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Abstract

We present a highly effective algorithmic approach for generating e-differentially private synthetic data
in a bounded metric space with near-optimal utility guarantees under the 1-Wasserstein distance. In partic-
ular, for a dataset X’ in the hypercube [0, 1]%, our algorithm generates synthetic dataset ) such that the ex-
pected 1-Wasserstein distance between the empirical measure of X and Y is O((en)~/?) for d > 2, and is
O(log?(en)(en)~1) for d = 1. The accuracy guarantee is optimal up to a constant factor for d > 2, and up to a
logarithmic factor for d = 1. Our algorithm has a fast running time of O(edn) for all d > 1 and demonstrates
improved accuracy compared to the method in [12] for d > 2.

1. INTRODUCTION

Differential privacy has become the benchmark for privacy protection in scenarios where vast
amounts of data need to be analyzed. The aim of differential privacy is to prevent the disclosure
of information about individual participants in the dataset. In simple terms, an algorithm that has
a randomized output and produces similar results when given two adjacent datasets is considered
to be differentially private. This method of privacy protection is increasingly being adopted and
implemented in various fields, including the 2020 US Census [2, 29, 28] and numerous machine
learning tasks [24].

A wide range of data computations can be performed in a differentially private manner, including
regression [17], clustering [37], parameter estimation [21], stochastic gradient descent [36], and deep
learning [1]. However, many existing works on differential privacy focus on designing algorithms
for specific tasks and are restricted to queries that are predefined before use. This requires expert
knowledge and often involves modifying existing algorithms.

One promising solution to this challenge is to generate a synthetic dataset similar to the original
dataset with guaranteed differential privacy [27, 8, 31, 7, 10, 11, 12]. As any downstream tasks are
based on the synthetic dataset, they can be performed without incurring additional privacy costs.

1.1. Private synthetic data. Mathematically, the problem of generating private synthetic data can
be defined as follows. Let (€2, p) be a metric space. Consider a dataset X = (X1,...,X,) € Q™.
Our goal is to construct an efficient randomized algorithm that outputs differentially private synthetic

data Y = (Y1,...,Y,,) € Q™ such that the two empirical measures
1 1 &

=—>» dx, d =— ) Jdy,

pa =~ Z; x and py=-— Z; .

are close to each other. We measure the utility of the output by E W1 (px, y), where Wi (px, py)
is the 1-Wasserstein distance, and the expectation is taken over the randomness of the algorithm.
The Kantorovich-Rubinstein duality (see, e.g., [47]) gives an equivalent representation of the 1-
Wasserstein distance between two measures vy and y:

Wi(px, py) =  sup </fd/w—/fduy>, (1.1)
Lip(f)<1
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where the supremum is taken over the set of all 1-Lipschitz functions on ). Since many machine
learning algorithms are Lipschitz [48, 32, 15, 35], Equation (1.1) provides a uniform accuracy guar-
antee for a wide range of machine learning tasks performed on synthetic datasets whose empirical
measure is close to uy in the 1-Wasserstein distance.

1.2. Main results. The most straightforward way to construct differentially private synthetic data is
to add independent noise to the location of each data point. However, this method can result in a
significant loss of data utility as the amount of noise needed for privacy protection may be too large
[20]. Another direct approach could be to add noise to the density function of the empirical measure
of X, by dividing {2 into small subregions and perturbing the true counts in each subregion. However,
Laplacian noise may perturb the count in a certain subregion to negative, causing the output to become
a signed measure. To address this issue, we introduce an algorithmically effective method called the
Private Measure Mechanism.

Private Measure Mechanism (PMM). PMM makes the count zero if the noisy count in a subregion
is negative. Instead of a single partition of €2, we consider a collection of binary hierarchical parti-
tions on {2 and add inhomogeneous noise to each level of the partition. However, the counts of two
subregions do not always add up to the count of the region at a higher level. We develop an algorithm
that enforces the consistency of counts in regions at different levels. PMM has O(edn) running time
while the running time of the approach in [12] is polynomial in n.

