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Abstract

With the recent report of erroneous content in 3GPP speci-
fications leading to real-world vulnerabilities, attention has
been drawn to not only the specifications but also the way
they are maintained and adopted by manufacturers and car-
riers. In this paper, we report the first study on this 3GPP
ecosystem, for the purpose of understanding its security haz-
ards. Our research leverages 414,488 Change Requests (CRs)
that document the problems discovered from specifications
and proposed changes, which provides valuable information
about the security assurance of the 3GPP ecosystem.

Analyzing these CRs is impeded by the challenge in find-
ing security-relevant CRs (SR-CRs), whose security connec-
tions cannot be easily established by even human experts. To
identify them, we developed a novel NLP/ML pipeline that
utilizes a small set of positively labeled CRs to recover 1,270
high-confidence SR-CRs. Our measurement on them reveals
serious consequences of specification errors and their causes,
including design errors and presentation issues, particularly
the pervasiveness of inconsistent descriptions (misalignment)
in security-relevant content. Also important is the discovery
of a security weakness inherent to the 3GPP ecosystem, which
publishes an SR-CR long before the specification has been
fixed and related systems have been patched. This opens an
“attack window”, which can be as long as 11 years! Interest-
ingly, we found that some recently reported vulnerabilities
are actually related to the CRs published years ago. Further,
we identified a set of vulnerabilities affecting major carriers
and mobile phones that have not been addressed even today.
With the trend of SR-CRs not showing any sign of abating,
we propose measures to improve the security assurance of the
ecosystem, including responsible handling of SR-CRs.

1 Introduction

The rapid advancement of telecommunication technologies
and perspectives of their applications to security-critical do-
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mains like autonomous driving, emergency services, energy
infrastructure, have brought to spotlight their security assur-
ance. At the center is the ecosystem that supports develop-
ment, maintenance and adoption of telecommunication stan-
dards, as organized by the 3rd Generation Partnership Project
(3GPP) [1], a consortium involving all major telecommuni-
cation standards organizations around the world. In the past
two decades, 3GPP has been responsible for standardizing
2G/3G/4G/5G protocols. Recent years, however, have wit-
nessed concerns being raised about the security quality of its
specifications: studies show that security flaws can be found
from the design described in protocol documents [31,32] or
predicted from their statements [16]. These reported hazards
can well be just a tip of the iceberg, given 3GPP’s compli-
cated, error-prone procedure for specification development
(involving hundreds of parties across 46 countries), and its
indiscreet release of vulnerability information. An in-depth
analysis of the 3GPP ecosystem therefore becomes critical to
understanding the security guarantees of today’s telecommu-
nication technologies, but has never been done before.

Challenges in the ecosystem analysis. In the way of such
a security analysis is the complexity of 3GPP specifications,
which are characterized by convoluted descriptions in thou-
sands of documents, on millions of pages. Understanding the
content of these documents is painstaking, not to mention
analysis of their security quality and measurement of secu-
rity weaknesses they may carry. In our research, however,
we found a unique resource that can be leveraged: a large
number of Change Requests (CRs) that specify the details of
the changes proposed by 3GPP members. Among them, these
Security-Relevant CRs (SR-CRs) report the descriptions that
could lead to security risks, which essentially are samples of
the security weaknesses from specifications. So the nature
of these problems and the ways they are handled can help us
assess the security assurance offered by the 3GPP ecosystem.

However, finding SR-CRs is highly nontrivial. Already
there are over 400K CRs, which continue to accumulate at
a fast pace. Only a very small portion of them are security-
related. These CRs are not explicitly labeled, determining



their security connections requires in-depth domain knowl-
edge. As an example, S3-171355 reports the absence of details
about computation of HASHyyr and HASHyg. However,
without knowing the purpose these hash values serve, one
would have no idea about the CR’s relation to the defense
against a bidding down attack.

The challenge in understanding CRs and their large volume
make any manual effort hard to succeed. Even an attempt
to automate the analysis, finding SR-CRs through machine
learning (ML), faces the difficulty in labeling training data, a
painstaking process that can only be handled by 3GPP experts.
As a result, any ML-based solution can only count on a small
set of ground-truth data (301 SR-CRs in our research).

Intelligent CR analysis. To address this challenge, we de-
veloped a new Natural-Language Processing (NLP) and ML
pipeline, called CREEK (CR Seeker), based upon the recent
progress in these areas. Our approach utilizes a small set of
manually identified positive instances (which are easier to
label than negative instances) to train a binary classier for
finding SR-CRs. For this purpose, we leveraged the idea of
transduction to learn a related but easier task: whether a given
paragraph comes from a security specification (e.g., Technical
Specification (TS) 33.401"), which is explicitly labeled by
3GPP. This learning process results in a transformer generat-
ing embeddings for input paragraphs. On the embeddings of
the labeled positive instances and a subset of unlabeled CRs,
we run Positive-Unlabeled (PU) learning to train a classifier.
The classifier is further refined using self-training on the rest
of the unlabeled CRs. Here our transduction learning uses
the information learnt from the related (easier) task to enrich
the knowledge necessary for finding SR-CRs, PU-learning
builds the classifier just on positively labeled instances and
self-training propagates labels to unlabeled data. Not to men-
tion our innovation on the loss function for the adversarial
training framework for PU-learning, which addresses the po-
tential bias. Our study shows that the CREEK pipeline is
effective at capturing SR-CRs: over 400K CRes, it reported
1,270 SR-CRs with a precision of 91.6%.

Measurement and findings. Our NLP/ML pipeline enables
us to focus on SR-CRs to study security hazards in the 3GPP
ecosystem. In our research, we analyzed the 1,270 SR-CRs de-
tected with high confidence, which reveals serious, sometime
surprising risks. More specifically, we found that the security
issues discovered from 3GPP documents have significant and
diverse consequences, including denial of service, informa-
tion leak, overcharging, etc. Over 70% of them are design
errors, often present in security-related operations. Remains
are problematic presentations including “unclear description”
that misses security-relevant details, and inconsistent state-
ments (called misalignment). Of particular interest is the per-
vasiveness of the misalignment that however is claimed by
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3GPP that they struggle to avoid. The inconsistency is in
security-related content across specifications, including those
at different stages, for different releases and about different
telecommunication generations (2G/3G/4G/5G). Even the
attempt to address these inconsistencies can cause new mis-
alignment, due to miscoordination among the 3GPP groups
working on different documents.

Looking into how these SR-CRs are managed by 3GPP and
affect protocol implementation, we observe a large window
between their publications and proposed changes finally made
to specifications. Such a window typically extends around
58 days, that exposes reported security weaknesses to the ad-
versary and leaves a long time for an attack to happen. Even
after the specifications were mended, we witnessed significant
delays, which can be as long as 11 years, in updating imple-
mented systems by device manufacturers and cellular network
carriers. Also interestingly, we found that 14 weaknesses re-
ported by SR-CRs end up being discovered in real systems
many years later, while 6 of them are still out there today:
not only has our experiment demonstrated their presence in
popular mobile phones (Samsung Galaxy S10, Google Pixel 3
and Nexus 6P), but we also got the evidence for the existence
of 1 weakness in real-world carrier networks (Section 4.2).

Also concerning is the trend of 3GPP security assurance.
Over years, we observed the increase of SR-CRs, with the
problems reported for the new telecommunication generation
outnumbering those found in the old one. The presentation is-
sues do not seem to improve over time either. Across releases,
the attack window actually becomes larger, from 43 days for
Release 4 to 71 days for Release 16. To mitigate the risks, we
propose measures to improve the security assurance of the
3GPP ecosystem, including responsible handling of SR-CRs.

Contributions. Our contributions are outlined as follows:

e New technique. We developed a new NLP/ML pipeline
that effectively identified from a large number of CRs those
security-relevant. Our technique overcomes the challenge in
labeling SR-CRs and is capable of capturing complicated
SR-CRs. Not only has it enabled our measurement study, but
it can also help enhance the security assurance of the 3GPP
ecosystem, by flagging the CRs likely security-relevant and
thus requiring special attention.

o New findings. We performed the first security analysis and
measurement study on the 3GPP ecosystem, bringing to light
surprising findings with significant security implications: e.g.,
difficulty in maintaining consistency across security-relevant
content, large attack windows exposing published weaknesses,
etc. We further propose improved procedures to better protect
the ecosystem, which has never been done before.

2 Background
2.1 3GPP Ecosystem

Organization. 3GPP unites 7 telecommunication standard de-
velopment organizations (e.g., ATIS [2], CCSA [3]) with the
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capability and authority to define, publish and set standards
within the 3GPP scope in their nations or regions, 23 market
representatives offering market advice and bringing market
requirements (e.g., GSM [7], CTIA [5]), and 758 individual
members (e.g., Qualcomm [9], Ericsson [6], Huawei [8]) com-
mitted to technical contribution to 3GPP specifications. These
partners and members form Technical Specification Groups
(TSGs) that prepare, approve and maintain 3GPP Technical
Specifications (TS). Now, 3GPP has 3 TSGs responsible for
different functionalities: Radio Access Network (RAN) TSG,
Service & System Aspects (SA) TSG, and Core Network &
Terminals (CT) TSG. Under each TSG are several Working
Groups (WGs), such as RAN WG focusing on radio physical
layer protocols, CT WG1 building the user equipment (UE)
for core network protocols, and SA WG3 identifying the re-
quirements and specifying the architectures and protocols for
security and privacy in 3GPP systems.

