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Abstract

We investigate the problem of testing whether a discrete probability distribution
over an ordered domain is a histogram on a specified number of bins. One of
the most common tools for the succinct approximation of data, k-histograms
over [n] are probability distributions that are piecewise constant over a set of
k intervals. Given samples from an unknown distribution p on [n], we want
to distinguish between the cases that p is a k-histogram versus far from any k-
histogram, in total variation distance. Our main result is a sample near-optimal and
computationally efficient algorithm for this testing problem, and a nearly-matching
(within logarithmic factors) sample complexity lower bound.

1 Introduction

1.1 Background and Motivation

A classical approach for the efficient exploration of massive datasets involves the construction of
succinct data representations, see, e.g., the survey [CGHJ12]. One of the most useful and commonly
used compact representations are histograms. For a dataset S, whose elements are from the universe
[n] := {1, . . . , n}, a k-histogram is a function that is piecewise constant over k interval pieces.
Histograms constitute the oldest and most popular synopsis structure in databases and have been
extensively studied in the database community since their introduction in the 1980s [Koo80], see,
e.g., [GMP97, JKM+98, CMN98, TGIK02, GGI+02, GKS06, ILR12, ADH+15, Can16], for a
partial list of references. In both the statistics and computer science literatures, several methods have
been proposed to estimate histogram distributions in a range of natural settings [Sco79, FD81, DL04,
LN96, Kle09, CDSS14, ADH+15, ADLS17, DLS18].

In this work, we study the algorithmic task of deciding whether a (potentially very large) dataset S
over the domain [n] is a k-histogram (i.e., it has a succinct histogram representation with k interval
pieces) or is “far” from any k-histogram representation (in a well-defined technical sense). Our focus
is on sublinear time algorithms [Rub06]. Instead of reading the entire dataset S, which could be
highly impractical, one can instead use randomness to sample a small subset of the dataset. Note that
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sampling a (uniformly) random element from S is equivalent to drawing a sample from the underlying
probability distribution p of relative empirical frequencies. This observation brings our algorithmic
problem of “histogram testing” in the framework of distribution property testing (statistical hypothesis
testing) [BFR+00, BFR+13], see, e.g., [Can20] for a survey.

Formally, we study the following task: for an integer 1 ≤ k ≤ n, denote byHn
k the set of k-histogram

distributions over {1, 2, . . . , n}, i.e., the set of all distributions p such that there exists a partition
of [n] into k consecutive intervals (not necessarily of the same size) with p being uniform on each
interval. Given access to i.i.d. samples from an unknown distribution p on [n] and a desired error
tolerance 0 < ε < 1, we want to correctly distinguish (with high probability) between the cases that
p is a k-histogram versus ε-far from any k-histogram, in total variation distance (or, equivalently,
ℓ1-norm). It should be noted that the histogram testing problem studied here is not new. Prior work
within the algorithms and database theory community has investigated the complexity of the problem
in the past ten years (see, e.g., [ILR12, ADH+15, Can16] and Section 1.4 for a detailed summary of
prior work). However, known algorithms for this task are sub-optimal, and in particular there is a
polynomial gap between the best known upper and lower bounds on the sample complexity of the
problem. At a high level, the difficulty of our histogram testing problem in the sub-linear regime lies
in the fact that the location and “length” of the k intervals defining the histogram representation (if
one exists) is a priori unknown to the algorithm.

We believe that the histogram testing problem is natural and interesting in its own right. Moreover,
a sample-efficient algorithm for this testing task can be used as a key primitive in the context of
model selection, where the goal is to identify the “most succinct” data representation. Indeed, various
algorithms are known for learning k-histograms from samples whose sample complexities (and
running times) scale proportionally to the succinctness parameter k (and are completely independent
of the domain size n) [CDSS14, ADH+15, ADLS17]. Combined with an efficient tester for the
property of being a k-histogram (used to identify the smallest possible value of k such that p is
a k-histogram, e.g., via binary search), one can obtain a sketch of the underlying dataset. See
Appendix C for a detailed description.

1.2 Our Results

Our main contribution is a near-characterization of the sample complexity of the histogram testing
problem. Specifically, we provide (1) a sample near-optimal and computationally efficient testing
algorithm for the problem, and (2) a nearly-matching sample complexity lower bound (within
logarithmic factors). In particular, we establish the following theorem:
Theorem 1 (Main Result). There exists a testing algorithm for the class of k-histograms on [n] with
sample complexity m = Õ(

√
nk/ε+ k/ε2 +

√
n/ε2) and running time poly(m). Moreover, for any

k ∈ [n] and 0 < ε < 1, any testing algorithm for the class of k-histograms on [n] requires at least
Ω̃(
√
nk/ε+ k/ε2 +

√
n/ε2) samples.

(The Õ(·) and Ω̃(·) notation hides polylogarithmic factors in the argument.) Theorem 1 characterizes
the complexity of the histogram testing problem within polylogarithmic factors. Note that there are
three terms in the sample complexity; namely,

√
nk/ε, k/ε2, and

√
n/ε2. The sample complexity of

the problem is dominated by one of these three different terms, depending on the relative sizes of
n, k and 1/ε. An illustration is given in Figure 1.