The accuracy analysis of PMM uses the hierarchical partitions to estimate the 1-Wasserstein dis-
tance in terms of the multi-scale geometry of €2 and the noise magnitude in each level of the partition.
In particular, when Q = [0, 1]¢, by optimizing the choice of the hierarchical partitions and noise
magnitude, PMM achieves better accuracy compared to [12] for d > 2. The accuracy is optimal rate
up to a constant factor for d > 2, and up to a logarithmic factor for d = 1. We state it in the next
theorem.

The hierarchical partitions appeared in many previous works on the approximation of distributions
under Wasserstein distances in a non-private setting, including [4, 18, 50]. In the differential privacy
literature, the hierarchical partitions are also closely related to the binary tree mechanism [22, 16] for
differential privacy under continual observation. However, the accuracy analysis of the two mecha-
nisms is significantly different. In addition, the TopDown algorithm in the 2020 census [3] also has
a similar hierarchical structure and enforces consistency, but the accuracy analysis of the algorithm is
not provided in [3].

Theorem 1.1 (PMM for data in a hypercube). Let Q = [0, 1]¢ equipped with the {>° metric. PMM
outputs an e-differentially private synthetic dataset ) in time O(edn) such that

C'log?(en)(en)™* ifd=1,

EWi(px, py) <
=) Clen) s ifd>2.

Private Signed Measure Mechanism (PSMM). In addition to PMM, we introduce an alternative
method, the Private Signed Measure Mechanism, that achieves optimal accuracy rate on [0, 1]d when
d > 3 in poly(n) time. The analysis of PSMM is not restricted to 1-Wasserstein distance, and it can
be generalized to provide a uniform utility guarantee of other function classes.

We first partition the domain ) into m subregions {24, ...,€,. Perturbing the counts in each
subregion with i.i.d. integer Laplacian noise gives an unbiased approximation of py with a signed
measure v. Then we find the closest probability measure 2 under the bounded Lipschitz distance by
solving a linear programming problem.

In the proof of accuracy for PSMM, one ingredient is to estimate the Laplacian complexity of the
Lipschitz function class on {2 and connect it to the 1-Wasserstein distance. This type of argument
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is similar in spirit to the optimal matching problem for two sets of random points in a metric space
[38, 39, 9]. When Q = [0, 1]%, PSMM achieves the optimal accuracy rate O((en)~/%) for d > 3.
For d = 2, PSMM achieves a near-optimal accuracy O(log(en)(en)~1/2). For d = 1, the accuracy
becomes O((en)~1/?).

For the case when d = 2, we believe that the bound in Corollary 3.7 could be improved to
C'\/log(en)/+/en by replacing Dudley’s chaining bound in Proposition 3.2 with the generic chaining
bound in [39, 19] involving the ; and 7> functionals on 2. We will not pursue this direction in this

paper.

Comparison to previous results. [42] proved that it is NP-hard to generate private synthetic data
on the Boolean cube which approximately preserves all two-dimensional marginals, assuming the
existence of one-way functions. There exists a substantial body of work for differentially private
synthetic data with guarantees limited to accuracy bounds for a finite set of specified queries [5, 40,
23,43, 33,46, 12, 13, 14].

[49] considered differentially private synthetic data in [0,1]? with guarantees for any smooth

queries with bounded partial derivatives of order K, and achieved an accuracy of O(e_ln_ﬁ).
Recently, [12] introduced a method based on superregular random walks to generate differentially
private synthetic data with near-optimal guarantees in general compact metric spaces. In particular,
when the dataset is in [0, 1]9, they obtain E W7 (ux, py) < C’log% (5n)(z—:n)_é. A corresponding
lower bound of order =/ was also proved in [12, Corollary 9.3]. PMM matches the lower bound
up to a constant factor for d > 2, and up to a logarithmic factor for d = 1.

In terms of computational efficiency, PMM runs in time O(edn). This is more efficient compared
to the algorithm in [12].

Organization of the paper. The rest of the paper is organized as follows. In Section 2, we introduce
some background on differential privacy and distances between measures. We will first introduce and
analyze the easier and more direct method PSMM before our main result. In Section 3, we describe
PSMM in detail and prove its privacy and accuracy for data in a bounded metric space, and detailed
results are provided for the case for the hypercube. In Section 4, we introduce PMM and analyze its
privacy and accuracy. Optimizing the choices of noise parameters, we obtain the optimal accuracy on
the hypercube with O(edn) running time, which proves Theorem 1.1.