Development methodology. Using the recommended stage
methodology characterizing telecommunication services [54],
TSGs develop specifications in 4 stages: stage 1 is an over-
all service description from the user’s standpoint; stage 2
provides an overall description for network functions and ca-
pabilities; stage 3 defines network implementation, such as
switching and signaling, which supports services specified in
the previous stages; stage 4 is for testing. For example, SA
WG3 produces TS 33.501 (security architecture and proce-
dures for 5G System) for stage 2, which should be supported
by stage 3 protocols, such as those for the user equipment
to the core network (like TS 24.501 Non-Access-Stratum
protocol for 5G system) developed by CT WGI.

3GPP organizes specifications into different Releases, each
with distinguishable network capabilities and features, e.g.,
Release 8 for LTE and Release 15 for 5G. When all TSGs de-
termine when a Release is ready, that is, all its features being
defined and all its functionalities and required modifications
being incorporated, they will declare that the Release is stable
enough to be “frozen”. Each Release development usually
takes around 3 years. For instance, Release 8 was started in
January 2006 and frozen in March 2009.

Change Request. Before a Release is formally frozen, the
drafts of its specifications are published on the 3GPP file
server. From that point on, all modifications on these speci-
fications (even after the Release is frozen) need to be made
through Change Requests (CRs). A CR documents a proposed
change raised by an individual member (e.g., Qualcomm), and
brought to the attention of the responsible WG, which should
pertain to a single technical topic only and relate to a specific
version of a specification. In response to the WG’s comments,
the CR may undergo one or more rounds of revisions before
approved by the WG and presented to the TSG. It may further
go through additional changes upon request of the TSG, which
makes the final decision on whether to approve the CR en-
tirely without change or to reject or postpone unconditionally.
If a CR is approved, a new version number of the specifica-

CHANGE REQUEST
<Spec#> <CR#> <Rev#> <Current Version#>

Title:
Category: Release:

Reason for change:

Summary of change:
Consequences if not approved:
Clauses affected:

Other specs affected:

Figure 1: CR front form template.

tion will be allocated and published online. Figure | shows
a CR’s standardized front form. Each CR with a unique ID
(e.g., C1-094446) contains relevant management information
and proposed changes, such as the number of the target speci-
fication, its version and affected Release, the reason for the
proposed modifications, the summary of how to change, and
the consequences if the TSG does not accept it. Also, the form
puts the CR into a certain category, including A (the change to
ensure the consistency with another CR in a different category
made to an earlier Release), B (addition or deletion of a fea-
ture), C (functional modification), D (editorial modification),
and F (correction). Specifically, the category F is meant to
correct a problem in the specification that might lead to an
erroneous operation, an ambiguity in the specification that
could cause wrong implementation, and other specification
errors [12]. All the CRs including their revised versions are
public on the 3GPP file server once they have been proposed
to discuss at the (WG and TSG) meetings. The CR database
on 16th, Aug 2021 shows 414,488 CRs, including 248,254
in Category F, which include all specification problems (e.g.,
security weaknesses) reported by 3GPP individual members
in the history and therefore can be a valuable resource for un-
derstanding security hazards in the 3GPP ecosystem. Notably,
these 248,254 CRs discussed only 166,657 different weak-
nesses. Thus, we only focus on the last CR for each weakness,
and ignore their prior revisions talking the same weakness.

2.2 NLP and ML

BERT and domain adaptation. Bidirectional Encoder Rep-
resentations from Transformer (BERT [20]) is developed
as an NLP pre-training technique, which was originally
trained on a combination of BOOKCORPUS [60] and En-
glish WIKIPEDIA, and has later been extensively utilized
in many NLP tasks after fine-tuning. Fine-tuning BERT can
be done through either domain-adaptive or task-adaptive pre-
training [24]. Particularly, fine-tune with Masked Language
Modeling (MLM), which lets BERT predict randomly masked
words in input sentences according to contexts, enables ef-
fective adaptation of the model to different domains. This
approach is therefore incorporated into our CREEK pipeline
(Section 3.3).

Positive-Unlabeled learning. Positive-Unlabeled (PU) learn-
ing is an ML technique for training a binary classifier using
only positive and unlabeled data. Formally speaking, during
training, we have labeled positive data ({x;3 1) together with
unlabeled data ({x}J”}) but are not given labeled negative



data. Suppose that those np,, labeled positive data {x}" }/77

follow a distribution p,.(x|y = +1), where y € {+1,—1} is
the label of x, and those ny,, unlabeled data {x*" };" follow
a distribution p,.(x):
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{Xil },’:Pﬁ K pur(xly = +1)
n ii.d.
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where Tp,, := p;(y = +1) is the fraction of positive samples
in the training data set (including the labeled and unlabeled
samples), 7y, := pr(y = —1) = 1 —7p,, is the fraction of
negative samples in the training data set. The goal of the PU
learning is to learn a classifier g : R? — R that minimizes the
expected risk on the testing data following the distribution
Pre(X,Y) = pre(X)pre(y[x):

R'(8) = Ep,(x) [((v8(x))] 2)
where E,, (x,) denotes the expectation , and £(-) is the loss
function (e.g., the negative logarithm loss function). The ordi-
nary PU learning [17,23,59] assumes that the positive labeled
set has been Selected Completely At Random (SCAR) , and
thus it follows the same distribution as the positive samples
in the testing data set, i.e., p;(X|y = +1) = pre X[y = +1) =
p(x|y = +1). However, this SCAR assumption may not hold
in our SR-CR finding scenario, because bias may be present
in the training data due to the limited knowledge of the ex-
perts (to some specific specifications). So we propose a new
learning technique to address this challenge (Section 3.2).

Self-training. A self-training mechanism iterates a teacher-
student training process till convergence: the base teacher
model is trained on a labeled set, which is applied to a sub-
set of the unlabeled data to generate their pseudo labels; a
student model can then be learned on the combination of the
labeled set and the pseudo-labeled set. At the center of this
self-training process is how to select a representative subset
of unlabeled data for producing the pseudo-labeled set. This
problem has been studied in the prior research using predic-
tive entropy [51], variation ratios [39], standard deviation and
more recently using model uncertainty, such as Bayesian Ac-
tive Learning by Disagreement (BALD) [28], which selects the
unlabeled samples that maximize information gain (Eq. 10).
In our research, BALD and [42] was used in our research
to select representative unlabeled samples for self-training.
(Section 3.3).

3 Finding Security-Relevant CRs

A CR is considered to be security-relevant (that is, an SR-CR)
when it reports a problem that if not fixed, may allow secu-
rity policies to be violated by the adversary. These security
policies are meant to protect a system’s confidentiality, in-
tegrity, and availability. For instance, $3-180838 provides a
protection mechanism to address an information leak risk that
the permanent identity IMSI could be exposed to the passive
or active attacker; C1-183426 fixes a bidding down risk that

a User Equipment (UE) could only receive the 4G-level se-
curity protection while the network provides the 5G service;
C1-094446 discloses a security weakness that the UE could
accept a message without integrity protection, allowing a fake
base station to disable the service of the UE.

Finding such SR-CRs is nontrivial. The straightforward
method, keyword search, does not work well, with a low pre-
cision and a low recall (see the last paragraph of Section 3.4).
Therefore in our research, we leveraged machine learning
(ML) techniques to classify CRs and identified those security-
relevant. Development of such an ML classifier, however, is
nontrivial, due to the difficulty in labeling CR data, which re-
lies on experts who are often only knowledgeable about some
specifications. To address the labeling related challenges (as
elaborated in Section 3.1), we designed and implemented
an NLP pipeline, called CREEK (Section 3.2 and 3.3), and
further reported our evaluations of the pipeline (Section 3.4).

3.1 Challenges in Finding SR-CRs

Challenge 1: small labeled dataset. As aforementioned,
manual labeling of the 166,657 CRs in Category F is hard, due
to the challenge in understanding the semantics of each CR,
which requires in-depth knowledge about the related 3GPP
specification. C1-095712 presents an example, whose conse-
quence is “The entries may be incorrectly removed from the
allowed CSG list causing persistent inability of UE to access
a CSG cell.”. Tt is not easy to establish its connection with
security due to the lack of knowledge about the CSG cell’s
functionality. To avoid the intensive labor involved in labeling,
we searched the CR base with two keywords, “attack” and
“vulnerability”, and further manually inspected those discov-
ered to identify the CRs indeed security-relevant. In the end,
we labeled 301 SR-CRs in this way, which were later used to
train the CREEK pipeline that found 1,270 SR-CRs.

Challenge 2: positive instances only. The keyword approach,
unfortunately, cannot correctly locate non-SR-CRs. Random
sampling the whole CR dataset for manual analysis is hard
to ensure that a selected CR indeed has nothing to do with
security and privacy, given the requirement for an in-depth
understanding of all related specifications. So our NLP/ML
pipeline has to be built upon positive instances only.

Challenge 3: biased training set. The labeled CRs selected
using keywords may not follow the general distribution of
SR-CRs across different specifications. This could undermine
the effectiveness of the ML models trained on the data. In
this study, we propose an enhanced PU Learning (Positive-
Unlabeled Learning) model to address the bias.

3.2 Design

As discussed above, finding SR-CRs is a binary text classifi-
cation problem with unlabeled data and a small set of positive
examples that is biased. To solve this problem, we designed
CREEK with the following steps: 1) embedding generation,
2) PU learning, 3) self-training. Here 1) and 3) are meant to
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Figure 2: CREEK pipeline.

enrich the information carried by the small labeled set, while
2) addresses the constraint of positive instance only and the
potential bias. Figure 2 illustrates our design.