Prior to our work, the best previous histogram testing algorithm had sample complexity
Õ(
√
kn/ε3) [CDGR18], while the best known lower bound was Ω̃(

√
n/ε2 + k/ε) [Can16].3

We note that previous upper and lower bounds exhibit a polynomial gap, even for constant values
of ε or k. For example, in the “large-k” regime where k = nc for some constant 0 < c < 1, there
was a gap between Õ(n1/2+c/2) and Ω̃(n1/2) in the sample complexity. In this regime, however,
Theorem 1 results in the near-optimal bound of Θ̃(n1/2+c/2). Similarly, in the “high-accuracy”
regime where ε = 1/nc for some constant c > 0 (and, say, constant k), previous bounds only
established that the sample complexity lies between Õ(n1/2+3c) and Ω̃(n1/2+2c), while our result

3As discussed in Section 1.4, while an upper bound of Ω̃(
√
n/ε2 + k/ε3) is claimed in [Can16], the analysis

of their algorithm is flawed; and, indeed, our work shows that the sample complexity bound stated in [Can16]
cannot hold, as it would contradict our lower bound.
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Figure 1: The x-axis, y-axis are log(k)/ log(n) and log(1/ε)/ log(n) respectively. Each point in the graph
corresponds to a setting of n, k, ε, and is colored based on the corresponding dominating term.

shows the (nearly-tight) bound is Θ̃(n1/2+c). These are only two specific examples: more generally,
the previously known bounds are suboptimal by polynomial factors in 1/ε when ε ≥

√
k/n; and

by polynomial factors in all parameters k, n, 1/ε when ε ≤
√
k/n. Theorem 1 settles the sample

complexity of the problem, up to logarithmic factors, for every parameter setting.

At a technical level, our sample complexity lower bound construction conceptually differs from previ-
ous work in distribution testing, drawing instead from sophisticated techniques from the distribution
estimation literature. Our upper bound follows from the “Testing-via-Learning” framework proposed
in [ADK15]. The main technical innovation is a sample- and time- efficient adaptive algorithm which
can simultaneously learn an unknown histogram with unknown interval structure distribution and
identify a domain where the learned result is accurate. We elaborate on these aspects next.

1.3 Overview of Techniques

Sample Complexity Lower Bound. We follow the typical high-level approach in proving sample
complexity lower bound. Namely, we define two ensembles of distributions DYES and DNO such
that, with high probability, the following conditions are satisfied: (1) a random distribution from
DYES is a k-histogram, (2) a random distribution from DNO is ε-far from any k-histogram, and (3)
given a sample of appropriate size, it is information-theoretically impossible to distinguish a random
distribution drawn from DYES from a random distribution drawn from DNO.

We start by describing our hard instances for the case that the accuracy parameter ε is a small universal
constant. On the one hand we define DYES so that all pi’s are the same except for a “small” number
of domain elements i.e., c · k for a small constant c ∈ (0, 1). On the other hand, for a distribution p
drawn from DNO, pi will be randomly 0 or roughly 2/n, except for at most a constant fraction of the
elements. It is not hard to see that, with high probability, a distribution drawn from DYES (resp. DNO)
will be a k-histogram (resp. far from being a k-histogram).

To ensure that the underlying distributions are indistinguishable using a small sample size, we want to
guarantee that, for all small values of t, the number of elements with exactly t samples will be roughly
the same for DYES and DNO, as this rules out any test statistic relying on counting the number of
t-way collisions among the sample. Following [Val11, VV13, JVYHW15, WY16] this is essentially
equivalent to showing that distributions drawn from DYES and DNO match their low-degree moments.
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In particular, for a random pair of distributions p, p′ drawn from DYES and DNO respectively, we want
that

∑
i p

t
i and

∑
i p

′t
i are roughly the same for all small values t. We note that the non-exceptional

elements of a distribution p′ drawn from DNO — which have probability mass either 0 or roughly
2/n — will have second moment larger than the non-exceptional elements of a distribution p drawn
from DYES — which have probability mass roughly 1/n — by approximately 1/n. To counteract this
discrepancy, the (fewer than k) exceptional elements in DYES must have average mass at least 1/

√
kn.

Fortunately, using techniques from [VV13, WY+19], we are able to construct distributions that match
t = Θ(log n) moments in which no individual bin has mass more than Õ(1/

√
kn). Combining this

construction with basic information-theoretic arguments gives us an Ω̃(
√
kn) sample complexity

lower bound. We note that this lower bound is tight in the sense that with more than Ω̃(
√
kn) samples

one can reliably identify the exceptional elements, as they will each have relatively large numbers
of samples with high probability, allowing us to distinguish DYES from DNO simply based on the
sub-distributions over these elements.

Given the aforementioned construction (for constant ε), it is easy to obtain a sample lower bound
of Ω̃(

√
kn/ε) by mixing our hard instances with the uniform distribution (with mixing weights ε

and 1− ε respectively). In fact, even if the testing algorithm knows in advance which samples come
from the uniform part and which samples come from the original hard instance, distinguishing would
require Ω̃(

√
kn) samples from the original hard instance, and therefore Ω̃(

√
kn/ε) samples overall.

