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Abstract  

Atomic Force Microscopy (AFM) force-distance (FD) experiments have emerged as an 
attractive alternative to traditional micro-rheology measurement techniques owing to their 
versatility of use in materials of a wide range of mechanical properties.  Here, we show that the 
range of time dependent behaviour which can reliably be resolved from the typical method of FD 
inversion (fitting constitutive FD relations to FD data) is inherently restricted by the experimental 
parameters: sampling frequency, experiment length, and strain rate.  Specifically, we demonstrate 
that violating these restrictions can result in errors in the values of the parameters of the complex 
modulus.  In the case of complex materials, such as cells, whose behaviour is not specifically 
understood a priori, the physical sensibility of these parameters cannot be assessed and may lead 
to falsely attributing a physical phenomenon to an artifact of the violation of these restrictions.  
We use arguments from information theory to understand the nature of these inconsistencies as 
well as devise limits on the range of mechanical parameters which can be reliably obtained from 
FD experiments.  The results further demonstrate that the nature of these restrictions depends 
on the domain (time or frequency) used in the inversion process, with the time domain being far 
more restrictive than the frequency domain.  Finally, we demonstrate how to use these 
restrictions to better design FD experiments to target specific timescales of a material’s behaviour 
through our analysis of a polydimethylsiloxane (PDMS) polymer sample. 

1. Introduction 

The field of mechanobiology has provided powerful insight into the rich behavior of soft, 
biological materials1–6.  Of particular interest is rheological analysis.  Due to the amorphous 
structure and active restructuring of living matter, measuring mechanical behaviors across a wide 
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range of timescales has allowed researchers to probe contributions of individual biopolymers in 
orchestrating the cell’s bulk behavior.  This work has provided an important lens for investigating 
drug-cell interaction and disease progression, for instance7–15.  Many measurement techniques 
have been implemented to meet these needs – typically by mechanically stimulating the surface, 
or even sub-surface, with micro-pipette tips or colloidal particles manipulated with magnetic, 
optical, or mechanical systems6–9,15–18.  Additional techniques based on Atomic Force Microscopy 
(AFM) and more generally, Scanning Probe Microscopy (SPM), have been used due to their 
uniquely versatile range of in vitro measurements and their non-destructive / minimally invasive 
nature2,3,19–24. 

In AFM, the surface of a material is interrogated using a probe affixed to the end of a 
cantilevered beam.  Sharp probes (several nanometers wide) are used to measure the topography 
of the surface with sub-nanometer resolution by either dragging or tapping the probe across the 
surface.  The probe can additionally be indented into the surface of the material, providing a 
simultaneous measurement of the depth of penetration and the force applied to the surface.  In 
some cases, using larger probes (several microns wide) is desirable to obtain higher quality data 
at a lower spatial resolution.  Using theories of contact mechanics such as that of Hertz, Sneddon, 
JKR, or DMT, one can obtain quantitative estimates of the elastic modulus of the material, 
provided that the geometry of the tip is known25–33.  The complex modulus can be obtained using 
viscoelastic contact theories such as Ting’s model or that of Lee and Radok34–36.  Further details of 
these models can be found in exceptional detail in the literature37–40. 

Though unified through contact mechanics, many different AFM techniques exist to 
measure the complex modulus.  Keeping with tradition, creep tests are commonly performed and 
provide a highly reliable method of obtaining the exponential relaxation of a material21,41–46.  While 
in contact with the material, an additional harmonic excitation can be applied at set frequencies 
or in a frequency sweep, such as a chirp waveform, in a way that resembles Dynamic Mechanical 
Analysis47–51.  Although creep or oscillatory based measurements can provide direct 
measurements of the relaxation modulus and complex modulus, respectively, they take several 
seconds to reliably probe the response of the material at long timescales.  Additional 
measurements involving the harmonic excitation of the cantilever at, or close to, either its first or 
simultaneously, its second resonance frequency also exist.  These methods provide the additional 
convenience of simultaneous acquisition of the surface topography and the complex modulus; 
however, the moduli obtained from these experiments are restricted to the operating 
frequency(ies) of the cantilever oscillation24,52–54.  

Though the maximum range of timescales that can be accessed from alternative 
techniques such as colloidal particle microrheology are similar to those in AFM, AFM typically 
operates in a smaller subset of this range whereas microrheological techniques take advantage of 
the entire range7,14,49,55.  Recent work has sought to close this gap by utilizing the wideband nature 
of thermal oscillations56–58.   Still, the most common viscoelastic characterization technique among 
AFM practitioners is the force-indentation (or force-distance, FD) experiment.  Due to its simplicity 
and short duration, FD experiments are an attractive option for those seeking high throughput 
data acquisition to probe the heterogeneities inherent in biological materials22,59.  As the 
previously mentioned AFM techniques typically take longer to perform, the amount of data that 
can be obtained from an experiment on sensitive, active materials like cells is limited compared 
to FD curves22,60,61. 
 Such experiments have provided great insight into the detailed mechanical 
heterogeneities of cells62 and have also allowed the investigation into cellular morphogenesis63,64, 
mechanotransduction65, motility66, apoptosis67, metastasis68, and many other interesting 
phenomena69–71.  Though AFM experiments have contributed significantly to many advancements 
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in biophysical understanding, the AFM as a device is extremely sensitive to deviations in its 
operating parameters which can skew results by several orders of magnitude72.  Here, we will 
attempt to address how the experiment length, sampling frequency, and rate of indentation can 
be tailored to avoid such sensitivities in FD experiments.  We will begin by deriving a simplified 
theoretical model for FD experiments, treating the material as a generalized Maxwell model.  
Using this model, we will first demonstrate the limitations of FD experiments in uniquely 
determining the set of model parameters that define the theoretical material.  Following this, we 
will use arguments from information theory to understand the cause of these limitations and how 
to use them to optimally design FD experiments.   

We present a brief graphical summary of the results in Fig. 1 below.  One first needs to 
establish the maximum range of timescales governing the mechanical response(s) of interest.  In 
the case of well-defined materials, one can use the literature for reference; however, for novel 
materials we suggest performing creep or relaxation experiments: one short experiment with 
maximal sampling and one long with maximal length.  These experiments can then be used to 
obtain the smallest (𝜏𝑚𝑖𝑛) and largest (𝜏𝑚𝑎𝑥) relaxation times of a material and thus guide the 
selection of the experiment length (𝑡𝑓) and sampling frequency (1/Δ𝑡) for use with FD 

experiments as seen below.  One can additionally use these boundaries as a guide in data analysis 
to avoid overfitting. 

 

 
 
Figure 1: The range of time-dependent mechanical behavior that can be captured with an AFM FD 
experiment is limited by the length of the experiment 𝑡𝑓 and the sampling frequency, or sampling 

period Δ𝑡.  One convenient way of informing FD experiments to capture these behaviors is to first 
obtain an estimate or a measurement (with a creep test) of the shortest and longest relaxation 
times 𝜏𝑚𝑖𝑛 and 𝜏𝑚𝑎𝑥 of a material. 

2. Theoretical Background 

 
In force-indentation experiments, the surface of the material is indented with the AFM 

probe while the indentation depth ℎ and the resulting interaction force 𝑓 are recorded in a way 
that is analogous to macro-scale tensile and compression test experiments.  Using contact 
mechanics, one can relate the force and indentation in terms of a constitutive stress-strain 
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equation which, for the case of a linear viscoelastic material, is generally a convolution integral as 
shown in Eqn. 1 and 1a34–36,38–40,73,74.  Here, the terms 𝛼 and 𝛽 depend on the geometry of the AFM 
probe and can be found in further sources22,26,35–38,40. 

