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Abstract. One of the most famous results in graph theory is that of Kuratowski’s
theorem, which states that a graph G is non-planar if and only if it contains one of K3,3

or K5 as a topological minor. That is, if some subdivision of either K3,3 or K5 appears
as a subgraph of G. In this case we say that the question of planarity is determined by
a finite set of forbidden (topological) minors. A conjecture of Robertson, whose proof
was recently announced by Liu and Thomas, characterizes the kinds of graph theoretic
properties that can be determined by finitely many forbidden minors. In this extended
abstract we will present a categorical version of Robertson’s conjecture, which we have
proven in certain cases. We will then illustrate how this categorification, if proven in all
cases, would imply many non-trivial statements in the topology of graph configuration
spaces.
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1 Introduction

Let G denote a finite graph. If we view G as a simplicial complex, then one may define
its configuration space on n points as the topological space

Fn(G) = {(x1, . . . , xn) ∈ Gn | xi ̸= xj}.

One also considers the quotient of this space by the coordinate-permuting action of the
symmetric group Sn

UF n(G) = Fn(G)/Sn.

This latter space is called the unlabeled configuration space on n points. The study of
these spaces has seen a tremendous increase in activity due not only to their connections
to physics and robotics [1, 16], but also for their surprising theoretical properties. For the
purposes of this work, we take the time to point out the following collection of results
from the literature of graph configuration spaces, spanning almost 20 years:
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• (Torsion Boundedness) For any graph G and any n ≥ 1, the group H1(UF n(G)) is
either torsion free, or all torsion is 2-torsion. Moreover, it is torsion free if and only
if G is planar [9].

• (Universality of generators for trees) If G is a tree, and i, n ≥ 1, then Hi(UF n(G))
is generated by products of H1 classes pushed forward along embeddings of star
trees into G [6]. A star tree is a tree with only one vertex of degree above one.

• (Universality of planar generators for H2) There exists a finite set of graphs, de-
pending only on n, such that for any planar graph G, H2(UF n(G)) is generated by
push forwards of classes along embeddings of the members of this finite list into
G [3].

Each of these results is remarkable in its uniformity. Namely, that one can conclude
extremely powerful results about the general “shapes" of these homology and cohomol-
ogy groups across infinite families of graphs by only understanding much simpler cases.

The purpose of the present abstract is to present a possible framework that unifies
and expands upon all of these universality phenomena. This framework accomplishes
this by proposing a kind of categorification (see Conjecture 6) of an extremely powerful
and delicate theorem arising from structural graph theory - Robertson’s Conjecture (see
Theorem 2).

The structure of this work proceeds as follows. To start, we outline the necessary
graph theory background to describe Robertson’s conjecture. Following this, we turn to
graph categories, and explain what is meant by a representation of a category as well
as what a categorification of Robertson’s conjecture would necessarily look like. This
second section ends by stating the technical heart of our aforementioned framework,
Conjecture 6. Finally, we conclude by showing how this technical theorem can be applied
to graph configuration spaces, and why each of the above can be thought as arising from
this application.

2 Robertson’s conjecture on topological minors

In this section, we outline the necessary background related with the underlying classical
graph theory that motivates our study.

Definition 1. In this work, the terminology of graph will always refer to a finite simple
graph (i.e. not permitting loops or multi-edges). A path in G is a sequence of vertices of
G, v1, v2, . . . , vr such that no vertex is repeated, and each pair of subsequent vertices is
connected by an edge, modulo the involution which reverses the beginning and ending
point of the sequence.. If G is a graph we will write VG, EG, and PG for the sets of
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vertices, edges, and paths of G, respectively. In cases where the graph G is understood
from context, we will often drop the subscript in these notation.

If G, G′ are two graphs, then a homeomorphic embedding from G to G′ is a pair
ρ = (ρV , ρE) of maps of sets

ρV : VG → VG′ , ρE : EG → PG′

satisfying the following:

1. ρV is an injection;

2. if e ∈ EG has endpoints {a, b}, then ρ(e) is a path connecting a and b;

3. if e ∈ EG and v ∈ VG, ρV(v) is a member of ρE(e) if and only if v is an end point of
e.