This sample size lower bound turns out to be tight for ε relatively large, as one can still reliably
identify the exceptional bins with only Ω̃(

√
kn/ε) samples. However, when ε becomes sufficiently

small, identifying the exceptional bins becomes more challenging. Indeed, if we take m samples, we
expect that an exceptional bin has roughly mε/

√
kn more samples than a non-exceptional bin. On

the other hand, a non-exceptional bin will have roughly Poi(m/n) samples with standard deviation√
m/n. When m/n ≫ mε/

√
kn (which happens in the regime ε ≪

√
k/n), in order for the

exceptional bins to be distinguishable, we would need that mε/
√
kn≫

√
m/n or m≫ k/ε2 many

samples. Using a careful information-theoretic argument, we formalize this intuition to show that
Ω̃(k/ε2) is indeed a sample lower bound in this regime.

Sample-Efficient Tester. The starting point of our efficient tester is the Testing-via-Learning approach
of [ADK15]. Very roughly speaking, we first design a learning procedure which outputs a distribution
p̂ that would be close to p in χ2 divergence, assuming that p was in fact a k-histogram. Then we
use a χ2/ℓ1 tolerant tester, in the spirit of the one introduced in [ADK15], to distinguish between the
cases that p is close to p̂ in χ2 divergence versus far from p̂ in ℓ1-distance. This step is however
significantly harder than this simple outline suggests, as it turns out challenging to perform the first
step exactly. Instead, we design a specific learning algorithm with an implicit “hybrid” learning
guarantee, (see Lemma 5) which in turns requires us to considerably generalize and adapt the “tolerant
testing part” to avoid spurious discrepancies (introduced in the imperfect learning stage) which may
lead to false negatives.

To implement the first step, we follow the general “learn-and-sieve” idea suggested in [Can16], with
important modifications to address the flaw in their approach and its analysis. In particular, suppose
that p is a k-histogram. Then, if we knew the corresponding k intervals (that make up the partition
for the k-histogram), it suffices to learn the mass of p on each interval, and let p̂ be uniform on each
interval (with the appropriate total mass). Of course, a key source of difficulty arises from the fact
that we do not know the partition a priori. To circumvent this issue, we divide [n] into (roughly)
K = Θ(k) intervals and try to detect if p is far in χ2 divergence from being uniform on any of these
intervals. If an interval from our partition incurs large χ2 error (we call such an interval bad), we
know that p must not be constant within this interval. Therefore, we proceed to subdivide these bad
intervals into roughly equal parts, and recurse on the Θ(k) intervals in our new partition. Assuming
p is a k-histogram, we subdivide at most k intervals in each iteration, since there could be at most
k intervals from any interval partition of [n] where p is not constant. Hence, in each iteration, we
decrease the mass of the bad intervals by at least a constant factor. We repeat the process for at
most O(log(1/ε)) many iterations; after this many iterations, the total mass of the bad intervals will
become O(ε), and thus they may be safely ignored.

A significant difference between our method and the approach from [Can16] lies in the method
of sieving. In [Can16], it was only said that the algorithm would filter out a subset of breakpoint
intervals based on the χ2 statistics ([ADK15]) with the goal of reducing discrepancy; this is where
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the main gap in their analysis lies, and the particular (flawed) approach they suggested does not seem
to be fixable [Can22]. On the contrary, we characterize the exact set of intervals that need to (and
can) be removed with the formal definition of bad intervals with respect to a given partition I of [n]
(See Definition 2). Based on that, our approach is to search for any sub-intervals J (not necessarily
an interval in I) on which the χ2 divergence between p and p̂, an approximation of p assuming p is
uniform over intervals within the given partition, is more than Ω̃(ε2/k). For an interval I from the
partition I , we show the inclusion of such “bad sub-interval” J ⊆ I then certifies the “badness” of I
itself. To find such a J , we need a technique for accurately approximating p(J) simultaneously for
all intervals J ⊆ [n], in both absolute and relative error; a notion of approximation much stronger
that what classical tools from statistical learning theory such as the VC inequality or the Dvoretzky–
Kiefer–Wolfowitz (DKW) inequality provide. Notice that, for a fixed interval J ⊆ [n], taking the
empirical distribution over b samples gives an estimate q of p such that |q(J)− p(J)| <

√
p(J)/b

with constant probability. By taking Θ(log(n)) batches of samples (each containing b i.i.d. samples
from p), and computing the median value of all of the q(J)’s, with high probability for each J , we
then obtain an estimate φ̂(J) 4 for which the above condition holds. Using the sub-routine, as long
as b is at least Ω(k/ε2), we can ensure that |φ̂(J)− p(J)|2/p(J)≪ ε2/k, and we can then safely
use our estimate φ̂(J) as a proxy for p(J) for the detection of those “bad sub-intervals” for which
|p(J)− p̂(J)|2/p̂(J) is large, which in turns certify the bad intervals from a given partition. This
suffices unless p(J) is substantially larger than our estimate p̂(J).

