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Abstract

Infants explore their complex physical and social environment
in an organized way. To gain insight into what intrinsic mo-
tivations may help structure this exploration, we create a vir-
tual infant agent and place it in a developmentally-inspired 3D
environment with no external rewards. The environment has
a virtual caregiver agent with the capability to interact contin-
gently with the infant agent in ways that resemble play. We test
intrinsic reward functions that are similar to motivations that
have been proposed to drive exploration in humans: surprise,
uncertainty, novelty, and learning progress. These generic re-
ward functions lead the infant agent to explore its environ-
ment and discover the contingencies that are embedded into
the caregiver agent. The reward functions that are proxies for
novelty and uncertainty are the most successful in generating
diverse experiences and activating the environment contingen-
cies. We also find that learning a world model in the presence
of an attentive caregiver helps the infant agent learn how to pre-
dict scenarios with challenging social and physical dynamics.
Taken together, our findings provide insight into how curiosity-
like intrinsic rewards and contingent social interaction lead to
dynamic social behavior and the creation of a robust predictive
world model.

Keywords: curiosity; intrinsic motivation; world models; re-
inforcement learning; contingency; development

Introduction

Infants are born into a complex set of social and physical phe-
nomena. At the center of their world are caregivers who smile
at them, change their diapers, point at things, and sing songs,
and around them there are bouncing balls, falling block tow-
ers, and spinning tops. Infants must figure out how to control
their bodies and learn how the world responds to their actions.
Infants’ exploration of this rich environment is not random,
they explore their world in a structured way (Gopnik, Melt-
zoff, & Kuhl, 1999).

Over time, children develop an understanding of their
world. Infants are sensitive to social contingency, the reac-
tions of others to their actions (Nadel, Carchon, Kervella,
Marcelli, & Réserbat-Plantey, 1999) and the level of respon-
siveness of a partner (Bigelow & Rochat, 2006). Infants have
expectations about how people will respond to their actions
(Tronick, Als, Adamson, Wise, & Brazelton, 1978) and how
objects will behave (Stahl & Feigenson, 2015).

A compelling hypothesis is that the motivation to explore
may be linked to a desire to improve the accuracy of predic-
tions about the world. Working to improve these predictions
(the agent’s “world model”) can create a self-generated learn-
ing curriculum, through a cycle of evaluating deficiencies in

Figure 1: The environment is a room that contains a infant
agent (teal), caregiver agent (dark blue), and two movable
balls (pink and green)

the model, seeking out information, updating the model, and
gaining new capabilities (Schmidhuber, 2010). Researchers
have found evidence that suggests violations of expectation
catalyze learning (Stahl & Feigenson, 2015), and that learn-
ing progress is an important component for task selection
(Ten, Kaushik, Oudeyer, & Gottlieb, 2021). Children appear
sensitive to the discriminability of hypotheses and explore
longer when hypotheses are harder to distinguish (Siegel,
Magid, Pelz, Tenenbaum, & Schulz, 2021). Stimulus nov-
elty may also play a role in curiosity-driven exploration (Poli,
Meyer, Mars, & Hunnius, 2022). Children can effectively
explore diverse scenarios, including both physical and social
phenomena. Intrinsic reward functions implemented in rein-
forcement learning contexts are more fragile and can be sus-
ceptible to white-noise fixation (Oudeyer, Kaplan, & Hafner,
2007; Schmidhuber, 2010; Pathak, Agrawal, Efros, & Dar-
rell, 2017), or may not lead to meaningful behavior diversity.

