TVA: A multi-party computation system for secure and expressive
time series analytics

Muhammad Faisal
Boston University

Vasiliki Kalavri
Boston University

Abstract

We present TVA, a multi-party computation (MPC) system
for secure analytics on secret-shared time series data. TVA
achieves strong security guarantees in the semi-honest and
malicious settings, and high expressivity by enabling complex
analytics on inputs with unordered and irregular timestamps.
TVA is the first system to support arbitrary composition of
oblivious window operators, keyed aggregations, and multi-
ple filter predicates, while keeping all data attributes private,
including record timestamps and user-defined values in query
predicates. At the core of the TVA system lie novel proto-
cols for secure window assignment: (i) a tumbling window
protocol that groups records into fixed-length time buckets
and (ii) two session window protocols that identify periods of
activity followed by periods of inactivity. We also contribute a
new protocol for secure division with a public divisor, which
may be of independent interest. We evaluate TVA on real
LAN and WAN environments and show that it can efficiently
compute complex window-based analytics on inputs of 2%
records with modest use of resources. When compared to
the state-of-the-art, TVA achieves up to 5.8x lower latency
in queries with multiple filters and two orders of magnitude
better performance in window aggregation.

1 Introduction

Time series analysis is used by organizations to understand
the behavior of non-stationary data, monitor the evolution
of metrics over time, identify trends, and predict future out-
comes [11,52,67]. Time series data are ubiquitous in to-
day’s connected world and crucial for applications in IoT,
smart cities, mobile health, traffic monitoring, and stock trad-
ing [62, 64, 82]. Applications leveraging multi-origin time
series data are highly valuable to communities and businesses
alike. For example, a smart grid company can monitor energy
consumption across clients to improve conservation and re-
duce peak demand. Medical investigators can assess a drug’s

*Work completed at Boston University.

Jerry Zhang”
University of California San Diego

John Liagouris
Boston University

Mayank Varia
Boston University

efficacy on patient cohorts by analyzing physiological signals
of many individuals over time. Similarly, a smart city infras-
tructure can leverage location time series to optimize public
transport scheduling. While highly valuable, such analyses
raise privacy concerns for data holders, who wish to protect
their sensitive or proprietary information.

Cryptographically secure collaborative analytics have re-
cently become more accessible and practical thanks to ad-
vances in secure multi-party computation (MPC) [61], fully
homomorphic encryption [41], and Oblivious RAM [42,43].
In this work, we focus on the decentralized trust setting
where MPC has been successfully used for machine learn-
ing [58,63,79, 80], relational queries [60,65,75], graph anal-
ysis [6], aggregate statistics [3, 14, 50], and other operations
such as sorting and PSI [8, 59]. Even though existing MPC-
based solutions cover a wide range of collaborative use cases,
they are not suitable for analytics on time series data.

Time series computations are commonly expressed with
advanced time-oriented operators, called windows [4,52,71].
Window operators group events into meaningful intervals
of time and allow computing aggregation functions on the
contents of each group. For example, a tumbling window op-
erator divides a time series into fixed-sized time intervals
and can be used to compute analytics such as the per-hour
energy consumption of a smart grid. Window intervals can
also be defined by custom metrics and data-dependent values.
A session window, for instance, identifies periods of “activity”
followed by periods of “inactivity” and can be used to com-
pute analytics such as the average glucose level in a patient
cohort during their sleep or their exercise.

The challenge of providing efficient and expressive secure
collaborative analytics on time series data has not been suc-
cessfully addressed yet. Existing approaches either sacrifice
expressivity to achieve good performance with strong secu-
rity guarantees [28] or allow information leakage in return
for additional functionality [16, 17]. More importantly, prior
works do not support secure windowing and assume regular,
ordered, and public timestamps [16,17,21,28,51,70]. This as-
sumption is problematic for two reasons. First, missing values

and out-of-order records are common in practice, as time se-
ries data are typically produced by distributed and unreliable
sources (e.g., sensors). Second, time series analytics are often
performed offline for forecasting and pattern mining [67]. In
such cases, timestamps must be protected to prevent untrusted
parties from inferring the event distribution and learn sensitive
information, such as rare incidents or activities of individuals.

In this paper we present TVA (Time-Varying Analytics), a
secure and expressive time series analysis system that lever-
ages outsourced MPC. TVA protects data by distributing trust
and generalizes the functionality of prior works without com-
promising security or performance. To mitigate the tension
between these two, TVA employs new protocols, cross-layer
optimizations, and vectorized primitives that enable it to scale
to large datasets with modest use of resources.

1.1 Limitations of existing systems

TVA addresses the following limitations of prior work:

Lack of advanced window functionality. To extract value
from time series data, analysts must be able to query the evolu-
tion of metrics over time. Such temporal analysis is typically
performed with window operators that group events into con-
secutive time intervals of fixed (tumbling) or custom (session)
length. Waldo [28] is optimized for snapshot queries that oper-
ate on a single time interval and, as we show in §6.1, it cannot
efficiently perform recurring computations. TimeCrypt [16]
and Zeph [17] provide limited support for tumbling windows
but also leak information to untrusted parties.

By contrast, TVA is the first system to efficiently support
both snapshot and arbitrary recurring queries. It offers generic
window operators that can efficiently compute aggregates
over fixed and custom time intervals, with strong security
guarantees through its black-box use of MPC primitives.

No support for complex filters with keyed aggregations.
Besides temporal operators, time series analysis typically
requires relational transformations, such as filters, sorting,
grouping, and aggregations (keyed and global). These opera-
tors must be customizable (to support arbitrary predicates) and
composable (to express arbitrary analysis tasks). For example,
users should be able to define multiple filter conditions along
with complex aggregations on time and any other base or
derived attributes. Keyed aggregations allow computing func-
tions on logical partitions of the data, e.g., the hourly energy
consumption per postcode. Prior work either supports global
aggregation only [28] (total consumption for all postcodes)
or allows limited additive keyed aggregation by requiring
data holders to pre-encode the attribute domain (all possible
postcodes) and to periodically transmit values [17,51].

In contrast, TVA’s aggregation operators can be composed
with any operator and can be also chained. For instance, TVA
can compute the average energy consumption per postcode
over 1-hour windows, which can then be used to compute the

maximum average consumption across all windows.

No support for unordered and irregular timestamps. Time
series data are commonly produced by distributed sources,
such as sensors or wearable devices. As a result, events may
be ingested out of order due to network delays and clock skew.
Furthermore, sources may transmit data at a fixed frequency
(e.g., heart rate every minute) or only when an event occurs
(e.g., smoke is detected). State-of-the-art approaches assume
in-order and regular timestamps [16,17,21,28,51,70], that is,
they expect data owners to provide data at fixed time intervals.
As aresult, data sources must pad the time series with dummy
records when events are missing and pre-aggregate events
locally when the event generation frequency is higher than
the transmission rate. This approach simplifies the problem
of providing privacy-preserving time series analytics, since
regular and ordered timestamps do not reveal any information
(other than the time domain) and can thus be kept public. How-
ever, it has two considerable drawbacks. First, when the time
series events are irregular, padding can lead to significant com-
munication and computation costs. Second, pre-aggregation
comes at loss of data granularity and accuracy. Subsequent
queries can only return exact results on time intervals that are
multiples of the pre-aggregation bucket size.

On the contrary, TVA does not require the input time series
to be regular and ordered by time. Both window and snapshot
operators can correctly and efficiently operate on unordered
and irregular timestamps, which are protected like all other
data attributes. Due to its ability to operate on private times-
tamps, TVA can serve queries on both recent and historical
data collected independently by different entities, without
revealing the event distribution to computing parties.

1.2 Summary of contributions

Protocols for secure window assignment (§4.1-§4.4). We
present the first oblivious algorithms for (global and keyed)
tumbling and session window assignment on private time
series data. We analyze the complexity of our protocols and
prove their correctness and security guarantees.

Our tumbling window protocol relies on a new MPC prim-
itive for secure division with public constants. The state-of-
the-art protocols for fast division produce small errors that
are acceptable in other use cases (e.g., machine learning ap-
plications [63]) but cause incorrect aggregation results in our
setting, as records end up in wrong windows with high proba-
bility. To address this challenge, we propose error correction
protocols for semi-honest and malicious-secure division that
can be used to compute tumbling windows with a number of
communication rounds independent of the time series size.

For session windows, the plaintext algorithms [4,71] tra-
verse the time series and update session boundaries while
keeping track of the last open session. Although simple, an
oblivious implementation of this technique would incur a pro-

73

\ _____
$ o 8 2

computing party |

Data analysts

— =— => data shares

Data owners
<<<<<<<< » result shares

Figure 1: TVA system overview for secure time series analytics

hibitive number of rounds that is linear to the dataset size.
To address this challenge, we introduce a novel two-phase
sessionization protocol that enables us to identify variable-
length session windows with a logarithmic number of rounds.
The first phase of the protocol marks the beginning of each
session according to a windowing strategy and the second
phase leverages these markers to complete the sessionization
by performing an oblivious grouping.

The core idea of the second phase is to formulate session-
ization as an odd-even merge circuit [9]. This task is not
straightforward, as directly applying the standard oblivious
grouping algorithm [54] in our setting turns out to be both
incorrect and inefficient. To tackle this problem, our protocol
reverses access patterns to ensure correctness and uses an
iterative control flow with a butterfly-like structure [10,44] to
facilitate fast vectorized execution and message batching. Our
protocol is agnostic to the windowing strategy and can accom-
modate both timeout-based and threshold-based windows. At
the same time, it is amenable to efficient composition with
window aggregation, as we describe next.

Efficient operator composition for complex time series
analytics (§4.5, §4.6). We develop a library of composable
operators that can be combined with window operators to con-
struct arbitrarily complex analytics by leveraging mixed-mode
secret sharing and conversion protocols. Secure operator com-
position requires additional interaction among computing
parties and straight-forward approaches lead to substantial
overheads. To achieve optimal performance, we design effi-
cient protocols that “fuse” expensive operators into a single
oblivious control flow to avoid redundant computation and
communication. One representative example is the fusion of
sessionization with oblivious aggregation that reduces the
overall computation and communication by 2x.

Semi-honest and malicious security (§3). TVA provides the
security guarantees of MPC and can be configured to offer
semi-honest [5] or malicious security [26]. To achieve this,
we design oblivious operators that rely solely on the function-
alities provided by the protocols (+, *,®, A) and immediately
inherit their security guarantees. This design choice provides
a strong foundation to support more MPC protocols in the fu-
ture by simply replacing the underlying functionalities. TVA

keeps all data attributes private, including record timestamps,
and can also protect user-defined values in the query itself
(e.g., constants and queried time intervals) using secret shar-
ing. This way, TVA protects both the time domain of the
queried dataset and the actual filtering conditions, which is
sensitive information in many use cases.

System design and implementation (§5, §6). We provide
efficient implementations of oblivious operators and vector-
ized MPC primitives that amortize the communication costs
of MPC. We also develop a declarative and protocol-agnostic
query API that hides the complexity of composition from end
users. All experiments we present in this paper use real LAN
and WAN deployments. We have implemented the T VA soft-
ware stack entirely from scratch, and the software is available
as open source [34].