Unfortunately, this bad case where p(J)≫ p̂(J) can happen if p(J) is smaller than 1/b. In such a
case, in a collection of b samples from p, we are likely to see no samples in J , and thus our empirical
estimate p̂(J) will be 0. We can fix this issue (i.e., the case where p̂(J) is actually 0) by mixing both
p and p̂ with the uniform distribution, thus allowing us to assume that p̂(J) ≥ |J |/2n ≥ 1/(2n).
Yet, this still leaves a potential gap of roughly n/b between the ratio of p(J) and p̂(J). Fortunately,
if we select b≫

√
nk/ε, we will have that |φ̂(J)− p(J)|2/p(J)≪ ε/

√
nk, and even accounting

for losing a factor of b/n, we will still have that |φ̂(J)− p(J)|2/p(J) ≪ ε2/k. This implies that
we will successfully detect any bad intervals and achieve our learning guarantees.

1.4 Prior Work

Motivated by the question of building provably good succinct representations of a dataset from
only a small sub-sample of the data, [ILR12] first introduced histogram testing as a preliminary,
ultra-efficient decision subroutine to find the best parameter k for the number of bins. They provided
an algorithm for this task which required Õ(

√
kn/ε5) samples from the dataset, a sample complexity

which beats the naïve approach (reading and processing the whole dataset) for small values of k
and relatively large values of the accuracy parameter ε. Subsequent work [CDGR18] reduced the
dependence on ε from quintic to cubic, giving an algorithm with sample complexity Õ(

√
kn/ε3).

This bound was, however, still quite far from the “trivial” lower bound of Ω(
√
n/ε2), which follows

from a reduction to uniformity testing (i.e., the case k = 1) [Pan08].

Prior to the current work, an Õ(
√
n/ε2 + k/ε3) upper bound and an Ω̃(

√
n/ε2 + k/ε) lower bound

were obtained in [Can16]. While the lower bound is theoretically sound (albeit, as it turns out,
suboptimal), as pointed out in [Can22], the upper bound does not hold due to a technical flaw in the
analysis, leaving the optimal sample complexity of the problem open for even constant ε. Moreover,
the lower bound of [Can16], based on a reduction of histogram testing to the well-studied problem of
support size estimation, provably cannot be improved to provide either (i) a quadratic dependence on
ε, i.e., Ω̃(k/ε2) or (ii) coupling between the two domain parameters k, n, i.e., Ω̃(

√
nk/ε). Our work

remedies all those issues, fully resolving the question of histogram testing, for the whole parameter
range, with logarithmic factors.

Finally, we note that a number of works have obtained algorithms and lower bounds for related,
yet significantly different, testing problems. Specifically, [DK16] gave a sample-optimal testing
algorithm for the special case of our problem where the k intervals are known a priori. Moreover, a
number of works [DKN15b, DKN15a, DKN17] have obtained identity and equivalence testers under
the assumption that the input distributions are k-histograms.

4Notice that φ̂ is neither a distribution nor a measure, but just a map from intervals to positive real values.

5



Preliminaries.We denote by TV(p,q) the total variation (TV) distance between probability dis-
tributions p,q over [n] := {1, 2, . . . , n}, defined as TV(p,q) := supS⊆[n](p(S) − q(S)) =
1
2

∑n
i=1 |p(i)− q(i)|, where p(S) :=

∑
i∈S p(i). We will make essential use of the χ2-divergence

of p with respect to q, defined as dχ2

(
p
∥∥q) :=

∑n
i=1 (pi − qi)

2
/qi. We will also require gener-

alizations of these definitions on restrictions of the domain. In particular, given S ⊆ [n], we use
the notation TVS(p,q) := (1/2)

∑
i∈S |p(i)− q(i)| and dSχ2

(
p
∥∥q) := ∑

i∈S (pi − qi)
2
/qi. We

note that for any S ⊆ [n], it holds that TVS(p,q)2 ≤ 1
4d

S
χ2

(
p
∥∥q).

The asymptotic notation Õ (resp. Ω̃) suppresses logarithmic factors in its argument, i.e., Õ(f(n)) =

O(f(n) logc f(n)) and Ω̃(f(n)) = Ω(f(n)/ logc f(n)), where c > 0 is a universal constant. The
notations≪ and≫ intuitively mean “much less than” and “much greater than” respectively. Formally,
we write f(n)≪ g(n) to denote that f(n) < c · g(n), for some universal constant 0 < c.

2 An efficient testing algorithm

A preliminary simplification. Without loss of generality, we will assume that p(i) ≥ 1
2n for every

i ∈ [n]. Indeed, this can be ensured by mixing the unknown distribution with the uniform distribution
un on [n] beforehand i.e. p′ := 1

2 (p + un) (See Fact 3 in Appendix for how to sample from p′

efficiently). It is easy to see that p′ remains a histogram after mixing: p′ ∈ Hn
k if p ∈ Hn

k , and p′ is
at least (ε/2)-far away from every histogram if p is ε-far from every histogram.

