DHA-FL: ENABLING EFFICIENT AND EFFECTIVE AIOT VIA
DECENTRALIZED HIERARCHICAL ASYNCHRONOUS FEDERATED LEARNING

Houston Huff*! Pinyarash Pinyoanuntapong *! Ravikumar Balakrishnan

2 Hao Feng? Minwoo Lee

Pu Wang' Chen Chen?

ABSTRACT
The challenges of scalability, robustness, and resilience to slow devices have posed significant obstacles to the
effective and efficient implementation of Federated Learning (FL), a crucial technology for the emerging Ar-
tificial Intelligence of Things (AloT). This paper proposes a solution to these challenges with the introduction
of a Decentralized Hierarchical Asynchronous Federated Learning Scheme (DHA-FL). This scheme utilizes a
hierarchical edge computing architecture, enabling a two-stage model aggregation paradigm that significantly
enhances system scalability. To further enhance system robustness, decentralized asynchronous model aggrega-
tion is adopted among edge servers to prevent single node failures while mitigating the impact of slow devices or
stragglers. Our experiments, conducted on a live wireless multi-hop IoT testbed, demonstrate that DHA-FL can
achieve convergence in approximately half the time compared to the centralized hierarchical approach. More-
over, it enables an even more significant convergence speed-up (up to 8x) over the classic FedAvg baseline when

dealing with stragglers.

1 INTRODUCTION

In recent years, the applications of artificial intelligence
(AI) have greatly expanded. The Internet of Things (IoT)
(Atzori et al., 2010), which comprises networks of con-
nected, cooperative devices, offers a fertile ground for
leveraging Al to analyze local data and make decisions
based on independent analysis and peer communication.
This is referred to as the Artificial Intelligence of Things
(AIoT) and has a wide range of applications, such as traf-
fic control, security, healthcare, and living assistance, to
name a few (Zhang & Tao, 2020). However, these appli-
cations and others require a vast and ever-increasing vol-
ume of data and training devices for delivering accurate
machine learning based solutions. As the volume of data
increases, the strain on the network due to traditional cen-
tralized learning solutions increases tremendously, necessi-
tating new networking and learning paradigms.

Federated Learning (FL) (Konecny et al., 2016) has proven
itself to be greatly communication-efficient over central-

“Equal contribution 'College of Computing and Informatics,
University of North Carolina at Charlotte, Charlotte, North Car-
olina, United States > Intel Labs, United States 3University of
Central Florida, Orlando, Florida, United States. Correspondence
to: Houston Huff <whuffl @uncc.edu>, Pinyarash Pinyoanun-
tapong <ppinyoan@uncc.edu>.

Proceedings of the 6" MLSys Conference Workshop on
Resource-Constrained Learning in Wireless Networks, Miami,

FL, USA, 2023. Copyright 2023 by the author(s).

ized learning. Rather than extracting local data, each edge
server takes on the responsibility of training its own local
data and sharing its own machine learning model. FL fully
utilizes the computational resources of the edge servers and
improves security by avoiding direct sharing of data. FL,
typically, can take the form of either centralized federated
learning (CFL), where the IoT workers send their trained
models to the central server for aggregation to a global
model, or decentralized federated learning (DFL) (Lian
et al., 2017; Cao et al., 2021), where each IoT worker first
updates its local model and then averages its local model
only with its immediate neighbors.

Although Federated Learning (FL) has proven to be effec-
tive, it still faces a number of challenges. CFL is hindered
by robustness concerns due to a single point of failure,
which DFL alleviates. However, scalability remains a lim-
iting factor for both CFL and DFL due to the inherent com-
munication bottlenecks experienced as the number of IoT
workers increases. Specifically, CFL concentrates all its
communication traffic load around a central server, while
DFL’s two-way peer-to-peer communication among IoT
devices becomes expensive, particularly in interference-
rich wireless environments. Furthermore, both CFL and
DFL typically assume ideal hardware and network perfor-
mance, without accounting for slow workers or stragglers,
which can significantly impede model convergence speed.