Step 1: embedding generation. The first step is to transfer
every sentence in each CR into an embedding, a feature vec-
tor of the same size that captures the key information of the
input sentence with a various length. This purpose can be well
served by BERT, which produces high-quality embeddings.
However direct applying pre-trained BERT does not work
well, due to its lack of domain specific information: we found
that only 19.8% of the top 10K most frequent words (exclud-
ing stopwords) used in 3GPP CRs also appear on the top 10K
list of the original BERT training corpus. So in our research,
we fine-tuned a pre-trained BERT through huggingface [56]
on all 3GPP specifications using two tasks — masked language
modeling and binary classification for security-related specifi-
cations. Note that the second task is different from (and much
easier than) finding SR-CRs: it is meant to determine whether
a paragraph comes from a security-related specification ex-
plicitly labeled by 3GPP. This task could help our fine-tuned
BERT gain knowledge about security-related nouns in 3GPP
specifications including abbreviation, specification number,
etc., and learn the language model of 3GPP CRs.

Step 2: PU learning. For the embeddings generated by Step
1, we need high-quality labeling for training a classifier. How-
ever, as mentioned earlier, we only have a small set of positive
instances (Section 3.1) so we have to use Positive-Unlabeled
(PU) learning to build the classifier. A problem here is that
the SCAR assumption (Section 2.2) may not be held, as all
these positive instances were found by keywords and there-
fore can have a different distribution than the testing distri-
bution. Such a difference is called covariate shift [52], i.e.,
Dir(X) # pre(X), the probability tensity of training distribution
is different from the probability tensity of testing distribution.
Inspired by the prior research [29], we developed an adversar-
ial learning framework with a classifier C and a discriminator
D: D tries to recover the bias between the training distribu-
tion and the testing distribution, while C seeks an optimal
separation between positive instances and negative ones with
sample weights calculated from the bias recovered by D. After
convergence, our classifier C learns how to figure out SR-CRs
without the bias introduced by the keywords. Notice that, we
utilized 10% of the CRs to train this classifier since training
with all CRs would trap our model so it outputs negative la-
bels for all unlabeled data, given that our positive instances
were merely 0.2% of all CRs and are easily overwhelmed by
the unlabeled data.

Step 3: self-training. After training a classifier C on 10% of
unlabeled data, we further ran Uncertainty-aware self-training
(UST) [42], a self-training algorithm, on the remaining 90%
to refine the classifier. UST selects the unlabeled data with
less uncertainty produced by C and measured by BALD. This
self-training process helps C increase the distance between
SR-CRs and non-SR-CRs, making it more robust.

3.3 Details and Implementation
Fine-tuning BERT. We use 3GPP specifications as the cor-
pus for BERT fine-tuning. Specifically, we established two
objectives: Masked Language Model (MLM) and Security
Specification Classification (SSC). The MLM objective is
to train our BERT to predict randomly masked words in a
sentence. We use the cross entropy loss for MLM objective.
The SSC objective is to train our BERT to judge whether a
given text belongs to security specifications. We use binary
cross entropy function as the loss function for SSC. We defer
details to Appendix A.1l
PU learning with covariate shift. To train our SR-CR classi-
fier, we leveraged an adversarial learning framework contain-
ing a discriminator D and a classifier C. D tries to recover the
covariate bias, while C seeks an unbiased classifier with the
help of the covariate bias recovered by D.

To recover the covariate shift [52], w(x) = I; :E:; , we did
following transformation:

o (i pre(x)
w(x) —ZEx\mfm(x))
- ey
_ PG Pty ®
P(X~pir(X)[X) p(X~pre(X))

_ ( 1 o 1) P(X~pir(x))
px~pir(x)[x) P(x~pie(x))
Note that, here we assume the testing and training data are
random split, and thus p(x ~ p;(x)) = p(x ~ pr(X)). As
a result, w(x) is only related to the probability of a given
x belonging to the training set, p(x ~ p;(x)|x). Using De
Morgan’s laws, we can further expand p(x ~ p;-(X)|x) = 1 +
1p(x € P, [x), where p(x € P;,|x) is the probability of a given
x belonging to the labeled positive set. Note that we hope
to use the output of the discriminator D(x) to approximate
p(x € P;|x), and thus we get:

w(x) ~ ﬁ —1=(1-D(x))/(1+D(x)) ()

Empirically, we designed the following loss function lossp to
let D learn the distribution of p(x € P;|x):

m
lossp = — ¥ logD(x;") +1og (1=D(x;"))  (5)
i=1

where xf " is the instance in the positively labeled training set
and xlu " is the instance in the unlabeled training set. Notice
that we replace the instance in the testing set with the instance
in the unlabeled training set, as they have the same probability
densities.

With recovered covariate shift w(x), the testing risk (Eq. 2)

of PU learning can be represented by:
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where p;,(¥|X) = pre(v|x) and w(X)pr(X) = pre(X) are used
in the second step. Further, replacing g by our classifier C, the
training risk K'"(C) can be decomposed as following , with
the help of the deduction in the prior work, Plessis et al. [21]:

R77(C) = Y-7p, logCxf") -
+[me, log(1 = C(x")) —log(1 = C(x;"))|]
Together with w(x), we define the loss function lossc:
lossc = Ri/(C) = Y[~ Tp, log CLE™ w(xf™) .

e, og(1 — COE) (™) — log(1 - CY)) ]

where 7ip,, is the ratio of SR-CR in the training set that can
be estimated by using [33]. Empirically, we set Ttp,, = 0.2.
Combining lossp and lossc, we get our final objective:

mCin mDax —lossp + Mossc )

where the discriminator D judges whether an instance comes
from the training set, while the proposed model mutually
trains a classifier C minimizing the training risk-weighted by
w(x) (Eq. 4) that takes into consideration the covariate shift
caused by the bias in the labeled positive samples.

In practice, C and D were implemented using the same
model structure as a two-layer bidirectional LSTM [30] with
hidden size 256 and output size 64. We set a small A = le 3,
making D learn the bias quickly. We take RMSprop opti-
mizer [26] with fix learning rate Se~®. We train 1000 epochs
with batch size 256.

Self-training improvement. After training a classifier
through our PU learning algorithm, we leverage self-training
on unlabeled data to strengthen the distinguishability of C.
Specifically, we use € to label those rest unlabeled data,
and train our final classifier C* on these pseudo-labeled data
weighted by prediction uncertainty of C. The prediction uncer-
tainty was measured by cooperating BALD with [42]. Con-
cretely, we let C* focus more on those less-uncertain data
predicted by €. The details could be found in Appendix A.2

3.4 Evaluation

Following, we report our evaluation of CREEK, which aims
at answering two questions: 1) how well does CREEK per-
form in finding SR-CRs? 2) how does each component of the
pipeline contribute to addressing aforementioned challenges?

Effectiveness. To answer the first question, we ran experi-
ments to analyze CREEK’s performance from two aspects:
its capability to overcome the biased positive labels and gen-
eralizability on various CRs. Notice that we keep the number
of positives the same as that of negatives in each testing set
we constructed.

e Overcoming bias. Limited by the three challenges (Sec-
tion 3.1), our CREEK was trained on positively labeled in-
stances found using keywords (“attack” and “vulnerability”).
The bias brought by keywords is present not only in the train-
ing set but also in the single testing set. To reduce the impact
of such bias when evaluating our approach, we utilized mul-
tiple testing sets with different keywords. For each set, we
chose a security-related keyword (independent of those used
to build our training set) and labeled the CRs carrying the
keyword as positives and those without the keyword as nega-
tives. Totally, we constructed six testing sets with six different
security-related keywords and the Overall testing set where
positives are CRs containing one of the six keywords” and the
negatives are those containing none of these keywords. Note
that we deliberately selected these keywords (e.g., “security
threat”, “malicious”) to be specific, so as to ensure that the
CRs carrying them are indeed SR-CRs (similar to those for
constructing the training set) but their coverage is limited:
altogether, 211 CRs containing these words.

The testing results of CREEK on these datasets are pre-

sented in Table 1. From the results, we can see that our
CREEK achieves a high coverage (recall) on different test-
ing sets, showing that CREEK can detect not only the CRs
with training keywords but also those with unseen keywords.
Together with the high recall, we also observe a stable and
high precision on these datasets. This provides the evidence
that CREEK is capable of overcoming the bias brought by
positive-only training set.
e Generalization to various CRs. To further investigate the
performance of CREEK on various CRs, we manually labeled
25 SR-CRs and 25 non-SR-CRs (see detailed SR-CRs on our
website”) to construct the Manual testing set.

On these 50 manually labeled CRs, our CREEK correctly
predicted 45 CRs (90.0% accuracy) with 3 false negatives and
2 false positives, and achieved 91.6% precision and 88.0%
recall. Among those successfully predicted SR-CRs, we dis-
covered that CREEK can figure out complicated SR-CRs that
our experts need several hours to determine their security rele-
vance. For instance, the consequence of $3-040743 is “MUK
and MSK keys could be used during their validity time by
another user inserting his UICC in the ME”, which does not
include explict security-related keyword that can serve as an
indicator to build the CR’s connection with security. However,
by looking into relevant specifications (TS 33.246), one can
learn that “MUK” and “MSK” are two keys for protecting the
confidentiality of Multimedia Broadcast/Multicast Service
traffic. This SR-CR reveals that an attack could be launched
by reusing these two keys when another user inserts the SIM
card to the victim UE from his mobile phone. Another exam-
ple is $3-091125, which contains some sophisticated termi-
nologies but no clues for its security relation. However, after

2We exclude the duplication for those CR containing multiple keywords.
3 https://sites.google.com/view/3gpp-creek
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Table 1: Testing results on different datasets.

