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Abstract—Many applications from precision agriculture, envi-
ronmental monitoring and transportation networks rely on data
collected across space and time over a large geographic area.
Missing data can be a signifcant issue in these spatiotemporal
databases, as it can reduce the accuracy of downstream data
analysis, inferencing and control algorithms. Data imputation or
the estimation of missing data can help fll these gaps by utilizing
inherent spatial relationships and temporal patterns. However,
existing approaches for estimating this missing information do
not effectively capture all dimensions of the spatiotemporal data
structure, resulting in erroneous predictions and poor perfor-
mance. In this paper, we introduce a general framework that
leverages a spatiotemporal graph constructed from the sensor
network graph and temporal sensor data to capture the joint
space-time dependencies. Specifcally, we propose a graph neural
network-based model in conjunction with a recurrent neural
network to impute missing information and demonstrate the
effectiveness of our approach for downstream tasks. Experiments
on a traffc sensor network reveal enhanced imputation accuracy
and up to 69% reduction in mean absolute error and 61% 
reduction in root mean square error compared to state-of-the-art
imputation frameworks.

Index Terms—Spatiotemporal imputation, GNN, LSTM, Traf-
fc data

I. INTRODUCTION

The emergence of IoT-based systems empowered by ad-
vances in sensing, communication and control has triggered a
wealth of applications that rely on data collected across space
and time. Examples of applications that rely on spatiotemporal
data from sensor networks include power systems, traffc
networks, air quality monitoring, and precision agriculture.
While the integrated spatial and temporal information can
lead to more effcient data analysis, the spatiotemporal data
often contain missing observations due to various factors
such as malfunctioning sensors or communication errors [1].
The presence of missing data can signifcantly reduce the
accuracy of downstream tasks such as classifcation, clustering,
and forecasting, leading to unreasonable inferences. Therefore
there is a need to develop effective missing data imputation
strategies that can be used in the preprocessing step or develop
models that are robust to missing data.

A. Related work

A variety of spatiotemporal imputation models have been
developed to address missing data in spatiotemporal datasets.
Some of the classic statistical methods involve interpolation-
based methods that use linear interpolation to estimate missing

values based on the values from the neighboring time/spatial
points [2], [3].

However, these classical methods rely on the assumption
that the underlying data follows a smooth trend and fail to
provide accurate estimates when there is a large number of
missing points in the data. Yet another method to impute the
missing data is by estimating/assuming the correlation between
multiple variables in the dataset [4]. This approach requires a
high degree of statistical expertise and can be computationally
expensive [5].

Multilinear tensor completion that uses a low-rank tensor
approximation based on observed entries to reconstruct the
missing values is proposed in [6]. While the approach in
[6] effectively captures multi-dimensional structural dependen-
cies, it is unsuitable for complex interactions and diverse data
missing patterns. A convolutional neural network based tensor
completion (CoSTCo) method was proposed in [7]. While
CoSTCo captures the non-linear relationships in the dataset,
the transductive nature makes the algorithm less scalable.
Imputation techniques based on machine learning algorithms
use k-nearest neighbors [8] or support vector machines to
estimate missing values based on patterns in the data [9]. These
methods do not attempt to capture the complex relationships
inherent in the spatiotemporal data and only rely on data
similarity metrics.

Recently, deep learning-based approaches have been pro-
posed to impute missing data. Denoising stacked autoencoder
(DSAE) [10], is a typical deep learning model that combines
denoising and autoencoders for imputation. However, DSAE
does not account for the underlying spatial correlations. To
leverage the spatial correlations, [11] proposes a multi-range
convolutional neural network (CNN) to model spatial corre-
lations and impute missing information. Though the method
proposed in [11] effectively handles correlations in Euclidean
space, they are ineffcient in modeling relationships in non-
Euclidean spaces. Recently, graph structures for relational
reasoning have been utilized in Graph Convolutional Networks
(GCN) [12], [1]. Though GCN is effective in modeling topo-
logical relationships, it is not tailored to capture temporal
dependencies. Alternatively, recurrent neural network-based
models can impute time series with missing values. Specif-
ically, long short-term memory (LSTM) networks can capture
and maintain long-term dependencies [13].



B. Contributions

In this work, we propose a novel inductive framework (G-
LSTM) for missing data imputation that integrates a graph
neural network with LSTMs to effectively capture both spatial
and temporal dependencies. We use GraphSAGE [14] as a
GNN module which is an inductive method and computa-
tionally effcient compared to GCN. Furthermore, GraphSAGE
allows for incorporating node features in the embedding gen-
eration process, which can be useful for tasks where node
attributes are essential. The proposed general framework can
be used for both data imputation and prediction.