In this paper, we introduce a Decentralized Hierarchical
Asynchronous Federated Learning (DHA-FL) approach,

designed to simultaneously address robustness, scalabil-
ity, and straggler challenges in the federated learning pro-
cess. By incorporating a decentralized hierarchical net-
work structure, DHA-FL employs a two-stage model ag-
gregation paradigm to enhance system scalability and ro-
bustness. First, each edge server maintains and updates
its edge model by aggregating local models from its as-
signed IoT workers using a centralized FL paradigm. Sec-
ond, the edge servers then update the shared global model
through decentralized model aggregation in which each
server averages the edge models received from neighbor-
ing edge servers. To combat the impact of stragglers, the
edge servers adopt asynchronous model averaging, allow-
ing each edge server to opportunistically aggregate cur-
rently received edge models from its neighbors without
waiting for slow edge servers affected by stragglers or dis-
ruption by neighbor failures.

Not only does DHA-FL offer a powerful solution to strag-
glers, scalability, and robustness, but also it does so with a
generic, lightweight framework that incurs minimal over-
head, making it a great tool also for development purposes.
Furthermore, we have tested this framework in a live multi-
hop IoT network, providing a more accurate representation
of real-world scenarios for FL experiments than simulated
environments. The majority of existing research conducts
FL experiments in simulation or ones evaluated assuming
one-hop communication on Wi-Fi access points or cellu-
lar base stations, which may not accurately reflect the net-
working conditions of real multi-hop IoT networks.

2 RELATED WORK

DFL paradigms, known for their resilience to single-node
failures, predominantly utilize synchronous optimization
strategies (Lian et al., 2017; Cao et al., 2021) (Sync-DFL).
The Collaborative FL algorithm (Chen et al., 2020) em-
ploys a hybrid technique that combines CFL and Sync-
DFL. In this method, workers initially engage in learning
through a central server, but if the server becomes inac-
cessible, they transition to a one-hop neighbor Sync-DFL.
Although Sync-DFL offers improved robustness, it is vul-
nerable to stragglers (i.e., slow workers), leading to a con-
siderable reduction in overall model convergence speed.
To address this issue, Async-DFL has been proposed in
(Pinyoanuntapong et al., 2022; Lian et al., 2018). However,
this method assumes a flat network topology, preventing it
from utilizing edge computing nodes (e.g., Wi-Fi routers
and cellular base stations) for scalable FL. Hierarchical FLL
(HFL) (Abad et al., 2020) adopts a centralized hierarchi-
cal FL paradigm, exhibiting improved communication effi-
ciency and system scalability compared to traditional CFL
solutions. Nevertheless, HFL still relies on a central server
to conduct global model updates and operates in a synchro-

nized model aggregation mode and consequently suffers all
of CFL’s core shortcomings. Most importantly, none of
the aforementioned solutions have been implemented and
tested on real-life wireless systems.

3 DHA-FL

The DHA-FL solution summarized in Algorithm 1 and 2 is
illustrated in Fig. 1. The learning network is composed of a
number of edge servers, each of which serves multiple [oT
workers. The edge servers are interconnected to each other
via a wireless mesh network.

Each edge server begins its training task with identical un-
trained models.The edge servers first propagate their mod-
els to their respective K worker nodes (Step 1 of Fig. 1
), which then perform multiple local rounds of batched
SGD training (Step 2 of Fig. 1), defined as w, = w; —
77% > eex, Af(wy;y), where X, is a mini-batch of the
training samples of worker k, and f3 is the batch size. Once
training is complete, the workers send their trained mod-
els back to their corresponding edge server. Once all the
worker models are received, the edge server performs the
weighted average on the received models to yield the up-
dated edge model (Step 3 of Fig. 1), expressed as:

K
w® = Zkak (1)
k=1

where w(”) is the updated edge server model, K is the
number of workers covered by the edge server, wy, is the
model weights of worker &, and ;e A, = 1.

Once an edge server completes the aforementioned local
model aggregation process, it broadcasts its edge model
w(P) to its neighboring edge servers (Step 4 of Fig. 1).
Then, it performs edge model aggregation by averaging the
models in its model queue, i.e.,

(B) "
SO] *

and then the aggregated edge model is sent back to its
served IoT workers (Step 5 of Fig. 1).