Additional proofs are included in Appendix A. We use a variant of Laplacian distribution, called
discrete Laplacian distribution, in PMM and PSMM. The definition and properties of discrete Lapla-
cian distribution are included in Appendix B.

2. PRELIMINARIES

Differential Privacy. We use the following definition from [24]. A randomized algorithm M pro-
vides e-differential privacy if for any input data D, D’ that differs on only one element (or D and D’
are adjacent data sets) and for any measurable set S C range(M), there is

P{M(D) € S} _
e’.
PIM(D) S} =
Here the probability is taken from the probability space of the randomness of M.

Wasserstein distance. Consider a metric space (€2, p) with two probability measures i, v. Then the
1-Wasserstein distance (see e.g., [47] for more details) between them is defined as

Wilnw)i= inf [ plag)dyey),
YET (1Y) JOaxQ
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where 7(p, v) is the set of all couplings of x and v.

Bounded Lipschitz distance. Let (€2, p) be a bounded metric space. The Lipschitz norm of a func-
tion f is defined as

I1hsp = o {ip(), 1A

where Lip(f) is the Lipschitz constant of f. Let F be the set of all Lipschitz functions f on 2 with
| fllip < 1. For signed measures 1, v, we define the bounded Lipschitz distance:

Ao ,v) 1= sup ( [ [ de>

One can easily check that this is a metric. Moreover, in the special case where p and v are both
probability measures, moving f by a constant does not change the result of [ fdu— [ fdv. Therefore,
for a bounded domain €2, we can always assume f(zg) = 0 for a fixed zg € 2, then|| ||, < diam((2)
when computing the supremum in (1.1). This implies dpy,-metric is equivalent to the classical ;-
metric when p, v are both probability measures on a bounded domain €2:

Wi(p,v) :Lls(l,lqu </fdu /de> =§1elg </fdu—/fd1/> =dpL(p,v). (2.1

3. PRIVATE SIGNED MEASURE MECHANISM (PSMM)

We will first introduce PSMM, which is an easier and more intuitive approach. The procedure of
PSMM is formally described in Algorithm 1. Note that in the output step of Algorithm 1, the size
of the synthetic data m’ depends on the rational approximation of the density function of 7, and we
discuss the details here. Let 01, ..., 7, be the weight of the probability measure  on yi, ..., Ym,
respectively. We can choose rational numbers 71, ..., 7, such that max;cp, [r; — ;| is arbitrarily
small. Let m/ be the least common multiple of the denominators of rq,...,r,,, then we output the
synthetic dataset Yy containing m/r; copies of y; fori =1,...,m.

Before analyzing the privacy and accuracy of PSMM, we introduce a useful complexity measure
of a given function class, which quantifies the influence of the Laplacian noise on the function class.

Algorithm 1 Private Signed Measure Mechanism

Input: true data X = (z1,...,x,) € Q" partition (1, ..., ;) of , privacy parameter £ > 0.
Compute the true counts: Compute the true count in each regime n; = #{z; € Q; : j € [n]}.
Create a new dataset: Choose any element y; € €); independently of X, and let ) be the

collection of n; copies of y; for each i € [n].
Add noise: Perturb the empirical measure 1y of Y and obtain a signed measure v such that

v({yi}) = (ni + Ai)/n,
where \; ~ Lapy(1/¢) are i.i.d. discrete Laplacian random variables.
Linear programming: Find the closest probability measure 2 of v in dpr,-metric using Algo-
rithm 2, and generate synthetic data Y from 7.
Output: synthetic data y= (Y1, .., Ym) € Q™ for some integer m/.
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Algorithm 2 Linear Programming

Input: A discrete signed measure v supported on Y = {y1,...,Ym}
Compute the distances: Compute the pairwise distances {||y; — y;|loo,? > j}.
Solve the linear programming: Solve the linear programming problem with 2/m? variables and
m + 1 constraints:

m
min Z 1y — yjlloo (uij + uij) +20;
ij=1
m

s.t. Z(UU —uj;) + v+ 7 > v({yi}), Vi < m,
j=1

m
i=1
uijau;j7vi7Ti207 VZ,]Sm,z;éj
Output: a probability measure © with o({y;}) = 7.