Previous work showed that intrinsic rewards lead to explo-
ration in a physical context (Haber, Mrowca, Wang, Fei-Fei,
& Yamins, 2018) and a preference for viewing animate ob-
jects in a protosocial context (Kim, Sano, De Freitas, Haber,
& Yamins, 2020), but it did not include complex social con-
tingencies or a sophisticated embodiment for the agent. We
extend the work in these directions to evaluate if a curiosity-
like intrinsic reward function can generate social behavior in
virtual agents and to examine the effect of contingency on
how a virtual agent learns social and physical dynamics.
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Figure 2: The infant agent’s world model, reward function, and policy interact to drive infant actions over time. The intrinsic
reward function takes different inputs depending on the choice of function. The state diagram (right) outlines the caregiver’s
static policy. Dotted lines indicate transitions that depend on the infant state, and solid lines indicate those that do not. The top
circle is the starting state, where the caregiver waits for the infant to point, and the three branches are unlocked by the infant

pointing at one of the objects in the room.

We summarize our contributions as follows.

* We introduce a developmentally-inspired virtual 3D envi-
ronment with an embodied infant agent and a caregiver
agent that can engage in complex, contingent, social be-
haviors with the infant.

* We describe an infant agent with an intrinsic reward func-
tion inspired by motivations hypothesized to be present in
humans. The infant agent learns to pursue intrinsic re-
wards through reinforcement learning. We show that the
agent generates temporally variable, social, play-like be-
havior within our environment, in the absence of extrinsic
reward. When motivated by a novelty reward or an uncer-
tainty reward, the agent builds world models that can make
good predictions about experiences beyond their own.

* We show that a high level of contingency in the caregiver
agent corresponds with the infant agent learning to make
better predictions about challenging scenarios involving
caregiver and object dynamics.

Environment

Our 3D virtual environment is created in Unity and uses the
ML-Agents framework (Juliani et al., 2018). We use episodes
of 2,000 timesteps over 200 in-environment seconds. At the
end of an episode, the environment is reset to its starting state.

The setting is a closed room containing two ball objects, a
caregiver agent, and an infant agent, pictured in Figure 1. The
Unity physics engine allows the objects to respond to forces
applied to them by the infant’s body and arms. The balls can
also be picked up and thrown by the caregiver.

Infant

The infant has two arms with shoulder and elbow joints. The
arms can only move in the plane parallel to the floor and are
at a height they can collide with the ball. At each timestep,
the infant can choose one of 13 actions: do nothing, turn

left/right, move forward/back, or rotate any of the four arm
joints clockwise/counterclockwise.

The infant has partial observability: it receives an indicator
as to whether each object is in its field of view (120°forward),
and if the object is in view, its position, orientation, and ve-
locity. It receives proprioceptive information giving the posi-
tions and orientations of its arms and its body, and the value
of a hit sensor on each arm.

Caregiver

The caregiver agent can move around the room and pick up
and throw the balls. It is controlled by a script that begins
each episode watching the infant agent and waiting for the in-
fant to “point” to an object. Pointing is determined by the
infant orienting their body toward an object, with an arm
pointed straight forward, and holding that position for five
timesteps. If the infant points toward an object or the care-
giver, a branch of the script is activated. Pointing toward the
caregiver activates the “hide and seek” branch (Hide), point-
ing toward the pink ball activates the “roll to infant” branch
(Roll), and pointing toward the green ball activates the “chase
the ball” branch (Chase). At the end of an episode, the envi-
ronment is reset and the caregiver waits for the infant to point
again. The high-level state diagram is shown in Figure 2.

Hide and seek The caregiver selects a point in the area be-
hind the infant and moves there. When it arrives, it waits for
the infant to look in its direction, at which point the caregiver
selects a new point to move to behind the infant.

Roll to infant The caregiver retrieves the pink ball, moves
a target distance from the infant, then looks at the infant. The
caregiver waits for the infant to look in its direction. Once
that occurs, the caregiver rolls the ball to the infant and waits
for a fixed period before retrieving the ball and starting again.

Chase the ball The caregiver continually retrieves the
green ball and throws it forward. This cycle causes the ball to
be thrown around the room, bouncing off the walls and floors.