4. if e1, e2 ∈ EG are distinct, then ρ(e1) and ρ(e2) are disjoint if e1 and e2 do not share
an endpoint, and otherwise only intersect at the image of this common endpoint
under ρV ;

Note that a homeomorphic embedding of graphs induces a continuous simplicial em-
bedding between the realizations of the relevant graphs as simplicial complexes. Finally,
we write G ≤top G′ to indicate that there exists a homeomorphic embedding of G into
G′. We refer to the quasi-order ≤top as the topological minor relation.

Somewhat notoriously, the topological graph minor relation does permit infinite anti-
chains. That is to say, it is not a well-quasi-order. This puts it in stark contrast to other
orderings on graphs, such as the more commonly used graph minor relation, which was
very famously proven to not have infinite anti-chains by Robertson and Seymour in [14].
One particular flavor of example of infinite anti-chain will be important enough for us
to take some time and describe it in detail.

For k ≥ 1, let Rk denote the graph which is obtained from a path with k + 1 vertices
by doubling each edge, and then subdividing to do away with each multi-edge. For
instance, the graph R1 is a triangle, whereas R2 is two triangles joined at a common
vertex. Generally, we visualize Rk as a chain with precisely k links. One can easily build
infinite anti-chains on the family {Rk} by attaching certain graphs to both ends of the
chain. For the simplest example, one can attach a trio of leaves to each sides of the chain.
The following conjecture of Robertson essentially claims that the anti-chains arising in
this way are the basis for all others. A stronger version of this conjecture that allows for
vertex labels has recently had a proof announced by Liu and Thomas [10]

Theorem 2 (Robertson’s Conjecture, [10]). Fix k ≥ 1, and let {Gi}i≥1 be any infinite collec-
tion of graphs with the property that Rk ̸≤top Gi for any i. Then there exists j < l such that
Gj ≤top Gl. In particular, for any fixed k ≥ 1, the restriction of ≤top to the class of graphs not
containing Rk as a topological minor is a well-quasi-order.
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Observe that, the condition of not containing R1 as a topological minor is equivalent
to being a tree. Robertson’s conjecture therefore specializes to Kruskal’s Tree Theorem
in that case. Moreover, the class of graphs not containing R2 as a topological minor
includes all graphs with maximum vertex degree 3. Robertson’s conjecture for k =
2 therefore implies a conjecture of Vázsonyi that these subcubic graphs do not admit
infinite anti-chains in the topological graph minor relation.

3 Categories of graphs

The purpose of this extended abstract is to lay out a potential categorification of Robert-
son’s conjecture, and illustrate how this categorification can be used to prove statements
in the topology of graph configuration spaces. While the most general form of this cate-
gorification will remain conjectural, we will spend some time outlining what a proof of
this conjecture might look like in principal, and also the cases which have already been
proven. This work is very much inspired by similar work on categorifying the graph
minor theorem and Kruskal’s Tree Theorem [11, 12, 13], as well as other categorification
efforts such as the theory of Gröbner categories due to Sam and Snowden [15].

Definition 3. Let k ≥ 1 be a fixed integer. We write T Gk to denote the category whose
objects are graphs not containing Rk as a topological minor, and whose morphisms are
homeomorphic embeddings.

Based on everything we saw in the previous section, it should be clear that the cat-
egories T Gk are precisely those that one would want to study in any attempted cat-
egorification of Robertson’s Conjecture. It therefore only remains to determine what
such a categorification would “look like." If (Q,≤) is any quasi-order, then the condi-
tion of being a well-quasi-order is equivalent to saying that the complement of every
≤-closed subset of Q has finitely many ≤-minimal elements. Put another way, it says
that containment in these sets is determined by the appearance, or lack-there-of, of some
member of a finite list of elements. When thinking about such a characterization in
situations arising in more algebraic contexts, one might draw parallels to some kind of
finite generation. The condition of being a well-quasi-order then becomes akin to a kind
of Noetherian Property. That is to say, that every submodule of a free module is itself
finitely generated.

To make all of this precise, we therefore need to start by understanding what one
even means by a module in this context.