𝜎(𝑡) = ∫ 𝑑𝑢  𝑄(𝑡 − 𝑢)휀(𝑢) (1) 

𝑓(𝑡)

𝛼
= ∫ 𝑑𝑢  𝑄(𝑡 − 𝑢)ℎ𝛽(𝑢) (1a) 

𝑄(𝜔) =
𝜎(𝜔)

휀(𝜔)
=

𝑓(𝜔)

𝛼 ℎ𝛽(𝜔)
 (2) 

In the state-of-the-art, the viscoelastic modulus 𝑄 can then be  obtained by first assuming 
a functional form for 𝑄 and then fitting the specific constitutive equation to the obtained force-
indentation or stress-strain data in what we will refer to as the time domain approach21,22,75–79.  
Alternatively, one can use certain integral transforms, for which the convolution theorem is valid, 
to ‘undo’ the convolution and directly obtain the modulus from the transformed force-indentation 
data without prescribing a functional form to 𝑄 as seen in Eqn. 2 (here, we will use the modified 
Fourier transform with the notation 𝑓(𝜔) denoting the transform of 𝑓)80,81.  While this ‘frequency 
domain approach’ allows an independence from model prescription, obtaining a model-based 
parameterization is often necessary for communication and comparison purposes.   Thus, just as 
is done in the time domain approach, models for 𝑄(𝜔) can be chosen and then fit to the 
transformed data. 

While these methods offer straightforward solutions for obtaining parameterized 
descriptions of viscoelastic materials, their accuracy and reliability has recently been 
questioned79,82.  Specifically, the time domain approach often yields unphysical or even conflicting 
values of the model parameters which depend on the initialization of the fitting algorithm83.  
Furthermore, a recent work by Vemaganti et al demonstrates that relaxation times can only be 
reliably obtained from stress relaxation experiments if they are less than 20% of the total 
experiment length84.  Despite these inconsistencies in the model parameters, the fitted FD curves 
in the time domain often are in close agreement with the data and require detailed inspection to 
validate their physical sensibility.  However, such an approach would be impractical in high 
throughput applications which often involve several 1000’s of separate force curves within a 
single measurement.   

Although not an exhaustive list, researchers tend to choose from Maxwell, Kelvin-Voigt, 
power-law, and fractional calculus-based models for the parametrization of the viscoelastic 
modulus21,22,75–77,85.  Here, we will focus specifically on the generalized Maxwell model 𝑄𝐺𝑀 as well 
as it’s special case, the standard linear solid (SLS), as seen in Fig. 2b and 2a, respectively.  The 
generalized Maxwell model is mathematically defined by Eqn. 3 and 3a for the time and frequency 
domains, respectively (note that the modified Fourier domain representation is used in Eqn. 3a; 
further details can be found in the appendix).  As seen in Fig. 2b, the generalized Maxwell model 
is comprised of a series of 𝑁 ‘Maxwell arms’ in parallel with a single elastic element 𝐺𝑒.  In the 
special case 𝑁 = 1, the model reduces to an SLS.  Each arm has a spring element contributing an 
elasticity 𝐺𝑛 and a dashpot (damper) element contributing a viscosity 𝜇𝑛.  The ratio of these arm 
components gives a characteristic relaxation time 𝜏𝑛 = 𝜇𝑛/𝐺𝑛 which governs the rate at which 

the stress in the 𝑛𝑡ℎ arm relaxes, with larger values corresponding to slower stress relaxation and 
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vice-versa.  By increasing the number of Maxwell arms 𝑁, one can describe a material with an 
intricate relaxation process.  For example, a two-armed generalized Maxwell model was used to 
describe the ‘fast’ and ‘slow’ cytoskeletal rearrangement of cancer cells from stress-relaxation 
experiments86. 

 

𝑄𝐺𝑀(𝑡) = 𝐺𝑒𝛿(𝑡) + ∑ [𝐺𝑛𝛿(𝑡) −
𝐺𝑛

𝜏𝑛
𝑒

−
𝑡

𝜏𝑛]

𝑁

𝑛

 (3) 

𝑄𝐺𝑀(𝜔) = 𝐺𝑒 + ∑ [𝐺𝑛 −
𝐺𝑛

1 +
𝜏𝑛
∆𝑡

(1 −
𝑒−𝑖𝜔

1.001
)

]

𝑁

𝑛

 (3a) 

 
Figure 2: a) illustrations of a Standard Linear Solid (SLS) model and b) a generalized Maxwell (GM) 
model comprised of an arbitrary number of Maxwell arms, seen in dashed red. 
 

As previously mentioned, we have found that the behavior of the generalized Maxwell 
model is relatively insensitive to changes in its parameter set 𝜽 (i.e., 𝐺𝑒 , 𝐺1, 𝜏1 for an SLS).  In the 
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time domain, for instance, while a model fitted to a force-indentation curve may agree with the 
true data obtained from an experiment, the fitted values of 𝜽 may vary significantly compared to 
the true values for the material.  Such discrepancies are demonstrated in Fig. 3a where 100 
generalized Maxwell models were fit to a simulated force-indentation curve (seen in blue).  
Although there are a few fits (seen in grey) which visually disagree with the true force-indentation 
data, the average (seen in red) follows the data quite well.  If this were representative of a typical 
characterization experiment of the simulated material, the averaged data would be considered to 
have successfully described the material due to its agreement with the data.  However, the 
discrepancies in the resulting fitted 𝜽’s become apparent when plotting the storage and loss 
moduli (real and imaginary parts of 𝑄(𝜔)) for the fits, their average, and the data as seen in Fig. 
3b and 3c, respectively.  In Fig. 4, we see that values of the relaxation times (inverse of the 
frequency index of the peak in the loss modulus) disagree by 1-2 orders of magnitude between 
the fits and the data.  Furthermore, as models with 𝑁 between 1 and 4 were fit to the data, models 
with different numbers of relaxation times seem to equally describe the same force-indentation 
behavior in the time domain, despite the qualitative differences in the physics.  As a result of this 
insensitivity to the number of relaxation times, the common practice for materials to be fitted 
with an arbitrary 𝑁, raises questions regarding overfitting the data and regarding fitting the data 
to incorrect physical behaviors.  Although the comparison of the storage and loss moduli of the 
fits and the material seems to allow a more accurate assessment of the fit accuracy, such data is 
not directly obtained from the time domain fitting approach, thus making this assessment 
impossible if one fits in the time domain.  However, the results suggest that the frequency domain 
approach should offer an advantage in more accurately parameterizing materials from force-
indentation data. 
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Figure 3: a) 100 randomly initialized (N between 1 and 4) fit attempts (grey) to a simulated force-
indentation curve (N=1) (blue) with the average behavior of the fit attempts shown in dashed red.  
B) Storage moduli for each parameter set obtained from fitting and averaging.  C) Loss moduli for 
each parameter set obtained from fitting and averaging. 
 

 
Figure 4: Values of the true model parameters (blue dots) from the model (blue curves in Fig. 3) 
plotted with the distribution of fitted parameters as box and whisker plots.  As alluded to in Fig. 
3, the modulus (magnitude of the response) is mostly recovered; however, the relaxation time is 
vastly overestimated. 

 
 

3. Analysis 

a. Insensitivity of the 𝒍𝟐 Norm 
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To compare the capabilities of these two approaches in determining an accurate 𝜽 for a 
material, we will first use simplified, theoretical cases, treating force-indentation curves as linear 

strain inputs ℎ𝛽(𝑡) = 휀(𝑡) ≈ 휀0 𝑡.  While the indentation in AFM experiments is not typically 

linear, the ‘strain’ factor ℎ𝛽 in the contact mechanics models often closely follows a line as seen 
in the technical appendix.  With this simplification, the stress-strain behavior for the linearized 
force-indentation model can be obtained by solving the Volterra integral in Eqn. 1 for the given 
strain 휀(𝑡) = 휀0 𝑡 and modulus 𝑄(𝑡) = 𝑄𝐺𝑀(𝑡).  We further express both the time 𝑡 and the 
relaxation times 𝜏𝑛 as fractions of the full experiment length 𝑡𝑓 as well as normalize each arm 

elasticity 𝐺𝑛 by the glassy (or instantaneous) modulus 𝐺𝑔 = 𝐺𝑒 + ∑ 𝐺𝑛 to remove the dependence 

on 𝐺𝑒 (the equilibrium modulus) and thus, reduce the dimensionality of 𝜽.  A similar dimensional 
analysis was performed for the modified Fourier domain representation of the modulus, yielding 

�̃�(𝜔) where ∆𝑡 denotes the sampling timestep of the experiment and 1.001 is the typical radial 
term used in the discrete modified Fourier transformation of FD curves81.  One should note that 
an equivalent non-dimensionalization could be performed by scaling the timescales by the inverse 
of the strain rate, 휀0.  Thus, the findings that are obtained from the analysis of the equations scaled 
by 𝑡𝑓 are equivalent to those scaled by 1/휀0.  The resulting dimensionless equations for the 

corresponding observables in both the time (stress �̃�) and frequency (modulus �̃�) domains are 
given in Eqn. 4 and 4a; however, refer to the technical appendix for more thorough derivations.  