Algorithm 1 Agent algorithm

1: Input total episodes E, episode length 7', world model
training iterations per episode M, batch size N, sequence
training length L, intrinsic reward function &_

2: Initialize replay buffer R = 0, parameters for world model
0, policy ¢, and intrinsic reward

3: for episode = 1,2,...E do

4 Initialize belief » and LSTM hidden states (h,¢)

5: fort=1,2,...T do

6: Observe o,

7 Update s, to s, with information from o,

8 a; ~ Ty(als;)

9: St1 4= fo(st,ar)
10: Take action a,
11: end for
12: Add collected tuples of (0,a,s) to replay buffer R
13: Calculate reward r; for steps 1...7 using K_

14: Update ¢ with PPO, update y as applicable
15: fori=1,2,....,M do

16: Sample N sequences with length L from R
17: Calculate Ly on batch and update 0

18: end for

19: end for

Independent play If no object is pointed toward, the care-
giver will remain looking at the infant for the entire episode.

Infant Agent

The infant agent has three primary components that drive its
behavior over time: a world model, an intrinsic reward func-
tion, and a policy (Figure 2).

World model

The objective of the infant agent’s world model is to accu-
rately predict the next observation given the history of obser-
vations and actions. We create a latent dynamics model that
attempts to model changes in the underlying the environment
state.

Model Architecture The world model uses a two-layer
LSTM (Hochreiter & Schmidhuber, 1997). We supplement
the hidden states of 4 and ¢ in the LSTM with a hidden state
b. The belief state b contains an estimate of position, orien-
tation, and velocity for each object, whether the object is cur-
rently in view or not. Together we refer to the combination of
world model hidden states (%,c,b) as s. Changes to b are pre-
dicted using an MLP decoder on 4. Delta prediction for phys-
ical quantities has been successful in fully-observed physics
prediction (Battaglia, Pascanu, Lai, Jimenez Rezende, et al.,
2016; Chang, Ullman, Torralba, & Tenenbaum, 2016) and we
adapt it for a partially observed setting.

Training The world model is supervised on rollouts of
length L = 30. We use a stored hidden state and burn-in
to help prediction accuracy (Kapturowski, Ostrovski, Quan,
Munos, & Dabney, 2018). The world model is recurrently

applied 5,41 < fo(s;,a;) using the action sequence from the
replay buffer. The world model loss is the square error of the
visible components of the observation over the length of the
rollout.

L /[dim(o;)
L(01..1,01..1) = Z( Z (5i,j_Oi,j)z]lvisible(oi,j)> (D

=1\ j=1

Intrinsic reward functions

Adversarial A violation of expectation can be framed as
the prediction from a world model being significantly differ-
ent from the observed outcome. This surprise-based intrinsic
reward can be formulated as a function of the prediction er-
ror. We use the model loss as the reward. (Achiam & Sastry,
2017) (Pathak et al., 2017) (Schmidhuber, 2010).

Disagreement Being uncertain about the outcome of an ac-
tion can be interpreted as there being variance around a pre-
diction of the future. Uncertainty has been formulated as the
variance of predictions across an ensemble of trained world
models (Pathak, Gandhi, & Gupta, 2019) (Sekar et al., 2020).
Our implementation has K = 10 models in the ensemble. Be-
cause of memory and training time constraints, the recur-
rent dynamics model is not replicated. Instead, the ensemble
members are MLPs that predict the next observation from the
current state and action.

Random Network Distillation (RND) Novel stimuli can
indicate the potential for learning. In environments with a dis-
crete state space, using a reward that is a decreasing function
of visit counts can be effective in incentivizing exploration
(Strehl & Littman, 2008). However, that approach is not di-
rectly applicable to continuous state spaces. Approaches for
continuous spaces include pseudo-counts (Tang et al., 2017)
and Random Network Distillation (Burda, Edwards, Storkey,
& Klimov, 2018).