Testing via Learning. The main approach is to follow the Testing-via-Learning framework proposed
in [ADK15]. In particular, suppose we have a learning algorithm capable of constructing p̂ that is
close to p in χ2 divergence when p ∈ Hk

n. Then, (1) if p ∈ Hn
k , we will have that p and p̂ are close

and (as a consequence of this) that p̂ is close to being a k-histogram. Yet, (2) if p is far from being a
k-histogram, then by the triangle inequality we must have either that p̂ is far from being a k-histogram,
or that p and p̂ are far from each other in ℓ1 distance. We can use dynamic programming to check
the explicit description is indeed close to a k-histogram in ℓ1 distance efficiently (See Lemma 4.11 of
[CDGR18]). To verify p and p̂ are close, we will use a result of [ADK15] on tolerant identity testing.
In particular, given an explicit description p̂, the tester takes sample from the unknown distribution p
and decides whether p and p̂ are closed in χ2 divergence or far in ℓ1 distance. We remark that p̂ can
be relaxed to be a positive measure.
Lemma 1 (Adapted from Lemmas 2 and 3 [ADK15]). Let p and p̂ be a distribution and a positive
measure defined on [n] respectively. Fix ε ∈ (0, 1) and let A = {i ∈ [n] : p̂(i) ≥ ε/(50n)}.
There exists a tester Tolerance-Identity-Test, which takes Poi(m) for m = Θ

(√
n/ε2

)
i.i.d. samples

from p and outputs Accept if dAχ2

(
p
∥∥p̂) ≤ ε2/500 and Reject if TVA (p, p̂) ≥ ε with constant

probability.

Outline for Learning. If p ∈ Hn
k and we know the partition of p in advance, one can learn p up

to ε2 in χ2 divergence with Θ(k/ε2) samples (following the analysis of Laplace estimator from
[KOPS15]). Without the partition information, we can nonetheless achieve a weaker guarantee. That
is, we can output a fully specified measure p̂ on [n], together with a sub-domain G ⊆ [n], such
that dGχ2

(
p
∥∥p̂) is small. In particular, we can achieve the guarantee in three steps. (i) Divide the

domain [n] into K ≫ k many intervals obliviously (Lemma 2). (ii) Output a succinct measure p̂ that
is constant on each interval specified by Step (i) (Section 2.1). (iii) Identify the intervals I where
dIχ2

(
p
∥∥p̂) is large (Section 2.2). Denote B = [n]\G. The fact that we only have p and p̂ close in

χ2 divergence on a sub-domain G is a reasonable compromise as long as p(B), p̂(B) ≪ ε: if p is
ε-far away from p̂ in ℓ1 distance on [n], p is at least (ε− p(B)− p̂(B))-far away from p̂ on [n]\B.
Otherwise, we may take more samples from p restricted to B and sub-divide the problematic intervals
identified in Step (iii). Repeating the above steps iteratively then brings us to the case p(B)≪ ε.

Equitable Partition. The first step is to divide the domain into Θ(k) many intervals over which
the masses of p are approximately equal. As shown in [ADK15], this can be done with Θ̃(k) many
samples through a routine we denote as Approx-Divide. We also need a routine for sub-dividing a
set of disjoint intervals into even lighter sub-intervals. Nonetheless, one can reduce the sub-dividing
task to domain partitioning by running Approx-Divide on the sub-distribution restricted to the set of
disjoint intervals. Proofs are provided in Appendix A.1.
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Lemma 2. There exists an algorithm Approx-Sub-Divide that, given parameters δ ∈ (0, 1] and
integer B > 1, as well as a set of disjoint intervals I = {I1, I2, · · · , Iq}, given sample access to p on
[n], outputs a list of partitions S1, . . . ,Sq , where Si is the partition of the interval Ii ∈ I, such that
the following holds with probability at least 1− δ. (i) The algorithm uses O

(
B/p(I) · log

(
B/δ

))
samples. (ii) The output contains at most (8B+q) intervals in total. (iii) Every non-singleton interval
S ∈

⋃q
j=1 Sj satisfies p(S) ≤ p(I) · 16/B.

2.1 Simultaneously Estimating Mass of Intervals

In this section, we first introduce Interval-Mass-Estimate, a sub-routine that can accurately approxi-
mate the mass of p(J) for all intervals J ⊆ [n] simultaneously and then show how we can use it to
learn p (assuming p ∈ Hk

n).

Interval-Mass-Estimate first divides the number of samples drawn into Θ(log(n/δ)) batches. For
an interval I , we compute the estimate (number of samples falling in I divided by the batch size)
for each batch separately and compute the median over the statistics. This is often referred as the
“Median Trick” and is crucial in achieving the learning guarantees with high probability. Pseudo-code
and analysis are provided in Appendix A.2.
Lemma 3. Let be p be supported on [n] such that p(i) ≥ 1/(2n). Fix b ∈ Z+ and δ ∈ (0, 1]. The
algorithm Interval-Mass-Estimate takes 3b log(n/δ) i.i.d. samples from p and outputs φ̂, a map
from sub-intervals of [n] to real values, such that, with probability at least 1−δ, for every sub-interval
I ⊆ [n] it holds that p(I)/φ̂(I) ≤ max(2 , 8n/b), φ̂(I)/p(I) ≤ 3 and |φ̂(I)− p(I)| ≤

√
p(I)/b.