2 TVA in a nutshell

Figure | provides an overview of TVA. Data owners are
individuals or entities who have agreed to contribute their
private data towards a joint analysis (e.g., a medical study, a
smart grid monitoring task, etc.), provided that the data remain
hidden from untrusted parties. Data analysts are individuals
who perform the analysis using TVA. To do so, they access
a public catalog of time series metadata (cf. §3) and submit
queries to the system. A computing party is a logical entity
that may consist of multiple compute nodes (T VA servers).
Computing parties are deployed in different trust domains
(e.g., competing cloud providers) and can be configured to
execute queries either with malicious (default) or semi-honest
security, depending on the use case.

TVA operates in the outsourced setting [23], that is, it
does not require data owners or analysts to participate in the
computation (both can be offline during the analysis). Each
data owner interacts with the computing parties independently
from others, and only to distribute secret shares of their data.

We emphasize that the security of TVA stems from its data-
oblivious execution (so the parties learn nothing beyond the
result of the query) and access control (so even the result is
only revealed to designated data analysts). In particular, TVA
does not protect against inference attacks on the input based
on the query results. Combining TVA with differentially pri-
vate algorithms for time series data (e.g., [37, 38, 55, 77])
remains an exciting possibility for future work.

2.1 Supported workloads

TVA offers a rich set of temporal and time-agnostic operators
that can be composed arbitrarily to define complex time series
analysis tasks.

Temporal operators. TVA’s temporal operators can be used
to express (i) snapshot queries that compute an aggregate
over a specific time interval, and (ii) window queries that

window length ————— Tumbling Window
wi wa s wa ws e

Heart rate

gap ——— Gap Session Window

81 s2 S5

|| ||| - | - | ul“

T i T T T T T TTTTTT
e

Movement

Threshold Session Window

threshold

Glucose

T T T T T T T T T T T T T T T T T
Time

Figure 2: A visual representation of TVA’s window operations on
health time series data. The tumbling window splits the heart rate
measurements into six fixed-length windows. The gap session win-
dow generates three activity sessions by grouping together movement
signals that occur within a specified interval. The threshold window
identifies three eating sessions by detecting intervals where glucose
values continuously stay above a threshold.

compute an aggregate over multiple time intervals defined by
a windowing strategy. Consider a time series dataset collected
from a heart rate tracker, a movement sensor, and a glucose
monitor. Figure 2 illustrates TVA’s windowing strategies
using a digital health use case as an example.

A tumbling window operator (top) divides the time domain
into non-overlapping intervals of equal length A so that each
input record belongs to exactly one window. For example,
the tumbling window can be used to compute “the maximum
heart rate per minute across individuals in a cohort”.

A session window operator groups records into periods
of activity (sessions) followed by periods of inactivity [4].
Session windows have variable and data-dependent length in
time units. The gap window (middle) uses a timeout gap T
as the session delimiter. All records whose time difference
is within an interval up to the timeout T are grouped together
into the same session. The end of a session is detected when
the time difference between two consecutive records is greater
than T. A gap-based window could be used to compute an
aggregate over “time periods when an individual is moving”.

The threshold window operator (bottom) interprets sessions
using a threshold 0 € R and a function ¢ : S — R, where S
is collection of data records. All consecutive records whose
value g(r),r €S, is at least equal to the threshold 0 are grouped
into the same session. The current session ends when a record
with value below 0 is detected. For example, a threshold
window can identify “eating periods when the glucose level
exceeds a threshold”. As shown in Figure 2, although every
input record belongs to exactly one gap window, some records
may not belong to any threshold window.

Time-agnostic operators. TVA provides a set of time-
agnostic operators that can be combined with temporal op-
erators. These include filtering, sorting, grouping, distinct

(for duplicate elimination), and all common aggregations, i.e.,
COUNT, SUM, MIN, MAX, TOP-K, AVG, STDEV, and PERCENTILE.
Additionally, TVA supports arbitrary User-defined Functions
(UDFs) constructed with its secure primitives. Those in-
clude logical and arithmetic operations provided by the proto-
cols (A,V,®,+,—, *), boolean addition, comparison operators
(<,>,=,#), and division with public constant.

2.2 Putting it all together: the TVA API

TVA exposes a high-level declarative API that lets users com-
bine temporal operators with arbitrary filters, aggregations,
and other time-agnostic operators. The API specification is
given in the full version of this work [33]. Listing | shows
an example query that computes a keyed tumbling window
on the dataset of Figure 2. To maximize readability, TVA’s
API lets users refer to data attributes by name, as shown in
the example code snippet. Once the data schema is defined,
attribute names can be used as operator arguments. The query
first selects records corresponding to patients weighting be-
tween 190 and 250 pounds and applies the keyBy operator
to partition these records by age group. It then computes the
maximum heart rates over 1-hour tumbling windows for each
age group. The result is a new time series hr that can be given
as input to another query.

// Define the time series data schema
TS ts = get_shares({"TIMESTAMP", "WEIGHT", "AGE_GROUP",
"HEART_RATE", "MOVEMENT", "GLUCOSE", "MAX_RATE"});

// Compute the max hourly heart rate per age group over
// all participants whose weight is within a given range
TS hr = ts.filter ("WEIGHT"” > 190 AND "WEIGHT" < 250)
.keyBy ("AGE_GROUP")
.tumbling_window (" TIMESTAMP", 3600)
.aggregate ("HEART_RATE", "MAX_RATE", Agg::MAX);

Listing 1: An example tumbling window query using the TVA API

Analysts submit queries like the one above to TVA parties
for execution and TVA compiles them into a secure MPC
program. The query structure is public but the filter predicates
and the queried time intervals are secret-shared by the TVA
client application (run by the analysts).

3 Threat model and security guarantees

TVA protects all data, including timestamps, throughout the
entire lifecycle of computations. Overall, TVA protects data
privacy using non-colluding computing parties, authenticated
network links, and end-to-end oblivious computation. TVA
does not reveal any private inputs or intermediate data during
the computation and only opens the final query result to the
designated analysts. Some metadata about the time series is
purposely made public and accessible to the data analysts
so they can create their queries; the public metadata include
the data schema, the type and number of columns, and the
number of input records, as in prior works [16, 17,28].

Setting. TVA assumes that data owners and analysts have pre-
viously agreed on a query to compute. The query structure is
known to the computing parties, but predicates are protected
with secret sharing. In particular, parties know the type of
operators they compute (e.g., the window type or aggregation
function) but TVA protects the actual filter values and the ses-
sion window predicates (gap and threshold). Protecting these
parameters ensures that the computing parties do not learn
any specific time intervals that are being queried. When a tum-
bling window operator is used, T VA treats the window length
as public. We emphasize that knowledge of the length does
not reveal anything about specific time intervals, since the
window operator is applied on the entire time series dataset.
In the example of Listing |, TVA parties know that the query
involves a filter of the form "WEIGHT” > X AND "WEIGHT"
< Y followed by keyed window aggregation (MAX) per hour,
but they do not learn the filter values 190 and 250.

Protocols. TVA currently provides two replicated secret shar-
ing protocols with N parties: (i) the semi-honest 3-party pro-
tocol by Araki et al. [5] (N = 3) and the malicious-secure
Fantastic Four protocol by Dalskov et al. [26] (N =4). We
encode an /-bit string of secret data s by splitting it into N
shares that individually have the uniform distribution over all
possible ¢-bit strings (for privacy) and collectively suffice to
specify s (for correctness). Share generation is cheap and is
done locally by the data owners. Each party P; receives N — 1
of the shares: hence, any two parties can reconstruct the se-
cret but any single party cannot. TVA supports both boolean
secret sharing [x], of length-¢ bitstrings and arithmetic secret
sharing ((x)), in the ring mod 2, as well as primitives to con-
vert one format to the other. By convention, we say that party
i holds the shares x; and x;4 for 3-party replicated sharing, or
Xi,Xi+1,Xi+2 for 4-party replicated sharing.

Threat model. TVA supports either semi-honest or malicious
security in the honest majority setting. When operating with
semi-honest security, TVA can withstand adversaries who
have three types of capabilities: (i) complete control over the
network, (ii) the ability to compromise at most one computing
party and passively eavesdrop on its internal state (e.g., mem-
ory contents, access patterns, and data sent/received) without
altering its execution, and (iii) the ability to collude with one
or more data owners to learn inputs into the query, or with the
data analyst to learn the output of the query. When operating
in the malicious setting, the adversary can additionally force
the compromised computing party to actively deviate from
the protocol arbitrarily. In this case, TVA provides security
up to abort: the honest computing parties will stop and report
an error to the analyst.

Security guarantees. TVA offers two types of security guar-
antees: (i) privacy, meaning that computing parties do not
learn anything beyond the public metadata and the informa-
tion held by any data owners or analysts they are colluding
with, and (ii) correctness, meaning that all participants are

l [Symbol

[se replicated boolean secret share of the length-¢ bitstring s

(u)e replicated arithmetic secret share of u in the ring mod 2

u)e non-replicated 2-of-2 arithmetic secret share of u in the ring mod 2f
length of a share representation in bits

maximum length, in bits, for dividend x in the division protocols
bitlength of the public divisor ¢ (in the division protocols) plus one
a data record of the form r = (¢, ay,as,...,ax), where .t is

the record’s timestamp and r.q;,1 <i <k, is a data value

a time series of size [S], i.e., a collection of [S] data records

a window in a time series S, i.e., a collection of data records W € §
length of a tumbling window in time units

timeout interval that defines a gap session window

threshold value that defines a threshold session window

s1x(S) sort operator on key k (ascending)

YkG (S) group-by operator on key k with aggregation function G

Description [l

S

<

ofa|>| 5w

Table 1: Notation used in the paper

convinced that the computation output is accurate. TVA in-
herits both guarantees from the underlying MPC protocols by
always operating over secret-shared data using the underlying
MPC primitives in a black-box manner, ensuring an oblivi-
ous control flow for each operator individually (§4.1-4.4) and
jointly (§4.6), and never opening any intermediate results.
To show this claim formally, in this work we perform secu-
rity analysis in the arithmetic black-box model, as shown in
Appendix A. This is a hybrid model in which we presume the
existence of a functionality F,y, that provides perfect correct-
ness and privacy for the following operations: F,pp.input and
JFabb-output to share and reconstruct secrets in either arith-
metic or boolean representations, Fypp.add and Fypp.mult to
compute arithmetic (mod 2!) or multi-bit boolean (mod 2) op-
erations, and Fp,.A2B and Fyp,.B2A to convert between the
two representations. In the malicious setting, we also consider
a shared input functionality Fpp,.INP in which two parties
provide as input a common secret that they both wish to be
shared, and the functionality detects and aborts if there is a dis-
crepancy between the two. For readability, we sometimes use
informal notation (e.g., [c]¢ = [a]¢ A [P]¢) rather than formal
notation (e.g., Fypp.-mult(boolean, id,, id,id,)) in this work.

4 Secure time series data analysis in TVA

In this section, we describe TVA’s oblivious operators for
secure time series analysis. In §4.1, we describe our division
protocol that is the core building block of the tumbling win-
dow operator in §4.2. In §4.3 and §4.4, we present two session
window operators and, in §4.5, we discuss time-agnostic oper-
ators supported by TVA. Finally, in §4.6, we describe TVA’s
efficient composition techniques for creating complex time
series analysis tasks. Table | summarizes the notation.

