‖ 6

‖xn − x̃n‖+ (1/α)‖Knx̃n −Knpn‖ → 0.

We are now ready to prove Theorem 5.1.

Proof. Consider the system of monotone inclusions

find (x,v∗) ∈ H⊕ G such that

{
(∀i ∈ I) 0 ∈ ∂ϕi(xi) +∇ifi(x) +

∑
k∈K Πi(L

∗
kv

∗
k)

(∀k ∈ K) 0 ∈ ∂g∗k(v
∗
k)−Lkx.

(5.20)

We assume, without loss of generality, that I and K are disjoint subsets of N. Then, in view of (4.11),

(5.20) is a special case of (5.4) where I = I ∪K and




(∀i ∈ I) Xi = Hi and Pi = ∂ϕi

(∀k ∈ K) Xk = Gk and Pk = ∂g∗k
Q : (x,v∗) 7→ (Gx+L∗v∗,−Lx).

(5.21)
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Note that Q is Lipschitzian and that, for every (x,v∗) ∈ H⊕ G and every (y,w∗) ∈ H⊕ G, it follows

from (5.1) that

〈
(x,v∗)− (y,w∗) | Q(x,v∗)−Q(y,w∗)

〉
= 〈x− y | Gx−Gy〉 6

∑

i∈I

χi‖xi − yi‖
2. (5.22)

In addition, for every n ∈ N and every k ∈ Kn, upon setting z∗k,n = y∗k,n/µk,dk(n), we deduce from

(5.3) that

z∗k,n = v∗k,dk(n) + µ−1
k,dk(n)

Lkxdk(n) (5.23)

and from [6, Theorem 14.3(ii) and Example 23.3] that

b∗k,n = proxµ−1
k,dk(n)

g∗
k
z∗k,n = Jµ−1

k,dk(n)
Pk
z∗k,n and bk,n = µk,dk(n)(z

∗
k,n − b∗k,n). (5.24)

Hence, (5.3) is a realization of (5.8) in the context of (5.21) with

[
(∀n ∈ N) In = In ∪Kn

]
and

[
(∀k ∈ K) χk = 0 and γk,n = µ−1

k,n

]
. (5.25)

Moreover, we observe that ∅ 6= Z is the set of solutions to (5.20). Hence, Proposition 5.2(ii) implies

that (xn,v
∗
n)n∈N converges weakly to a point (x,v∗) ∈ Z. By Proposition 4.1, x solves (1.2).

Remark 5.3 By invoking [15, Theorem 4.8] and arguing as in the proof of Proposition 5.2, we obtain

a strongly convergent counterpart of Proposition 5.2 which, in turn, yields a strongly convergent

version of Theorem 5.1.

Remark 5.4 Consider the proof of Theorem 5.1. We deduce from Proposition 5.2(i) that xn−an → 0

and, thus, that an ⇀ x. Moreover, by (5.3), given i ∈ I, the sequence (ai,n)n∈N lies in dom ∂ϕi ⊂
domϕi. In particular, if a constraint on xi is enforced via ϕi = ιCi

, then (ai,n)n∈N converges weakly to

the ith component of a solution x while being feasible in the sense that Ci ∋ ai,n ⇀ xi.
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