The performance of the proposed framework is high-
lighted using comprehensive case studies on real-world traffc
datasets. The case studies include missing rates ranging from
10 % to 90%. Experimental results demonstrate that the
proposed GNN integrated with the LSTM framework achieves
improved imputation and maintains steady performance even
when there are extreme missing conditions in comparison with
the state-of-the-art imputation framework CoSTCo. The simu-
lation results on the traffc network show up to 69% reduction
in mean absolute error and 61% reduction in root mean square
error when compared to state-of-the-art imputation framework.

The remainder of this paper is structured as follows. Section
III introduces the imputation problem description and the
required background. The proposed approach is explained in
section IV and the results are discussed in section V. Finally,
section VI concludes the paper.

II. PROBLEM STATEMENT

We represent the spatiotemporal dataset as an undirected
graph G = (A, E, Xt), where A ∈ RN×N denotes the spatial
adjacency matrix; N denotes the number of sensors and the
element ai,j ∈ A is 1 if the sensors i and j are adjacent; Edge
E represents the spatial relationship between the sensors, and
Xt ∈ RN×D is the set of D dimensional dynamic features
measured at each sensor placed at various locations at time t.
Given the incomplete feature values from each sensor at dif-
ferent time instances, the goal is to impute the missing feature
values by considering spatial and temporal dependencies. The
observability of the feature values/measurements is captured

consists of multiple stacked layers of GraphSAGE (SAmple
and aggreGatE) [14]. Each node in the graph is represented
by a node embedding vector that helps capture the struc-
tural information. GraphSAGE is an inductive approach in
which the algorithm learns a mapping (aggregator) function
instead of the node embedding vector. The two primary
steps associated with GraphSAGE are aggregate and update.
Each node in the graph is uniquely represented by a feature
vector. The aggregate step aggregates the neighboring node
representations (feature vectors) for our target node. After
obtaining an aggregated representation for node v based on
its neighbors, the feature representation of the current node v 
is updated using a combination of its previous representation.
GraphSAGE’s inductive nature allows it to infer the node
embedding vector for nodes not encountered during training,
making it suitable for our imputation framework. The GNN
module takes the spatial adjacency matrix and the observed
feature values at each time instance. It captures the spatial
information using the message-passing mechanism of a Graph
Neural Network. The GNN output, which consists of features
learned from spatial dependencies, is then passed on to the
temporal module described next.

Temporal Module: Temporal modules are used for capturing
the temporal relations in the data. In this work, the temporal
module is driven by Long Short Term Memory (LSTM)
memory networks [15] for our imputation framework. LSTMs
have been shown to perform well on sequence-based tasks
with long-term dependencies, assisting in capturing temporal
associations. The reconstruction loss calculated during the
training is on the entire observation and helps to learn the
inherent relationships among the entire spatiotemporal dataset.
The patterns learned and propagated help update/ impute data
at the missing location and time instants.

The spatiotemporal data is loaded and punctured to create
missing values (the missing locations are given zero values).
Then, the data is split temporally into training and testing
segments. Finally, the ST block is trained and the recovered
values are used for evaluation by comparison with the original
input data. The loss function used for evaluation corresponds
to the following:

by a binary mask matrix Mt ∈ {0, 1}N ×D with elements as 1 
if X(i,j) is observed and 0 otherwise. Given the incompletet XX 

vuut 
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L(θ) = v v(x − x̂ )2 (1)t tsensor measurements Yt = Mt ⊙ Xt, the objective is to
reconstruct the missing sensor measurements and estimate the
complete matrix Ŷ 

t. Analysis of spatiotemporal data becomes
harder due to complicated underlying patterns. The use of a
network topology aids in explicitly modeling and capturing
the underlying complex spatiotemporal connections.

III. PROPOSED G-LSTM FRAMEWORK

The proposed spatiotemporal imputation framework is de-
picted in fgure 1. The framework consists of a spatial module
integrated with a temporal module to estimate Ŷ 

t. These
modules are described next.

Spatial Module: The spatial module in our framework
captures the spatial relationships within the data. The module

v=1 t=1 

where L(θ) is the reconstruction error on both observed and
v vmissing data. x and x̂ are the actual and estimated valuest t 

respectively for node v and time t.

A. Complexity Analysis:

In this subsection, we discuss the computational complex-
ities of the proposed algorithm. The computing cost of the
G-LSTM is concentrated on the GraphSAGE layers and the
LSTM layers. Suppose for a graph that is being considered
there are n number of nodes, r number of neighbors being
sampled for each node and m the total number of edges and
K number of layers. The computational complexity of the



Fig. 1. Structure of proposed spatiotemporal imputation network

GraphSAGE can be represented as O(rK nd2). For an LSTM
with h as the hidden layer dimension and b as the input feature,
the computational complexity is O(4h(b + 2 + h)). Thus the
computational complexity of the G-LSTM framework can be
approximated as O(rK nd2 + 4h(b + 2 + h)).