Let r = (t,a;,az,...,a;) be a data record with timestamp
t > 0 (denoted with r.t) and attributes a;,1 <i < k (denoted
with r.a;). The value ¢ corresponds to a real timestamp or
a sequence number whereas the attributes can be arbitrary
data. We define a time series S as a collection of |S| records

Protocol 1: DIVISION (semi-honest 3PC)

Input :Arithmetic sharing (x), of a secret x € [0,2%)
Public integer c € [1,2571)
Output :Quotient {(z)) computed as follows.
1 Construct a 2-of-2 sharing (y), of y ~ z as follows:
11 Party 1 locally computes y; = | (x] +x2)/c]
12 Parties 2, 3 locally compute y; = 2° — | (2 —x3)/c|
2 Construct 2-of-2 sharing (s),, of s computed as follows:

21 Party 1 locally computes s; = (x] +x3) mod ¢
22 Parties 2, 3 locally compute s = (2 —x3) mod ¢
3 Create replicated sharings (y))¢, {(s)¢, as follows:
3.1 Use Fypp-input to share y; and y; in the ring mod 2!
32 Use Fypp.input to share s; and s, in the ring mod 2le

33 | Locally compute (y)¢ = {y1)¢+{y2)¢ and
{(she. = (s1he. = (s2)e, using Fapp-add
4 Calculate replicated sharing (b)), of the bit b = (s; : $2):
41 Use Fypp-A2B to convert ((s)),, into boolean shares [s],
42 Set [b]; equal to the most significant bit of [s],,
43 Use 1-bit conversion Fypp.b2A on [b]; to compute (b)),
5 Locally compute (z))y = {y)¢ — (b)¢ using Fypp.add

Protocol 2: DIVISION (malicious 4PC)

Input :Arithmetic sharing (x), of a secret x € [0,2%)
Public integer c € [1,2571)
Output :Quotient {(z)), computed as follows.
1 Construct a 2-of-2 sharing (y), of y ~ z as follows:
11 Parties 1 and 4 compute y; = | (x| +x2)/c|
12 Parties 2 and 3 compute y, = 2° [(2 —x3 —x4) /c|
2 Construct 2-of-2 sharing (s),. of s computed as follows:
21 Parties 1 and 4 compute 51 = (x] +x;) mod ¢

Parties 2 and 3 compute s, = (2€ —x3—x4) mod ¢
3 Perform lines 3-5 of Protocol 1, replacing all instances of
Fapbb-input with the Shared Input functionality Fy, INP

22

indexed in ascending order of their timestamps, i.e., V#;,7; €
S, rit<rjt < i< j<|S|eN. We stress that record indices
are only used to simplify the presentation and TVA does not
assume records to be physically ordered on their timestamps.
TVA window operators are applied to time series and gen-
erate new time series. In practice, windowing is performed by
appending to each record a new attribute w;; that contains a
secret-shared window id computed under MPC.

4.1 Integer division by public divisor

TVA assigns records to tumbling windows by discretizing
timestamps based on the window length (in time units). Sev-
eral prior works provide efficient protocols for integer or fixed-
point division, but they typically introduce a small rounding er-
ror, truncate only by powers of two, or are slower because they
provide features that we do not need in our setting like perfect
accuracy or private divisors (e.g., [19,20,25,32,32,56,63,74]).

In this work, we contribute a new secure computation proto-
col for division-and-truncation, given mixed-mode MPC with
replicated secret sharing, that can perform division by any
public divisor without a rounding error. For our application
to tumbling windows, having some noticeable probability of
error means that many data records are being assigned to the
wrong window, which could significantly distort the subse-
quent time series analysis. That said, for improved efficiency
we do allow for a negligible error with probability 27°, which
is parameterized by a statistical security parameter G.

For simplicity, we show the TVA division algorithms in
Protocols | and 2 in the case that the secret dividend x and
public divisor ¢ are unsigned (positive) integers. This suffices
for our application, in which the dividends x are timestamps
and the window lengths ¢ are a positive number of time units.
It is straightforward to extend our protocols to support signed
fixed-point numbers, as long as the absolute value of the
divisor is at least 1 (otherwise there is a risk of overflow).

For semi-honest 3-party MPC, our starting point is the prob-
abilistic truncation protocol of Mohassel and Rindal [63],
which can perform probabilistic truncation with only one
round of communication. Their technique roughly corre-
sponds to step 1 of Protocol 1. Starting from a dividend that is
at most £y bits long (x < 2%) and public divisor ¢ < 2%~ step
1 computes a non-replicated 2-of-2 arithmetic sharing (y)y,
which we later convert to a replicated secret sharing in step 3.
The value y is close to the correct quotient z = | % |, but y has
two possible sources of error: an off-by-one rounding error

occurs with probability ~1/2 (namely, when the fractional

¥4
part of 2%“ is greater than the fractional part of *2), and

a large error occurs with negligible probability (when x3 < x).

In lines 2-5 of Protocol |, we compute the rounding er-
ror within MPC itself so we can eliminate it. In step 2, we
calculate the fractional parts s; and s, that were the source
of the potential off-by-one error. Then, we use mixed-mode
operations to calculate the error bit b based on whether s < s5.
We calculate this inequality by computing s = s; — s, mod 2‘
where (. = |c|+ 1, and converting to boolean shares in order to
isolate the most significant bit of [s], and set it equal to [5];.

Protocol | makes only black-box use of mixed-mode MPC
operations. This leads to a simple extension of our division
algorithm to the malicious 4-party MPC setting, as shown
in Protocol 2 where we achieve malicious security through
redundancy. Specifically, we ensure that two parties perform
each calculation; then, using the Shared Input (INP) protocol
within Dalskov et al. [26], the honest parties can detect any
discrepancy between them. Modularity also simplifies both
the security analysis and the resulting implementation within
TVA. In the full version [33], we prove that Protocols 1-2 are
private and correct with probability 1 -27°, where 6 = £ - ,.

Protocols 1-2 require [log(¢.;)]+ 3 communication rounds
and 20+24.[log(£.)]+ £, +1 total bits of communication (plus
some small additive overhead in the 4-party case to send the
hashes in the protocol of Dalskov et al. [26]). Concretely, line

3 requires one communication round to distribute shares, line
4 requires [log(¢.)]+ 1 rounds to perform the arithmetic-to-
boolean conversion using a Parallel Prefix Adder (PPA) [48]
plus one round for the subsequent bit-to-arithmetic conver-
sion, and the remaining lines do not require any communica-
tion. See the full version of this work [33] for a longer com-
parison of this division protocol with closely related works.

4.2 Tumbling window

We can now describe TVA’s tumbling window operator. Let
S be a time series, A € N* a window length (in time units), and
G an aggregation function on data records.

Definition 1 (Tumbling Window Operator) Given a win-
dow length A and an aggregation function G, TVA’s tumbling
window operator T defines a new time series as follows:

TG(Sa}\') = { (k G(Wk)) | Wk: {ri}1 ri ES7
Ak<rit<A-(k+1), keN}

The new time series defined by the tumbling window oper-
ator contains records of the form r = (¢, G(W;)), where t =k
is the timestamp of the new record, W; is the k-th tumbling
window, i.e., the collection of records that fall into the time
interval -k < r;.t <A-(k+1), and G(Wy) is the result of the
aggregation function on W;.

The secure tumbling window operator works as follows.
First, parties iterate over the records’ shares in the time series

S and compute the discretized timestamps HJ by executing

the secure division protocol (Protocols | and 2). All these
divisions are independent of each other and are performed
in bulk, i.e., they can all be completed in [log(¢.)]+3 total
rounds. The output of each division amounts to the tumbling
window id w;, of the respective record and is appended to the
record as a new attribute'. In the next step, parties apply the
aggregation function G to the collection of records in each
window. To do so, they group records by their window ids
using TVA'’s group-by operator 7y that is based on the protocol
by Jonsson et al. [54] (cf. §4.5-4.6). The output of the operator
is a new time series §’ = yff,[_ y (8) with one record per window
containing the result of the aggregation G.

4.3 Gap-based session window

Computing sessions under MPC is challenging, as windows
can be of variable length that depends on the data. Let S
be a time series and T € N* a timeout (in time units). Let
also 6: N - R, u{oo} be a function that computes the time
difference between consecutive records in S as shown below:

8(i)={ it —ri—1.1, 1§i<|S|

ri.t
00, otherwise

ey

'If the record timestamp is not needed in a subsequent step of the analysis,
TVA can simply overwrite it with w;; instead of appending a new attribute.

Protocol 3: SESSIONIZATION

Input :A time series S = {ro,rl,...,r|5|_]}

Result :The updated time series with all sessions marked
//First phase

//Distance between records in S

1 SESSIONSTART(S);
2 Letd =1,

3 while d < S| do
//A11 |S|-d steps are independent

4 fori=0;i<|S|-d; i++ do

5 Parties locally compute bit [b]; for b = (riyq.wig &70)

6 Parties locally compute mask [m], = expand([b]1,£)

7 Parties compute the window id of r;, 4 as follows:
[riva-wiale = [mle A lriwiale ® [mle A [riva-wiale

8 end

9 d<dx*2;

10 end

Protocol 4: SESSIONSTART (GAP)

Input :A time series S = {ro7r1,...,r|s|,1}, a timeout T
Param. :Function d (Eq. 1), timestamp length ¢ (in bits)
1 s4(S); //Sort records by timestamp (ASC)
2 Let € = -1 be an invalid timestamp; //Negative number
//A11 |S| steps are independent
3 fori=0;i<|S|; i++ do
4 Parties compute bit [b]; = ([8(i)], 3 Izle)
5 Parties locally compute mask [m], = expand([b]1,£)
6 Parties compute the window id of 7; as follows:
[ri-wiale = Imle A lri-t]e ® [m]e A [l
7 end

Definition 2 (Gap Window Operator) Given & and an ag-
gregation function G, TVA’s gap window operator T defines
a new time series as follows:

Ig5(8,t) ={ (rs.t, GWs)) | Ws={ri}, 0<s<i<e<]|S|,
3(s)>1, 8(e+1)>1,
BrjeS:8(j)>1,s<j<e}

Records in the new time series have the form r =
(t, G(Wy)), where Wy is a gap session window, 7 = ry.t is
the earliest timestamp in Wy, and G(W;) is the result of the
aggregation function G on W;. The most expensive con-
dition in the gap session window operator is the last one:
#rjeS:8(j)>1, s< j<e. This condition requires identi-
fying pairs of records ry and r, with no in-between records
(7. included) that belong to a different session. Given a time
series S sorted by timestamp, the straight-forward approach
to evaluate this condition is to scan S and keep track of the
current session by applying function 8 to each pair of adjacent
records. This approach, however, incurs prohibitive commu-
nication overhead, as it requires communication rounds linear
to the number of records in S. Instead, we propose an efficient
two-phase SESSIONIZATION protocol (Protocol 3) that can

correctly identify all session windows in S with a logarithmic
number of rounds. We discuss the phases of the protocol next:

Phase 1: Mark the beginning of each session. In this phase,
parties identify the beginning of each gap session window
as shown in Protocol 4. To do so, they first order records
on their timestamp using TVA’s oblivious sort operator (this
step can be omitted if records arrive in order). Next, they
compare adjacent records by applying function & (Eq. 1) us-
ing a PPA. Given a timeout T, a new session is marked at
ri iff 8(i) > t; the result of this inequality is saved as a bit
b. Next, we expand the single bit b into a mask m of length
£, such that every bit of m is equal to b. Parties set the win-
dow id of each record using an oblivious multiplexer of the
form mAx @ mAy, where m is a mask, and is its boolean
complement. Hence, if a record r; marks the start of a new
window, parties set r;.w;q = r;.t; otherwise, they use an invalid
timestamp € (e.g., a negative constant like —1) to denote that
this record is currently unassigned. All steps of the for-loop in
the first phase of the protocol do not depend on each other and
incur a number of rounds that is independent of the time series
size. That is, executing steps 3-7 in SESSIONSTART (GAP)
requires 2[log(¢+1)]+ 1 rounds in total, where ¢ is the length
of the timestamp representation in bits (fixed).