Each edge server maintains its own model queue, denoted
as W) which includes its own edge model and those it
receives opportunistically from neighboring servers. The
edge model aggregation process operates asynchronously,
meaning the server doesn’t have to wait for all neighbor-
ing servers to send their models. As a result, faster servers
can continue without waiting for slower ones. Since this
process is asynchronous, each server tracks its own train-
ing epoch count up to a predetermined number. The five

WOrker Worker

6 Local Model Update:
e Edge Model Aggregatlon Edge Server Perform Multiple Rounds of Batched SGD
(<) e Local Model Aggregation:)

W)

w®
w® = Z |W<F>[w® = Z i Z/lk 1

W, «— W, —NF X cx, Af(wy;z,)

n=1 s W(E)
/ Distribute Upda:ed\‘

o Edge Model to

1-Hop Neighbors
/ Edge Server*
l\

%Edge sEm\

Worker

Wt)rker

(()) H] ==
EdgeServer
o Distribute Edge

Model to Local
Workers

Local Dataset

p——
Worker

nA
R

Worker

Local Model

Wy

Local Dataset

Local Model

Figure 1. DHA-FL utilizes the edge servers as intermediate aggregators for the worker devices. The edge servers distribute their models
to their workers, then after the workers finish training, each edge server collects and averages the worker models into the updated edge
model. The edge servers then broadcast their respective updated models to their 1-hop neighbors and the ones they receive are aggregated

again with their own updated model locally.

steps outlined in the previous section constitute one train-
ing epoch for each edge server.

For final consensus in network models, a final-round global
model aggregation is performed. This process involves
each edge server sending its edge model to the global ag-
gregation server, which performs model averaging to pro-
duce the final inference model used by IoT devices.

Algorithm 1 DHA-FL Edge Server

1: function LocalModelAggregation
2: for each worker k in K do

3: Distribute wy, to k

4: UpdateWorkerModel (k)

5: end for

6: wB) Zszl AW, Zk<K A =1
7: end function B

8: function EdgeModelAggregation

9: W) «— append w(?)

10: broadcast model w®) to neigbor edge servers
11: if model w() arrives then

12: W) «— append w!

13: endif) -

14: wB) — Z‘W | ‘&;(E)‘

15 WE «— ¢
16: end function

/I Empty Buffer

4 EXPERIMENT SETUP

In this section, we present the real-world IoT network
testbed in details. Then, we describe the models, datasets,
and baselines used in the experiments.

Physical Testbed Setup

Algorithm 2 DHA-FL Worker
1: function UpdateWorkerModel(k)

2: for local training epoch h =1, 2, ..., H do

3 for each local batch b € 3 do

4: Wy —— Wy, 777% ZwkeXk Af(wy; xk)
5: end for

6 end for

7 Send wy, to edge server

8: end function

For our experiments, we have opted to employ an edge
computing network system, consisting of 27 virtual work-
ers for local training, 10 edge servers for local aggrega-
tion, and 10 wireless-mesh routers for backbone commu-
nication. We have leveraged an edge computing network
to model an IoT network, as illustrated in Figure 2. Our
testbed includes 10 wireless edge servers, each with a wire-
less embedded router for communication and an Nvidia
Xavier node for computation. The Nvidia Xavier node is
equipped with Ubuntu 20.04 operating system and 16GB
combined RAM for GPU and CPU. To enable each Jet-
son edge server to support a different number of virtual
FL workers (in our case, 3), we have utilized network
namespace to isolate TCP/IP layer within each edge server.
To facilitate multi-radio wireless communication, we have
equipped each wireless router with three wireless interface
cards, which operate in MeshPoint (MP) mode with a fixed
2.4 GHz and 5 GHz channel and 20 MHz channel width
in 802.11ac operating mode, with a transmit power of 15
dBm. We utilized the state-of-the-art Batman-adv protocol
(Marek Lindner, 2011) for multi-hop routing. This estab-
lishes the server-to-worker connection in the FL setting.

Heterogeneous Data Settings and Models

Server 3

Edge
Server 5

A5

\
)
v
\
R7

N % | Edge . | . | Edge é
¢l R0 [sctee | o |5 sone,

R2
Virtual Worker
1

) Edge %
Server 7

Root Network
Namespace

Virtual Worker
3

Figure 2. 10T Multi-hop Network topology.