Let I be a partition of [n]. We try to learn p pretending that p is constant over each interval within I
with the routine Empirical-Learning. In particular, the algorithm uses Interval-Mass-Estimate to
obtain estimations of the mass of I ∈ I and then flatten the mass uniformly among elements i ∈ I .
Notice that, due to the application of the median trick, the output is not necessarily a distribution but
rather a positive measure5 p̂ on [n] which is constant over each interval within I.

If p is indeed a k-histogram, errors are only incurred on a special type of intervals (of which there
are at most k) which we refer to as the breakpoint intervals.
Definition 1 (Breakpoint Intervals). Given a k-histogram p on [n], we say that i ∈ [n] is a breakpoint
with respect to p if p(i) ̸= p(i + 1); and that an interval I ⊆ [n] is a breakpoint interval (with
respect to p) if I contains at least one breakpoint.

With Definition 1 in mind, we now specify the formal learning guarantees. Pseudo-code and proofs
are provided in Appendix A.3.
Lemma 4. Suppose p ∈ Hn

k . Let I a partition of [n] into K intervals. Let b ∈ Z+, δ ∈ (0, 1] and
T := 3 log(K/δ). There exists an algorithm Empirical-Learning, given (Tb) i.i.d. samples from p,
outputs a positive measure p̂, which satisfies the following with probability at least 1− δ. (i) p̂ is
constant within each interval in I . (ii) For every sub-intervals J ⊆ I where I ∈ I is a non-breakpoint
interval with respect to p, we have p(J)/p̂(J) ≤ max(2 , 8 · n/b) and |p̂(J)− p(J)| ≤

√
p(J)/b.

By combining the two guarantees in Lemma 4, one can see the χ2 divergence between p and p̂,
restricted to the non-breakpoint intervals, will be at most ε2 with high probability if taking Θ(KT/ε2)
many samples. However, following a result from [KOPS15, Can16], one only need Θ(K/ε2) samples
to learn a K-histogram up to ε2 error in this restricted notion of χ2 divergence. One may wonder
whether this is enough for us, and if the stronger (but less natural) guarantees provided by Lemma 4,
which end up increasing the number of samples required, are necessary. As we will see in the next
section, we indeed need not only that the χ2 divergence is small, but also that the ratio p(I)/p̂(I)
is bounded for all non-breakpoint intervals. In particular, this latter property enables us to compute
relatively accurate estimates of the χ2 divergence restricted to sub-intervals and (consequently) to tell
whether p is constant or from far from being constant on an interval.

2.2 Bad Interval Detection

While large contributions to the χ2 divergence (assuming the learning phase was successful) will
only come from breakpoint intervals, not all of them will necessarily contribute significantly to the

5That is, p̂ might not sum to one, and thus is not itself a probability distribution.
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χ2 divergence. In particular, a breakpoint interval is only considered “bad” and needs to be filtered
out if the error incurred is proportional to the number of breakpoints within.

Definition 2 (ε-Bad-Interval). Fix a partition I of [n] containing K intervals. Let I ∈ I be a
breakpoint interval of p. Furthermore, suppose I contains j − 1 breakpoints i.e. p is j-piece-wise
uniform in I . We say I ∈ I is an ε-bad interval with respect to p̂ and I if dIχ2

(
p
∥∥p̂) ≥ j · ε2/K.

The definition suits our purpose for two reasons. (i) The total χ2 error between p and p̂ on the set
of “good” intervals (complement of the set of “bad” intervals) is small. Indeed, let G ∈ I be a set
containing no ε-bad intervals. Since there are at most K intervals contained in G and k breakpoints
contained in the intervals in G, it is easy to see that dGχ2

(
p
∥∥p̂) ≤ O(ε2). (ii) One can reliably

separate bad intervals from non-breakpoint intervals assuming the learning phase was successful.
To see why, note that in that case every non-breakpoint interval I satisfies dJχ2

(
p
∥∥p̂)≪ ε2/K for

all J ⊆ I with high probability. On the contrary, for any bad interval I , we claim there must be a
sub-interval Q ⊆ I where dQχ2

(
p
∥∥p̂) ≥ ε2/K and both p and p̂ are constant within. In particular, if

I is an ε-bad interval that contains (j − 1) breakpoints, we then have a partition {Q1, · · · , Qj} of I
over which p is piece-wise constant and at least one of them will have χ2 error at least ε2/K.

Our next step is to show how we can leverage the separating condition to design an efficient bad
interval detection mechanism. This is where our method significantly differs from [Can16]. At a high
level, we take another set of independent samples to get an estimate φ̂(Q) of p(Q) for all Q ⊆ [n]

simultaneously. Then, we compare φ̂(Q) with p̂(Q) to see whether we have dQχ2

(
p
∥∥p̂) ≥ ε2/K,

which would in turns imply the interval I ⊇ Q from the given partition is ε-bad. We next provide the
pseudo-code for Learn-And-Sieve, which finds a positive measure p̂ on [n] and a domain B such
that d[n]\Bχ2

(
p
∥∥p̂) ≤ O(ε2) provided p ∈ Hn

k . Its detailed analysis can be found in Appendix A.4.