IV. RESULTS

In this section, we evaluate the performance of the
proposed imputation method on a real-world traffc dataset.
We introduce the dataset and explain the experimental settings
frst. Then various missing data scenarios are considered. The
imputation performance of the proposed method is compared
with Costco, a neural tensor completion-based imputation
framework as the baseline.

A. Traffc-State dataset:

PeMSD7 is a traffc dataset collected from Caltrans Perfor-
mance Measurement System (PeMS) and describes the speed
detectors covering the freeway system in all major California
urban centers. Among the 1000 sensors placed on the arterial
roads of District 7 in California, we chose 228 sensors for our
study, similar to [16]. The dataset consists of 5-min average
traffc speed data collected from May 1, 2012, to June 30,
2012, and has 11232 time points.

The graphical representation of the PEMS dataset was
created in a manner similar to [16]. The nodes correspond
to each sensor in the network and the initial node features
are the speed values concatenated with the singular value
decomposition (SVD) of the weighted adjacency matrix. The
SVD values concatenated with the speed values aid in uniquely
identifying the nodes [17]. For computational purposes, the
data is normalized. The imputation performance is evaluated
using two metrics, root mean square error (RMSE) and mean
absolute error (MAE) defned as,

n 

MAE = 
n 

i=1 

X1 |xi − xbi| (3)

where, n is the number of missing values, xi is the ith 

missing value and xbi is the imputed value of xi.

B. Experimental Results:

For training and testing purposes, the dataset is split tempo-
rally. The initial 80% of time instances are used for training
purposes and the remaining 20% is used for testing. The data
is scaled to be between 0 and 1 before imputation and the
output of the proposed approach is rescaled back to the original
values. It is assumed that the sensors at specifc locations were
absent across all time instances to simulate the missing values.

The proposed imputation framework model is trained by
Adam optimizer [18]. The learning rate is set at 0.001 with
the ReLu activation function after the GNN layers. The time
window for the LSTM is set as one in order to maintain an
end-to-end training framework and the temporal information
is captured by the hidden and the cell states. All experiments
are implemented with PyTorch and conducted on an NVIDIA
GeForce RTX 3070 GPU.

To evaluate the performance of the proposed approach, we
compare its performance with CoSTCo [7], a state-of-the-art
convolution neural network-based tensor completion approach.
CoSTCo tries to address the inability of multilinear models to
generate a low-rank representation of non-linear data. It uti-
lizes the activation functions in a convolutional neural network
to capture non-linear relationships. Table I summarizes the
experimental results using our proposed approach compared
with CoSTCo as the baseline. The imputation errors are
calculated with various missing ratios for a single time instant.
The results are averaged over fve random missing scenarios
for each of the missing ratios. It can be seen that the proposed
approach (G-LSTM) outperforms the baseline and as the
percentage of missing information increases, the imputation
error metrics remain steady and sometimes show improvement.
This surprising observation can be attributed to the possibility
that at a lower percentage of missing data, the GNN may
be overftting. As fewer data are available (or the missing
percentage increases), the overftting behavior is less likely.
The G-LSTM is trained with 50% of missing data and the pre-
trained model is used for imputing the data with 10%, 30%,
70% and 90% of missing information. From the results shown
in table I, it can be seen that for missing percentages lesser
than 50%, the pre-trained G-LSTM model gives improved
results compared to the corresponding G-LSTM model and
CoSTCo. For missing percentages greater than 50%, the pre-
trained G-LSTM outperforms CoSTCo. However, the pre-
trained model shows slightly inferior performance with respect
to G-LSTM. The results indicate that the model trained for

RMSE = 

vuut 
Xn 

i=1 

1 higher missing percentages can impute the data with lower(xi − xbi)2 (2)
n missing information more effciently and thus possess the



TABLE I
ERROR METRICS FOR MISSING DATA IMPUTATION

% Missing 10 % 30% 50% 70% 90%
Model MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE
G-LSTM 1.61 1.90 1.67 2.09 0.74 1.19 1.16 1.50 0.83 1.23
CoSTCo 2.26 2.27 2.60 2.61 4.66 4.67 6.96 6.97 7.90 7.91
G-LSTM
(pre-trained) 0.72 1.36 0.92 1.23 NA NA 1.33 1.59 1.65 1.85

inductive capability. Relative to the baseline CoSTCo method,
the proposed framework offers approximately 69% reduced
MAE and 61% reduced RMSE on the imputed values.

The speed values at each sensor for a single time step as
predicted by G-LSTM and CoSTCo when 50% of information
is missing are shown in fgures 2 and 3, respectively. It can be
seen that our framework outperforms the baseline in prediction
with missing information.