3.1. Laplacian complexity. Given the Kantorovich-Rubinstein duality (1.1), to control the Wi-
distance between the original measure and the private measure, we need to describe how Lipschitz
functions behave under Laplacian noise. As an analog of the worst-case Rademacher complexity
[6, 25], we consider the worst-case Laplacian complexity. Such a worst-case complexity measure
appears since the original dataset is deterministic without any distribution assumption.

Definition 3.1 (Worst-case Laplacian complexity). Let F be a function class on a metric space ).
The worst-case Laplacian complexity of F is defined by

1 n
Lo(F):= sup E [sup|=> Nf(Xi)||, 3.1)
X1, Xn€Q | feF M i

where A1, ..., A\, ~ Lap(1) are i.i.d. random variables.

Since Laplacian random variables are sub-exponential but not sub-gaussian, its complexity mea-
sure is not equivalent to the Gaussian or Rademacher complexity, but it is related to the suprema
of the mixed tail process [19] and the quadratic empirical process [34]. Our next proposition bounds
L, (F) in terms of the covering numbers of F. Its proof is a classical application of Dudley’s chaining
method (see, e.g., [45]).

Proposition 3.2 (Bounding Laplacian complexity with Dudley’s entropy integral). Suppose that
(Q, p) is a metric space and F is a set of functions on Q. Then

1 o 1 [e.e]
< (i - } - )
Lo(F) < O inf <2a+ = | Ve NF T Todut 5 [ og N (F o Hoo)du>

where N'(F,u, || - ||oo) is the covering number of F and C' > 0 is an absolute constant.

In particular, we are interested in the case where JF is the class of all the bounded Lipschitz func-
tions. One can find the result in [41] or more explicit bound in [26] that for the set F of functions f
with || f|[;, < 1. its covering number satisfies

8 N(Qu/2,p)
N(F o, - ) < (—) .

u
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When 2 = [0, 1]¢, a better bound on the covering number for Lipschitz functions is available from
[41, 48]:
N, oe) < (2 [2/] + 1) 2 (01072,
which implies the following corollary.

Corollary 3.3 (Laplacian complexity for Lipschitz functions on the hypercube). Let Q = [0, 1]¢ with
the || - || oo metric, and F be the set of all Lipschitz functions f on Q with|| f ||Lip < 1. We have

Cn~1/? ifd =1,
Lo(F) <{ Clogn-n~Y2  ifd=2,
Cd 'n~Y/d ifd> 3.

Discrete Laplacian complexity. Laplacian complexity can be useful for differential privacy algo-
rithms based on the Laplacian mechanism [24]. However, since PSMM perturbs counts in each
subregion, it is more convenient for us to add integer noise to the true counts. Instead, we will use the
worst-case discrete Laplacian complexity defined below:

1 n
Lo(F):= sup E |sup|=> Nf(X)||, (32)
X1, Xn€Q | feF | M i

where A1,..., A, ~ Lapy(1) are i.i.d. discrete Laplacian random variables.

In particular, Lap,(1) has a bounded sub-exponential norm, therefore the proof of Proposition 3.2
works for discrete Laplacian random variables as well. Consequently, Corollary 3.3 also holds for
L,,(F), with a different absolute constant C'.

3.2. Privacy and Accuracy of Algorithm 1. The privacy guarantee of Algorithm 1 can be proved
by checking the definition. The essence of the proof is the same as the classical Laplacian mechanism
[24].

Proposition 3.4 (Privacy of Algorithm 1). Algorithm 1 is e-differentially private.

We now turn to accuracy. The linear programming problem stated in Algorithm 2 has (2m? + 2m)
many variables and (m + 1) many constraints, which can be solved in polynomial time in 7. We first
show that Algorithm 2 indeed outputs the closest probability measure to v in the dpy -distance in the
next proposition.

Proposition 3.5. For a discrete signed measure v on §, Algorithm 2 gives its closest probability
measure in dgy,-distance with the same support set with a polynomial running time in m.

Now we are ready to analyze the accuracy of Algorithm 1. In PSMM, independent Laplacian noise
is added to the count of each sub-region. Therefore, the Laplacian complexity arises when considering
the expected Wasserstein distance between the original empirical measure and the synthetic measure.