Using these models, simulated datasets �̃�𝑜𝑏𝑠 and �̃�𝑜𝑏𝑠 can be generated for various values of 𝜽 
with the addition of Gaussian white noise with a standard deviation 𝑠 equal to 0.1% of the full 
scale of the data.  Hence, the simulated datasets are represented as �̃�𝑜𝑏𝑠 = �̃� + 𝑃𝑁(0, 𝑠2) and 

�̃�𝑜𝑏𝑠 = �̃� + 𝑃𝑁(0, 𝑠2), where 𝑃𝑁(0, 𝑠2) denotes a normal distribution sample with average equal 
to zero and variance 𝑠2.  Then, the 𝜽 which describes the simulated data can be obtained through 

fitting the relevant model by minimization of the 𝑙2 norm between the data (�̃�𝑜𝑏𝑠 or �̃�𝑜𝑏𝑠) and the 

model ‘prediction’ (�̃� or �̃�), as defined in Eqn. 5 and 5a. 

�̃�(𝑡) =
𝑓(𝑡)

𝛼 휀0 𝐺𝑔 𝑡𝑓
= �̃� + ∑ �̃�𝑛�̃�𝑛 (1 − 𝑒

−
�̃�

�̃�𝑛) − �̃�𝑛�̃�

𝑁

𝑛

 (4) 

�̃�(𝜔) =
𝑄(𝜔)

𝐺𝑔
= 1 − ∑

�̃�𝑛

1 +
�̃�𝑛
∆𝑡

(1 −
𝑒−𝑖𝜔

1.001
)

𝑁

𝑛

 (4a) 

𝑙𝑡
2(𝜽) = ∑[�̃�(�̃�, 𝜽) − �̃�𝑜𝑏𝑠(�̃�)]2

�̃�

 (5) 

𝑙𝜔
2 (𝜽) = ∑[�̃�(𝜔, 𝜽) − �̃�𝑜𝑏𝑠(𝜔)]

2

𝜔

 (5a) 

The successful identification of 𝜽 from a dataset is dependent on the structure of the 𝑙2 
norm; for example, if the norm has multiple local minima, an optimization algorithm may falsely 
identify one of these points as the true minimum.  Furthermore, if the surface of the 𝑙2 norm 
encompasses regions of 𝜽 for which the values of the norm are below the machine precision level, 
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the computer will not be able to reliably distinguish between 𝜽’s in these areas and the algorithm 
will also be unable to continue advancing towards the minimum87. 

In a mathematically simpler power-law viscoelastic model, it was recently demonstrated 
that the structure of the 𝑙2 norm contained many local minima which resulted in frequent 

misidentifications of 𝜽83.  In Fig. 5a and 5b, we show the surfaces of the norm for both the time 𝑙𝑡
2 

and frequency 𝑙𝜔
2  domain models for a wide range of parameter space around the true minimum 

(�̃�1𝑜𝑏𝑠
= 0.5, �̃�1𝑜𝑏𝑠

= 0.5).  Although these two-dimensional models do not have any local minima, 

the regions of flattened topography with values below the machine precision level introduce the 
possibility of stagnant optimization algorithms.  Specifically, a large valley formation occurs 
around the minimum of the time domain model as seen in Fig. 5a.  This valley encompasses a large 

range of possible values for the elasticity �̃�1 and relaxation time �̃�1, especially considering the 
normalization of these parameters, thus implying that parameters in this range offer no 
discernible change in the behavior of the model in the context of a force-indentation curve, from 
the perspective of the computer87.  The variability of the fit results seen in Fig. 3 and the sensitivity 
to the initialization of the optimizer can then be understood as outcomes of this flatness in the 𝑙2 
surfaces.  

 
Figure 5: Surfaces of the 𝑙2 norm for both the a) time and b) frequency domain models for a 

material with �̃�1𝑜𝑏𝑠
= 0.5 and �̃�1𝑜𝑏𝑠

= 0.5 (true values indicated on the plots with an X). 

 

As the valley in the 𝑙𝑡
2 norm extends towards larger values of �̃�1, one can expect that arms 

with relaxation times that are comparable to the length of the experiment or close to the inverse 
strain rate (�̃�𝑛 close to 1) will contribute a negligible amount to the model behaviour (since they 
have negligible effect on the norm).  The functional form of the model in the time domain permits 

such a behavior as the term 1 − 𝑒−𝑡/�̃�𝑛  will remain small for most of the experiment.  As the arm 

behavior is further scaled by the product of the modulus and the relaxation time �̃�𝑛�̃�𝑛, then, in 
the case where the relaxation time is large, the behavior of the arm is dominated by this product, 

allowing for errors in �̃�𝑛 to be offset by inversely proportional errors in �̃�𝑛, thus explaining the 

valley formed in the 𝑙𝑡
2 norm. 

The norm in the frequency domain offers a contrast to the time domain norm, as seen in 
Fig. 5b.  Here, a single, well-defined minimum in the parameter space is surrounded by a convex, 
highly curved surface, thus indicating that the model in the frequency domain is more amenable 
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to successful optimization attempts, even in the presence of considerable noise.  Furthermore, 
the region of the parameter space that is below the machine precision level is confined to the area 
immediately around the true minimum, therefore, the problem of optimizers being unable to 
advance before reaching the true minimum is not present.   

Although it may seem counterintuitive that these two representations of the same physics 
have differing behaviors when optimizing a fit, the finding is of a similar essence as the use of 
integral transforms in solving ordinary differential equations (ODEs).  In the case of ODEs, certain 
integral transforms change the functional form of the equation allowing direct algebraic solutions 
to the equations.  Here, the integral transforms change the functional form of the model in the 
time domain to a function that has greater sensitivity to its model parameters.  A further analogy 
can be taken from support vector machines, which commonly apply transformations to the space 
of the dataset to arrive in a final space which specifically amplifies the differences between the 
global features of the data.  

b. Information Theory 

As we have discussed, the unreliability of the optimization can be attributed to the flatness 
of the 𝑙2 norm, which itself can be attributed to the insensitivity of the model behavior with 
respect to 𝜽.  One might then question the case when the 𝑙2 norm is completely flat for all values 
of 𝜽.  In this case, the parameters of the model would not control the description of the data as 
different values of 𝜽 would describe the same phenomena with equal validity.  In other words, 
the information provided by the data would be completely useless in identifying the optimal 
values of 𝜽. In most cases the challenges may not be as drastic, but nevertheless, a robust 
procedure is necessary to ensure a proper fit for this particular parameter inversion problem.  To 
fully quantify the information provided by a dataset about 𝜽, we turn to information theory.   

Here, we will use the log likelihood and the D-optimality criterion to assess how 
experimental conditions impact the information gathered about the optimal 𝜽 of a material to 
then better design force-indentation experiments that would allow the user to obtain more 
meaningful data.  While we will now present an informal description and motivation for the use 
of these two metrics, further details can be found in the technical appendix and more rigorous 
derivations and formal motivations can be found in the relevant literature84,88–93. 