Learning Progress An intuitive learning strategy is to pur-
sue experiences that are likely to improve the agent’s under-
standing of the world. One approach to estimating this is to
evaluate recent learning progress on that topic, that is, the
magnitude of improvement between a previous world model
and the current one. This has been implemented as 3-progress
(Achiam & Sastry, 2017; Graves, Bellemare, Menick, Munos,
& Kavukcuoglu, 2017) and y-progress (Kim et al., 2020). The
difference between the methods is how the previous world
model is defined: 3-progress uses a world model from & steps
ago and y-progress updates the weights of the old model by
performing a weighted average of the old model weights with
the current weights. We evaluate both reward functions.

Policy learning

We modify Proximal Policy Optimization (PPO) (Schulman,
Wolski, Dhariwal, Radford, & Klimov, 2017), a model-free
reinforcement learning algorithm, to have the learned policy
be based on the world model state s instead of observations.
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Figure 3: A. The proportion of episodes that the infant agent activates one of the contingent behaviors (Hide, Roll, Chase) or
if they do not activate an behavior (Independent Play). B. Participation is shown as the average of SM training steps, placed in
the middle of the step range it was averaged over. The values are normalized by dividing them by the 99th percentile value of

these metrics across training. A and B are averaged over 3 seeds.

Experiment 1: Compare exploration across
intrinsic reward functions

We investigate two questions: what type of behavior diversity
arises from different intrinsic reward functions and which in-
trinsic reward functions lead the infant agent to learn a robust
world model.

Method

We run three seeds of infant agents for each reward function
for 20M steps. We record all experience to perform behavior
analysis, and evaluate the world model at the end of training.

Behavior diversity We consider behavior diversity in three
ways: state coverage, social contingency activation, and level
of contingency participation.

To evaluate state coverage, we independently consider four
components of the infant agent’s observations: its location
within the room, its orientation, its pose, and what objects,
animate or inanimate, are visible to it. We calculate the nor-
malized entropy as the entropy of a discretized distribution
relative to the entropy of a uniform distribution (Table 1).

Activating and participating in the social contingencies is
particularly important because it allows the infant agent to
unlock new parts of the state space. We look the proportion
of episodes where the behavior is activated. For each of the
activated activities we identified a metric that corresponds to
“participation” in the activities: within the Hide behavior, the
number of times the infant finds the caregiver; within the Roll
behavior, the number of times the infant hits the ball; within
the Chase behavior, the frequency that the infant is looking at
the caregiver when the ball is thrown.

World model performance evaluation We assess the ro-
bustness of a world model by evaluating its predictions on tra-

Table 1: Normalized entropy of infant state components. Cal-
culated out of 100. Mean and standard error, n=3

Agent Location Orientation Pose Attention
Random 5£0 560 I00£0 62+£0
Adversarial 45+5 79+2 76 + 4 71+1
Disagreement 93 +£0 100+ 0 99 +0 95+0
RND 87+ 1 98 +0 99+ 0 93+0
d-progress 40+7 88+ 1 94+2 80+1
Y-progress 38+4 80+3 90 £ 3 74+ 1

jectories it has not been trained on. We test it on experiences
collected by agents with different seeds and different intrinsic
reward functions, and on experiences collected by manually
programmed agents, which may occupy a very different part
of the trajectory space than the autonomous agents.

For each agent, we create a set of validation cases from
its lifetime experience by uniform sampling 2000 trajectory
segments. In a round-robin fashion, we test the world model
from each agent against the validation case sets for each other
agent, including different seeds and different intrinsic reward
functions. We score the model on each validation case set by
calculating the average total model loss over a 10-step rollout.