Phase 2: Assign records to sessions. In the second phase of
TVA’s SESSTONIZATION (steps 2-10 in Protocol 3), parties
assign the remaining records to their corresponding session

in [log|S|] rounds. This is done by replacing the negative

wiq of each unassigned record with the non-negative w;; of
the nearest preceding record. Records in S are guaranteed to
be in order after the first phase, therefore, the earliest record
in each session always precedes the remaining unassigned
records. Our protocol leverages this ordering to reduce in-
teraction during window assignment as follows. In the first
iteration, parties examine adjacent records at distance d = 1
starting from the first record in S. If r;.4.w;iy <0 (unassigned),
it is overwritten by r;.w;4, otherwise it is left as is. This is
done using an oblivious multiplexer and a mask m that is
generated locally, as in the first phase. Step 5 is local because
b corresponds to the sign of r;,;.wjq, i.e., its most significant
bit. At the end of each iteration, parties double the distance d
of the previous step and repeat the same process. All for-loop
iterations in the second phase of the protocol are independent
one another, i.e., executing steps 4-8 in SESSIONIZATION
requires a single round (due to multiplexing), for any time
series S. The overall control flow has a butterfly-like structure
that has been used for multi-set operations [10] (e.g., to com-
pute cardinality) and element compaction [44]. In TVA, we
leverage this technique to perform sessionization and, as we
show in §4.6, efficient composition with window aggregation
for a wide range of functions. We prove the correctness and
privacy of our protocol in the full version of this work [33].
When sessionization terminates, parties can use TVA’s
group-by operator to apply the aggregation function G to each

Protocol 5: SESSIONSTART (THRESHOLD)

Input :A time series S = {rg,r1,... JTis|-1 }, a threshold 6
Param. :Function & (Eq. 2), timestamp length ¢ (in bits)

1 sp(8); //Sort records by timestamp (ASC)

2 Let € =—1 be an invalid timestamp; //Negative number
//A11 |S| comparisons are independent

3 fori=0;i<|S]; i++ do

4 Parties append single-bit attribute ay, to r;

s | Parties compute bit [ri.a]i = ([h()]e > [6]¢)
6 end
//A11 |S|-1 steps are independent
7 fori=1;i<|S|; i++ do
8 Parties compute [b] = ([ri—1.ap]1 ® 1) A ([ri-ap]1 ©0)
9 Parties locally compute mask [m],; = expand([b]1,£)
10 Parties compute the window id of 7; as follows:
[ri-wiale = Imle A lrit]e @ [mle A [ele
11 end

window. As the number of records grows, TVA’s operator
I takes O(log?|S|) rounds and O(|S|log|S|) communication
if records arrive out of order, since TVA relies on bitonic
sort (§4.5). For ordered timestamps, the asymptotic costs are
O(log|S]) and O(|S|log|S|) respectively.

4.4 Threshold-based session window

TVA'’s threshold window operator works similarly to gap
session window. Let ¢ : S — R be a function on data records in
a time series S. In its simplest form, ¢ is a function that returns
a record’s attribute but, in general, it can be any function
constructed using TVA’s primitives. Let 2: N - Ru{-o0}
be the function:

~_ | a(r), 0<i<]S]

h(i) = { —00, otherwise 2)
Definition 3 (Threshold Window Operator) Given h and
an aggregation function G, TVA’s threshold window operator
O defines a new time series as follows:

O 1(S,0) ={ (rs.t, G(Ws)) | Ws ={ri}, 0<s<i<e<|S],
h(s) >0, h(s-1) <8,
h(e) >0, h(e+1) <9,
FrjeS:h(j)<0,s<j<e}

The boundaries of a threshold window W; are defined by a
pair of records r; and r, that satisfy all conditions above. TVA
identifies threshold windows using the same oblivious control
flow from Protocol 3. The main difference with respect to gap
session windows lies in the first phase of sessionization that
is described in Protocol 5. In this case, parties identify the
beginning of each threshold window by applying function &
(Eq. 2) to eachrecord in S. A session starts at r; iff h(i) >0 and

h(i-1) < 6. To keep track of records that do not belong to any
threshold window, parties store the result of the comparison
h(i) > 0 in a new single-bit attribute a;, that is appended to
record r;. This bit is used in an oblivious multiplexer to mark
the beginning of each session and is reused in the second
phase of the protocol, as we describe later. Executing steps
3-11 in SESSIONSTART (THRESHOLD) requires R, +[log (¢ +
1)]+2, where R, is the number of rounds required to apply ¢
to a single record (independent of |S|). In the common case
where g(r) =r.a;,1 <i<k, we have R, =0.

During the second phase, parties execute steps 2-10 in Pro-
tocol 3 with a minor change in step 5 that is now replaced

”
by the operation [b]; = [[risa-Wiale <O]1 A [rira-ap]:. For
threshold windows, b is a composite bit that denotes whether
record r;,4 belongs to a threshold window (r;.4.a, = 1) and is
currently unassigned (r;.4.w;y < 0). Computing b requires a
single round between parties since both r;.;.a, and ri.g.wig
have been computed in the previous phase. As a result, steps
4-8 in SESSIONIZATION require two rounds in total for thresh-
old windows (one more compared to gap session windows).
The final aggregation step and the overall asymptotic costs
in terms of rounds and bandwidth for threshold windows are
the same with gap windows, as given in §4.3. We prove the
correctness and privacy of our protocol in the full version [33].

4.5 Other T VA operators

In addition to windows, TVA provides a rich set of oblivious
operators for secure time series analysis, namely, snapshot,
filter, sorting, grouping, and distinct (for duplicate elimina-
tion). TVA’s snapshot operator H has the same semantics
as in prior work, that is, it applies an aggregation function
G to a collection of records S whose timestamps fall into a
user-defined time interval I. More formally:

Hg(S,1) = G(W) |W ={r;}, rieS, ritel 3)

Filters are logical predicates constructed with TVA’s se-
cure primitives (+,—,x,®,A,V,—,<,> = #) and may also in-
clude arithmetic operations, e.g., Watt xUnit_Price > $30.
TVA’s equality, inequality, and parallel prefix adder [48] re-
quire O(log/) rounds and O(¢log/) communication, where
¢ is the length of the secret-shared operands in bits.

TVA’s sort operator sy (S) is based on a sorting network
that requires O(log®|S|) rounds and O(|S|log?|S|) commu-
nication w.r.¢ the number of records. We choose a sorting
network because it is easily parallelizable and works well
with duplicate values, however, there exist oblivious sorting
algorithms with lower asymptotic costs (e.g., [7, 8,22,47]).
Combining these techniques with TVA’s protocols is an in-
triguing opportunity for future work.

The group-by operator Y;? (S) uses the protocol by Jénsson
et al. [54] and consists of two phases: a sorting phase where
the input records are sorted on the grouping key(s), and an

odd-even aggregation phase that applies the aggregation func-
tion G to each group with O(log|S|) rounds and O(|S|log|S]|)
communication in total. Distinct is a special case of grouping.

4.6 Operator composition

In this section, we describe all non-trivial cases of operator
composition in TVA. We stress that the details of the compo-
sition process are completely hidden from TVA users by the
high-level query APIL.

Composing filter and snapshot predicates. TVA does not
pose any restriction to the number of filter predicates a user
can specify. Predicates can be combined via logical AND and
OR operators; for example, Weight < 140 1b OR (Weight >
150 1b AND Height < 6 ft) is a valid composite filter. Each in-
dividual filter predicate ¢ appends a (secret-shared) single-bit
attribute a4 to each record it is applied to. Predicate com-
position requires ANDing or ORing (under MPC) these at-
tributes according to the abstract syntax tree (AST) of the
composite filter. To reduce interaction between parties, TVA
composes independent predicates in a binary tree of opera-
tions. This way, composing a series of m result bits of the
form ay, Aay, A+ Aay, can be done with logm rounds in
total. In the end, each record has only one attribute ay =
ay, Ndg, A+ Aay,, that denotes whether the record “passes’
the composite filter or not.

In case a filter is followed by a snapshot operator, the con-
dition r;.t € I from Eq. 3 is treated as one more filter on times-
tamps (with its own a4 attribute) and is composed with the
rest of the filter predicates as described above.

>

Composing session window with aggregation. The straw-
man approach to compute the final aggregation on session
windows is to first execute the SESSIONIZATION protocol
(Protocol 3) and then use TVA’s group-by operator chvi , o
apply the aggregation function G to each window. Although
correct, this two-step approach requires 2x more operations
and communication rounds compared to sessionization alone.
In TVA we employ a more efficient composition technique
that eliminates this overhead.

Recall that TVA’s group-by operator is based on the obliv-
ious control flow by Jénsson et al. [54, Algorithm 6]. This
algorithm compares records at distance d = |S| / 2 and, at each
step of the iteration, reduces the distance to half of that in the
previous step. Sessionization, however, only works if we ac-
cess the time series S in the opposite way, i.e., when we start
comparing adjacent records (at distance d = 1) and double the
distance at each iteration. Interestingly, the oblivious aggre-
gation by Jonsson et al. can be modified to work similarly,
enabling us to perform the sessionization and group-by pro-
tocols within a single oblivious control flow. This approach
saves O(log|S]) rounds and O(|S|log|S|) communication in
total and requires minor protocol modifications. Specifically,
we only need to add the following operation at the end of each

for-loop in Protocol 3 (right after line 7):

(ri-aghy = (bh1-G((ri-agh, (riva-aght) +
+ (1=(b)1)-(ri-agh
Eq. 4 updates (in place) the value of the aggregated attribute
a, of the i-th record. To do so, parties apply the aggregation
function G to the pair of records (r;, ri+4) and use arithmetic
shares of the bit b (already computed in Protocol 3) to per-
form the oblivious multiplexing of the form b-x+ (1-5)-y.
Arithmetic shares of b are constructed on the fly using the
single-bit conversion protocol from Mohassel and Rindal [63]
(semi-honest security) or Dalskov et al. [26] (malicious secu-
rity). This conversion requires one round between parties.
The composition technique we described works with any
function G that is commutative and associative. This holds for
all common aggregations, including SUM, COUNT, MIN, MAXZ,
AVG, and STDEV (for the last two we must maintain the nomi-
nators and denominators separately).

C)

Composing keyBy with session window. When a keyBy op-
erator precedes a session window, the key k used in keyBy
must be taken into account in the first phase of SESSION-
IZATION. In this case, records are ordered on the pair (k,1),
instead of their timestamp ¢ only, and the start of each session
is marked when the default condition holds or the i-th record
in the time series S has a different key value from the previous
one, i.e., r;.k # ri_1.k,0 < i <|S] (true for i = 0). This requires
evaluating an extra equality predicate in step 4 of Protocol 4
and step 8 of Protocol 5.