Theorem 3.6 (Accuracy of Algorithm 1). Suppose (21, ..., Q) is a partition of (2, p) and F is the
set of all functions with Lipschitz norm bounded by 1. Then the measure U generated from Algorithm 1

satisfies

2m ~
EWi(px,?) < maxdiam(Q;) + E—mLm(}").
A n

Note that diam(£2;) =< m~/? can be satisfied when we take a partition of = [0, 1] where each
; is a subcube of the same size. Using the formula above and the result of Laplacian complexity for
the hypercube in Corollary 3.3, one can easily deduce the following result.
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Corollary 3.7 (Accuracy of Algorithm 1 on the hypercube). Take m = [en]| and let (Qq,...,y,) be
a partition of Q = [0,1]% with the norm || - ||so. Assume that diam(Q;) < m~'/?%. Then the measure
U generated from Algorithm 1 satisfies

Clen)2 ifd =1,
EWi(ux,0) <3 Clog(en)(en)™2  ifd =2,
Clen) ifd>3.

4. PRIVATE MEASURE MECHANISM (PMM)

4.1. Binary partition and noisy counts. A binary hierarchical partition of a set {2 of depth r is a
family of subsets €y indexed by 6 € {0,1}=", where

{0,1}35F ={0,13° {0, 1}  u--- {0, 1}*, k=0,1,2...,

and such that Qg is partitioned into gy and Qy; for every 6 € {0,1}="~1. By convention, the cube
{0,1}° consists of a single element (). We usually drop the subscript () and write 7 instead of ny.
When 6 € {0,1}7, we call j the level of 6. We can also encode a binary hierarchical partition of 2 in
a binary tree of depth r, where the root is labeled €2 and the j-th level of the tree encodes the subsets
Qg for 0 at level j.

Let (€29)gego,13<r be a binary partition of (2. Given true data (z1,...,z,) € Q", the true count ng
is the number of data points in the region g, i.e.

ng ::‘{i €ln]: x; € Q@}‘.

We will convert true counts into noisy counts nj by adding Laplacian noise; all regions on the same
level will receive noise of the same expected magnitude. Formally, we set

ng = (ng+Ag),, where Mg~ Lapz(o;),

and j € {0,...,r} is the level of §. At this point, the magnitudes of the noise ¢; can be arbitrary.

4.2. Consistency. The true counts ny are non-negative and consistent, i.e., the counts of subregions
always add up to the count of the region:

ngo 4+ ngr = ng forall § € {0,111,

The noisy counts ny are non-negative, but not necessarily consistent. Algorithm 3 enforces consis-
tency by adjusting the counts iteratively, from top to bottom. In the case of the deficit, when the
sum of the two subregional counts is smaller than the count of the region, we increase both subre-
gional counts. In the opposite case or surplus, we decrease both subregional counts. Apart from this
requirement, we are free to distribute the deficit or surplus between the subregional counts.

It is convenient to state this requirement by considering a product partial order on Zﬁ_, where we
declare that (ag,a1) =< (bg, b1) if and only if ag < by and a; < by. We call the two vectors a, b € Z2
comparable if either a < b or b < a. Furthermore, L(a) denotes the line 2 + y = a on the plane.

At each step, Algorithm 3 uses a transformation fy : Z%r — Zi N L(my). It can be chosen arbi-
trarily; the only requirement is that fy(x) be comparable with x. The comparability requirement is
natural and non-restrictive. For example, the uniform transformation selects the closest point in the
discrete interval Zi N L(my) in (say) the Euclidean metric. Alternatively, the proportional transfor-
mation selects the point in the discrete interval Z%r N L(my) that is closest to the line that connects
the input vector and the origin.
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Algorithm 3 Consistency

Input: non-negative numbers (1p)c(o,1<»» where ' is a nonnegative integer.
setm =n'.
for j =0,...,r—1do

for 6 € {0,1}7 do

transform the vector (njy,nj,) € Z2% into any comparable vector (mgg, mg1) € Z% N

L(?TL@)

end for
end for
Output: non-negative integers (1) g 0,1} <

4.3. Synthetic data. Algorithm 3 ensures that the output counts my are non-negative, integer, and
consistent. They are also private since they are a function of the noisy counts ny, which are private
as we proved. Therefore, the counts my can be used to generate private synthetic data by putting mg
points in cell £2y. Algorithm 4 makes this formal.