First, consider representing the probability 𝑃(�̃�𝑜𝑏𝑠(�̃�0)|𝜽) of correctly fitting the time 
domain model �̃�  at a single instant in time �̃�0 to a measured force-indentation curve �̃�𝑜𝑏𝑠.  As the 
noise in �̃�𝑜𝑏𝑠 is assumed to follow a Gaussian process with standard deviation 𝑠, 𝑃(�̃�𝑜𝑏𝑠(�̃�0)|𝜽) 
can then also be given as a Gaussian distribution as seen in Eqn. 6.  Then, assuming the individual 
probability distributions for fitting each instant in time are independent and identically 
distributed, the probability (or likelihood) of correctly fitting the entire force-curve can be given 
as the product of the individual probability distributions for every instant in time.  As the quality 
of the model’s description of the data increases, so does the likelihood of proper fitting.  
Coincidentally, minimizing the 𝑙2 norm with respect to 𝜽 is equivalent to maximizing the likelihood 
with respect to 𝜽.  Hence the optimal parameter set is often referred to as the maximum likelihood 
estimate (MLE) of 𝜽94,95.  For the sake of convenience, the logarithm of the likelihood product is 
used, thus resulting in the log likelihood 𝐿(�̃�𝑜𝑏𝑠|𝜽) (Eqn. 7 and 7a). 

𝑃(�̃�𝑜𝑏𝑠(�̃�0)|𝜽) =
1

√2𝜋𝑠2
𝑒

− 
(�̃�(�̃�0,𝜽)−�̃�𝑜𝑏𝑠(�̃�0))

2

2𝑠2  (6) 
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𝐿(�̃�𝑜𝑏𝑠|𝜽) = ∑ −
log(2𝜋𝑠2)

2
−

(�̃�(�̃�, 𝜽) − �̃�𝑜𝑏𝑠(�̃�))
2

2𝑠2

�̃�

 (7) 

𝐿(�̃�𝑜𝑏𝑠|𝜽) = ∑ −
log(2𝜋𝑠2)

2
−

(�̃�(𝜔, 𝜽) − �̃�𝑜𝑏𝑠(𝜔))
2

2𝑠2
𝜔

 (7a) 

𝐽(𝜽𝑀𝐿𝐸)𝑖,𝑗 = [−𝜕𝜃𝑖
𝜕𝜃𝑗

𝐿(�̃�𝑜𝑏𝑠|𝜽)]
𝜽=𝜽𝑀𝐿𝐸

 (8) 

𝐽(𝜽𝑀𝐿𝐸)𝑖,𝑗 = [−𝜕𝜃𝑖
𝜕𝜃𝑗

𝐿(�̃�𝑜𝑏𝑠|𝜽)]
𝜽=𝜽𝑀𝐿𝐸

 (8a) 

As previously stated, the flatness, or curvature of the 𝑙2 norm allows us to build an insight 
into how to quantify the information contained within a dataset.  Again, if the 𝑙2 norm surface is 
entirely flat, changes in 𝜽 will not alter the model’s description of the data – therefore, the data 
provides no information about the optimal value of 𝜽, given as 𝜽𝑀𝐿𝐸 .  Conversely, if the 𝑙2 norm, 
or equivalently the log likelihood, is highly curved in the vicinity of 𝜽𝑀𝐿𝐸 , then, the dataset is 
considered to contain a large amount of information about the 𝜽𝑀𝐿𝐸 .  Thus, the curvature of the 
log likelihood in the vicinity of 𝜽𝑀𝐿𝐸  seems to be a sensible metric to quantify the information that 
the dataset contains about 𝜽𝑀𝐿𝐸 .  Indeed, the matrix of mixed second partial derivatives 
𝐽(𝜽𝑀𝐿𝐸)𝑖,𝑗 of the log likelihood, evaluated at 𝜽𝑀𝐿𝐸  (Eqn. 8 and 8a) is a commonly used 

measurement to quantify this information and is referred to as the Observed Fisher Information 
matrix.  Various elements of 𝐽(𝜽𝑀𝐿𝐸)𝑖,𝑗 can be used to quantify the information contained in a 

dataset88,89.  Here, we consider the determinant det(𝐽) of the matrix, referred to as the D-
optimality criterion.  Of course, while we provided the motivation and informal derivations of 
det(𝐽) and 𝐿(�̃�𝑜𝑏𝑠|𝜽) using the example of force-indentation curves (time domain), the results 
are equally valid for the frequency domain model of the modulus. 

i. Time Domain 

First, we consider the behavior of the information det(𝐽) of a force-indentation 
experiment on a material with a single relaxation time �̃�1 (SLS, Fig. 2a) in the time domain.  In Fig. 
6a, the distribution of det(𝐽) increases exponentially as a function of the dimensionless time, 
obtaining its maximum value at the end of the experiment (a longer experiment provides more 
information than a shorter one, generally speaking, since it allows greater probing of the material 
behaviour, assuming a uniform strain rate).  While the relaxation time is not mathematically 
restricted to be shorter than the length of the experiment, it is evident that the information 
available for larger relaxation times is much diminished in comparison to those relaxation times 
that are shorter.  This is as expected, since such relaxation times would not be reached in shorter 
experiments, and therefore, their effects could not be observed.  Most noteworthy is the behavior 
of the information after �̃�1 exceeds 𝑡𝑓/10 as evidenced by the exponential decrease in the 

information calculated at the end of the experiment, seen in Fig. 6b.  We can then deduce that 
relaxation times larger than 𝑡𝑓/10 do not contribute significantly to the behavior of the model 

(within an experiment of length 𝑡𝑓), a finding that is consistent with the flatness seen in the regions 
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of the contour maps of the 𝑙𝑡
2 norm for values of �̃� > 0.1.  A similar result was previously reported 

for stress-relaxation experiments wherein the information obtained about relaxation times 
exceeding 𝑡𝑓/5 was significantly diminished84.  As the nondimensionalization of the timescales 

with respect to the experiment length is equivalent to normalizing by the inverse of the strain 
rate, it is evident that this upper bound can also be expressed as 1/10 휀0.  From here, we can see 
that exciting the material with a more abrupt strain input results in a more restricted upper bound 
as the experiment probes the shorter timescales of the material.  By straining the material very 
slowly, the upper bound increases, allowing one to access the response of the material at larger 
timescales.  

 
Figure 6: a) Distribution of information over the dimensionless time for SLS materials with various 
relaxation times.  b) The behavior of the information as a function of the relaxation time for 
various moduli.  

Conversely, as the relaxation time decreases, the information increases, indicating that 
shorter relaxation times will be easier to identify.  However, as �̃� approaches the sampling 
timestep ∆𝑡 of the experiment, this information gain stagnates.  In this case, the relaxation process 

governed by 𝑒−𝑡/�̃�𝑛  is not adequately sampled in the experiment and thus, relaxation processes 
that occur in a period shorter than the sampling frequency do not lead to a change in the behavior 
of the model.  This behavior can be clearly seen in Fig. 7.  Here, the stress response (Fig. 7b) of a 
material defined by the shear modulus in Fig. 7a is plotted in blue.  Two ‘experiments’ are provided 
in green and red, using values of ∆𝑡 and 𝑡𝑓 which violate these boundaries.  The green curves 

correspond to an experiment that is too short compared to the relaxation time (i.e. 𝑡𝑓 < �̃�) and 

thus, do not capture the viscoelastic relaxation of the material.  The red crosses correspond to an 
experiment with a sampling period much larger than the relaxation time of the material (i.e. Δ𝑡 >
𝜏) and thus, do not reflect the high frequency response of the material. 
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Figure 7: a) Relaxation modulus (step response) of the dimensionless model in the time domain 
and b) stress response of the model defined in a) to an arbitrary strain input.  In both plots, the 
true value of the material is shown in blue with the location of the dimensionless relaxation time 
marked by a vertical blue line.  The green curve indicates an experiment which is shorter than the 
relaxation time and thus unable to capture the dynamic behavior of the material.  The red crosses 
correspond to an experiment with a sampling frequency that is too large compared to the 
relaxation time and thus does not capture the high frequency (short time) response of the 
material. 