Composing multiple operators with aggregation. The final
aggregation is always computed with TVA’s group-by opera-
tor but the actual grouping keys depend on the operators in the
query. Recall that all operators besides keyBy append a secret-
shared attribute to the records they are applied to: filter and
snapshot append an attribute ay whereas window operators
append an attribute w;;. Whenever such an attribute exists
in the input of the aggregation, TVA uses it along with the
key k of the keyBy operator (if any) to construct a composite
key for grouping. The more complex case is when the query
contains a filter, a keyBy, and a window operator followed
by an aggregation G. In this case, TVA applies the operator
Y‘?‘D Kwig () that returns one aggregated value for each group

of records with the same composite key (ag,k, wiq).

S Implementation

We have developed TVA from scratch in C++. We use MPI [2]
for inter-party communication and libsodium [1] for random
number generation. TVA supports shares of size 2¢, where
¢ can be configured by the users. The default length for at-
tributes is ¢ = 32 and for timestamps is £ = 64.

2 For MIN and MAX, parties execute the oblivious aggregation in Eq. 4 on
boolean shares, since TVA comparison primitives operate on boolean shares.

TVA’s architecture consists of three layers: (i) a runtime
that is responsible for resource management and communi-
cation, (ii) a protocol layer that contains vectorized imple-
mentations of semi-honest and malicious-secure primitives
(+,%,—,®,A,-,/), and (iii) a library of oblivious temporal
and time-agnostic operators. The TVA runtime is carefully
implemented to load balance computation in the asymmetric
malicious protocol and to trade off computation for commu-
nication depending on the available resources. For example,
the INP protocol (cf. §4.1) requires a party to send a vector
of shares, another party to send the vector’s hash, and a third
party to verify the hash. Hashing is used to reduce bandwidth
consumption at the cost of increasing local computation. In
low-latency environments, however, it is sometimes better if
both parties send shares instead of hashing.

Computing parties can be deployed on premises or across
multiple clouds. Analysts submit queries through a client
application that exposes TVA’s high-level API and runs a
lightweight module for generating and shipping shares.

6 Evaluation

Our experimental evaluation is structured into three parts:

Comparison with state-of-the-art. In §6.1, we present a
performance comparison with Waldo [28], the only publicly
available time series database with strong security guarantees.
For multi-predicate queries, TVA provides up to 5.8x lower
latency compared to Waldo in the malicious setting and 2x
lower latency in the semi-honest setting. For window queries,
TVA is up to two orders of magnitude faster than Waldo,
which becomes competitive only when the ratio of the window
length over the whole time domain is relatively small.

Performance in real-world applications. In §6.2, we use
three real use cases to evaluate TVA’s performance in LAN
and WAN with varying input sizes. We use queries that com-
bine tumbling and session windows with filters and keyed
aggregations. Our results demonstrate that TVA offers excel-
lent performance for both continuous and historical analysis:
it can successfully compute online queries with rigid time
constraints and evaluate complex analytics on millions of
input rows with modest use of resources.

Microbenchmarks and cloud costs. In the long version of
the paper [33], we dive deeper into TVA’s performance and
evaluate the scalability of window assignment protocols, the
overhead of malicious security, the benefits of parallelization,
and its cost. We show that TVA’s primitives scale effectively
as the input size grows and that primitives under the malicious
protocol are only 2x slower compared to the semi-honest. At
the same time, increasing the number of compute threads re-
duces latency by up to 7x. Finally, our results verify TVA’s
ability to amortize I/O with message batching. Comparing
the performance achieved in LAN with that of a WAN de-

Query latency (s)

Equality Range
Malicious Semi-honest Malicious Semi-honest
Waldo 11.94 1.7 11.82 1.65
TVA 2.056 0.876 3.833 1.583

Table 2: Performance evaluation of WaldoTable and TVA queries
with 8 predicates on a time series dataset with 2%0 records.

ployment with 200 —250x higher RTT, latency is only 4.6x
higher on a time series with 2% records.

6.1 Comparison with Waldo
6.1.1 Differences between Waldo and TVA

We highlight a few important differences between the two
systems that need to be considered when evaluating the per-
formance results. First, WaldoTable requires data owners to
pre-encode attributes into a N x 2¢ table of one-hot vectors,
where N is the number of input records. In TVA, data owners
only perform secret sharing (arithmetic or boolean, depending
on the target query). Second, WaldoTree queries operate on
public timestamps and return partial aggregates to the client,
who is responsible for computing the global aggregation in
the clear. On the other hand, TVA’s parties compute on pri-
vate timestamps and return the final aggregation result to the
client. Neither the pre-processing (index creation) nor the post-
processing time of Waldo are included in the results of §6.1.2.
Finally, both systems operate in the honest-majority setting:
for semi-honest security, they rely on the same protocol [5]
but, for malicious security, TVA uses a more efficient 4-party
protocol [26] that requires three honest parties as opposed to
Waldo’s 3-party protocol that requires two honest parties.

6.1.2 Performance results

TVA can comfortably operate on machines with modest re-
sources and supports large feature sizes (as we show later),
however, for the sake of the comparison in this section we
use the experimental setting of the Waldo paper [28, §VII]. In
particular, we deploy parties on r5n. 16xlarge instances (64
vCPUs and 512GB RAM), we use 8-bit attributes for both
systems, and we set the network RTT to 20ms. We note that
we were unable to reproduce some of the published Waldo
performance results. In our comparison below, we use the
result reported in the Waldo paper when it is better than the
one we measured in our own experiments.

Since Waldo is primarily optimized for snapshot queries,
we devise the following two experimental scenarios to per-
form a meaningful comparison. First, we execute a Waldo-
style multi-predicate snapshot query in TVA and compare its
performance with the respective WaldoTable query. Second,
we express a TVA-style tumbling window query in Waldo
by executing multiple concurrent snapshot queries on con-
secutive time intervals on WaldoTree. All experiments of

24h 12h lh 30min 10min 1min 30s 10s 55
' | | | | | '

o _ I
% 1000 ; mem Semi-honest
= == Malicious - B II ll
100
° 10 -
=9
>
el
@
g
w 0.1 L] - | | | | i | |
Y
Al Al ,lq'\- ‘)%3 X 2 ,\'Q,‘{- ,563“'- ‘\pg‘{— '100“-

Number of windows in the time series

Figure 3: Speedup of TVA’s tumbling window aggregation over
WaldoTree on a time series dataset with 2%° records. The bottom
x-axis shows the number of windows in the time series, which is
equal to the number of searches Waldo performs for the respective
query. Waldo achieves low latency for coarse-grained windows but
its performance degrades significantly for fine-grained windows.

this section use sorted time series, as Waldo does not support
out-of-order records.

Comparison with WaldoTable. For this experiment we set
the number of input records to 22° and run composite filters
with equality and range predicates. Each filter contains § pred-
icates of the same type and has the form p; Apy A--- A pg.
Table 2 shows the results. We see that TVA’s performance ex-
ceeds that of the specialized WaldoTable data structure. This
is not surprising, as WaldoTable’s computation and commu-
nication costs are linear in the input size and the round trips
are linear in the number of predicates [28] (§VII-C). TVA
can perform equality (resp. inequality) with three (resp. four)
rounds and requires another three for the composition of the
final result. Further performance benefits come from TVA’s
ability to effectively parallelize the computation and amor-
tize network I/O with its vectorized primitives. In the semi-
honest case, TVA provides 1.94x and 1.04x lower latency
than Waldo, for equality and range queries respectively. When
operating with malicious security, the performance difference
is more significant. TVA computes the equality query 5.8x
and the range query 3.08x faster than Waldo.

Comparison with WaldoTree. In time series analytics, the
window length can vary significantly depending on the use
case. For example, monitoring applications compute fine-
grained windows in the order of seconds, forecasting applica-
tions operate on intervals of minutes or hours, while anomaly
detection involves comparing results over windows of dif-
ferent lengths [40]. To cover these diverse requirements, in
this experiment, we use a time series with 220 measurements
recorded every second (~12 days of data in total). TVA needs
20 bits to encode the whole time domain, that is, the security
parameter is ¢ = 44. We run tumbling window queries that
compute a global aggregate per window and measure latency
for both systems.

Figure 3 shows TVA’s speedup over Waldo for window
lengths ranging from 5s to 244 (top x-axis). The bottom axis

shows the number of searches that Waldo needs to perform
on the aggregation tree to compute the corresponding win-
dow. TVA’s query latency is 6.8s (semi-honest) and 12.5s
(malicious) irrespective of the window length. Recall that
TVA'’s tumbling window cost does not depend on the win-
dow length A (§4.2) but Waldo needs to perform [@]
searches, where T,,,;, and T, are the minimum and maxi-
mum record timestamps in the dataset. We see that TVA is
orders of magnitude faster than Waldo for small windows, as
Waldo’s performance depends on the number of searches it
performs in the underlying aggregation tree. When the ratio
of the window length over the time domain becomes small,
Waldo achieves better latency, as it performs fewer searches
and the benefit of pre-aggregation pays off. Finally, we em-
phasize that the TVA’s speedup over Waldo is significantly
higher if we include initialization time. While TVA’s parties
simply receive secret shares, Waldo servers need to construct
the tree index. In our experiments, this initialization step took
over 1000s. If this overhead is considered, Waldo’s latency
cannot match that of TVA, even for coarse windows.

6.2 Performance on real-world applications

Evaluation setup. In the remainder of the experimental
evaluation we use two cloud deployments with smaller ma-
chines than before: (i) LAN uses one EC2 r5.8xlarge in-
stance per party in the us-east-2 region of AWS, and (ii)
WAN distributes parties across different geographical re-
gions. For the semi-honest protocol, parties run in us-east-2
(Ohio), us-east-1 (Virginia), and us-west-1 (California).
For the malicious protocol, we use the same three regions
plus us-west-2 for the fourth party (Oregon). All VMs have
16 physical cores, 256GB RAM, and run Ubuntu 20.04. 4,
C++14, g++ 9.4.0, and MPICH 3.3.2. The RTT between
west and east regions is 40-50ms and the bandwidth is limited
at 5 Gbps. In all experiments we use the default configuration
with 32-bit attributes and 64-bit timestamps. Reported mea-
surements are averaged over at least three runs and plotted
in log-scale, unless otherwise specified. In all experiments
of this section, timestamps require up to 22 bits (which are
sufficient to encode 10s measurements over the course of one
year). That is, TVA’s security parameter is ¢ = 42 or greater.

6.2.1 Application scenarios

In this set of experiments, we use three complex window
queries that process time series from different application
domains. We provide the queries written in TVA’s API in
the full version of this work [33]. We use these real-world
applications to evaluate TVA'’s ability to support efficient time
series queries in both online and historical analysis scenarios.
In the first case, we demonstrate that TVA can comfortably
compute query results under rigid time constraints. In the

Number of data sources (WAN)
Energy mHealth Scheduling
Semi-honest 17400 174700 52400
Malicious 8700 87300 26210

Table 3: Performance evaluation of TVA in the online setting. The
table shows the number of data owners TVA can sustain without
violating the corresponding application’s time constraints.

second scenario, we show that TVA can also support large-
scale offline analytics on millions of input records.