Denial of service | Security threat | Malicious | Spoof | Eavesdrop | Privacy risk | Overall | Manual
Precision (%) 96.2 100 100 89.1 100 100 96.3 91.6
Recall (%) 88.1 82.7 90.7 82.0 100 100 87.6 88.0
Accuracy (%) 92.3 93.1 95.3 86.0 100 100 92.3 90.0
Positives (#) 59 29 54 50 11 8 211 25

reading TS 33.220, a document with 96 pages, we found that
the consequence of $S3-091125 implies a Denial-of-Service
(DoS) attack since the NAF (Network Application Function,
an element in the core network) will stop providing service
to the UE due to the failure in retrieving its phone number
(called MSISDN in 3GPP). One more example is S3-151926
with the consequence that “UEs may not be able to contact
the PKMF to fetch their keys”. After reading TS 33.303, we
know that the PKMF stands for “Proximity-based Service
Keys Management Function”, which is used to provide a set
of keys to protect the messages to UE. So, failure to fetch the
keys from PKMF may lead to potential security risks, such
as privacy violation. Correctly predicting these complicated
SR-CRs indicates that CREEK has learnt security-related ter-
minologies and the connection between them (thanks to our
transductive learning).

Also, we found that CREEK can correctly predict SR-CRs
with indicators missing in our training set. For instance, the
indicator “confidentiality ... is compromised” is not present
in our training set, yet CREEK correctly identifies the SR-CR
$3-020229 containing this indicator, which describes leakage
of sensitive information, the IMS session keys.

As for the three false negatives, we ascribe to the obscure
descriptions in CRs. Specifically, C1-092847 contains “SA3”,
the item is highly related to security, however, appears neither
in our training set nor in the 3GPP security-related specifi-
cations. Thus, without explicit labeling, the connection be-
tween “SA3” and security could not be established by CREEK.
Similarly in C1-051071, the indicator is “stage 2”, a term
whose security implication has not been well specified. For
CI-100105, the problem is missing details: one can hardly
determine whether “absence of a general introduction” would
lead to a security risk, considering that the word “absence” is
ubiquitous in 3GPP CRs and mostly unrelated to a DoS risk.

We believe that the two false positives are caused by the
lack of knowledge. Specifically, CREEK falsely labeled SR-
CRs R5-094440 and R5-160901, which are about failures in
compliant UE. Without knowing that compliant UE refers to
a testing scenario, these two CRs would easily be linked to
DoS attacks.

Based upon the evaluation results, we believe that CREEK
has been well generalized to cover various CRs, even com-
plicated ones. This is important for determining the security
implications of a CR. In our research, we spent one hour on
average to label a complicated CR, showing the high cost of
manual labeling (labeling 1,000 may take one month).

Ablation study and comparison. We further conducted ab-

Table 2: Accuracy for ablation studies.

Accuracy (%) BERT BERT-3GPP
Overall | Manual | Overall | Manual
Ordinary PU 53.9 52.0 64.9 58.0
Ordinary PU+Self-training 514 56.0 67.3 62.0
Our PU 80.7 80.0 90.1 86.0
Our PU+Self-training 86.3 84.0 922.3 90.0

lation studies to evaluate the utilities of each component in
our CREEK pipeline: embedding generation, PU learning and
self-training. Their accuracies on the overall keyword search-
ing testing set and manual labeled testing set were used as the
metric. Our ablation studies’ results are present in Table 2.
Here, the “BERT-3GPP” column refers to our BERT model
fine-tuned on the 3GPP corpus with the MLM and SSC tasks,
and the “BERT” column refers to using the original BERT
model. The accuracies reported in “BERT-3GPP” columns are
always higher than those in “BERT” columns no matter which
models follow the component on the pipeline, indicating that
the 3GPP security-related information captured by our fine-
tuning model helps generate more representative embeddings
for the follow-up components to identify SR-CRs. Also in the
table, rows “Ordinary PU” and “Ordinary PU + Self-training”
refer to the ordinary unbiased PU learning (PAN [29]) and
the rest two rows are about our biased PU learning. Compar-
ing these rows, we found that our biased PU learning greatly
outperforms the ordinary alternatives, improving the accuracy
on both two testing sets. Note that without our new algorithm,
the highest accuracy is only 67.3%, much lower than what
can be achieved (92.3%) by using our PU learning, which
indicates that our PU learning component successfully ad-
dresses the bias introduced by positively labeled instances
only and the training data built upon two keywords (‘“‘attack”
and “vulnerability”). Also, rows with “+Self-training” refer
to the self-training component applied after the PU learning.
The results demonstrate that self-training is more useful on
non-optimum solutions, considering that it achieves an accu-
racy gain 2.2% for “BERT-3GPP” while 5.6% for “BERT”
on the overall keywords testing set. A possible explanation is
that the information gained by self-training has been partially
obtained by fine-tuning BERT on the 3GPP corpus.

Comparison with keyword search. To understand the per-
formance of simple keyword search, we manually selected
49 representative security-related keywords from SR-CRs.
Specifically, we first came up with an ordered list of most fre-
quent keywords from 1,270 high confident SR-CRs predicted
by CREEK, and selected from the list 49 most frequently used
security-related words (e.g., “attack”, “security threat”, etc.)
out of total 5,000 frequently used words. The full list of the



Table 3: Statistics of keyword search.
Note: > k column represents the results of keyword search by using the set
of keywords that leads to the discovery of at least k confirmed SR-CRs out
of 4 randomly selected CRs for the word.

>4 >3 >2 >1 >0
# of Keywords 14 20 31 43 49
# of SR-CRs (discovered) 313 576 1,500 3,798 7,869
Expected # of real SR-CRs 313 510.25 | 972.25 | 1,546.75 | 1,546.75
Estimated Precision 100% | 88.6% | 64.8% 40.7% 19.7%

49 keywords is posted on our website. Then we estimated
the precision of each keyword through manual analysis of 4
randomly selected CRs carrying the word, and further ana-
lyzed the precision of applying a set of these keywords to find
SR-CRs, when each word in the set leads to the discovery of
atleast0(>0),1(>1),2(>2),3(>3)or4 (> 4) confirmed
SR-CRs out of the 4 randomly selected CRs for the word. The
results are present in Table 3, with more details provided on
the website.

Using each keyword’s precision and the number of CRs
containing the word, we further estimated the precision of
keyword search using a given set of keywords by calculat-
ing the proportion of the expected number of real SR-CRs
to the total number of identified CRs. For example, for the
set of > 3, 313 CRs are discovered by 14 keywords with
a precision of 100% (=4/4) and 263 (=576-313) additional
CRs are found using 6 keywords with a precision of 75%
(=3/4); so, the expected number of real SR-CRs is 510.25
(=313%100% + 263 % 75%), and the estimated precision of
the whole set is 88.6% (= 510.25/576). At this precision
level (88.6%), which is comparable but a bit lower than that
of CREEK (91.6%), we found that the keyword search reports
much fewer expected real SR-CRs than CREEK (510.25 vs.
1163.32), as shown in Table 3. Further, when we use the set
of the keywords (> 2) that detect fewer (but a similar num-
ber of) expected SR-CRs compared with CREEK (972.25 vs.
1163.32), the precision of the keyword search drops to 64.8%,
which is much lower than that of CREEK at 91.6%. If we use
all 49 keywords, the precision goes further down to 19.7%.
This indicates that the simple keyword search is inadequate
for effectively identifying SR-CRs.

4 Analyzing SR-CRs

In this section, we report our measurement study on 1,270
SR-CRs detected by CREEK with high confidence (> 0.99)
to understand the security hazards in the 3GPP ecosystem.

4.1 Security Quality of Specifications

Security consequences. Previous studies [16,27] report that
erroneous and problematic content of 3GPP specifications
could lead to vulnerable implementations, which can be ex-
ploited for Denial of Service (DoS) or private identity leaks.
By leveraging the discovered SR-CRs that record security-
related specification problems reported during their develop-
ment, we are able to gain a more comprehensive understand-
ing about their security quality and impacts of their weak-
nesses. Specifically, as Figure | shows, every CR has a field

*consequences if not approved* , which is supposed to explain
the potential harms once the weakness is attacked. In prac-
tice, however, some SR-CRs only roughly mention that the
weaknesses they document could be used to violate a security
requirement without providing any detail. So in our study, we
inspected 1,270 SR-CRs and selected from them 616 SR-CRs
carrying detailed consequence fields.

Manually analyzing these SR-CRs, we classified their con-
sequences into five categories, as shown in Table 4, including
DoS attack, sensitive data leak, failure to prevent attacks, bat-
tery draining, and overcharge. Our research shows that the
most common consequences are those related to service inter-
ruption (DoS), which can happen both on the UE and the core
network. For instance, SR-CR C1-094446 reports a weakness
in TS 24.301 that could be used by a malicious base station
to kick a UE out of service until the user reboots her device.
Less severe but still disruptive is the exploit related to CI-
154301, which locks the UE out of the Packet Switched (PS)
service so it cannot use IP data but can still make phone calls.
Also pervasive is data leak: SR-CRs in this category expose
sensitive information, such as the UE’s locations, private iden-
tities, certificates, ciphering mechanisms, and even security
keys. Further, 3GPP has a special WG SA3 that defines se-
curity and privacy requirements, architectures, and protocols
for 3GPP systems, which are meant to mitigate threats like
DoS, man-in-the-middle (MITM) attacks and etc. However,
from the SR-CRs in the third category, we found that erro-
neous specification content potentially results in a system
without proper protection against such attacks. For example,
C4-191528 reveals an error in the OAuth token defined in TS
29.510, which could lead to failure in the PLMN verification,
rendering the system unable to prevent an impersonation at-
tack. Moreover, we found that some specification weaknesses
(e.g., $3-120336 and S3-142116) could cause battery draining
and some others can be exploited to make free phone calls or
overcharge a target victim UE. These findings demonstrate
significant security impacts of 3GPP specification errors.