A further restriction can be placed on the lower bound of the relaxation time when the 
general convolution definition for the stress-strain or force-indentation relationship is used, such 
as in Eqn. 1 and 1a, rather than assuming a linearized excitation.  In this case, as the data from the 
experiment is a discrete signal, the convolution operator is inherently discretized.  However, 
approximating continuous convolutions like those in Eqn. 1 and 1a with a discretized convolution 

is only valid when the kernel 𝑄 and the input 휀 or ℎ𝛽 are band limited functions95.  Of course, 𝑄 is 
not generally band limited; however, as shown in the technical appendix, 𝑄 can be approximately 
treated as being band limited only when the shortest relaxation time is several orders of 
magnitude greater than the sampling timestep of the experiment: 

 
𝜏𝑚𝑖𝑛 > 1000 ∆𝑡 (9) 

To demonstrate how these restrictions impact the behavior of materials with multiple 
relaxation times, we first simulate the force-indentation behavior of a material with two relaxation 

times �̃�1, �̃�2 and two moduli �̃�1, �̃�2.  We then assess the description of this data by a model with a 
single relaxation time (SLS) by calculating the normalized maximum log likelihood 𝐿(�̃�𝑜𝑏𝑠|𝜽𝑀𝐿𝐸).  

In Fig. 8a and 8d, we plot 𝐿(�̃�𝑜𝑏𝑠|𝜽𝑀𝐿𝐸) for various combinations of �̃�1, �̃�2 and �̃�1, �̃�2.  As the 
difference between the two relaxation times �̃�1, �̃�2 of the material increases, the ability of the SLS 
model in describing the features of the data diminishes as evidenced by the decrease in 
𝐿(�̃�𝑜𝑏𝑠|𝜽𝑀𝐿𝐸).  Of course, as �̃�1 and �̃�2 approach each other, the opposite is true as their behaviors 
can be equivalently treated as a single relaxation time.  As seen in the wide distributions in  
𝐿(�̃�𝑜𝑏𝑠|𝜽𝑀𝐿𝐸), if the difference between �̃�1 and �̃�2 drops within 1-2 orders of magnitude, the 
likelihood that the data can be described by a single relaxation time is maximized.  In such a case, 
the two nearly coincidental relaxation times would not be resolved from the analysis of the 

experimental data in the time domain.  For example, consider the blue curve in Fig. 8a.  Here, �̃�1 =
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�̃�2 = 0.5, �̃�1 = 0.001s, and various values of �̃�2 are given along the x-axis of the figure.  In this 
case, only values of  �̃�2 > 0.1s can be distinguished in the time domain (i.e., only for values of  
�̃�2 > 0.1s is it possible to determine that having a single relaxation time in the model is insufficient 
to fit the data).  To better illustrate this point, the data and the SLS fit associated with �̃�2 = 0.01s 
is provided in Fig. 8c.  As expected from the preceding discussion, the two relaxation times cannot 
be determined, thus the SLS model adequately and more concisely describes the material.   

A similar phenomenon occurs as one of the relaxation times approaches or surpasses the 
length of the experiment, or the inverse of the strain rate.  Even if the two relaxation times are 
separated by several orders of magnitude (for instance �̃�1 = 0.001, �̃�2 = 10 as seen in the blue 
curve in Fig. 8a), the slower relaxation process will not be able to have a significant effect on the 
behaviour of the material during the experiment and thus, will not be detected in the experiment 
(since �̃�2 = 10 is ten times longer than the duration of the experiment).  This explains why the 
curves in Fig. 8a and 8d rise after reaching a minimum when �̃�2 is approximately unity). 

A further example can be seen in the orange log likelihood curve in Fig. 8a and the 
corresponding set of force curves seen in Fig. 8b.  In this example, the relaxation times are 
separated by nearly three orders of magnitude; therefore, the insufficiency using single relaxation 
time in the model is readily identified in the time domain and one can easily conclude that SLS 
description of the data is inaccurate.  An additional example is provided in Fig. 8d for the case 
when one of the moduli of the material is small compared to its total stiffness.  Here, similar 
features of 𝐿(�̃�𝑜𝑏𝑠|𝜽𝑀𝐿𝐸) are seen wherein the behaviors of the relaxation times are most 
noticeably different when they are separated by several orders of magnitude.  However, as one 
of the moduli is smaller than for the previous example, the effects associated with this modulus 
are similarly negligible.  Therefore, the magnitude of 𝐿(�̃�𝑜𝑏𝑠|𝜽𝑀𝐿𝐸) for the SLS is significantly 
increased for most of the horizontal axis range in Fig. 8d when compared to Fig. 8a, thus suggesting 
that relaxation times should only be introduced when they are associated with moduli that are 
roughly equal in magnitude. 
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Figure 8: The maximum log likelihood 𝐿(�̃�𝑜𝑏𝑠|𝜽𝑀𝐿𝐸) for an SLS description of a material with two 

relaxation times �̃�1, �̃�2 and �̃�1, �̃�2. a) shows 𝐿(�̃�𝑜𝑏𝑠|𝜽𝑀𝐿𝐸) normalized to a 0-1 scale for a material 

given by �̃�1 = �̃�2 = 0.5 with various combinations of relaxation times.  b) shows the force-
indentation curve corresponding to the circular orange marker in Fig. 8a and the most likely SLS 
description.  c) shows a similar correspondence for the circular blue marker in Fig. 8a.  d) shows 

values of 𝐿(�̃�𝑜𝑏𝑠|𝜽𝑀𝐿𝐸) normalized to a 0-1 scale for a material given by �̃�1 = 0.7 and �̃�2 = 0.1 

(�̃�1 noticeably larger than �̃�2) for various relaxation times. e) shows a correspondence for the 
circular purple marker in Fig. 8d.  f) shows a correspondence for the circular blue marker in Fig. 
8d.  
 

We can then conclude that for force-indentation curves in the time domain, relaxation 
times can most reliably be extracted when their values fall between ∆𝑡 and 𝑡𝑓/10 (or equivalently 

1/10 휀0), when using a linearized force-indentation model as we have done in our example.  If the 
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force-indentation relation is kept general (i.e., without specifying its form) and the (discretized) 
convolution definition is used, then the lower bound increases to about 1000 ∆𝑡.  Furthermore, 
the presence of multiple relaxation times can only be determined if they are separated by at least 
1-2 orders of magnitude and within the previously mentioned ranges.  Additionally, the magnitude 
of the moduli of each Maxwell arm should be comparable and larger than the amplitude of the 
measurement noise.  Similarly, as the magnitude of both the log likelihood and the information 
scale inversely with the square of the amplitude of the noise, the ability to determine these 
parameters drastically diminishes as the amount of noise increases.  Violating these criteria 
introduces the possibility of fitting these parameters to artifacts unrelated to the material. 

 
ii. Frequency Domain 

A similar approach can be taken to determine the range of detectable relaxation times in 
the frequency domain.  As was done in the time domain, we first assess the shape of the 
information distribution det(𝐽) of a model with a single relaxation time as a function of frequency 
as seen in Fig. 9a.  For relaxation times between the sampling timestep and the length of the 
experiment, the information increases until the frequency passes the relaxation frequency �̃�𝑟 =
1/�̃�.  After this point, the information slowly declines with frequency; however, this feature is an 

artifact of the normalization of �̃� with respect to 𝐺𝑔 since now all the models share a common 

behavior for frequencies greater than 1/�̃�.   