Algorithm 4 Private Measure Mechanism

Input: true data X = (z1,...,x,) € Q", noise magnitudes oy, ..., o, > 0.
Compute true counts: Let ng be the number of data points in €2g.
Add noise: Let nj = (ng + \g)+, where Ay ~ Lapy(o;) are i.i.d. random variables,
Enforce consistency: Convert the noisy counts (nj) to consistent counts (mg) using Algo-
rithm 3.
Sample: Choose any my points in each cell 2y, § € {0,1}" independently of X
Output: the set of all these points as synthetic data ) = (y1,...,ym) € Q™.

4.4. Privacy and accuracy of Algorithm 4. We first prove that Algorithm 4 is differentially private.
The proof idea is similar to the classic Laplacian mechanism. But now our noise is of differential
scale for each level, so more delicate calculations are needed.

Theorem 4.1 (Privacy of Algorithm 4). The vector of noisy counts (ng + Ag) in Algorithm 4 is e-
differentially private, where
s
1
=Y
7=0

Consequently, the synthetic data ) generated by Algorithm 4 is e-differentially private.

Having analyzed the privacy of the synthetic data, we now turn to its accuracy. It is determined by
the magnitudes of the noise o; and by the multiscale geometry of the domain €2. The latter is captured
by the diameters of the regions {2y, specifically by their sum at each level, which we denote

Aj o= Z diam(€y) 4.1)
0e{0,1}

and adopt the notation A_; := Ay = diam(2). In addition to A}, the accuracy is affected by the
resolution of the partition, which is the maximum diameter of the cells, denoted by

0= di Q).
25 (6
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Theorem 4.2 (Accuracy of Algorithm 4). Algorithm 4 that transforms true data X into synthetic data
Y has the following expected accuracy in the Wasserstein metric:

2V2
E < — A .
Wi (e, py) < o ZUJ j-1+0

Jj=0
Here px and iy are the empirical probability distributions on the true and synthetic data, respec-
tively.

The privacy and accuracy guarantees of Algorithm 4 (Theorems 4.1 and 4.2) hold for any choice
of noise levels ;. By optimizing o, we can achieve the best accuracy for a given level of privacy.

Theorem 4.3 (Optimized accuracy). With the optimal choice of magnitude levels (A.4), Algorithm 4
that transforms true data X into synthetic data ) is e-differential private, and has the following
expected accuracy in the 1-Wasserstein distance:

EW: (e, 1ty) < E—“f(; VA +a

Here px and py are the empirical measures of the true and synthetic data, respectively.

Corollary 4.4 (Optimized accuracy for hypercubes). When Q = [0, 1]% equipped with the (> metric,
with the optimal choice of magnitude levels (A.4) and the optimal choice of

logy(en) — 1  ifd =1,
"= logy(en) ifd > 2,
we have
log?(en)
EWh(px, py) S en
(en)™V, ifd > 2.

ifd=1,

Remark 4.5 (Computational efficiency of Algorithm 4). Since a binary hierarchical partition has 2"
cells in total, the running time of Algorithm 4 is O(2"). When Q = [0, 1]¢, with the same optimal
choice of 7 in Corollary 4.4, the running time of PMM becomes O (edn).

4.5. Proof of Theorem 4.2. For the proof of Theorem 4.2, we introduce a quantitative notion for the
incomparability of two vectors on the plane. For vectors a,b € Z2 , we define

0 if a and b are comparable,

flux(a,b) := . .
min (Jay — b1, |az — by|) otherwise.

Lemma 4.6 (Flux as incomparability). flux(a,b) is the {-distance from a to the set of points that

are comparable to b.

For example, if a = (1,9) and b = (6, 7), then flux(a,b) = 2. Note that a has a distance 2 to the
vector (1, 7) which is comparable with b.