Causes. Given the serious security consequences of specifi-
cation weaknesses, it is important to understand their causes,
which tend to be clearly documented by each CR in the field
*reason for change* as Figure 1 shows.

So, in our research, we manually inspected 1,270 SR-CRs
and our findings are summarized in Table 5. As we can
see, most issues are related to design errors (70.55%), as
expected, but surprisingly, the remaining specification prob-
lems (29.45%) are caused by problematic presentation. We
elaborate our findings as follows.

The design errors are found to be rather diverse, but most
of them are reported in the procedures meant for security
protection (such as integrity protection) and the rest in the
procedures that need to be safeguarded. As an example, S3-
080841 documents a design flaw in key derivation when a
UE moves from one cell to another, which could cause po-
tential key reuse and authentication circumvention. Also our



Table 4: Categories and examples of exploit consequences.

Category Ratio Example CR
o " Cause the UE to be vulnerable to DoS attack by a malicious base station. | C1-094446
DoS/DDoS/Bidding down attack | 60.63% Cause the UE being out from Packet Switched (PS) services. C1-154301
. Cause the UE to be tracked and traced. S$2-2006202
Sensitive data leakage 18.69% Cause the UE to expose the ciphering mechanism. S3-020689
- . e Cause preventing impersonation attacks not be supported. C4-191528
Failure of preventing attacks 15.52% Cause the network cannot recognize and tackle man-in-the-middle attack. | C1-091594
Battery drainin 2 87% Cause the UE to lose power. S3-120336
Y e e Cause a lot of UEs being busy and wasting UEs’ electricity. S3-142116
. Cause the UE to be open to an over charging attack. Cl1-122414
- 1
Incorrect charging 2.30% Cause the UE can have free talk. C1-160432

Table 5: Summary of causes on SR-CRs.

Category I Ratio Category I1 Ratio
Design error 70.55% Error on security procedures | ~60.00%
(896/1,270) | Error on other procedures ~40.00%
Problematic 29.45% Lack of details 68.45%
presentation (374/1,270) | Inconsistent specifications 31.55%

analysis shows that for the procedures serving other telecom-
munication functionalities than security, their protection can
be inadequate, erroneous or oftentimes completely missing,
as some security risks may have never been seriously con-
sidered during specification development. For example, the
paging procedure in the NAS protocol is designed to waken
an idle UE in response to an incoming call or message; it is
found to lack authentication protection, which enables a UE
impersonation attack (C1-135219 in TS 24.301).

In the 896 SR-CRs about design errors, we found that 193
are meant to fix the content issues in the 33 series specifi-
cations — a set of documents that focus on 3GPP security
aspects as mentioned before (Section 3.2). So they are clearly
related to security procedures. The nature of the procedures
associated with other SR-CRs, however, cannot be easily de-
termined, due to loose descriptions of CRs, whose connec-
tions with specifications are established through nothing but
a few keywords like “privacy”, “encrypt” and etc. To find out
whether these procedures are security-related, we randomly
selected 50 SR-CRs and looked up their keywords in related
specifications to understand their context. In the end, we found
that 26 of them are meant to fix security-related procedures,
such as R5-190434 fixing EAP-AKA based authentication
procedure in TS 38.508-1, while the rest are for other pro-
cedures that miss necessary security protection. Altogether,
we estimate that about 60% of the design errors reported by
SR-CRs are inside security procedures.

Among the 29.45% SR-CRs caused by problematic presen-
tation, we found that 68.45% (= 256/374) are due to the lack
of details about how to implement security-related functionali-
ties. For instance, SR-CR S3-171530 points out that TS 33.401
in version 14.2.0 introduces a hash parameter HASHys g in
a message to prevent the bidding down attack, but the speci-
fication does not give the calculation method to the element,
which causes confusion about how to implement it and may
lead to a security weakness. Another example is C/-094810:
TS 24.301 in version 8.3.0 requires to compute two keys on

Table 6: Categories of misalignment in 3GPP specifications.

Category Ratio
Violate inconsistency between stages 50.85%
Violate inconsistency between Releases 5.08%
Violate inconsistency between generations 3.40%
Violate inconsistency in a single specification | 40.68%

the UE side during authentication, but fails to specify whether
the inserted SIM card or the mobile device actually generates
the security parameter. Such unclear specifications may result
in wrong implementations exposing security parameters.
What is interesting is the rest of SR-CRs (31.55% =
118/374) all about inconsistent descriptions (which is called
misalignment) in specifications, with 24 (6.42% = 24/374) of
them for addressing conflict statements. For instance, from
C1-101068 we discovered that in TS 24.301, S4.4.4.4 requires
that any message without security protection shall be ignored
after security context is established, but S4.4.2.3 conflicts with
the requirement, allowing to accept some messages without
protection. This inconsistency could mislead the developer
and introduce security flaws exploited by those without the
right security context to launch an impersonation attack.
Since the inception of the consortium, 3GPP has always
claimed that they strive to keep the consistency of the speci-
fications under the responsibility of different TSGs through
a manageable mechanism to handle document updating [12].
For this purpose, 3GPP requires the originator of a CR to thor-
oughly examine its impact on other specifications. Actually,
each CR has a field called *other specs affected* to help keep
consistency across specifications (see Figure 1). However, we
found that the field has been left empty on most CRs in the
3GPP database. In the meantime, the content of CRs shows
that this misalignment problem not only exists but is also
serious and pervasive in 3GPP specifications. Following we
report our study on this problem.
Misalignment in specifications. Our research shows that the
misalignment problem not only appears in a single specifica-
tion but across specifications. As shown in Table 6, we found
that 60 SR-CRs report inconsistent security-relevant content
across the specifications at different stages, in different Re-
leases, and for different generations. As mentioned earlier
(Section 2), 3GPP uses a stage methodology in developing
telecommunication services. Since stage 2 specifies network
function requirements, all specifications at stage 3 are ex-



pected to support them. However misalignment problems are
found to be pervasive across the stages and many CRs are
issued to address them. For example, TS 33.401 (a stage 2
specification) requires the UE to modify its CSG list (that
decides which cell groups the UE can access) only when re-
ceiving commands with security protection; however, a stage
3 specification TS 24.301 violates the requirement, allowing
a UE to delete the CSG list when it receives a reject message
without the safeguard of integrity check, which could be ex-
ploited by a fake network for a DoS attack on victim UEs
(see C1-095554). Such inconsistent issues are quite common
between security requirements specified at stage 2 and im-
plementation aspects at stage 3, being reported by 56.67%
(34/60) of SR-CRs about cross-stages misalignment.

3GPP systems are backward compatible: for example, a
mobile system developed based upon Release 12 should also
be supported in later Releases. This property requires some
levels of consistency between two Releases so they can main-
tain the compatibility. However, from SR-CRs, we found
multiple instances of consistency violations, e.g., resetting
downlink sequence numbers required in one Release but not
in another, which could lead to replay attacks (C1-101252,
C1-213353). Also, across generations of telecommunication,
except for new features, functionalities should be compatible
and their descriptions should be consistent. For example, UE-
CapabilityEntry in RRC protocol needs be encrypted before
transmission to avoid exposure; this protection is introduced
by 5G but 3GPP requires the 4G specifications to be consis-
tent with 5G for this protocol, which however had not been
addressed until R2-2002094 was issued 2 months later.

With years of effort claimed by 3GPP, the misalignment is-
sues are still pervasive. Our hypothesis is that the problem has
fundamentally been caused by 3GPP’s management of CRs,
which tend to be reported by individual members, particularly
manufacturers, to different WGs. From the discovered SR-
CRs, we observed that the misalignment of a CR proposed
by one member with other specifications has usually been
identified by a different member. For example, S2-112468
was submitted by Vodafone and updated to TS 23.401 but the
misalignment with TS 24.301 caused by the CR was reported
by ZTE through another CR C1-112469 one month later. It is
likely that the CR originator, usually a device manufacturer,
reports only the problem it encounters in implementing part
of the specifications, expecting 3GPP to take care of the con-
sistency issue, which however often falls through the cracks.

Even when related specification content has been identi-
fied, and multiple CRs are submitted to ensure consistency,
this effort could be impeded by the 3GPP working procedure.
Consistency across different specifications requires coordi-
nation among multiple 3GPP WGs. This does not seem to
work well now. Particularly, these groups have different work-
ing schedules, which causes related changes to be updated at
different times, rendering the specifications misaligned for a
period of time. For example, to secure UECapabilityEnquiry
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Figure 3: CR-processing procedure and system patching.

in RRC protocol, §3-192862 was submitted to SA WG3 on
2019/8/19 and a related CR R2-1909394 was sent to RAN
WG2 on 2019/8/16. $3-192862 moved on quickly in SA WG3
and its modification was updated to TS 33.501 on 2019/09/25,
while RAN WG2 took a long time to review R2-1909394,
which was finally approved and updated to TS 38.331 on
2020/03/31. Therefore, there is a 7-month gap during which
TS 33.501 and TS 38.331 were inconsistent.

Misaligned security-relevant content may bring in security
risks, when an SR-CR is published while some related content
has not been discovered and updated for a long time, even
after the original change has been made to the specification.
We will discuss this problem in Section 5.