The behavior of the information in �̃� can be understood by investigating the behavior of 

the model as a function of frequency.  Fig. 10 shows the storage and loss moduli of �̃� for various 
values of �̃�.  The behavior of the storage modulus follows a sigmoidal-like transition between 𝐺𝑒 
and 𝐺𝑔 whereas the loss modulus follows a shape similar to a Boltzmann distribution.  As the 

locations of these features are controlled by �̃�𝑟, increasing �̃� past the resolution of the frequency 
axis will cause these features to not be adequately sampled during the experiment as seen in the 
pink curves in Fig. 10a and 10b.  As the resolution of the frequency axis is given as 𝑡𝑓, relaxation 

times that are longer than the length of the experiment will not be properly sampled.  Therefore, 
we can understand the decaying behavior of the information for large values of �̃� as seen in Fig. 
9b.  Of course, this behavior is consistent with what is seen in the time domain; however, the 
decay is not as abrupt in the frequency domain compared with the time domain, as seen in Fig. 
7b.  
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Figure 9: a) Distribution of information over the dimensionless time for SLS materials with various 

relaxation times with �̃� = 1 (fluid-like materials).  b) Behavior of the information as a function of 
the relaxation time for various moduli. 
 
 On the opposite end, as the relaxation time decreases, the magnitude of the information 
increases until it meets a stagnation point as also seen in the time domain.  In this case, the 
location of the previously mentioned features of the storage and loss moduli shifts outside of the 
Nyquist band when �̃� decreases past 2 ∆𝑡.  Therefore, relaxation times that happen faster than 
the length of the sampling window will not be obtained in the frequency domain.  It is interesting 
to note that the model appears to correspond to two different ‘elastic’ solids when �̃� is outside of 
these detectable bounds.  On one end, the material relaxes so quickly as to appear instantaneous 
– on the other, the material relaxes so slowly as to appear as if it doesn’t relax at all.  Both cases 
result in approximately flat storage and loss moduli with the flatness increasing as �̃� approaches 
either 0 or ∞38. 

 
Figure 10: Behavior of the a) storage and b) loss moduli of the SLS model for various relaxation 

times with �̃� = 1 (fluid-like materials).  As stated in the text, the storage modulus behaves as a 
sigmoid, with its transition period being governed by the inverse of the relaxation time.  The loss 
modulus follows a similar shape as a Boltzmann distribution, with its maximum value occurring at 
the inverse of the relaxation time.  
 

It should be noted that 2 ∆𝑡 serves as an idealized lower limit for the detectable relaxation 
times.  In practice, noise may obscure the behavior of the material at high frequencies.  When 

deriving the model for �̃� that was used in obtaining these results, we used the explicit form of �̃� 
for a generalized Maxwell model, therefore avoiding taking the modified Fourier transform of the 

force-indentation curves (i.e., �̃� was not obtained from data, but instead from its analytical 

expression).  We further assumed that the noise would be linearly additive to �̃�; however, when 

calculating �̃� directly by inverting the force-indentation data, the noise does not follow a simple 
linear behavior.  In the technical appendix we demonstrate that the expected value of the 

magnitude of the noise induced error in �̃� scales with the square of the amplitude of the noise 
and inversely with the square of the magnitude of the transformed strain as seen in Eqn. 10.  As 
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the magnitude of the modified discrete Fourier transform of monotonically increasing linear-like 
inputs (as are typical in force-indentation experiments – further demonstrated in the appendix) 
rapidly diminishes at high frequencies, high frequency error is commonly observed when 

calculating �̃�.  This high frequency error can be thought of as noise with an amplitude, or standard 
deviation, which increases as a function of frequency.  As mentioned before, since the information 
det(𝐽) scales inversely with the square of the amplitude of the noise, we can expect that the 
increasing noise will result in a more rapid attenuation of the information at high frequencies and 
thus, it will impose greater restrictions on the lower limit of detectable relaxation times.  To avoid 
this issue, one can use strain excitations that decay more slowly in the modified Fourier domain.  
Since these types of ‘weakly decaying’ spectra correspond to more slowly diverging excitations in 
the time domain, it is advantageous from a noise perspective to perform slower experiments.  
According to the results established in the time domain section, this also corresponds to 
decreasing the strain rate, thus increasing the upper bound of accessible relaxation times.  
Alternatively, a slower diverging signal has a wider bandwidth in the modified Fourier domain, 
thus allowing for a broader, more reliable characterization of the material response. 

𝛿𝑄  ~
𝑠2

|휀(𝜔)|2
 (10) 

As we did in the time domain, we will now assess the behavior of materials with multiple 
relaxation times in the frequency domain.  We will again investigate the maximum log likelihood 

𝐿(�̃�𝑜𝑏𝑠|𝜽𝑀𝐿𝐸) of an SLS model in describing a material with two relaxation times �̃�1, �̃�2.  As seen 

in the same calculation done for the time domain, the SLS model can describe such a material only 
when the difference between �̃�1 and �̃�2 is small.  However, unlike the time domain, the differences 
in �̃�1 and �̃�2 for which this single relaxation time approximation is valid are much smaller, 
indicating that one can more easily discern when additional relaxation times are needed in the 

model.  In Fig. 11a and 11d, the peak-like distributions formed in 𝐿(�̃�𝑜𝑏𝑠|𝜽𝑀𝐿𝐸) indicate regions 

where the single relaxation time approximation is valid.  Compared to the corresponding plots in 
the time domain seen in Fig. 8a and 8d, the distributions formed here are much narrower and 
larger in magnitude, again suggesting that the effects associated with the relaxation times are 
more pronounced in the frequency domain compared to the time domain.  Such a behavior should 
be expected, however, as the number of distinct relaxation times is directly linked to the number 
of distinct peaks in the loss modulus. 
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Figure 11: The maximum log likelihood 𝐿(�̃�𝑜𝑏𝑠|𝜽𝑀𝐿𝐸) for an SLS description of a material with 

two relaxation times �̃�1, �̃�2 and �̃�1, �̃�2. a) shows 𝐿(�̃�𝑜𝑏𝑠|𝜽𝑀𝐿𝐸) normalized to a 0-1 scale for a 

material given by �̃�1 = �̃�2 = 0.5 with various combinations of relaxation times.  b) shows a 
correspondence between the circular blue marker in Fig. 11a and its associated absolute moduli 
for the material and the most likely SLS description.  c) shows a similar correspondence between 

the circular orange marker in Fig. 11a.  d) shows values of 𝐿(�̃�𝑜𝑏𝑠|𝜽𝑀𝐿𝐸) normalized to a 0-1 scale 

for a material given by �̃�1 = 0.7 and �̃�2 = 0.1 for various relaxation times. e) shows a 
correspondence for the circular green marker in Fig. 11d.  f) shows a correspondence for the 
circular orange marker in Fig. 11d.  
 

As was done in Fig. 8, color-coded markers have been placed on top of the plots in Fig. 11a 
and 11d to correspond to individual plots of the behavior of the SLS description of various two-
relaxation-time materials in the frequency domain.  Consider first the blue marker in Fig. 8a: as 
the log likelihood is significantly reduced, we can imagine that the SLS model should not be able 
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to describe the material.  Indeed, this is evident in Fig. 8b as the error in �̃� propagates across a 
few decades of frequency.  Such an example illustrates very well the distinction between the 
frequency and time domains as here, we see that materials with relaxation times within an order 
of magnitude can be resolved whereas the time domain required 1-2 orders of magnitude of 
separation.  Furthermore, we see that the magnitude of the normalized log likelihood approaches 
a value of 0 for a significant range of separation between the relaxation times.  Such a feature was 
not present in the corresponding time domain plot.  Further examples can be seen in Fig. 11c, e, 
and f.   

We can thus observe that the frequency domain offers a significant advantage over the 
time domain in determining the parameters of generalized Maxwell models.  Specifically, 
relaxation times between 2 ∆𝑡 and 𝑡𝑓 can be individually determined, with the behaviour of 

multiple relaxation times being able to be resolved if they are separated by more than an order of 
magnitude.  The results have been summarized in Table 1 below. 
 