Results

Disagreement and RND yield the greatest diversity of ex-
perience and acquire the most robust world models Dis-
agreement and RND generated higher entropy (Table 1) than
all other intrinsic reward functions across the Location, Ori-
entation, and Attention components of state (Location: p <
0.005; Orientation: p < 0.01; Attention: p < 0.001; t-test
with fdr-bh correction). They also generate a larger number of
total activations (Table 2) than the random agent, §-progress,
and y-progress (p < 0.01), and RND shows higher total and
Chase activations than Adversarial (p < 0.05).
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Figure 4: A. World model loss on validation cases generated
from the experience of other agents and validation cases that
were created manually. Lower values indicate better accu-
racy. Agent-Generated cases include validation sets from all
seeds of all intrinsic reward functions. The horizontal lines
are the average loss if each validation case is predicted us-
ing the world model from the agent that generated the data
(an estimate of good performance in our model class). B.
World model loss on a validation case set. All Agent Mod-
els is the average loss on a set across all agents. Generating
Agent Model is the loss on the set using the world model from
the agent that generated the set.

This behavior diversity likely contributes to the large
spread in Figure 4B between 1) the model loss from other
agents’ world models on experiences from Disagreement and
RND, and 2) the low loss that Disagreement and RND can
achieve on its own validation cases. This implies that the
cases are predictable by this model class, but that the other
models have not learned the dynamics yet.

The world model loss from Disagreement and RND agents
is significantly lower than Random, Adversarial, and 7y-
progress agents when predicting the outcome of experiences
that other instrinsically-motivated agents collected (p < 0.05;
t-test with fdr-bh correction and one high-loss outlier re-
moved in Adversarial and y-progress). Interestingly, 8-
progress also does well on our world model evaluation de-
spite having fewer contingency activations, lower participa-
tion, and lower state entropy.

Although RND and Disagreement both generate a high di-
versity of states, they have different temporal structures in
behavior (Figure 3A). RND has a relative stable split of activ-
ity activations after SM steps. Disagreement appears to have
phases of activity preference, generating different proportions
of behavior activations over time.

Table 2: Percent of episodes where behavior activation occurs
over agent training. Mean and standard error, n=3.

Agent Hide Roll Chase  Total

Random 300 90 0+£0 390£0
Adversarial 7+2 64+6 2+£0 73+4
Disagreement 38 +5 35+7 14+4 87+£3
RND 15+£2 53+2 23+£1 91+£1
d-Progress 23+6 14+2 4+£2 42+7
Y-Progress 7+1 3+0 4+3 14 £3

Agents using the Adversarial reward function focus on
hitting the ball in the Roll behavior Agents driven by
the adversarial signal frequently activate the Roll behavior.
Within the Roll behavior the agent spends most of the time
hitting the ball back and forth between its arms. The de-
scribed behavior contributes to the lower entropy observed
in Table 1 and the high Roll participation in Figure 3B.

The intrinsic reward function seeks out high loss situations.
The agent succeeds and the validation cases made from the
adversarial agent’s experience have in the highest average
loss across models (Figure 4). Even with the benefit of the
experience, the loss remains high for the world model of the
agent that collected it. The agent found situations that are dif-
ficult to model accurately with the current world model class.

Experiment 2: Vary the frequency the
caregiver responds to the infant agent

In our environment, we want to understand the effect of dif-
ferent levels of caregiver contingency. How is the infant
agent’s understanding of the world affected by being in an
environment with a caregiver that frequently responds to their
actions compared with one that rarely responds?

Method

Agents are trained for 10M steps with the Disagreement re-
ward function. In contrast to Experiment 1, the caregiver re-
sponse to the infant “pointing” is stochastic. A flag is set with
some probability at the beginning of each episode to deter-
mine if the caregiver is sensitive to the infant. Different set-
tings for this probability are tested: 1%, 5%, 20%, 80%, 95%,
and 99%. We refer to 95% and 99% as high-contingency
(HC) and 1% and 5% as low-contingency (LC).

We create validation sets from infants trained with HC and
LC caregivers and test models trained with different levels of
contingency on those sets. We decompose the world model
loss into that due to infant orientation, position, and arm con-
figuration (’Self”), Ball 1, Ball 2, and Caregiver predictions.