4.2 CR Management and System Patching

3GPP publishes every CR immediately after its submission,
thus exposing the content of an SR-CR to unintended eyes,
which could lead to an exploit on a real-world system contain-
ing the reported security weakness before it is patched. To un-
derstand this risk in today’s 3GPP ecosystem, we looked into
how SR-CRs are managed. Figure 3 shows the whole proce-
dure from proposal of a CR to the integration of its requested
changes into commercial systems. As we can see, after sub-
mitted by an individual member, a CR is first reviewed by a
WG, which often requires several rounds of revisions before
approval. Then it goes through a similar revision process at
TSG meetings before its content is updated by the support
team to a new specification version. The specification will
later be used by telecommunication developers around the
world. This procedure indiscreetly discloses security-critical
information. To understand its security implications, we mea-
sured the length of an attack window, conservatively from the
publication of an SR-CR on the 3GPP server to the update of
its content to the target specification, and precisely until patch-
ing of its related systems (which tends to be more difficult to
determine). Following we elaborate on our findings.

Dataset. To measure the attack window, again we started with
the 1,270 SR-CRs. From them, we first removed those with-
drawn by their originators or not accepted by the WG or TSG
reviews, which leaves us with 8§17 CRs. Further, we dropped
those proposed before their target specifications were frozen,
since most device vendors only implement the specifications
when they become stable (frozen), though exceptions do exist
(e.g., Qualcomm and Huawei built their devices based upon
the Releases yet to be stabilized [13,49]). Altogether, there
are 462 SR-CRs proposed for frozen Releases, including 443
CRs submitted to WGs and 19 CRs directly to TSGs".

4This happens when a specification is handled directly by a TSG, instead
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Attack window. Figure 4 illustrates the distribution over the
length of our “conserative” attack window (from proposal
of an SR-CR to the update of the specification). As we can
see, most SR-CRs (90.48% = 418/462) have been processed
within three months, 69.48% (321) in two months, and 21.43%
(99) in one month. Among the 462 SR-CRs, the minimum
attack window is 10 days (RP-010274) while the longest one
lasts more than two years (CI-105068). The expected length
is around 58 days, which we calculated by approximating
the distribution with Negative Binomial Distribution [22]. To
understand this distribution, we looked into each stage of the
CR-processing procedure to find out how long 3GPP needs
to process a CR. As highlighted in Figure 3, we analyzed
@ how long the WG takes to process a CR; ) what is the
waiting time between a CR agreed by the WG and the review
on it started at the TSG level; @ how long the TSG takes to
process a CR; @ what the delay would be for an approved
CR (by the TSG) to be updated to its target specification.

For (D , an SR-CR can quickly be approved by its respon-
sible WG or go through multiple rounds of required revisions.
Figure 5 shows the distribution of SR-CR processing time at
the WG level. Among the 443 SR-CRs, 58.47% are agreed by
WGs directly and 87.13% get approval in one month, which is
within the duration of a single WG meeting. The rest 12.87%
SR-CRs take a much longer time to approve at the WG level.
For example, we found 5 SR-CRs that each had been reviewed
by WGs for more than 6 months, and one took 2 years before
it was finally agreed by a WG. Such a long delay is caused
by multiple rounds of required revisions or a large amount
of time invested in revision, which extends the time interval
between a CR’s two submission rounds. Figure 6 shows that
the CR-processing time grows when the number of revision
rounds or the interval between rounds goes up. For example,
before the WG approved C1-095712, it had been revised 10
times, with the longest interval being 127 days (between C1-
091323 and C1-092720). Figure 7 further explains why some
interval is so long: if two consecutive versions of the same
CR (due to the required revision) are reviewed at the same
WG meeting, on average it takes just 7 days; however, when
these versions are discussed at two consecutive WG meetings,
48 days on average and 98 days at most are needed, as a WG
meeting may take place every one/two/three months. Inter-
estingly, we found that 3 SR-CRs even waited for more than
90 days before their revisions were reviewed again. This is
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because each of them was “postponed” by its related WG, and
later revived, which causes a huge delay in their processing.

For (2 , after an SR-CR has been approved by the WG, it
needs to wait to be presented to the responsible TSG so it
can be discussed at the most recent TSG meeting. Figure 8
illustrates the distribution of such waiting time. As we can
see, most of SR-CRs can be processed within 3 months (104
days at most), since the TSG plenary meeting is held quarterly
every year. On average, each SR-CR needs to wait for 22.8
days according to our analysis. Note that such a delay is
inevitable given the current CR-processing procedure.

For Q) , the TSG may also require a CR to be revised
before approving it. Figure 5 illustrates the distribution of
SR-CR processing time at the TSG level. Among the 462 SR-
CRs, all except 18 CRs were approved by the TSG directly
without any revision. Among these 18 CRs, CP-090678 was
“postponed” by CT TSG 45 and later approved by the next
meeting (CT TSG 46), which took 77 days in total. All other
SR-CR revisions successfully got through the review during
the same meeting. So the expected SR-CR processing time at
TSGs is 0.4 days.

Finally, for @ , a TSG-approved SR-CR still needs to wait
for the 3GPP support team to update its content to a new
specification version. Figure 9 illustrates the distribution of
such waiting time: most such updates (91.13% = 421/462)
happen within a month, 99.57% in 2 months, and only 2 SR-
CRs wait for more than 2 months (but still within 3 months).
In our research, we found that on average, a change to the
specification is done within 21.3 days after its CR’s approval.

Altogether, we found that the procedure for CR approval
and specification amendment is complicated and time consum-
ing: on average, an SR-CR takes 58 days before it is applied to
a Release. The length of this conservative attack window (not
to mention the further delay before patching of real-world sys-
tems), coupled with 3GPP’s indiscreet publication of SR-CRs,
constitutes a serious (yet overlooked) security risk, allowing
the adversary to attack today’s telecommunication system
using the information of published SR-CRs.

Impact of related SR-CRs. Further extending the attack
window is the presence of related SR-CRs. Among the 462
SR-CRs, 53 are related to at least another SR-CR. We found
that such a relation falls into three categories. First, 22 of them
are meant to address the misalignment issue across different
specifications: when one SR-CR requests a change to one
specification, additional CRs are issued to fix related content
in other specifications. Second, we identified a group of 29
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CRs among which each is connected to at least one another
CR in the group since one or more of them are used to patch
the problem not fully addressed by the other. For example,
$3-161217 suggests using a hash value HASH)syr to protect
a message against unauthorized changes; however, no details
about how to calculate the hash is given by the CR, which is
provided by S3-171355 proposed almost one year later in May
2017. The story does not end here. The integrity protection
was later found to be described in a wrong way in TS 33.401:
the specification only requires the message carrying the hash
value to go through the integrity check, while those without
the hash completely fall through the cracks. So an additional
CR §3-173080 was proposed to fix it on 2017/11/20.

Furthermore, we found 2 SR-CRs meant to fix similar prob-
lems in different services. The Paging procedures for CS
fallback and EPS services are similar (but not identical). In
November 2013, C1-135219 was issued to fix a collision risk
in the Paging procedure for CS fallback in TS 24.301. One
year later, another CR C1-141405 was proposed to address
the same problem in the Page procedure for EPS services.

The presence of related SR-CRs extends the attack win-
dow: information exposed by the first published SR-CR can
potentially be used to exploit the targeted security weakness
and its related problems until all of them have been fixed by
follow-up CRs. So we estimate the window for such related
SR-CRs from the date the first SR-CR issued to the time the
last affected specification updated. Figure 10 shows the attack
windows for the 53 SR-CRs based upon their relations. As
we can see, 38 of them were addressed in 1 year, with most
of them (24) updated to specifications taking 3-6 months, 11
related SR-CRs were patched using 1-2 years, and 4 took
more than 2 years to fix. To our surprise, 2 related SR-CRs
on a security risk in the Service Reject message of TS 24.301,
which was first proposed in August 2009 (C1-093567), were
not fully applied to the specifications until June 2014 (CI-
141834)! So the security weakness has been exposed to the
public, without protection, for almost 5 years (1,761 days).

Real-world studies on precise attack windows. The con-
servative attack window just estimates a lower bound for the
duration in which the security weakness exposed by a CR
could be exploited. A more accurate assessment of the risk
should take into account the delay introduced by patching
implemented systems after related specifications are fixed (&)
in Figure 3), which often takes a long time. However, finding
out this delay is nontrivial, due to the lack of the information
about the versions of specifications implemented by commer-

cial cellular networks and UEs (e.g., mobile phones). In our
research, we resorted to reported vulnerabilities in telecom-
munication systems and our experimental analysis to unravel
this myth.

Among the weaknesses reported by the 443 SR-CRs (which
were all accepted by 3GPP and published after the corre-
sponding specifications were frozen, as described before),
13 have been discovered in commercial systems by prior re-
search [16,31,36,50, 58] after they were fixed in the 3GPP
specifications, with 5 of them still observed from some de-
vices in our experiments. Interestingly, there is no evidence
that the researchers ever realized that the implementation
problems they uncovered actually come from the specification
weaknesses known years before. Due to the ethical constraints
on evaluating our findings on real-world carrier networks and
the failure of current simulators to support many function-
alities (e.g., handover, emergency), most SR-CRs cannot be
verified. In the end, we were only able to validate the weak-
nesses related to the NAS/RRC protocol basic procedures,
such as Attach procedure and Paging procedure. Further we
found one additional problem in our experiments, which has
never been reported in real systems, up to our knowledge. Ta-
ble 7 presents our findings. Here we conservatively consider
that the end of the attack window should be extended to at
least the release date of a vulnerable device or the time the
problems confirmed in our experiments, or the year the related
papers were published (for the network flaws we could not
verify).