Monitoring energy consumption. Privacy-preserving time
series analysis can enable various smart grid applications,
such as monitoring grid conditions to improve energy conser-
vation and reduce peak demand [51,72]. For this use case, we
use a time series dataset that consists of energy consumption
measurements across clients connected in a smart grid. The
query computes the total energy consumption of the grid over
tumbling windows.

Mobile health analytics. We developed the second use-case
together with collaborators from our institution’s medical
school. The input time series corresponds to measurements
collected by wearable devices in a cohort of patients with dia-
betes. The measurements include glucose values and insulin
dose events, among other attributes, and are used by the inves-
tigators to assess the effects of insulin doses across patients
in the cohort. The analysis requires counting the number of
insulin doses during each patient’s eating period, which is
identified by a threshold in the glucose value. We express this
query using a threshold session window operator.

Job scheduling optimization. The third application considers
a cloud provider who wishes to optimize resource provision-
ing without compromising their clients’ privacy. To this end,
the provider needs to process telemetry time series data from
multiple clients without gaining access to raw execution logs
that may contain proprietary information. We use a time series
that follows the schema of real-world monitoring traces col-
lected from Google clusters [73]. The provider is interested
in analyzing the length of job phases (sessions) assigned to
the various machine types and use this information to decide
when to transfer long-running client workloads to larger ma-
chines or co-locate client workloads with short job sessions.
We implement this application by first applying a filter to
retain schedule events and then using a keyed gap session
window to identify job sessions per machine type. The respec-
tive query performs a final aggregation to compute the session
length and returns the maximum session per machine type.

6.2.2 Online analysis scenario with time constraints

For a system to guarantee online operation, it needs to produce
query results at a rate higher than that of data ingestion. For
the energy use case, we consider sensors that generate mea-
surements every 10s and a monitoring dashboard that needs to

(a) Semi-honest (LAN) (b) Malicious (LAN) (c) Semi-honest (WAN) (d) Malicious (WAN)
- 10° —X 10° X
-+= Energy T -+- Energy LA -+- Energy r -+- Energy /+
& 107 mHealth et 7 102 =€ mHealth \/\‘/,gf’*‘ 7 10° mHealth P e w —¢ mHealth s
o --e- Scheduling _“_,,-:(',»’ j‘j Scheduling ¢ At Y -+ Scheduling ,..4.-----"",% o 103 Scheduling ;;/:/'
g 100 et £ 100 s gl ag £ g £ d'——M/
= U = s Iy F 102 SR g £ T e
100] et 100] 3T B 102 | XX e
+,4’ 3;,4’ }.——P’*' +__+,—+-
103 104 105 106 103 10% 10° 106 10° 104 105 106 103 104 108 108
Number of input records Number of input records Number of input records Number of input records
. . L . . L 1 2
Figure 4: TVA query latency in real-world applications with out-of-order events, as the time series size increases from 2 010222,

be refreshed every Smin. These settings are more challenging
than what typical smart grid applications require [51]. For
the mobile health use case, we set the glucose measurement
interval to Smin according to a recent medical study [39] and
require computing the eating period in under one hour. Finally,
for the scheduling application, we assume a Google cluster
workload with an arrival rate of 10,000 tasks per minute, [73]
and set the time constraint to 10min, which is lower than the
lifetime of 99% of Microsoft Azure’s VMs [24].

Table 3 shows the number of data sources that TVA can
sustain without violating its online processing guarantees in
the WAN setting. In all cases, the results demonstrate that
TVA exceeds the requirements of real-world applications.
With malicious security, TVA can update the energy grid
dashboard in real time for over 8K sensors, it can support a
cohort of over 87K patients for glucose monitoring, and it
can keep up with 2.6x higher task arrival rate than that of a
production cluster.

6.2.3 Historical analysis scenario

For the historical analytics scenario, we measure query latency
as the time series size increases. Figure 4 shows the results.
We emphasize that, both in this and the previous experiment,
timestamps are not considered to be ordered and the reported
times include sorting under MPC. TVA comfortably scales
to millions of records and computes all queries within a few
minutes. For 2?0 records, the Energy query takes 1min in
LAN and 9min in WAN, while the mHealth and Scheduling
queries have similar performance and take ~ 2.4min in LAN
and 20min in WAN. The mHealth and Scheduling queries are
both based on sessionization but the latter is more complex,
including filter and keyBy operators. The overhead of these
additional operators is negligible thanks to TVA’s efficient
composition protocols. The cost of using a malicious protocol
is small, resulting in a 2x slowdown.

7 Related work

Here we discuss closely related works and provide more de-
tails in the full version of the paper [33].

Privacy-preserving time series analysis. Although there is a
large amount of work in privacy-preserving time series analy-
sis, none of the existing approaches supports secure window-

ing. Despite their particular differences with respect to threat
models and security guarantees, the vast majority of efforts fo-
cus on global aggregations or snapshot queries with (optional)
filters and aggregation [21,27,28,46,49,51,53,66,68-70,78].
TimeCrypt [16] and Zeph [17] have built-in support for tum-
bling windows, but they reveal information to the untrusted
server and can only operate on public timestamps. Zeph also
supports limited (additive) per-group aggregation within time
windows but requires data holders to pre-encode the grouping
key domain (e.g., all possible zipcodes).

TVA extends the functionality of prior works without com-
promising security or performance. TVA introduces expres-
sive recurring window operators (§4.2—4.4) and allows for
efficient composition of window and snapshot operators with
custom grouping, filters, and aggregation (§4.6). In addition,
TVA hides queried time intervals, as in state-of-the-art ap-
proaches, but also supports irregular timestamps and out-of-
order records. This is in contrast to many prior techniques that
either assume ordered timestamps (e.g., [28]) or operate in the
“synchronous” setting where the aggregator receives data ev-
ery k time units (e.g., [21,66,70]). Recently, Zheng et al. [81]
proposed a technique to compute similarity queries on time
series snapshots. We leave such operations as future work.

FSS-based approaches. Function secret sharing [12, 13] is
a cryptographic technique that allows creating shares of a
function as opposed to creating shares of a value in MPC.
Approaches using FSS, including distributed point functions,
incur lower communication compared to MPC-based tech-
niques. Waldo [28], DuraSift [35], and Vizard [18] use FSS
to securely evaluate range and equality predicates by split-
ting shares of the predicate to untrusted non-colluding parties.
Splinter [76] uses FSS to evaluate private SQL queries on pub-
lic data, whereas Dittmer et al. [29] employ FSS for efficient
streaming PSI. Expressing TVA’s complex window opera-
tions using FSS is still an open problem and an interesting
direction for future work.

ORAM-based approaches. Oblivious RAM [42,43] allows
for hiding access patterns in arbitrary programs but its gener-
ality comes at a high cost. Distributed ORAM constructions
by Bunn et al. [15] and Doerner et al. [30] achieve better
performance by leveraging FSS. TVA hides access patterns
via oblivious operators that we specifically design for time
series analytics.

Acknowledgments

The authors thank the anonymous reviewers and shepherd
for their valuable feedback. We also thank Dr. Nicole Spar-
tano and Dr. Lisa Quintiliani for helping us develop the mo-
bile health application, and Ian Saucy for his help with the
WAN deployments. This work has been supported by the
National Science Foundation under Grants No. 1915763 and
2209194, the DARPA SIEVE program under Agreement No.
HR00112020021, a Red Hat Collaboratory grant (No. 2022-
01-RHO02), a Hariri Institute Focused Research Project Award,
and a gift from Robert Bosch GmbH.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

Libsodium library. https://libsodium.gitbook. io.
[Online; accessed February 2023].

Message Passing Interface (MPI). https://www.mcs.
anl.gov/research/projects/mpi/standard.html.
[Online; accessed February 2023].

Surya Addanki, Kevin Garbe, Eli Jaffe, Rafail Ostrovsky,
and Antigoni Polychroniadou. Prio+: Privacy preserving
aggregate statistics via boolean shares. In SCN, volume
13409 of LNCS, pages 516-539. Springer, 2022.

Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava
Chernyak, et al. The dataflow model: A practical ap-
proach to balancing correctness, latency, and cost in
massive-scale, unbounded, out-of-order data processing.
Proceedings of the VLDB Endowment, 8(12), 2015.

Toshinori Araki, Jun Furukawa, Yehuda Lindell, Ariel
Nof, and Kazuma Ohara. High-throughput semi-honest
secure three-party computation with an honest majority.
In CCS, pages 805-817. ACM, 2016.

Toshinori Araki, Jun Furukawa, Kazuma Ohara, Benny
Pinkas, Hanan Rosemarin, and Hikaru Tsuchida. Secure
graph analysis at scale. In CCS, pages 610-629. ACM,
2021.

Gilad Asharov, T-H. Hubert Chan, Kartik Nayak, Rafael
Pass, Ling Ren, and Elaine Shi. Bucket oblivious sort:
An extremely simple oblivious sort, 2021.

Gilad Asharov, Koki Hamada, Dai Ikarashi, Ryo
Kikuchi, Ariel Nof, Benny Pinkas, Katsumi Takahashi,
and Junichi Tomida. Efficient secure three-party sorting
with applications to data analysis and heavy hitters. In
CCS, pages 125-138. ACM, 2022.

Kenneth E. Batcher. Sorting networks and their appli-
cations. In AFIPS Spring Joint Computing Conference,
volume 32 of AFIPS Conference Proceedings, pages

(10]

(11]

[12]

(13]

[14]

[15]

[16]

(17]

(18]

(19]

(20]

307-314. Thomson Book Company, Washington D.C.,
1968.

Marina Blanton and Everaldo Aguiar. Private and obliv-
ious set and multiset operations. In AsiaCCS, pages
4041. ACM, 2012.

George EP Box, Gwilym M Jenkins, Gregory C Reinsel,
and Greta M Ljung. Time series analysis: forecasting
and control. John Wiley & Sons, 2015.

Elette Boyle, Nishanth Chandran, Niv Gilboa, Divya
Gupta, Yuval Ishai, Nishant Kumar, and Mayank Rathee.
Function secret sharing for mixed-mode and fixed-point
secure computation. In EUROCRYPT, volume 12697 of
LNCS, pages 871-900. Springer, 2021.

Elette Boyle, Niv Gilboa, and Yuval Ishai. Secure com-
putation with preprocessing via function secret sharing.
In TCC (1), volume 11891 of LNCS, pages 341-371.
Springer, 2019.

Prasad Buddhavarapu, Andrew Knox, Payman Mo-
hassel, Shubho Sengupta, Erik Taubeneck, and Vlad
Vlaskin. Private matching for compute. IACR Cryptol-
ogy ePrint Archive, Report 2020/599, 2020.

Paul Bunn, Jonathan Katz, Eyal Kushilevitz, and Rafail
Ostrovsky. Efficient 3-party distributed ORAM. In SCN,
volume 12238 of LNCS, pages 215-232. Springer, 2020.

Lukas Burkhalter, Anwar Hithnawi, Alexander Viand,
Hossein Shafagh, and Sylvia Ratnasamy. TimeCrypt:
Encrypted data stream processing at scale with cryp-
tographic access control. In NSDI, pages 835-850.
USENIX Association, 2020.