Results

Increasing caregiver contingency corresponds to a shift in
prediction difficulty from proprioceptive inputs to exter-
nal dynamics The “Self” component is harder to predict in
validation cases with LC caregivers than with HC caregivers.
This holds for both agents trained with LC and HC caregivers.
In contrast, the presence of a HC caregiver corresponds with
more difficult to predict ball and caregiver components (Fig-
ure 5). In the absence of very frequent caregiver interaction,
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agents focus on proprioceptive exploration. When present,
the caregiver facilitates challenging external dynamics sce-
narios though its complex behavior patterns.

There is a net benefit to world model accuracy from high
levels of contingency Training in an environment with a
HC caregiver yields substantial improvements in accuracy on
challenging ball and caregiver dynamics, and only a small
decrease in accuracy on scenarios with a LC caregiver.

There is a decrease in error on the Ball 1, Ball 2, and Care-
giver components on HC validation sets as the level of con-
tingency increases. As noted in the previous result, the care-
giver agent facilitates challenging scenarios, which provide
valuable experiences for the infant agents to learn from. In
these same components, there is an increase in loss on LC
validation sets with higher levels of caregiver contingency,
but that increase is small on an absolute basis. This asym-
metry appears to be persistent across training, it appears in
early checkpoints, averaged from 1M to 5M steps, and later
checkpoints, averaged from 6M to 10M steps.

The effect of increasing contingency on Self components
appears nearly symmetric, possibly as a consequence of the
previous result: the presence of a HC caregiver doesn’t corre-
spond to challenging examples, the difficulty decreases.

Discussion and future work

We find that basic social interaction and contingency activa-
tion can arise without requiring a specific module, social in-
trinsic reward, or extrinsic reward. Contingency sensitivity
can arise from curiosity, implemented here as an information-
maximizing intrinsic reward function.

An infant’s ability to cause change in the world is amplified
by an attentive caregiver. In our environment the caregiver
agent is likely to facilitate the infant agent’s first experience
seeing a ball move. The amplification is the case for real
infants, caregivers are responsible for a huge amount of action
in their world, frequently in response to the infant’s actions
like cooing, crying, reaching or pointing. This amplification
is visible in our results, as the prediction difficulty of external

dynamics increases with a highly-contingent caregiver.

Contingent caregiver behavior provides a dense intrinsic
reward for curiosity signals in a usually sparse environment.
Social behavior is a very rich and difficult prediction problem,
so each interaction will yield more data to challenge their un-
derstanding of the world. For signals that depend on a world
model, this going to strongly motivate exploration. This idea
is supported in our results: multiple intrinsic reward functions
frequently activate caregiver behaviors.

Disagreement and RND motivated robust exploration in
different ways: we observed different temporal patterns in be-
havior activation and different participation levels. Other in-
trinsic motivations were not as successful. Learning progress
reward functions generated less state coverage and less robust
world models. A possible challenge for learning progress is
that rewards may be sparse if the world model makes oc-
casional step-like improvements in quality but not frequent
small improvements. Adversarial rewards led the infant agent
to repeatedly hit the ball during the Roll behavior because the
model loss remained high. This is an instance of the white
noise problem, a known issue with the signal. Humans, in
contrast, have mechanisms to avoid fixation on a single activ-
ity — boredom, for example, has been considered as motivat-
ing a wider diversity of experience (Bench & Lench, 2013).

Pixel-based observations and a richer caregiver agent
would offer additional challenges for a world model. The
agent has the potential to be extended with explicit represen-
tations of other agents’ beliefs or with model-based reinforce-
ment learning so that the predictive capabilities of the world
model could be leveraged to plan future actions.

Our modeling approach allows us to generate trajectories
of the virtual infant agent. Real infant walking trajectories
have been analyzed to understand exploration patterns and
state coverage (Hoch, O’Grady, & Adolph, 2019). One im-
portant next step is to compare artificial and human trajecto-
ries on matched environments. This may lead to a better char-
acterisation of infant exploratory motivations and patterns as
well as insight into the observed diversity of exploration in
children.
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