Algorithm 1 Learn-And-Sieve

Require: Sample access to p; a partition I of [n] containing K intervals; accuracy ε; failure
probability δ.

1: Let m = C · (K/ε2 +
√
Kn/ε) · log(n/δ) for a sufficiently large constant C.

2: Draw 2m i.i.d. samples from p and split the samples evenly into S1,S2.
3: p̂← Empirical-Learning (S1, I, δ/4), φ̂← Interval-Mass-Estimate(S2, δ/4), B ← {}.
4: for all intervals Q ⊆ I for some I ∈ I do
5: if φ̂(Q)/p̂(Q) > 6 ·max(1, ε ·

√
n/K) or |φ̂(Q)− p̂(Q)| > 0.5

√
p̂(Q)ε2/K then

6: Add I to B.
7: Output Reject if B contains more than k intervals. Otherwise, return B, p̂.

Lemma 5 (Sieving Lemma). Given a partition I containing K intervals, sample access to p on [n]
and δ ∈ (0, 1). Then, the output of Learn-And-Sieve (Algorithm 1) satisfies the following. (i) Suppose
p ∈ Hn

k . Then the algorithm returns a positive measure p̂ and B such that d[n]\Bχ2

(
p
∥∥p̂) ≤ ε2 with

probability at least 1− δ. (ii) The output B contains at most k intervals (if the algorithm does not
reject). (iii) At most O((K/ε2 +

√
Kn/ε) · log(n/δ)) samples are used.

Proof Sketch. We claim that, if p ∈ Hn
k , B contains all the ε-bad intervals and no non-

breakpoint intervals with high probability. Let I be a non-breakpoint interval. For b =
Θ(m/ log(n/δ)) = Θ(K/ε2 +

√
Kn/ε), we have, with high probability, |φ̂(Q)− p(Q)| ≤√

p(Q)/b, |p̂(Q)− p(Q)| ≤
√
p(Q)/b and p(Q)/p̂(Q) ≤ max(2 , 8 · n/b) which follow from

Lemmas 3 and 4. Combining this with triangle inequality and our choice of b implies the sec-
ond condition of Line 5 will be false. The first condition can be shown to be false by rewriting
φ̂(Q)/p̂(Q) as φ̂(Q)/p(Q) · p(Q)/p̂(Q), which are themselves bounded, with high probability, by
3 and Θ(1) ·max(1, ε

√
n/K) again by Lemmas 3 and 4 and our choice of b.

Let I be a breakpoint interval. We then have |p(Q)− p̂(Q)| ≥
√

p̂(Q) · ε2/K for some sub-interval
Q ⊂ I . If p(Q) is light (p(Q) ≤ 2ε/

√
Kn), we can show p(Q)/b ≤ 1/4 · p̂(Q) · ε2/K, making

φ̂(Q), our estimation for p(Q), sufficiently accurate such that the second condition of Line 5 will
be true. Otherwise, as b ≫

√
Kn/ε, the estimation φ̂(Q) will be within multiplicative factors of

p(Q). If p̂(Q) is not much lighter than p(Q), we can again show p(Q)/b ≤ 1/4 · p̂(Q) · ε2/K.
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Otherwise, the first condition of Line 5 will be true. Conditioned on that B includes all ε-bad intervals
and no non-breakpoint intervals, it is easy to see that B will contain no more than k intervals and
d
I\B
χ2

(
p
∥∥p̂) ≤ O(ε2). We note that points (i) and (iii) follow from the definition of the algorithm.

Learn-and-Sieve (Algorithm 1) outputs a fully specified description p̂ and a sub-domain G := [n]\B
such that dGχ2

(
p
∥∥p̂) is small given p ∈ Hk

n. For testing purposes, this is a reasonable divergence
from the ideal guarantee that dχ2

(
p
∥∥p̂) is small as long as p(B) is also small. If so, we can set

p̂(i) = 0 for i ∈ B and invoke Tolerant-Identity-Test with p and p̂. If the test passes, we then know
that TVG (p, p̂) ≤ ε/2: this together with p(B) ≤ ε/2 then gives TV (p, p̂) ≤ ε.

Unfortunately, running Learn-and-Sieve only once we may have p(B) = Ω(1). To handle this, we
will need more fine-grained sieving procedure, which uses Approx-Sub-Divide to further partition
the bad intervals detected and invokes Learn-and-Sieve iteratively. In each iteration, the total mass of
the bad intervals shrinks by a constant factor, allowing us to reach p(B)≪ ε in at most O(log(1/ε))
iterations. The pseudo-code (Algorithm 4) and detailed analysis are provided in Appendix A.5.

3 Histogram Lower Bound

In this section, we describe the hard instance of histogram testing, which leads to an Ω̃(
√
kn/ε+k/ε2)

lower bound. We will apply the so-called Poissonization trick: we will relax P , the unknown object
being tested, to be a positive measure with total mass Θ(1). We denote such a measure as an
approximate probability vector and give the corresponding notion of histogram.