Compared with the conservative window (Figure 4), this
more precise window turns out to be much larger, 0.7 years at
least. To our surprise, the largest one even extends over 11.7
years. Specifically, in 2009, C1-094446 has been applied to
TS 24.301 to fix a security weakness that the UE could accept
a DETACH REQUEST message without integrity protection,
allowing a fake base station to disable the victim UE. How-
ever, 11.7 years later, our experiment confirmed this exact
problem in a mobile phone (Nexus 6P). Such a large win-
dow gives attackers sufficient time to exploit the published
vulnerabilities in the real world.

Our experiment analysis. We developed a testing environ-
ment to find out whether security weaknesses reported by
SR-CRs and fixed in specifications are still out there in to-
day’s systems, including both UEs and core networks on the
carrier side. Specifically, for UEs, we inspected three mobile
devices, including Samsung Galaxy S10, Google Pixel 3, and
Nexus 6P. For this purpose, we used an SDR board (LimeSDR
USB v1.4) connecting to a computer that runs a simulator
(srsRAN [11]) that acts as both the base station and the core
network to issue attack messages. Also, we connected these
phones to SCAT [10] through the USB bridge to monitor their
states, to determine whether these UEs have been attacked
successfully. Through our experiments, we found 5 security
risks reported by SR-CRs years ago, yet still unpatched on
these devices. Actually, for 3 of these risks, each is present
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the related SR-CRs. over releases.

on 2 to 3 devices we evaluated. For example, on 2009/12/17,
C1-095712 was officially applied to TS 24.301, fixing the
problem that a UE’s CSG list could be modified by an unau-
thenticated reject message. However, we confirmed that the
risk still exists in Samsung Galaxy S10, which reveals a large
attack window of at least 11 years! Note that the same prob-
lem was reported in 2019 on iPhone 6, though no evidence
here shows that the authors had known the SR-CRs and there-
fore the fundamental cause of the implementation error [58].
We have reported the risks to the manufacturers of these three
device and received confirmation from all of them. Other
findings are in Table 7.

For the carrier’s network, we could not exploit it to verify
the presence of weaknesses, due to ethical constraints. So we
used a non-intrusive approach, by inspecting the downlink
traffic from the core network to the UE using SCAT [10]. In
our research, we passively analyzed the traffic of three major
commercial carriers (anonymized to protect them) and found
that one problem reported by an SR-CR still exists in their
core networks. It is missing of HASHyyg suggested by S3-
161217, as mentioned earlier. This protection is still not there
in the core networks, since we could not find HASHy g in
the response to Attach Request, as required by TS 33.401. As
aresult, it is under the threat of MITM. We have reported our
findings to authorized parties.

4.3 Security Trends of the Ecosystem

Changes of SR-CRs over time. To understand whether the
security quality of 3GPP specifications improves over time,
and how likely disclosed CRs only involve a subset of se-
curity flaws, we analyzed the trend of SR-CRs by looking
back at the history. For this purpose, we first found out the
number of SR-CRs for each Release. As Figure 11 shows,
there is a slow upward trend for the number of SR-CRs from
Release 4 to Release 16, which indicates that new Releases
tend to have more security weaknesses. Notably, from Fig-
ure 11, it is easy to see big bumps of SR-CRs for Release 8
and Release 15, which introduce LTE and 5G respectively,
two key stages for the telecommunication evolution. As new
techniques emerge, more security risks tend to be discovered
from their specifications at the same time.

Second, one way to estimate the unknown security weak-
nesses still present in a newly published specification is to
find out the duration during which the releases continue to
receive SR-CRs. To this end, we measure the number of SR-
CRs have been reported over time for a specification after
it was frozen. From the results (shown on our website), we

CRs over releases.

pectation over releases.

found that for each Release, SR-CRs have been continuously
issued for several years. For example, Release 4 was frozen
in 2001 but has been reported for various security flaws for
12 years. From Release 4 to 11, which are no longer receiving
SR-CRs, they had been modified for 7 years on average after
their specifications were frozen. So we have reason to be-
lieve that there still are many unveiled security weaknesses in
Release 12 and after, and the effort to improve their security
quality will last for a long time.

Changes of inconsistent specifications over time. Incon-
sistent descriptions in specifications are pervasive and may
further result in serious security consequences, as analyzed
in Section 4.1, even given 3GPP’s effort to address this issue.
Figure 12 shows the number of SR-CRs reporting misaligned
specifications over different Releases and the percentage of
such SR-CRs in every Release’s total SR-CRs. From the
figure, we observe that the number of misalignment-related
SR-CRs varies over different Releases with two peaks at Re-
lease 8 and 15, but are relatively steady in terms of percentage.
Again, the bumps (two peaks) in the figure are likely due to
the sudden rise inconsistent issues that come with publications
of the complicated documents for revolutionary technologies.
Meanwhile, the steadiness of the percentage curve in general
gives no sign that the pain of security-relevant misalignment
would get better in the near future.

Changes of attack windows over time. Our research reveals
long attack windows for SR-CRs because of the CR man-
agement (Section 4.2). In Figure 13, we show the expected
lengths of such windows based on the fitting results by ap-
plying Negative Binomial Distribution [22] for each Release.
From the figure, we observe the uptrend of the window sizes
across Releases, from 43 days for Release 4 to 71 days for
Release 16. This trend not only indicates that the attack win-
dow may continue to grow for future Releases, but reveals
that the security implications of attack windows become even
more serious over time, with the published system weaknesses
exposed to the adversary for a longer time.

5 Discussion

5.1 Lessons Learnt

Lesson 1: Misalignment is an important security risk.
3GPP claims that they try to ensure the consistency of spec-
ification by their management [12], requiring the member
submitting a CR to indicate other related specification content
through a CR field (*other specs affected*). However, our
research shows that the misalignment problem is still perva-



sive in 3GPP specifications, potentially with serious security
consequences: inconsistent security-relevant descriptions in
specifications indicate the presence of erroneous content that
once followed during system implementation could introduce
security weaknesses (e.g., C1-095554); also in the case that a
vulnerability described by a published CR for a specification
still exists in a different specification, the telecommunication
system implementing the latter is posed to grave danger, with
its security weaknesses completely exposed (Section 4.1).

Fundamentally addressing this problem requires technical
support. We believe that cross-references for at least security-
related content should be in place for 3GPP specifications.
Facilitating this effort are NLP/ML techniques that assist
protocol development, in terms of technical content indexing
and misalignment discovery, which should be studied in the
future.

Lesson 2: Attack window should be controlled. From the
publicity of an SR-CR to its mend in the target specification,
the 3GPP ecosystem shows a 58-day delay on average. This
practice even violates 3GPP’s own responsible vulnerability
disclosure rule, as described in the 3GPP Coordinated Vulner-
ability Disclosure requirement (“not to share knowledge of
the vulnerability with third parties until 3GPP has resolved
it”) [4]. Hence, we suggest that 3GPP handle SR-CRs fol-
lowing the same responsible disclosure rule: publishing the
vulnerability information of SR-CRs no earlier than the se-
curity issues reported by the CRs have been updated to the
target specifications. For this purpose, SR-CRs should first be
identified so they can be handled in a more responsible way.
One possible way to do so is asking the originator to label
the security relevance of a CR. In the case that 3GPP wants
to double-check unlabeled CRs, automatic CR classifiers like
CREEK could be leveraged.

Even after the specification updates, we observe a long
delay (up to 11 years) before the real-world system is patched
if this has ever been done by vendors. So it remains a chal-
lenge to motivate vendors to follow specifications, reacting
timely to the released security mends. A possible solution
is, for 3GPP, to issue well-designed conformance test cases,
particularly for its security updates, which enforces vendors’
implementation compliant with specifications [45]. Recent
studies [35,43] show the effectiveness of the conformance
test in finding the security problems of mobile devices.

Other lessons. Our measurement study reveals the dom-
inance of DoS risks among all security consequences of
SR-CRs (60.63%), in line with the findings reported by
prior researches, which are mostly DoS related vulnerabil-
ities [16,31, 36,50, 58]. This indicates that DoS will continue
to be a major threat to carrier networks. Also discovered in
our research, there are 70.55% SR-CRs about design errors
(Section 4.1). So we believe that an important direction is to
facilitate automated construction of a protocol model from
specifications, for the purpose of formal security verification.

5.2 Limitation and Discussion

Finding the exact and also complete set of SR-CRs from 400K
CRs is extremely difficult, due to convoluted descriptions of
these CRs that are often hard to decipher even to human
experts. CREEK is the first step toward the full discovery of
these SR-CRs, but the capability of our current design and
implementation is still limited. The best we could do now
is to capture a reasonable number of SR-CRs (1,270) with
a relatively high precision (91.6%). The real set of the CRs
with security-relevant content is larger.

Among all 1,270 SR-CRs discovered in our research, 453
have not yet been accepted. In-depth analysis of the ecosystem
of these SR-CRs is an important issue that has not been cov-
ered by our study. It is known that 3GPP deliberately leaves
some security vulnerabilities (including those in SR-CRs and
the problems reported by research papers [41,57]) unfixed
in the specifications or allows protection to be optional, due
to various reasons, e.g., performance impacts or implemen-
tation complexity [19]. Future research should revisit these
problems, both to seek more effective solutions and provoke a
public discussion so the presence of these ticking bombs will
not be just swept under the rug. Furthermore, considering the
chaos that several SR-CRs fixing the same weakness may re-
ceive different decisions (accept or not) over time, more works
need to be done to understand what kind of vulnerabilities are
still unfixed in 3GPP specifications.