Lemma 4.7 (Flux as transfer). Suppose we have two bins with a1 and ag balls in them. Then one can
achieve by and bs balls in these bins by:

(a) first making the total number of balls correct by adding a total of (b1 + ba) — (a1 — a2) balls to
the two bins (or removing, if that number is negative);
(b) then transferring flux ((al, az), (b1, bg)) balls from one bin to the other.
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For example, suppose that one bin has 1 ball and the other has 9. Then we can achieve 6 and 7
balls in these bins by first adding 3 balls to the first bin and transferring 2 balls from the second to the
first bin. As we noted above, 2 is the flux between the vectors (1,9) and b = (6, 7).

Lemma 4.7 can be generalized to the hierarchical binary partition of €2 as follows.

Lemma 4.8. Consider any data set X € Q", and let (’I’L@)ge{ql}r be its counts. Consider any

consistent vector of non-negative integers (m9)9€{071}7‘. Then one can transform X into a set Z € Q0™

that has counts (mg)ge{o,1y- by:

(a) first making the total number of points correct by adding a total of m — n points to §2 (or remove,
if that number is negative);

(b) then transferring flux ((ngo,ngl), (mgo,m(;l)) points from Qg to Qg1 or vice versa, for all
j=0,...,r—1andf € {0,1}.

Combining the concept of the flux and our algorithm, the following two lemmas are useful in the
proof of Theorem 4.2.

Lemma 4.9. In Algorithm 4, we have

flux ((ngo, ng1), (mao, me1)) < max (|Ago|,|Ao1|)
forallj=0,...,r —1and 0 € {0,1}.
Lemma 4.10. For any finite multisets U C V such that all elements in U are from (), one has

L/\U‘- iam
Wi(uu, pyv) < 4 diam(2).

Proof. (Proof of Theorem 4.2) Owing to Lemma 4.8 and Lemma 4.9, the creation of synthetic data
from the true data X — )/, described by Algorithm 4, can be achieved by the following three steps.

1. Transform the n-point input set X to an m-point set X; by adding or removing |m — n| points.

2. Transform X7 to X5 by moving at most max (|)\90| RV |) many data points foreach j = 0,1,...,r—
1 and 6 € {0, 1} between the two parts of the region (2.

3. Transforms X, to the output data ) by relocating points within their cells.

We will analyze the accuracy of these steps one at a time.
Analyzing Step 2. The total distance the points are moved at this step is bounded by

r—1
Z Z max (|Ago|,|Ag1|) diam(Qg) = D. 4.2)

J=006€{0,1}7
Since | X} | = m, it follows that
D
Wl (/’LXU /’LXQ) < E (43)

Combining Steps 1 and 2. Recall that step 1 transforms the input data X’ with |X'| = n into X}
with|X1| = m = n + sign(A) - [|A|] by adding or removing points, depending on the sign of .
Case 1: X\ > 0. Here X} is obtained from X" by adding | \| points, so Lemma 4.10 gives

A
Wipx, pa) < — - Ao.
m

Combining this with (4.3) by triangle inequality, we conclude that

Mo+ D < Mo+ D

W- <
(s pr,) < - < -
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Case 2: A < 0. Here X is obtained from X by removing a set Xy of n —m = ||A|] points.
Furthermore, by our analysis of step 2, X> is obtained from A’} by moving points the total distance at
most D. Therefore, X> U Xy (as a multiset) is obtained from X = A U Xy by moving points the total
distance at most D, too. (The points in X remain unmoved.) Since |X| = n, it follows that

D
Wi(p, paox,) < —.
Moreover, Lemma 4.10 gives
Xo . Al Ag
Wi (ks ae,0,) < ’/Y‘QITA’X'O‘ -diam(Q2) < | ‘n )

(Here we used that the multiset X5 U Xj has the same number of points as X', which is n.) Combining
the two bounds by triangle inequality, we obtain

< ’)\’Ao—i—D.

Wi(pa, pa,) < 4.4)

n
In other words, this bound holds in both cases.

Analyzing Step 3. This step is the easiest to analyze: since ) is obtained from X5 by relocat-
ing the points are relocated within their cells, and the maximal diameter of the cells is §, we have
Wi (pa,, py) < 0. Combining this with (4.4) by triangle inequality, we conclude that

<WA0+D
n

Wi(pa, py) < + 4.