Definition 4. For any commutative ring A, a T Gk-module over A, or just a T Gk-module,
is a covariant functor M : T Gk → A-mod from T Gk to the category of finitely generated
A-modules.
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We say that a T Gk-module M is finitely generated if there is a finite list of objects in
T Gk, {Gi}, such that for any object G of T Gk the A-module M(G) is generated by the
images of the maps M(Gi) → M(G) induced by maps Gi → G of T Gk. In this case we
call the objects Gi generators of M.

More concretely, a T Gk-module is a collection of A-modules, {M(G)}G, one for ev-
ery graph G not containing Rk as a topological minor, such that for any homeomorphic
embedding G → G′, one obtains a homomorphism M(G) → M(G′), that respects com-
position. In slightly different language, a T Gk-module is a representation of the quiver
with relations underlying the category T Gk.

The notion of finite generation outlined above can also be viewed more concretely in a
similar fashion. In the language of quiver representations it becomes the usual notion of
finite generation. Heuristically speaking, saying that a T Gk-module is finitely generated
tells one that all of the algebraic content of all of the modules M(G) is determined by
only a finite amount of data coming from the modules M(Gi). We will use this heuristic
reasoning in the following example.

Example 5. For each object G of T Gk, set M(G) = Z. If G → G′ is a homeomorphic
embedding, then we set the map M(G) → M(G′) to be the identity map. Then M is a
T Gk-module over Z, and is also seen to be generated by the graph which is just a single
vertex.

Now let S be a collection of objects in T Gk that is closed under the topological minor
relation. We may also define a module MS by the assignments,

MS(G) =

{
Z if G /∈ S
0 otherwise.

By consequence of the fact that S is minor closed, it follows that MS is a submodule of
M. One may think of MS as being the submodule of M “generated by" the graphs in the
complement of S. The question now becomes whether MS is also finitely generated.

For any G, the algebraic information encapsulated by MS(G) precisely encodes
whether or not G is a member of S. Therefore, to say that MS is finitely generated
is to say that there is a finite list of graphs that determines containment in S. This is
precisely the statement of Robertson’s Theorem 2.

We are now ready to state the main technical conjecture of this work.

Conjecture 6 (The Categorical Robertson’s Conjecture). Fix k ≥ 1. If A is a Noetherian
commutative ring, and M is a finitely generated T Gk-module, then any submodule of M is also
finitely generated.

This conjecture represents the next step in a research program that originated in
Sam and Snowden’s seminal work [15]. That paper outlines a method by which one can
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convert purely combinatorial theorems about well-quasi-orders into algebraic statements
about Noetherian properties arising in the representation theory of certain associated cat-
egories. For instance, Sam and Snowden categorified Higman’s lemma - that sequences
are well-quasi-ordered by the subword relation - in the original work [15], whereas later
work of Barter [4] as well as Proudfoot and the second author [12, 13], do something
similar for Kruskal’s tree theorem. In [11], Miyata and the second author provide a
categorical version of a weakened graph minor theorem as well. From this pre-existing
literature we can therefore already say the following in relation to our conjecture.

Theorem 7 (Barter [4]; Proudfoot & Ramos [12, 13]). If A is a Noetherian commutative ring,
and M is a a finitely generated T G1-module, then any submodule of M is also finitely generated.

In the originating work [8], we provide an outline of Sam and Snowden’s machinery,
and indicate how one would use it to possibly prove our main conjecture. Importantly,
this outline argues what one would need to understand about the proof of Theorem 2 to
ultimately prove Conjecture 6. To avoid bogging us down with these technicalities in this
extended abstract, however, we instead opt to move on to display how the Categorical
Robertson’s Conjecture has exciting applications to topology.

Finally, before finishing this section, we note that just as Robertson’s Theorem 2 has
a stronger labeled version, so does the categorical Robertson’s Conjecture. It is also
the case that this labeled version of the conjecture has already been proven for k = 1.
Because our primary applications to configuration space do not use the extra data of
vertex labels, we have not presented this version here, though it should be noted that
[8] use the labeled version of the conjecture to prove a variety of facts about topologies
associated to cographs. See [8] for more details on this.

4 Graph configuration spaces

In this section we detail some applications of Conjecture 6 to graph configuration spaces,
as defined at the beginning of this abstract. The reader should also keep in mind
throughout that Conjecture 6 is actually a theorem in the case where k = 1, and so
everything that follows can be seen as unconditional in that case.