Fig. 2. Speed values estimated for each node for a single time instant using
G-LSTM framework

Fig. 3. Speed values estimated for each node for a single time instant using
CosTCo

V. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a general spatiotemporal frame-
work for data imputation. The traffc sensor network is for-
mulated as an undirected graph with speed values as a time-
varying feature. The proposed imputation framework con-
sists of a spatial and a temporal module that helps capture
the spatiotemporal relationships within the data and thereby
helps to impute the missing information. Comprehensive case
studies are conducted to evaluate the imputation accuracy of

the proposed model for a wide missing rate range. Exper-
imental results show that the proposed method outperforms
the neural tensor completion method, CoSTCo and maintains
steady performance in extreme missing scenarios. In future
studies, we plan to improve imputation accuracy by employing
an attention mechanism instead of LSTM and incorporating
model information instead of a purely data-driven approach.

ACKNOWLEDGEMENT

The research was funded by National Science Foundation
(NSF) CNS 2039014

REFERENCES

[1] S. R. Kuppannagari, Y. Fu, C. M. Chueng, and V. K. Prasanna, “Spatio-
temporal missing data imputation for smart power grids,” in Proceedings
of the Twelfth ACM International Conference on Future Energy Systems,
2021, pp. 458–465.

[2] B. Bae, H. Kim, H. Lim, Y. Liu, L. D. Han, and P. B. Freeze, “Missing
data imputation for traffc fow speed using spatio-temporal cokriging,”
Transportation Research Part C: Emerging Technologies, vol. 88, pp.
124–139, 2018.

[3] H. Yang, J. Yang, L. D. Han, X. Liu, L. Pu, S.-m. Chin, and H.-l.
Hwang, “A kriging based spatiotemporal approach for traffc volume
data imputation,” PloS one, vol. 13, no. 4, p. e0195957, 2018.

[4] T. F. Johnson, N. J. Isaac, A. Paviolo, and M. Gonz´ arez, “Han-alez-Su´
dling missing values in trait data,” Global Ecology and Biogeography,
vol. 30, no. 1, pp. 51–62, 2021.

[5] A. Cini, I. Marisca, and C. Alippi, “Filling the g ap s: Multivari-
ate time series imputation by graph neural networks,” arXiv preprint
arXiv:2108.00298, 2021.

[6] X. Chen, M. Lei, N. Saunier, and L. Sun, “Low-rank autoregressive
tensor completion for spatiotemporal traffc data imputation,” IEEE
Transactions on Intelligent Transportation Systems, 2021.

[7] H. Liu, Y. Li, M. Tsang, and Y. Liu, “Costco: A neural tensor completion
model for sparse tensors,” in Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining,
2019, pp. 324–334.

[8] J. Poloczek, N. A. Treiber, and O. Kramer, “Knn regression as geo-
imputation method for spatio-temporal wind data,” in International Joint
Conference SOCO’14-CISIS’14-ICEUTE’14. Springer, 2014, pp. 185–
193.

[9] N. Marchang and R. Tripathi, “Knn-st: Exploiting spatio-temporal
correlation for missing data inference in environmental crowd sensing,”
IEEE Sensors Journal, vol. 21, no. 3, pp. 3429–3436, 2020.

[10] Y. Duan, Y. Lv, Y.-L. Liu, and F.-Y. Wang, “An effcient realization of
deep learning for traffc data imputation,” Transportation research part
C: emerging technologies, vol. 72, pp. 168–181, 2016.

[11] Y. Ye, S. Zhang, and J. J. Yu, “Spatial-temporal traffc data imputation
via graph attention convolutional network,” in International Conference
on Artifcial Neural Networks. Springer, 2021, pp. 241–252.

[12] Y. Wu, D. Zhuang, A. Labbe, and L. Sun, “Inductive graph neural
networks for spatiotemporal kriging,” in Proceedings of the AAAI
Conference on Artifcial Intelligence, vol. 35, no. 5, 2021, pp. 4478–
4485.

[13] A. J. Saroj, A. Guin, and M. Hunter, “Deep lstm recurrent neural
networks for arterial traffc volume data imputation,” Journal of Big
Data Analytics in Transportation, vol. 3, no. 2, pp. 95–108, 2021.

[14] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” Advances in neural information processing
systems, vol. 30, 2017.

[15] Y. Yu, X. Si, C. Hu, and J. Zhang, “A review of recurrent neural
networks: Lstm cells and network architectures,” Neural computation,
vol. 31, no. 7, pp. 1235–1270, 2019.

[16] B. Yu, H. Yin, and Z. Zhu, “Spatio-temporal graph convolutional
networks: A deep learning framework for traffc forecasting,” arXiv
preprint arXiv:1709.04875, 2017.

[17] V. Lingam, R. Ragesh, A. Iyer, and S. Sellamanickam, “Simple truncated
svd based model for node classifcation on heterophilic graphs,” arXiv
preprint arXiv:2106.12807, 2021.

[18] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.