Lukas Burkhalter, Nicolas Kiichler, Alexander Viand,
Hossein Shafagh, and Anwar Hithnawi. Zeph: Cryp-
tographic enforcement of end-to-end data privacy. In
OSDI, pages 387-404. USENIX Association, 2021.

Chengjun Cai, Yichen Zang, Cong Wang, Xiaohua Jia,
and Qian Wang. Vizard: A metadata-hiding data analytic
system with end-to-end policy controls. In CCS, pages
441-454. ACM, 2022.

Octavian Catrina and Sebastiaan de Hoogh. Improved
primitives for secure multiparty integer computation. In
SCN, volume 6280 of LNCS, pages 182—199. Springer,
2010.

Octavian Catrina and Amitabh Saxena. Secure compu-
tation with fixed-point numbers. In Financial Cryptog-
raphy, volume 6052 of LNCS, pages 35-50. Springer,
2010.

https://libsodium.gitbook.io
https://www.mcs.anl.gov/research/projects/mpi/standard.html
https://www.mcs.anl.gov/research/projects/mpi/standard.html

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

T.-H. Hubert Chan, Elaine Shi, and Dawn Song. Privacy-
preserving stream aggregation with fault tolerance. In
Financial Cryptography, volume 7397 of LNCS, pages
200-214. Springer, 2012.

Koji Chida, Koki Hamada, Dai Ikarashi, Ryo Kikuchi,
Naoto Kiribuchi, and Benny Pinkas. An efficient se-
cure three-party sorting protocol with an honest major-
ity. IACR Cryptology ePrint Archive, Report 2019/695,
2019.

Henry Corrigan-Gibbs and Dan Boneh. Prio: Private,
robust, and scalable computation of aggregate statistics.
In NSDI, pages 259-282. USENIX Association, 2017.

Eli Cortez, Anand Bonde, Alexandre Muzio, Mark
Russinovich, Marcus Fontoura, and Ricardo Bianchini.
Resource central: Understanding and predicting work-
loads for improved resource management in large cloud
platforms. In SOSP, pages 153-167. ACM, 2017.

Anders P. K. Dalskov, Daniel Escudero, and Marcel
Keller. Secure evaluation of quantized neural networks.
Proc. Priv. Enhancing Technol., 2020(4):355-375, 2020.

Anders PK Dalskov, Daniel Escudero, and Marcel Keller.
Fantastic four: Honest-majority four-party secure com-
putation with malicious security. In USENIX Security
Symposium, pages 2183-2200, 2021.

George Danezis, Cédric Fournet, Markulf Kohlweiss,
and Santiago Zanella Béguelin. Smart meter aggregation
via secret-sharing. In SEGS@ CCS, pages 75-80. ACM,
2013.

Emma Dauterman, Mayank Rathee, Raluca Ada Popa,
and Ion Stoica. Waldo: A private time-series database
from function secret sharing. In IEEE Symposium on
Security and Privacy, pages 2450-2468. IEEE, 2022.

Samuel Dittmer, Yuval Ishai, Steve Lu, Rafail Ostrovsky,
Mohamed Elsabagh, Nikolaos Kiourtis, Brian Schulte,
and Angelos Stavrou. Streaming and unbalanced PSI
from function secret sharing. In SCN, volume 13409 of
LNCS, pages 564-587. Springer, 2022.

Jack Doerner and Abhi Shelat. Scaling ORAM for
secure computation. In CCS, pages 523-535. ACM,
2017.

Daniel Escudero. An introduction to secret-sharing-
based secure multiparty computation. IACR Cryptology
ePrint Archive, Report 2022/062, 2022.

Daniel Escudero, Satrajit Ghosh, Marcel Keller, Rahul
Rachuri, and Peter Scholl. Improved primitives for MPC
over mixed arithmetic-binary circuits. In CRYPTO, vol-
ume 12171 of LNCS, pages 823-852. Springer, 2020.

(33]

[34]

[35]

(36]

[37]

(38]

[39]

[40]

(41]

[42]

[43]

[44]

[45]

Muhammad Faisal, Jerry Zhang, John Liagouris, Vasiliki
Kalavri, and Mayank Varia. TVA: A multi-party com-
putation system for secure and expressive time series
analytics. IACR Cryptology ePrint Archive, 2023.

Muhammad Faisal, Jerry Zhang, John Liagouris, Vasiliki
Kalavri, and Mayank Varia. TVA GitHub repository.
https://github.com/CASP-Systems-BU/tva, 2023.

Brett Hemenway Falk, Steve Lu, and Rafail Ostro-
vsky. DURASIFT: A robust, decentralized, encrypted
database supporting private searches with complex pol-
icy controls. In WPES@ CCS, pages 26-36. ACM, 2019.

Brett Hemenway Falk, Daniel Noble, and Rafail Ostro-
vsky. 3-party distributed ORAM from oblivious set
membership. In SCN, volume 13409 of LNCS, pages
437-461. Springer, 2022.

Liyue Fan and Li Xiong. Real-time aggregate moni-
toring with differential privacy. In CIKM, pages 2169—
2173. ACM, 2012.

Ferdinando Fioretto and Pascal Van Hentenryck. Opt-
stream: Releasing time series privately. J. Artif. Intell.
Res., 65:423-456, 2019.

Alfonso Galderisi, Luca Zammataro, Eleonora Lo-
siouk, Giordano Lanzola, et al. Continuous glucose
monitoring linked to an artificial intelligence risk in-
dex: early footprints of intraventricular hemorrhage in
preterm neonates. Diabetes technology & therapeutics,
21(3):146-153, 2019.

Peng Gao, Xusheng Xiao, Ding Li, Zhichun Li,
Kangkook Jee, Zhenyu Wu, Chung Hwan Kim, San-
jeev R. Kulkarni, and Prateek Mittal. SAQL: A stream-
based query system for real-time abnormal system be-
havior detection. In USENIX Security Symposium, pages
639-656. USENIX Association, 2018.

Craig Gentry. Fully homomorphic encryption using
ideal lattices. In STOC, pages 169-178. ACM, 2009.

Oded Goldreich. Towards a theory of software protec-
tion and simulation by oblivious RAMs. In STOC, pages
182-194. ACM, 1987.

Oded Goldreich and Rafail Ostrovsky. Software pro-
tection and simulation on oblivious RAMs. J. ACM,
43(3):431-473, May 1996.

Michael T. Goodrich. Data-oblivious external-memory
algorithms for the compaction, selection, and sorting of
outsourced data. In SPAA, pages 379-388. ACM, 2011.

Lorenzo Grassi, Christian Rechberger, Dragos Rotaru,
Peter Scholl, and Nigel P. Smart. MPC-friendly sym-
metric key primitives. In CCS, pages 430-443. ACM,
2016.

https://github.com/CASP-Systems-BU/tva

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

Subir Halder and Mauro Conti. CrypSH: A novel IoT
data protection scheme based on BGN cryptosystem.
IEEFE Transactions on Cloud Computing, 2021.

Koki Hamada, Ryo Kikuchi, Dai Ikarashi, Koji Chida,
and Katsumi Takahashi. Practically efficient multi-party
sorting protocols from comparison sort algorithms. In
ICISC, volume 7839 of LNCS, pages 202-216. Springer,
2012.

D. Harris. A taxonomy of parallel prefix networks. In
The 37th Asilomar Conference on Signals, Systems &
Computers, volume 2, pages 2213-2217, 2003.

Matis Harvan, Samuel Kimoto, Thomas Locher,
Yvonne-Anne Pignolet, and Johannes Schneider. Pro-
cessing encrypted and compressed time series data. In
ICDCS, pages 1053-1062. IEEE Computer Society,
2017.

Mihaela Ion, Ben Kreuter, Ahmet Erhan Nergiz, Sar-
var Patel, Mariana Raykova, Shobhit Saxena, Karn Seth,
David Shanahan, and Moti Yung. On deploying secure
computing commercially: Private intersection-sum pro-
tocols and their business applications. IACR Cryptology
ePrint Archive, Report 2019/723, 2019.

Marek Jawurek, Florian Kerschbaum, and George
Danezis. Privacy technologies for smart grids - a sur-
vey of options. Technical Report MSR-TR-2012-119,
November 2012.

Sgren Kejser Jensen, Torben Bach Pedersen, and Chris-
tian Thomsen. Time series management systems: A
survey. IEEE Trans. Knowl. Data Eng., 29(11):2581—
2600, 2017.

Marc Joye and Benoit Libert. A scalable scheme for
privacy-preserving aggregation of time-series data. In
Financial Cryptography, volume 7859 of LNCS, pages
111-125. Springer, 2013.

Kristjan Valur Jonsson, Gunnar Kreitz, and Misbah Ud-
din. Secure multi-party sorting and applications. In
ACNS, June 2011.

Manos Katsomallos, Katerina Tzompanaki, and Dimitris
Kotzinos. Landmark privacy: Configurable differential
privacy protection for time series. In CODASPY, pages
179-190. ACM, 2022.

Marcel Keller. MP-SPDZ: A versatile framework for
multi-party computation. In CCS, pages 1575-1590.
ACM, 2020.

Marcel Keller, Emmanuela Orsini, Dragos Rotaru, Pe-
ter Scholl, Eduardo Soria-Vazquez, and Srinivas Vivek.
Faster secure multi-party computation of AES and DES

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

(68]

[69]

using lookup tables. In ACNS, volume 10355 of LNCS,
pages 229-249. Springer, 2017.

Brian Knott, Shobha Venkataraman, Awni Y. Hannun,
Shubho Sengupta, Mark Ibrahim, and Laurens van der
Maaten. CrypTen: Secure multi-party computation
meets machine learning. In NeurIPS, pages 4961-4973,
2021.

Simeon Krastnikov, Florian Kerschbaum, and Douglas
Stebila. Efficient oblivious database joins. Proc. VLDB
Endow., 13(11):2132-2145, 2020.

John Liagouris, Vasiliki Kalavri, Muhammad Faisal, and
Mayank Varia. Secrecy: Secure collaborative analyt-
ics in untrusted clouds. In NSDI, pages 1031-1056.
USENIX Association, 2023.

Yehuda Lindell. Secure multiparty computation. Com-
mun. ACM, 64(1):86-96, December 2020.

Yasuko Matsubara, Yasushi Sakurai, Willem G. van Pan-
huis, and Christos Faloutsos. FUNNEL: automatic min-
ing of spatially coevolving epidemics. In KDD, pages
105-114. ACM, 2014.

Payman Mohassel and Peter Rindal. ABY>: A mixed
protocol framework for machine learning. In CCS, pages
35-52. ACM, 2018.

Spiros Papadimitriou and Philip S. Yu. Optimal multi-
scale patterns in time series streams. In SIGMOD Con-
ference, pages 647-658. ACM, 2006.

Rishabh Poddar, Sukrit Kalra, Avishay Yanai, Ryan
Deng, Raluca Ada Popa, and Joseph M. Hellerstein.
Senate: A maliciously-secure MPC platform for col-
laborative analytics. In USENIX Security Symposium,
pages 2129-2146. USENIX Association, 2021.

Vibhor Rastogi and Suman Nath. Differentially private
aggregation of distributed time-series with transforma-
tion and encryption. In SIGMOD Conference, pages
735-746. ACM, 2010.

Yasushi Sakurai, Yasuko Matsubara, and Christos
Faloutsos. Mining and forecasting of big time-series
data. In SIGMOD Conference, pages 919-922. ACM,
2015.