The applications to graph configuration spaces in the present work are fundamentally
related with the observation that if ρ : G → G′ is a homeomorphic embedding, then one
has a continuous map from the (labeled or unlabeled) configuration space of G to that of
G′. Our goal will be to show that these maps are essentially the mechanisms underlying
stability phenomena in the homology groups of these spaces.

To start, we recall the following important construction of Abrams.

Definition 8. Let G be a graph. The discretized configuration space of G on n points
Dn(G) is the sub-complex of Gn of all cells σ1 × σ2 × . . . × σn, such that for any i ̸= j,
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the endpoints of σi are distinct from those of σj. As before, Sn acts on Dn(G), and we
define the unlabeled discretized configuration space of G on n points to be the quotient
UDn(G) = Dn(G)/Sn.

This particular discretization of configuration space is not the only one that has ap-
pear in the literature (see, for instance [17]. Generally, the biggest issue with Dn is that it
has far more cells than is practical to work with computationally. Because of this, other
authors have applied techniques from discrete Morse theory [7] to try to trim it down
to something that is more amenable to computer computation. Because our interests are
ultimately more on the theoretical side, however, this overabundance of cells will not
be an issue for us. Moreover, we note that Dn(G) behaves relatively nicely when one
subdivides the edges of G. This will be critical for us. For now we state the following
theorem that reinforces our interest in these discretized spaces.

Theorem 9 (Abrams [2]). Fix n ≥ 2 and let G be a graph satisfying the path condition, that
for any two vertices of G, x, y, with degree not equal to 2, every path from x to y has length at
least n + 1. Then there exists an Sn-equivariant homotopy equivalence

Dn(G) ∼ Fn(G).

Notice that while the number of cells of Dn(G) is sensitive to subdivision, the config-
uration space Fn(G) is not. For this reason the path condition is not going to hinder us
too much.

For the remainder of this section we will present our results entirely in terms of
Dn(G), despite the fact that analogous statements will hold for the unordered spaces as
well. We do this just for expositional clarity. In all cases, the proofs for the unlabeled
case are identical.

Observe that any homeomorphic embedding ρ : G → G′ can be realized as a com-
position of a map that purely subdivides G, followed by a map that embeds this sub-
division into G′. We have already noted that the Abrams model respects subdivision,
and it clearly does so for graph embeddings. It follows that if ρ : G → G′ is a home-
omorphic embedding, and n ≥ 2 is fixed, then one has a cellular map between cubical
complexes Dn(G) → Dn(G′). In particular, one has induced maps on the level of cubical
chains. Writing Dn,G,• for the chain complex whose homology computes the homologies
of Dn(G), we have just argued for the following lemma.

Lemma 10. The assignment
G 7→ Dn,G,i

can be extended to a T Gk − module over Z. Moreover, varying both i and G, Dn,⋆,• defines a
complex of T Gk-modules.
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Our way forward now becomes clear. All we really need to do is argue that the T Gk-
modules G 7→ Dn,G,i are finitely generated. The conclusion of Conjecture 6 would then
imply the same about the homology groups of the discretized configuration spaces es-
sentially for free! Luckily, finite generation is actually not hard to prove in this particular
instance.

If we fix k, n ≥ 1, and i ≥ 0, and let Gi,n−i be the (disconnected) graph which is a
disjoint union of i line segments and n − i isolated vertices, then Dn,⋆,i is generated by
Dn,Gi,n−i,i. Indeed, for any graph G, any i-cell of Dn(G) can be written as σ1 × . . . × σn,
where the σj are either edges of vertices of G that do not intersect each other at their
endpoints. The data of which edges and vertices are present in this cell induces an
embedding from Gi,n−i to G.

Moving from the homologies of the discretized configuration spaces back to the ho-
mologies of the usual configuration spaces is now just a matter of being careful about
the path condition.

Theorem 11. Let i ≥ 0 and k, n ≥ 1 be fixed. Assuming Conjecture 6, the T Gk-module
Hi(Fn(•)) is finitely generated.