6 Related Work

Cellular network vulnerabilities. Previous studies have re-
vealed various security risks in cellular network systems, in-
cluding both implementation errors and design issues. For
example, previous works [18,27,35,36, 50, 58] report both
commercial mobile phone and core network implementation
vulnerabilities, containing DoS, location tracking, spoofing
attack and others. In the meantime, other works focus on
discovering security weaknesses in the system design, such
as weak cryptographic algorithms for protecting the user
plain data [47, 48] and problematic security-critical proce-
dures [31, 32, 34, 38]. Different from these studies, our re-
search aims at understanding the security risks in the 3GPP
documentation and the specification design process through
analyzing CRs and their management process.

SoK-style papers. There are some prior efforts to survey or
systemize the knowledge of key security issues in the cel-
lular network system. Bertino et al. [14] summarize emerg-
ing systematic methods for analyzing cellular network secu-
rity and discussed their limitations. Based on their discovery,
the authors further propose an initial security and privacy
roadmap for 5G [15]. Rupprecht et al. [46] systematically
categorize well-known attacks and defenses from 2G to 5G
and map the attacks to proposed defense mechanisms and
suggestions for 5G specifications, which helps identify open
research questions and challenges for the development of the
next-generation cellular network. Unlike these surveys and



SoK researches, we analyzed 3GPP CRs, the records of 3GPP
standards’ modifications, and discovered not only the weak-
nesses in the 3GPP specifications but also the risks in the
3GPP ecosystem, such as long-standing attack window.

Security analysis on standard documents. A previous
study [55] analyzes security consideration sections (SCSs)
and other security-related descriptions in RFCs. Although this
work also touches the specification ecosystem (for RFC), it
just looks for the mandatory requirement for SCSs in the RFC
guideline, and if such section is already present in an RFC,
measures the topics the section covers and other information.
By comparison, we studied security-related CRs, which are
unique for the 3GPP specification development. More impor-
tantly, we dived into security implications of these CRs and
their management procedure, which leads to the discovery
of the security risks in the 3GPP ecosystem never reported
before.

7 Conclusion

In this paper, we developed a novel CREEK to recover 1,270
high-confidence SR-CRs. Our measurements on them re-
vealed serious security consequences of specifications and
their causes, including design errors and presentation issues,
particularly the pervasiveness of misalignment in security-
relevant content. Also important is the discovery of a security
weakness inherent to the 3GPP ecosystem, which publishes
an SR-CR long before the specification has been fixed and
related systems have been patched. This opens an attack win-
dow, which can be as long as 11 years. Interestingly, we found
that some recently reported vulnerabilities are actually related
to the SR-CRs published years ago. And we identified 6 are
still there today, including 1 weaknesses existing in major
carriers. With the trend of SR-CRs not showing any sign of
abating, we propose measures to improve the security of the
3GPP ecosystem.
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APPENDIX
A Implementation Details

A.1 Fine-tuning BERT

We use 3GPP specifications for BERT fine-tuning. We trans-
formed these documents into “docx” format by LibreOf-
fice software and stored in plain text (“txt” format) through
python-docx library. Totally, we collected 1,318,364 sen-
tences in 1546 specifications exclude menus, titles and failures
during our processing.

For fine-tuning BERT on 3GPP corpus, we establish two
objectives: Masked Language Model (MLM) and Security
Specification Classification (SSC). The MLM objective is
to train our BERT to predict randomly masked words in a
sentence. According to the experience reported in [40], we
randomly select 15% words in each sentence and mask them
by replacing with a special token [MASK]. We use the cross
entropy loss for MLM objective. The SSC objective is to train
our BERT to judge whether a given text belongs to security
specifications. We use binary cross entropy function as the
loss function for SSC.
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Table 7: Summary of SR-CRs attack windows in commercial system

Notel: The more detailed vulnerability information can be found in our website. Note2: To protect the basebands and network operators, the three
works [31,36,50] keep them anonymous. Time; : specification update date for a SR-CR (yyyy/mm/dd). Time,: the release date of a vulnerable device / the time
the problems confirmed in our experiments / the year the related papers were published. Attack window: minimum estimated number of years.

id CR Timel Time2 Attack Window | System Reporter

1 C1-101068 | 2010/03/31 2019 8.7 years Two commercial carrier networks Kim et.al [36]

2 $3-091802 | 2009/12/18 2018 8.0 years Four major U.S. network operators Hussain et.al [31]

3 C1-101252 | 2010/03/31 2018 7.7 years Four major U.S. network operators Hussain et.al [31]

4 C1-135219 | 2013/12/20 2021 7.0 years China Unicom Chen et.al [16]

5 C1-141405 | 2014/06/27 2021 6.5 years China Unicom Chen et.al [16]
2015/09/29 5.7 years Google Nexus 6P Chen et.al [16]

6 C1-094446 | 2009/12/17 2021/10/01 11.7 years Google Nexus 6P Our paper
2015/09/10 5.7 years iPhone 6sp Yu et.al [58]

7 C1-095712 | 2009/12/17 2021/10/01 11.7 years Samsung Galaxy S10, Google Pixel 3, Google Nexus 6P | Our paper
2017/06/16 5.7 years Honor 9 Yu et.al [58]
2016/12/01 5.1 years MS5 Note Yu et.al [58]

8 C1-112809 | 2011/09/28 2015/09/10 3.9 years iPhone 6sp Yu et.al [58]
2021/10/01 10.0 years Google Pixel 3 Our paper

9 R2-103442 | 2010/06/18 2016 5.5 years four major basebands Shaik et.al [50]
2015/09/10 2.2 years iPhone 6sp Yu et.al [58]

10} CI-132662 | 2013/06/27 2021/10/01 8.2 years Samsung Galaxy S10, Google Pixel 3, Google Nexus 6P | Our paper

11 C1-172658 | 2017/06/16 2019 1.5 years two commercial carrier networks Kim et.al [36]
2017/06/16 1.4 years Honor 9 Yu et.al [58]

12| CI-154699 | 2015/12/18 2016/12/01 0.9 years MS5 Note Yu et.al [58]
2017/06/16 1.2 years Honor 9 Yu et.al [58]

13 | C1-161448 | 2016/03/18 | 2016/12/01 0.7 years M5 Note Yu et.al [58]
2021/10/01 5.5 years Samsung Galaxy S10, Google Pixel 3 Our paper

14 | S3-161217 | 2016/09/30 | 2021/10/01 5.0 years Three major commercial carriers Our paper

The positive training text of SSC comes from 39,608 sen-
tences in 71 specifications. Referring [24], we extend each
sentence to a predefined maximum text length (512 words) by
the following sentences. The same extension is done on the
negative text in the rest specifications. To balance the ratio
of positive and negative training text, we randomly sample
the same number of positive and negative samples in each
minibatch.

We let our BERT learn the MLLM objective prior to SSC
objective by setting the weight of MLM objective as 1 and
weight of SSC objective as 1e 3. Following [40], our BERT
is optimized with Adam optimizer [37] using the following
parameters: B1 = 0.9, B2 =0.999, eps = 1¢~® and L2 weight
decay of 0.01. The learning rate is warmed up over the first
10,000 steps to a peak value of le~#, and then linearly de-
cayed. BERT trains with a dropout of 0.1 on all layers and
attention weights, and a GELU activation function [25]. Mod-
els are pretrained for 1,000,000 iterations, with minibatch
of batch size 256 and input text with maximum length 512
words.

A.2 Self-training improvement

After training a classifier C through our PU learning al-
gorithm, we leverage self-training on unlabeled data to
strengthen the distinguishability of our classifier. Specifi-
cally, the self-training process runs in teacher-student iter-
ations (Section 2.2). We want the student model learn to pro-
duce high confident prediction on those instances that teacher
model has less doubt on. For measuring the prediction uncer-
tainty of our model, we exploited BALD with the help of the
dropout distribution of the model parameters [53].
Specifically, BALD selects the unlabeled samples x,, that

maximize information gain between the current predictions
and the posterior predictions of x, after incorporating the
labeled samples into the model:

B(Yus Wxu, D) = H[yu[Xu, D] — Ep(W\D{,)[H[yM‘XUvWH
(10)
where Hly,|xy, W] is the entropy of y, given x, under model
parameters W, and D/, is the pseudo-labeled unknown dataset.
Based on dropout distribution, an approximation of Eq. 10
can be obtained by Monte-Carlo integration [44] as:

B(yu, W [xu,D,,) (1)
= —Ze(7Zp,) 10g( 72 Pl) + 7 Er.c P log (L)
where, p'. = p(g" (xa) = ¢), W; € {W,...,Wr}. pl. is the
probability that a model g™ with dropout sampled weights
W; judges x, belongs to c¢. Using this empirical approxima-
tion of BALD, we can select those less uncertain instance
1B xu.D,) . After se-
que{xu:yu:c} 1=B(yu,W |xu,D;,)
lecting a set of uncertain instances, we also use the predictive
variance [42] Var(y) = Var[(y|W,xu)] + E[Var(y|W,x,)] to
weight those selected instances, as Eq. 11 only considers the
prediction mean (%Z, PL)). Gathering them all, we optimize
the following objective on unlabeled instances:

xy With high pe™ (xy) =

minw E, e B v o [0g p(y[g" (xu)) - Var(y)]
12)
where gV () is the teacher model (optimal model in the
last teacher-student iteration). Note that Eq. 12 equals to
weighting the BALD selected instances with log(ﬁgy)). This
weighting scheme emphasizes those instances with low vari-

ance results predicted by 7' dropout sampled models.
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