Our experiments were conducted with the datasets FEM-
NIST with 62 classes from LEAF (Caldas et al., 2018;
lea, 2019) and CIFAR-10 (Krizhevsky, 2009; cif) with 10
classes. We followed the non-IID data settings with realis-
tic partition method from LEAF. For CIFAR-10, we use
the Dirichlet distribution Dir(3) to create heterogeneous
data partitions for all the workers in unbalanced settings.
The degree of heterogeneity was chosen to be the value (3
= 0.5). Our convolutional neural network (CNN) is com-
posed of two convolutional layers followed by a fully con-
nected layer that utilize local SGD. The convolutional lay-
ers contain 32 and 64 layers respectively and are attached
via a 2x2 max pooling layer. The fully connected layer con-
tains 128 units with ReLLU activation and outputs into the fi-
nal layer as fully connected with softmax activation, whose
file size is around 10 MBytes, represents a high communi-
cation volume. We also evaluated the CIFAR-10 dataset us-
ing a lightweight version of the deep neural network model,
MobileNet (Howard et al., 2017), with a width multiplier
of (o = 0.25). This reduction in the size of the network
models was necessary to support multiple virtual workers
deployment on a single Jetson device, which has limited
GPU resources. The size of the resulting model is about 2
MBytes, which represents a lower communication volume.

FL Implementations

In order to conduct our experiments, we utilized the
DHA-FL experiential framework to implement the clas-
sic flat centralized FL (CFL), hierarchical centralized
FL (HCFL), hierarchical synchronous decentralized FL
(DHS-FL), and hierarchical asynchronous decentralized
FL (DHA-FL). The experiments involving CFL utilized the
widely-adopted FedAvg (He et al., 2020) algorithm. Each
experimental run involved training with 5 local rounds, at
least 20 global rounds, a batch size of 10, and a learning

rate of 0.001 for CIFAR-10 and 0.02 for FEMNIST. To sim-
ulate computational and communication heterogeneity, we
introduced straggler workers by adding a delay of 40 sec-
onds per local epoch to the first worker of specified edge
servers, enabling us to study the impact of straggler work-
ers on the performance and scalability of the different hier-
archical solutions and providing valuable insights into the
behavior of these systems in real-world scenarios.

Performance Comparisons

We evaluate the model convergence by observing the learn-
ing curves and the wall-clock time when the testing accu-
racy achieves certain thresholds (0.4, 0.5, and 0.6) where
all methods can achieve the same maximum accuracy of
roughly 0.65 as shown in Figure 3.

In the absence of stragglers in Figure 3(a), all of the FL-
based hierarchical solutions were found to be particularly
effective, with both HCFL, DHS-FL, and DHA-FL outper-
forming the flat CFL baseline by approximately 1.5x and
2.4x, respectively faster in term of training time as shown
in Figure 3(d). This is because hierarchical FL-based solu-
tions are able to reduce the amount of costly FL. communi-
cation traffic by aggregating local models at the edge server
before sending them to the neighbors or the central server.
When a single straggler is introduced as shown in Figure
3(b), all modes directly experience increased training time;
CFL, HCFL, and DHS-FL all suffer most as one slow edge
server keeps the remaining edge servers waiting and reach
the same accuracy of 0.6 by about 100, 70, and 59 minutes,
respectively, whereas DHA-FL is significantly less affected
as the remaining edge servers continue their own training
opportunistically and converge to the same point of accu-
racy of 0.60 in 22 minutes, 4x faster than the CFL baseline.