Hossein Shafagh, Anwar Hithnawi, Lukas Burkhalter,
Pascal Fischli, and Simon Duquennoy. Secure sharing
of partially homomorphic encrypted iot data. In SenSys,
pages 29:1-29:14. ACM, 2017.

Hossein Shafagh, Anwar Hithnawi, Andreas Droescher,
Simon Duquennoy, and Wen Hu. Talos: Encrypted query
processing for the internet of things. In SenSys, pages
197-210. ACM, 2015.

[70] Elaine Shi, T.-H. Hubert Chan, Eleanor Gilbert Rieffel,
Richard Chow, and Dawn Song. Privacy-preserving
aggregation of time-series data. In NDSS. The Internet
Society, 2011.

[71] Jonas Traub, Philipp M Grulich, Alejandro Ro-
driguez Cuéllar, Sebastian BreB3, Asterios Katsifodimos,
Tilmann Rabl, and Volker Markl. Efficient window ag-
gregation with general stream slicing. In EDBT, vol-
ume 19, pages 97-108, 2019.

[72] Maria Lorena Tuballa and Michael Lochinvar Abundo.
A review of the development of smart grid technologies.
Renewable and Sustainable Energy Reviews, 59:710—
725, 2016.

[73] Abhishek Verma, Luis Pedrosa, Madhukar R. Korupolu,
David Oppenheimer, Eric Tune, and John Wilkes. Large-
scale cluster management at Google with Borg. In Eu-
roSys, pages 18:1-18:17. ACM, 2015.

[74] Thijs Veugen and Mark Abspoel. Secure integer division
with a private divisor. Proc. Priv. Enhancing Technol.,
2021(4):339-349, 2021.

[75] Nikolaj Volgushev, Malte Schwarzkopf, Ben Getchell,
Mayank Varia, Andrei Lapets, and Azer Bestavros. Con-
clave: secure multi-party computation on big data. In
EuroSys, pages 3:1-3:18. ACM, 2019.

[76] Frank Wang, Catherine Yun, Shafi Goldwasser, Vinod
Vaikuntanathan, and Matei Zaharia. Splinter: Practical
private queries on public data. In NSDI, pages 299-313.
USENIX Association, 2017.

[77] Hao Wang and Zhengquan Xu. CTS-DP: publishing cor-
related time-series data via differential privacy. Knowl.
Based Syst., 122:167-179, 2017.

[78] Wanli Xue, Chengwen Luo, Guohao Lan, Rajib Kumar
Rana, Wen Hu, and Aruna Seneviratne. Kryptein: a
compressive-sensing-based encryption scheme for the
internet of things. In IPSN, pages 169—-180. ACM, 2017.

[79] Wenting Zheng, Ryan Deng, Weikeng Chen, Raluca Ada
Popa, Aurojit Panda, and Ion Stoica. Cerebro: A plat-
form for multi-party cryptographic collaborative learn-
ing. In USENIX Security Symposium, pages 2723-2740.
USENIX Association, 2021.

[80] Wenting Zheng, Raluca Ada Popa, Joseph E. Gonzalez,
and Ion Stoica. Helen: Maliciously secure coopetitive
learning for linear models. In IEEE Symposium on
Security and Privacy, pages 724-738. IEEE, 2019.

[81] Yandong Zheng, Rongxing Lu, Yunguo Guan, Jun Shao,
and Hui Zhu. Efficient and privacy-preserving similar-
ity range query over encrypted time series data. IEEE

Transactions on Dependable and Secure Computing,
19(4):2501-2516, 2022.

[82] Yunyue Zhu and Dennis E. Shasha. StatStream: Statisti-
cal monitoring of thousands of data streams in real time.
In VLDB, pages 358-369. Morgan Kaufmann, 2002.

A Arithmetic black-box model

In this section and in Figure 5, we provide a rigorous specifi-
cation of the arithmetic black-box (ABB) functionality used
in this work. The works of Araki et al. [5], Dalskov et al. [26],
and Mohassel and Rindal [63] provide instantiations for all
of these functionalities, and prove simulation-based security.

The goal of the ABB model is to consider a reactive (i.e.,
stateful) functionality that corresponds to an ideal specifica-
tion of the MPC operations that we require. This specifica-
tion provides two benefits. First, we can abstract away the
underlying implementations of these MPC operations when
specifying TVA’s protocols (as shown formally in Protocols
| and 2, and implicitly in all other protocols). Second, we can
write generic proofs (in the full version of this work [33]) that
all of the protocols within TVA are secure when provided
with any instantiation of the ABB functionality. Several prior
works use the ABB model to prove the security of higher-
level protocols that make black-box use of MPC primitive
operations (e.g., [31,32,36,45,57,74]).

In this work, we require a functionality that supports mixed-
mode operations: both arithmetic and boolean computation
as well as conversions between them. For this reason, our
starting point is the functionality provided by Escudero et
al. [32, Figure 1]. Our functionality F,p, in Figure 5 is similar
to Escudero et al. [32, Figure 1]. In particular, we emphasize
that the “add” and “mult” functionalities in Figure 5 support
both arithmetic and boolean operations—that is, they also sup-
port the operations of boolean XOR and boolean AND. Addi-
tionally, we follow the convention that the method name itself
is also the first input to the functionality; as a consequence,
we use the notations Fypp.input(—) and Fupp (input, —) inter-
changeably.

We do make a few modifications to our functionality Fypp
as compared to the ABB model of Escudero et al. First, our
functionality considers a single addition operation at a time
rather than providing support for more complicated linear
combinations directly; this is purely a modeling decision and
has no impact on the capabilities of the functionality. Second,
we support addition and multiplication over arithmetic rings
of different sizes; support for multiple moduli provides a small
efficiency benefit in Protocols 1-2 but is not required and
may be omitted. Third, we add support for the shared input
(INP) and bit-to-arithmetic (b2A) functionalities. Fourth, we
allow for the output to be revealed only to a single entity
(e.g., the data analyst), rather than all protocol participants.
Fifth, we add an arithmetic to (multi-bit) boolean operation

Functionality F,y;,

input: Invoked upon receiving (input, P;,type,id, £y, x)
from party P; and (input,P;,type,id,¢y) from all
other parties. Verifies that id is a fresh identifier and
type € {arithmetic,boolean}. Stores (type,id, fx,x)
into memory.

shared input: This is an optional method. It is invoked
upon receiving (INP, P;, P;, type, id,x,x) from party
P, (INP,Pi,Pj,type,id,Zx,x') from party Pj, and
(input, P;, P;,type,id,{x) from all other parties. Ver-
ifies that x = x’, id is a fresh identifier, and type €
{arithmetic,boolean}. Stores (type,id,/x,x) into
memory.

add: Invoked upon receiving (add,type,id;,ids,idnew)
from all parties. Retrieves from memory the values
x1,xp corresponding to identifiers idy,id,. Verifies
that both of them are of the stated type and have
the same length ¢y, and that idnew is a fresh iden-
tifier. If type = arithmetic, then set x = x| +x, mod
26 TIf type = boolean, then set x = x| ® xp. Stores
(type,idnew, fx,x) into memory.

mult: Invoked upon receiving (mult, type,idy,id;,idnew)
from all parties. Retrieves from memory the values
x1,xp corresponding to identifiers idy,id,. Verifies
that both of them are of the stated type and have
the same length ¢y, and that idnew is a fresh iden-
tifier. If type = arithmetic, then set x = x; - x, mod
26 If type = boolean, then set x = x; A x. Stores
(type,idnew, fx,x) into memory.

A2B: Invoked upon receiving (A2B,id,idnew) from
all parties. Retrieves from memory the tuple
(type,id, £x,x) with identifier id. Verifies that type =
arithmetic and idnew is a fresh identifier. Stores
(boolean,idnew, £x,x) into memory.

B2A: Invoked upon receiving (B2A,id,idnew) from
all parties. Retrieves from memory the tuple
(type,id,fx,x) corresponding to identifier id. Veri-
fies that type = boolean and idnew is a fresh identifier.
Stores (arithmetic, idnew, £x,x) into memory.

b2A: Invoked upon receiving (B2A,id,idnew,l7x) from
all parties. Retrieves from memory the tuple
(type,id, £x,x) corresponding to identifier id. Verifies
that type = boolean, idnew is a fresh identifier, and
¢y = 1. Stores (arithmetic, idnew, Zx,x) into memory.

output: Invoked upon receiving (output, P;, type,id) from
all parties. Retrieves from memory the value x corre-

sponding to identifier id, and sends it to party P;.

Figure 5: Arithmetic black-box functionality Fpp that supports
mixed-mode operations and conversions. Based upon Escudero et
al. [32, Figure 1], with a few modifications described in Appendix A.

A2B, which is instantiated in the 3-party variant of TVA
using a parallel prefix adder as described in Mohassel and
Rindal [63, §5.3], and we extend their technique to the 4-party
setting in Appendix B.

It is straightforward to see that the works of Araki et al. [5]
and Dalskov et al. [26] provide most of the protocols that
collectively instantiate our Fypp. Concretely, they provide spe-
cific ideal functionalities for each method within Figure 5
(e.g., multiplication is described in [5, Functionality 3.3]
and [26, Protocol 4]), and then provide simulation-secure
instantiations of each method. Furthermore, revealing the out-
put to one party does not reveal any information about other
secrets, due to the use of fresh randomness to re-randomize
shares after every interactive operation. There are two caveats,
however. First, only Dalskov et al. [26] provides an instantia-
tion of the shared input method INP. As a result, we only
use INP within the 4-party variant of TVA (e.g., we use
it in Protocol 2 but not Protocol 1). Second, we adopt the
arithmetic-to-boolean conversion protocols from Mohassel
and Rindal [63, §5.3] (in the 3-party setting) and Appendix B
(in the 4-party setting).

B 4-party arithmetic to boolean conversion

In Protocol 6, we provide a new mixed-mode protocol for
arithmetic to boolean conversion. Its main advantage is to
reduce the number of communication rounds required: our
protocol uses 1 boolean adder rather than 3 of them. Addi-
tionally, our protocol is amenable to use within our 4-party
secure division protocol, in which case the “shares merging”
step below can be removed since the INP sharing is already
performed within Protocol 2.

Protocol 6: A2B CONVERSION (Malicious 4PC)

Input : An arithmetic secret-shared integer (x)),
Output: A boolean secret-shared integer [x],
//Shares Merging

1 Parties 1, 4 locally compute x;, = x1 +x2

2 Party 2, 3 locally compute x| =x3 +x4
//Shares redistribution

3 Let [a], = INPg(x(,1,4)

a4 Let [b], = INPg(x],2,3)

s Output [x], = [a]¢ +[b]e

	Introduction
	Limitations of existing systems
	Summary of contributions

	TVA in a nutshell
	Supported workloads
	Putting it all together: the TVA API

	Threat model and security guarantees
	Secure time series data analysis in TVA
	Integer division by public divisor
	Tumbling window
	Gap-based session window
	Threshold-based session window
	Other TVA operators
	Operator composition

	Implementation
	Evaluation
	Comparison with Waldo
	Differences between Waldo and TVA
	Performance results

	Performance on real-world applications
	Application scenarios
	Online analysis scenario with time constraints
	Historical analysis scenario

	Related work
	Arithmetic black-box model
	4-party arithmetic to boolean conversion