Table 1: Summarized description of the minimum and maximum relaxation times obtained from 
the time and frequency domain analysis of force-indentation experiments as well as the minimum 
resolution for which multiple relaxation times can be determined.   

 𝝉𝒎𝒊𝒏 𝝉𝒎𝒂𝒙 ∆𝝉𝒎𝒊𝒏 

Time domain ∆𝑡∗ 𝑡𝑓/10 2 orders of magnitude 

Frequency domain 2 ∆𝑡∗ 𝑡𝑓 1 order of magnitude 

*Note that the lower bound for the time domain will increase by 3 orders of magnitude if the discrete convolution is 
used to calculate the force-indentation model.  Additionally, the lower bound of the frequency domain will also 
increase in the presence of noise in the direct inversion of the force-indentation data. 

4. Demonstration with Experiments 

We can now demonstrate how these criteria can be leveraged to better design force-
indentation (FD) experiments to more accurately characterize a polydimethylsiloxane (PDMS) 
sample.  In this demonstration, we will use AFM FD curves as well as uniaxial compression tests 
done on the macro-scale with a Universal Testing Machine (MTS) (see Methods section below).  
As the compression tests are performed by applying a linear strain input, the results of the 
previous sections should also apply.  As a reminder, we have determined that in the time domain, 
one can only obtain relaxation times between the sampling timestep ∆𝑡 and one tenth of the 
length of the experiment 𝑡𝑓/10.  Within these bounds, multiple relaxation times can only be 

determined if they are separated by 2 decades of time and if they contribute similar values of their 
respective moduli.  Alternatively, if one opts to use the frequency domain, the maximum range of 
detectable relaxation times increases to be between 2∆𝑡 and 𝑡𝑓 and the required minimum 

spacing between multiple relaxation times decreases to a single decade. 
Thus, to design an AFM experiment which maximizes the information obtained about the 

characteristic timescales of PDMS, we will first have to estimate the relaxation time(s) for the 
material using commonly accepted data.  As the relaxation time of a material is roughly given as 
the ratio of its viscosity to its elasticity, we estimate the relaxation time of PDMS by dividing 
accepted values for its viscosity by its accepted modulus, given as 1 𝑘𝑃𝑎 𝑠 and 1 𝑀𝑃𝑎, 
respectively96,97.  The resulting estimate for 𝜏 is then found to be 10−3 𝑠.  Therefore, we specify 

our AFM experiment to have a sampling timestep of 2 ∗ 10−5 𝑠 (the lower limit on this particular 
AFM instrument) and an experiment length of approximately 0.1𝑠.  Additionally, the approach 

velocity was specified to give a strain rate of roughly 40
%

𝑠
 (indentation normalized by probe 
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radius).  Thus, the boundaries of accessible timescales from the AFM experiment are determined 

to be at most 2 ∗ 10−5 𝑠 and 0.01𝑠 in the time domain, and at most 4 ∗ 10−5 𝑠 and 0.1𝑠 in the 
frequency domain.  However, it should be noted that if we use the general convolution definition 
for fitting the force-indentation curves in the time domain, the lower limit increases to only 0.02𝑠, 
about an order of magnitude larger than the characteristic timescale of PDMS.  Additionally, these 
restrictions on the time domain analysis limit us to only characterize a single relaxation time.  To 
utilize the full range of information available from the AFM experiment, one would have to assume 
a functional form for the indentation, which is hardly ideal, or simply use the frequency domain 
approach.  To further extend the range of the timescales that can be obtained from this 
experiment, one would need to decrease the sampling rate and increase the length of each 

experiment.  In the frequency domain, however, we can obtain 𝜏 values between 4 ∗ 10−5 𝑠 and 
0.1𝑠.  Furthermore, since we can capture the behavior of multiple relaxation times separated by 
only a single decade, we can obtain a much greater resolution than compared to the time domain.  
For example, an experiment length of 0.1 𝑠 allows the determination of, at most, four unique 
relaxation times – far greater than the single relaxation time obtained in the time domain.  As the 
analysis performed here used a priori knowledge to estimate the relaxation time of PDMS, it might 
not reflect experimentation procedures on unmeasured materials.  In these cases, we recommend 
to first use creep tests to determine a bound for the longest relaxation time of the material.  Once 
this has been determined, the experiment can be designed around capturing this behavior using 
the guidelines in Table 1. 

The macroscale mechanical tester used here is typically applied in much slower 

experiments as compared to the AFM, applying a strain rate of only 0.2
%

𝑠
.  As a result of the slower 

deformation rate, the sampling timestep was restricted to only 0.1𝑠 and the length of the 
experiment was around 10𝑠.  Thus, we can expect that the macroscale experiment will yield a 
superb characterization of the low frequency values of 𝑄 (longer timescale relaxations) but will be 
unable to describe the expected 10−3 𝑠 relaxation time of the material. 

Fig. 12a and 12b show the spectral averaged storage and loss moduli of the material 
obtained from direct modified Fourier inversion of the AFM force-indentation and MTS stress-
strain curves corresponding to our established method81.  The set of force-indentation and stress-
strain curves can be seen in Fig. 12c and 12d.  The values of the storage and loss moduli (dotted 
scatter plots) obtained from the two devices agree exceptionally well within the small frequency 
range of overlap.  Furthermore, both of these results agree quite well with accepted values for 
the storage and loss modulus of PDMS98.  As the Nyquist frequency limit of the macroscale MTS 
experiment is restricted to only 5 Hz, the observed behaviour of the PDMS is mostly elastic – 
having a flat storage modulus and negligible loss modulus.  This feature was consistent when 
fitting both the time and frequency domain constitutive equations for the Maxwell model (Eqn. 3 
and 3a) to the respective time and frequency domain data as can be seen in Table 2.  Here, the 
Maxwell model parameters obtained from the fitting procedures indicate that PDMS is an elastic 
material with a modulus of ~0.5𝑀𝑃𝑎 – in relatively good agreement with the accepted ~0.9 𝑀𝑃𝑎.  
Of course, we know PDMS to be viscoelastic; however, the MTS experiment was not able to probe 
the relevant timescales of this rate dependence due to its limited sampling timestep. 

As existing dynamic mechanical analyses of PDMS have been limited to only a few hundred 
Hz, the plateauing behaviour of the storage modulus, a hallmark of Maxwell materials, is usually 
not fully captured as it is in the AFM data in Fig. 12a.  In the presence of such restrictions on the 
acquisition of high frequency data, it is common to use power law models which fit the data well 
in the low frequency regime, but fail to capture the higher frequency plateau, if present.  Like the 
MTS data, we fit Maxwell models (Eqn. 3 and 3a) to the time and frequency domain data obtained 
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from the AFM experiments.  As a reminder, we had specified the sampling rate, experiment length, 
and linearized strain rate such that the estimated relaxation time of the PDMS falls within these 
boundaries.  In the time domain, however, we chose to use the general convolution definition 
rather than assume a functional form for the indentation which resulted in a lower bound which 
was greater than this estimated time constant.  As a result, the quantities identified from the time 
domain, although they agree with the force curves, do not agree with the frequency domain data.  
As we have come to expect, the frequency domain provides quantities which agree with the 
behavior of the material in both the time and frequency domains.  

To further demonstrate the quality of this agreement, we have supplied the mean squared 
error between fitted force-indentation and stress-strain curves using the parameters obtained 
from both the time and frequency domain approaches with the AFM and MTS.  As seen in these 
errors as well as in Fig. 12c and 12d, the qualitative behaviour of these curves agrees quite well, 
with the frequency domain tending to provide a slightly more optimal result than the time domain 
(note that the force curve for the frequency domain parameters was constructed using a high 
order polynomial fit to the data as the general convolution definition would not work for the 
relaxation time obtained from this parameter set).  We can then conclude that due to the larger 
range of detectable timescales available in the spectral analysis of the AFM experiments, we are 
able to detect the viscoelastic nature of the material.  Since the MTS experiment does not 
adequately interrogate the timescale of the rate-dependent behaviour of the PDMS, we are led 
to conclude that the material is elastic.  