Proof. Let H denote the T Gk-submodule of Hi(Dn(•)) generated by all Hi(Dn(G)),
where G is a graph satisfying the path condition. By Conjecture 6, we know that H
must be generated by some finite list of graphs {Gj}, which we may assume all sat-
isfy the path condition. Then Hi(Fn(•)) is generated by this same finite list, where one
smooths away any vertices of degree 2.

Example 12. As mentioned at the beginning of this section, the above theorem is un-
conditionally true in the case k = 1. The category T G1 is equivalent to the category of
trees with homeomorphic embeddings. In this case, work of Chettih and Lütgehetmann
[5] implies that H1(Fn(•)) is generated by the trees that look like the letters Y and H.
They also prove similar statements for the higher homologies as well. Other than this
theorem, however, very little is known beyond some partial results. This is especially the
case for labeled configuration spaces.

Looking at the unlabeled case, a recent theorem of An and the first author [3] says
that if you look at the full subcategory of T Gk of planar graphs, then the module

H2(UF3(•))

is generated by the following list of graphs:

• two disjoint triangles;

• the disjoint union of a triangle and a graph that looks like the letter Y;

• the disjoint union of two graphs that look like the letter Y;
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• The theta graph of two vertices connected by four (subdivided) edges.

Importantly, one should observe that all of these generators can already be found in
T G2. In other words, one does not obtain new exotic generators as k increases beyond
this point. This observation motivates the next direction of our study: To what extent
does the presence of the Robertson chains impact the generating set of the homology of
graph configuration space?

To make sense of this question, we must first view our categories T Gk not as separate
entities, but rather as members in a coherent family.

Definition 13. Let T G denote the category of all graphs with homeomorphic embed-
dings, and for each k ≥ 1 let ιk denote the embedding ιk : T Gk → T G. The functor ιk
induces a pair of adjoint functors

(ιk)! : T Gk-mod → T G-mod,
(ιk)

∗ : T G-mod → T Gk-mod.

To be more specific, (ιk)∗ is the restriction functor, while (ιk)! is extension.
The kth Robertson submodule of Hi(Fn(•)), denoted RkHi(Fn(•)), is defined by

(ιk)!ι
∗
k Hi(Fn(•)) → Hi(Fn(•)).

In other words, RkHi(Fn(G)) is the subgroup of Hi(Fn(G)) obtained by pushing forward
classes from the topological minors of G containing no embedded copy of Rk.

For instance, in the simplest case, the group R1Hi(Fn(G)) is that which is generated
by pushforwards of homology classes coming from the sub-trees of G.

We refer to the resulting filtration of Hi(Fn(•)) as the Robertson filtration. For any
fixed graph G, the associated filtration of Hi(Fn(G)) is exhaustive as it will stabilize
no later than when k matches the largest Robertson chain present in G. What is more
interesting is that, for each fixed homological index i, all evidence suggests that the entire
Robertson filtration stabilizes.

Conjecture 14. For every i ≥ 0, there exists an integer gi ≥ 0 such that for any n ≥ 1 we have
RjHi(Fn(•)) = Rj+1Hi(Fn(•)) whenever j > gi.

In the originating work [8], the authors provide a proof of this fact conditional on a
categorical version of the graph minor theorem. There is also some hope of an uncondi-
tional argument that instead uses well known spectral sequences relating configuration
spaces of a graph to that of the graphs obtained through vertex explosion. In either case,
an unconditional proof of the above conjecture would be a critical step in understanding
the structure of the homology groups of graph configuration spaces.

As one nice consequence of the boundedness of the Robertson filtration, we can see
where the bounded torsion theorem from the introduction is coming from.
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Theorem 15. Fix i, n ≥ 1. Assuming Conjectures 6 and 14, there exists an integer di,n, such
that for any graph G, any torsion appearing in Hi(Fn(G)) has order dividing di,n.

Proof. To start, consider the T Gk-module Hi(Fn(•)). One may take the submodule gen-
erated by all torsion classes appearing among all of the homology groups. This forms a
T Gk-submodule, as the torsion classes are sent to torsion classes by the induced maps.
By the Categorical Robertson’s Conjecture, this submodule must be finitely generated.
By taking the least common multiple of the exponents of the generating homologies, we
obtain an integer di,n,k that all torsion appearing in the T Gk-module must have order
dividing. To remove the dependence on k, one can apply Conjecture 14.
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