Convergence Time over various numbers of stragglers
and locations

We conducted a study on the impact of the number and
location of stragglers as shown in Table 1, summariz-
ing the convergence time for all methods to achieve the
maximum testing accuracy. The percentage of stragglers
is a rounded percentage of the edge servers that are af-
fected by slow workers (stragglers). The runtime difference
between CIFAR-10’s MobileNet model and FEMNIST’s
CNN model is attributed to the differences in their com-
putational training costs and communication cost, e.g., the
model file size is about 2MB for MobileNet and about
10MB for CNN. The overall trends seen across our FL
methods remain consistent across both cases. With increas-
ing straggler density, CFL, HCFL, and DHS-FL rapidly ap-
proach a bound of performance loss for the given straggler
time delay, as shown in Table 1. In contrast, for DHA-FL
the convergence speed worsens at a reduced, more propor-
tional rate to the straggler density. The most egregious dis-

(] (]
.E 200 E 200
(] (V]
2100 2100
o o
> >
< o0 < 0

7 4 3 5 6 8 9 7 4

Location of Edge Server

2 1

3

Location of Edge Server

Average Time
o
o

o

7 4 3 5 6 8 9
Location of Edge Server

5 6 8 9 1 1

(a) Avg Local Training Time (seconds) with (b) Avg Local Training Time (seconds) with (c) Avg Local Training Time (seconds) with

straggler at Edge-server 9

No Straggler straggler at Edge-server 2
0.6 0.6
05 05

> >
o o
Coa4 ©0.4
= =
S g S
<03 E <03
— s —
o 2 o
o2 E o2
L
0.1 g 0.1
=
0.0 Test Accuracy 0.0

§
5
£
Z
v
£
£
x
]
s
[s]
]
=

&

=)

Test Accuracy
w

Wall Clock Time (Minutes)

N
o B

0% 60%

50%
Test Accuracy Test Accuracy

30 40 60 70 0 20 40

Minutes

0 10 20 50

60
Minutes

60 80
Minutes

80 100 120 0 20 40 100 120 140

(d) FEMNIST Wall Time Convergence Ac- (¢) FEMNIST Wall Time Convergence Ac- (f) FEMNIST Wall Time Convergence Ac-

curacy with No Straggler

curacy with straggler at Edge-server 2

curacy with with straggler at Edge-server 9

Figure 3. Comparison of CFL, HCFL, DHS-FL, and DHA-FL learning performance and average training time in testbed environment
(CIFAR-10 and FEMNIST). The comparisons show cases for no straggler, a straggler on the R3 device, and straggler on the R9 device.
All stragglers introduce a 40s training delay per local training round (200s per global round).

10% Stragglers 20% Stragglers 40% Stragglers
Methods | CIFAR-10 | FEMNIST | CIFAR-10 | FEMNIST | CIFAR-10 | FEMNIST
MobileNet | LEAF MobileNet | LEAF MobileNet | LEAF
CFL 42 90 39 127 39 135
HCFL 33 64 32 75 34 87
DHS-FL 33 49 32 65 34 67
DHA-FL 5 22 8 30 18 50

Table 1. The total convergence time to achieve 60% test accuracy (in minutes) for straggler densities of 10%, 20%, and 40%. In each
case DHA-FL handles the stragglers significantly better than the other paradigms, with its strongest comparison at 10% where only a
single slow device minimally affects it while the other paradigms already approach worst-case convergence performance .

parity was found between CFL and DHA-FL at 10% strag-
glers in CIFAR-10 where DHA-FL performed roughly 8x
faster. The location of the stragglers within the network had
minimal impact on performance across random, even, and
concentrated distributions, rather the affected edge server
number was found to be the most significant factor.

5 CONCLUSION

This paper proposes and demonstrates DHA-FL, a new FL.
paradigm that can effectively improve the scalability, ro-
bustness, and straggler tolerance of the emerging AloT
systems. It achieves this by leveraging the hierarchical
networking and computing infrastructure, allowing it to
greatly reduce its communication overhead for the same

number of working devices. Such a feature is combined
with a decentralized asynchronous edge model to improve
its resilience to stragglers. Our experiments in the real-life
wireless IoT network demonstrate a significant gain in the
convergence performance of the proposed solution.

In our future work, we will continue to build upon DHA-FL
by incorporating reinforcement learning to enhance adapt-
ability of FL and further explore the operational options of
DHA-FL and demonstrate its advantages over commonly-
practiced other machine learning optimizations.

ACKNOWLEDGEMENTS

This work is funded by Intel/NSF joint grant 2003198 and
NSF 2008447.

REFERENCES

Cifar-10 dataset. URL https://www.cs.toronto.
edu/~kriz/cifar.html.