 
 

Figure 12: a) the spectral averaged storage (blue scatter) and loss (yellow scatter) moduli obtained 
from the direct inversion of the AFM force-indentation curves.  b) The spectral averaged storage 
(blue scatter) and loss (yellow scatter) moduli obtained from the direct inversion of the MTS 
stress-strain curves.  c) The set of force-indentation curves from the AFM experiment (grey) and 
corresponding time (dashes) and frequency (squares) domain fits.  d) The set of stress-strain 
curves from the MTS experiment (grey) and corresponding time (dashes) and frequency (squares) 
domain fits. 
 
   
 
Table 2: SLS parameters obtained from the characterization of PDMS using AFM and macroscale 
testing data in the time and frequency domain.  We also include the ensemble averaged mean 
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squared error between the fitted force-indentation and stress-strain curves (parameters obtained 
from fitting in both time and frequency domains) and the data obtained from the experiments. 

 𝐺𝑒 (𝑀𝑃𝑎) 𝐺1 (𝑀𝑃𝑎) 𝜏1(𝑠) MSE in time fit 

AFM 𝑡 0.0 0.3 0.06 4 ∗ 10−14 

AFM 𝜔 0.5 5.0 0.0002 2 ∗ 10−14 

MTS 𝑡 0.6 0.0 0.02 9 ∗ 106 
MTS 𝜔 0.5 0.0 0.9 7 ∗ 106 

 

5. Conclusions 

Though AFM has shown itself to be incredibly useful for biomechanical research, 
significant care is required in both planning and evaluating experiments.  As has been recently 
published, the results of AFM experiments can vary significantly through slight alterations of the 
experimental parameters, thus understanding how to better design experiments is a critical 
requirement in developing more robust experimental techniques72.  As we have shown, the range 
of timescales that can be obtained from force curves analysed in the time domain is at best limited 
to be less than a tenth of the length of the experiment and more than the sampling period.  
Furthermore, the use of the general convolution definition with discrete data may lead to severe 
inaccuracies which can only be avoided by increasing the lower bound by roughly a factor of 1000.  
To provide more context, such a finding is of significant importance in high throughput force 
volume measurements where individual force curves are performed in less than 1 ∗ 10−3𝑠 with a 
sampling period on the order of 1 ∗ 10−6𝑠.  In these cases, the discretized convolution will never 
yield accurate results.  One way to avoid these issues could involve modulating the temperature 
of the sample, provided that it is stable under heating / cooling.  Assuming time-temperature 
equivalence, one could effectively alter the timescale of a previously unobservable timescale by 
heating or cooling the sample99.  Measurements targeting specific timescales could then be 
stitched together with those performed across a range of temperatures.  Additionally, one could 
consider the portion of the FD experiment where the tip retracts from the sample.  By doing so, 
one effectively extends the length of the experiment, allowing for the detection of larger 
relaxation times; however, great care is needed in maintaining the validity of the contact theories.  
We direct the readers to recent works on this topic100,101. 

Although we have demonstrated that performing this analysis in the frequency domain 
allows a much wider range of accessible timescales for the same experiment, we assumed that 
the noise, which stems from the time domain, would add linearly to the frequency domain.  Such 
an assumption was necessary to simplify the analysis, but it is clear from the noise in the 
experimental data seen in Fig. 12, that this can cause serious issues.  We further investigate the 
effects of idealized noise sources in the technical appendix, but a more rigorous analysis of the 
effects of more realistic noise sources would be beneficial to the community specifically in the 
measurement of materials with multiple distinct relaxation times spanning a wide frequency 
range.   For instance, scaffolds for tissue engineering and cell culture are often constructed using 
dynamically associating polymers which are known to possess a number of distinct relaxation 
times ranging from low frequencies (binding kinetics) to high frequencies (chain dynamics / 
hydrodynamics if relevant)102–105.  In these applications, it is essential to properly tailor the 
mechanics of these materials across all relevant timescales to best optimize for cell viability.  We 
hope that this work provides guidance for AFM research in these fields.  

We would like to remind readers that the results of our analysis are specific to the models 
that we have used.  Though the GM model is capable of generically describing viscoelastic 
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behaviors, its applicability to any arbitrary viscoelastic material could be dubious.  As our analysis 
covers materials with either one or two distinct relaxation times, it is important to consider that 
realistic materials can obey some sort of power law or fractional viscoelastic behavior with a 
distribution of closely packed relaxation times39,46,73,75,85.  In these cases, GM and even SLS models 
often provide sufficiently good approximations of these more complicated behaviors.  Thus, we 
argue that the results of our analysis can still be used, at least in a qualitative way, to guide FD 
experimentation on materials with closely distributed relaxation times.  As power law, fractional 
viscoelastic, and GM models describe the same physics (creep, relaxation, recovery), one should 
expect there to be a correspondence between the results of this analysis in terms of the length of 
the experiment and the sampling frequency.  Furthermore, the argument of band limitation in 
determining the validity of the discrete convolution operation will still hold for power law / 
fractional moduli.  Of course, to quantitatively describe the correspondence between these 
classes of models, additional work is needed. 

Future work on the optimization of AFM FD experiments should consider alternative 
functional forms of the strain excitation.  Here, we considered only linearized strain inputs which 
closely model real FD experiments but can only be adjusted in terms of their strain rates.  
Specifically, impulse-like excitations may yield a broader interrogation of the timescales of the 
material.  One could perhaps also express the problem as a functional optimization, seeking to 
obtain the strain input which maximizes an information functional.  These types of advancements 
would allow the AFM to become a more robust rheological characterization tool. 

 

6. Methods 

A SYLGARD 184 Silicone Elastomer kit was used to prepare Polydimethylsiloxane (PDMS) following 
the standard procedure of mixing the base elastomer and the curing agent in a 10:1 mass ratio. 
The majority of the liquid was then poured into a flat-bottomed glass dish to a depth of 1 cm to be used 
for compression testing. The Atomic Force Microscopy (AFM) sample was made using 2 mL of the 
remaining liquid which was spin coated on a steel microscope sample disk at 100 rpm for 2 minutes. Both 
samples were then degassed and cured at room temperature for 24 hours. 

A 10 mm biopsy punch was then used to extract 6 cylindrical samples from the glass dish. We then 
performed uniaxial unconfined compression testing (UUCT) with a Universal Testing Machine 
(MTS) (Applied Test Systems, Butler, PA, USA) on these samples using a 100 N load cell at a crosshead 
speed of 1 mm/min. The thickness of each sample was measured using a digital caliper with a sensitivity 
of 0.01 mm. The experimental stress was calculated as the applied force of the load cell divided by the 
cross-sectional area of the sample in direct contact with the UUCT device. Additionally, the strain was 
calculated as the ratio of the sample displacement to the original sample thickness. 

AFM force spectroscopy measurements were then done in a room temperature environment 
filled with air with an MFP-3D (Asylum Research, Oxford Instruments, Santa Barbara, CA, USA) AFM using 
an ElectriCont-G (BudgetSensors, Izgrev, Sofia, Bulgaria) probe. The optical lever sensitivity was calibrated 
using the linear region of the repulsive part of a force curve performed on a freshly cleaned silicon wafer.  
The cantilever spring constant was determined to be 0.08617 N/m by thermal calibration using Sader’s 
method106. 4 rounds of force spectroscopy experiments were performed on 4 different spots on the 
surface of the PDMS-coated steel disk. Each round of spectroscopy involved probing the surface of the 
sample 150 times within a confined region. Each force curve was specified with an approach velocity of 
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1.89 mm/s, a sampling frequency of 50 kHz, and a trigger force of 738.98 pN to stay within the small 
deformation criteria of contact mechanics. The probe was treated as a sphere with a radius of 25 nm as 
specified by the vendor information sheet. 
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