Definition 3 (Approximate Probability Vector). We define the set of ν-approximate probability
vectors (APV) on the domain [n] by P̃n(ν) := {P : Pi ∈ [0,∞) ∀i ∈ [n] , |∥P∥1 − 1| ≤ ν}.
Accordingly, the set of histogram APV is given by H̃n

k (ν) := {P ∈ P̃n(ν) : P/∥P∥1 ∈ Hn
k}.

Under the Poisson sampling model, given an unknown P ∈ P̃n(ν), the goal it to decide whether
P ∈ H̃n

k (ν) or P is at least ε(1 + ν)-far6 from any P ′ ∈ H̃n
k (ν) in ℓ1 distance when given the vector

{M1,M2, · · ·Mn} where Mi ∼ Poi(m · Pi). We denote the sample complexity of the problem by
mpoi

hist(n, k, ε, ν) and provide its formal definition in Appendix B.

To lower bound mpoi
hist(n, k, ε, ν), we follow the idea of moment matching illustrated in [Val11, VV13,

WY16]. In particular, one first constructs two discrete non-negative random variables U,U ′ whose
first few moments are identical. Moreover, U and U ′ will be designed to have different properties
such that one can use i.i.d. copies of U (and U ′) to generate random measures that are histograms
(and far-away from histograms respectively).

Our construction of such a pair of random variables is based on Chebyshev’s polynomials, a standard
tool in approximation theory and the parameter estimation literature. The two variables will be
supported on the roots of the polynomial p(x) = x

(
x− 1

n

) (
x− 2

n

)
Td

(
1−

√
kn

C·log2 n
· x

)
, where

Td(·) is the Chebyshev’s polynomial (of the first kind) and C is a sufficiently large constant. More
precisely, U will be supported on roots r where the derivatives p′(r) < 0, U ′ will be on roots where
p′(r) > 0, and the probabilities will be proportional to p′(r) accordingly. Consequently, U will most
likely be 1/n (hence useful for histogram construction) and U ′ will most likely be 0 or 2/n, each
with non-trivial probabilities (hence appropriate for non-histogram construction). Besides, they will
have their maximums bounded by Õ(1/

√
kn), which is crucial to achieve the nearly optimal lower

bounds. The detailed construction and analysis are provided in Appendix B.1.

Lemma 6. Given positive integers k, n where k < n, there exists a pair of non-negative random
variable U,U ′ supported on [0, 1) and absolute constants c, c′ > 0 satisfying (i) Pr

[
U ̸= 1

n

]
≪ k

n .
(ii) Pr [U ′ = 0] > 1/3 and Pr

[
U ′ = 2

n

]
> 1/3. (iii) U,U ′ ≤ c′ log2 n/

√
kn. (iv) E[U ] = E[U ′] =

1
n (1 +O(

√
k/n)). (v) E[U t] = E[U ′t] for 1 ≤ t ≤ c · log n.

We the proceed to construct two families of Approximate Probability Vectors, one of which belongs
to H̃n

k and the other far from it using the random variables stated in Lemma 6. To do so, we

6The extra (1+ν) factor is to accommodate the fact that P may not be a distribution i.e. 1 ≤ ∥P∥1 < (1+ν).
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define H =
(
1/n+ εU (1), · · · , 1/n+ εU (n)

)
, H ′ =

(
1/n+ εU ′(1), · · · , 1/n+ εU ′(n)) where

U (i), U ′(i) are n i.i.d. copies of U , U ′ in Lemma 6.

We address the two regimes
√

k/n ≤ ε log2 n and
√
k/n ≥ ε log2 n separately. In the former case,

the heaviest element among H and H ′ are roughly Θ̃(ε/
√
kn). Hence, when the algorithm takes

õ(
√
kn/ε) samples, it rarely sees any element appearing a large number of times. By the moment-

matching property of U and U ′, the probabilities of seeing some elements appearing for t times for
t ≤ log n are almost identical under H and H ′, therefore making H and H ′ indistinguishable. In the
latter case, we have εU ≪ 1

n , implying that no elements in the measures are significantly heavier than
the rest. As a result, H and H ′ are both almost uniform except with a different number of “bumps”
(elements that are slightly heavier). Subsequently, the algorithm needs more samples (about Ω̃(k/ε2))
to tell whether a certain element is heavier than the rest, leading to a phase transition in the sample
complexity of the problem. We remark that whether Ω̃(k/ε2) or Ω̃(

√
nk/ε) dominates depends

exactly on the relationship between
√

k/n and ε (omitting poly-logarithmic factors). Combining the
two regimes then gives us the following lower bound, whose proof is provided in Appendix B.2.
Proposition 2. There exists a constant ν ∈ (0, 1) such that for any sufficiently large n and ε ∈
(0, 1/10), it holds mpoi

hist(n, k, ε, ν) ≥ Ω(max(
√
kn/(ε log n) , k/(ε2 log3 n))).

Finally, we can easily translate our lower bound result in the Poissonized sampling model to the
Multinomial (standard fixed-size) sampling model by a standard reduction. Combining it with the
known Ω(

√
n/ε2) bound (see [Can16, Proposition 4.1]) then concludes our lower bound argument.

Formal proofs are given in Appendix B.3.
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