Leaf datasets, 2019. URL https://leaf.cmu.edu.

Abad, M. S. H., Ozfatura, E., GUndUz, D., and Ercetin,
O. Hierarchical federated learning across heterogeneous
cellular networks. In ICASSP 2020 - 2020 IEEE In-
ternational Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP), pp. 8866-8870, 2020. doi:
10.1109/ICASSP40776.2020.9054634.

Atzori, L., lera, A., and Morabito, G. The inter-
net of things: A survey. Computer Networks, 54
(15):2787-2805, 2010. ISSN 1389-1286. doi:
https : //doi.org/10.1016/j.comnet.2010.05.010.
URL https://www. sciencedirect . com/
science/article/pii/S1389128610001568.

Caldas, S., Meher Karthik Duddu, S., Wu, P, Li, T,
Kone¢ny, J., McMahan, H. B., Smith, V., and Tal-
walkar, A. LEAF: A Benchmark for Federated Set-
tings. CoRR, art. arXiv:1812.01097, dec 2018. URL
http://arxiv.org/abs/1812.01097.

Cao, J.,, Lian, Z., Liu, W., Zhu, Z., and Ji, C. Hadfl:
Heterogeneity-aware decentralized federated learning
framework. In 2021 58th ACM/IEEE Design Automa-
tion Conference (DAC), pp. 1-6. IEEE, 2021.

Chen, M., Poor, H. V., Saad, W., and Cui, S. Wireless com-
munications for collaborative federated learning in the
internet of things. CoRR, abs/2006.02499, 2020. URL
https://arxiv.org/abs/2006.02499.

He, C., Li, S, So, J., Zeng, X., Zhang, M., Wang, H.,
Wang, X., Vepakomma, P., Singh, A., Qiu, H., Zhu,
X., Wang, J., Shen, L., Zhao, P., Kang, Y., Liu, Y.,
Raskar, R., Yang, Q., Annavaram, M., and Avestimehr,
S. Fedml: A research library and benchmark for fed-
erated machine learning. CoRR, abs/2007.13518, 2020.
URL http://arxiv.org/abs/2007.13518.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D.,
Wang, W., Weyand, T., Andreetto, M., and Adam,
H. Mobilenets: Efficient convolutional neural net-
works for mobile vision applications. arXiv preprint
arXiv:1704.04861, 2017. URL http://arxiv.
org/abs/1704.04861. cite arxiv:1704.04861.

Konec¢ny, J., McMahan, H. B., Yu, F. X., Richtérik, P,
Suresh, A. T., and Bacon, D. Federated learning: Strate-
gies for improving communication efficiency. CoRR,
abs/1610.05492, 2016. URL http://arxiv.org/
abs/1610.05492.

Krizhevsky, A. Learning multiple layers of features from
tiny images. Technical report, Universityt, 2009.

Lian, X., Zhang, C., Zhang, H., Hsieh, C.-J., Zhang, W.,
and Liu, J. Can decentralized algorithms outperform
centralized algorithms? a case study for decentralized
parallel stochastic gradient descent. In Proceedings of
the 31st International Conference on Neural Informa-
tion Processing Systems, NIPS’17, pp. 5336-5346, Red
Hook, NY, USA, 2017. Curran Associates Inc. ISBN
9781510860964.

Lian, X., Zhang, W., Zhang, C., and Liu, J. Asynchronous
decentralized parallel stochastic gradient descent. In In-
ternational Conference on Machine Learning, pp. 3043—
3052. PMLR, 2018.

Marek Lindner, S. W. batman_adv, 2011. URL
https://www.open-mesh.org/projects/
batman—-adv/wiki.

Pinyoanuntapong, P., Huff, W., Lee, M., Chen, C., and
Wang, P. Toward scalable and robust aiot via decentral-
ized federated learning. IEEE Internet of Things Mag-
azine, 5:30-35, 03 2022. doi: 10.1109/I0TM.006.
2100216.

Zhang, J. and Tao, D. Empowering things with intelli-
gence: A survey of the progress, challenges, and op-
portunities in artificial intelligence of things. CoRR,
abs/2011.08612, 2020. URL https://arxiv.org/
abs/2011.08612.