Taking expectation. Recall the definition of D from (4.2). We get

r—1

1
EWi(u, py) < - [E[A] B0+ Y 7 E [max ([l JAn]) | diam(©) | +9.
Jj=00€e{0,1}J

Since A ~ Lapy(0), by (B.1) we have E [|A]] < (E(M\)?)Y? < v/20¢. Similarly, since Ago and Ag;
are independent Lapy(o;11) random variables, [E [max (| 200 ,|/\91|)} < 2v/20,41. Substituting
these estimates and rearranging the terms of the sum will complete the proof. O
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APPENDIX A. ADDITIONAL PROOFS

A.1. Proof of Proposition 3.2.

Proof. We will apply the chaining argument (see, e.g., [45, Chapter 8]) to deduce a bound similar to
Dudley’s inequality.
Step 1: (Finding nets)

Define ¢; = 277 for j € Z and consider an ¢;-net T} of F of size N'(F,&;,] - |ls). Then for any
f € F and any level j, we can find the closest element in the net, denoted 7;(f). In other words,
there exists 7;(f) s.t.

wi(f) €Ty, |Nf —mi(f)lleo < g5
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Let m be a positive integer to be determined later, we have the telescope sum together with triangle
inequality

n

Esup = |3 F(XA| < Esup = |57 (F = mnl(f)) (X:) - A

fer i feF i

n

£ Eswp t S (m50F) - ma() (X3) Al

n
j=jo+1 f€F 7 i=

Note that when j = jo is small enough, € can be covered by 7;,(f) = 0.
Step 2: (Bounding the telescoping sum)
For a fixed jo < j < m, we consider the quantity

For simplicity we will denote a; = a;(f) as the coefficient L (m;(f) — mj—1(f)) (X;). Then we have

1 1 1 35
il < —[f = 71Dl oo + — M7 () = flloe < (5 +85-1) < ==
Since {)\i}ie[n} are independent subexponential random variables, we can apply Bernstein’s in-
equality to the sum ) _, a;\;. Let K = 3¢;, we have

3 _ 2t
P a;Ni| >ty <2exp |—cmin | —5, ——
2o (nau%’ Halloo>

< 2exp | —cmin LL
= e K?/n’ K/n

5 ) 2t
= z2€X —Cn min — e, —
p K2 ) K )

Then we can use the union bound to control the supreme. Define N = |T}| - |Tj_1| < |T}]?,

n 2
t t
P E iAi| >t <2N — in|-—,— Al
JSclelg 2 a;i\; < exp | —cnmin <K2’K>

2t
=2 log N — in| —,— || A1
exp |log cn min <K2’K>

2
< 2exp <logN — cnﬁ> Al

t
2 logN —cn— | A1
+ exp(og cnK>
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and hence

2
E sup Zal i —/ 2 exp (logN—cnK ) A 1dt

FeEF |
& t
—I—/ 2exp <10gN — cn—> A 1dt
0 K

=1+ 1.

We will compute them separately.

& t
I = / 2 exp (logN — cn—> A 1dt
0 K

Klog N & t
— 28 + 2exp <logN — cn—>
cn Klog N/cen K

Klog N /°° ( t >
=—+ 2exp | —cn—
cn 0 K

< CKlogN
n

[e%S) t2
I :/ 2exp <logN — cn—) A 1dt
K2
/K21 N
£Loos Y / 2 exp logN—cn—
KQIOgN/cn
| K2log N t
= %+A 2exp<—cnﬁ—2\/cnlogN%>

KZ2log N n K
- cn venlog N
log N
< CK 222
n

Therefore we concluded that for a fixed level j,

log N log N log N log N
E sup Za,)\ <CK<Og +4/ o8 > Sej ( SR
feF i=1 n n n n

Step 3: (Bounding the last entry)

15

For the last entry in the telescoping sum, similarly, we denote a; := % ( f—mm(f )) (X;) and we

have |a;| < ey, /n. Then

sup Zal)\ < Z|)\|

fer i1

and the expectation satisfies

E sup Zay\ < ZE|/\|<€m

feF i
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Step 4: (Combining the bound and choosing m) Combining the two integrals together, we deduce
that for any X1,..., X, € Q,

Esup— | f(X)A| < C | em+ Y. sJ.(O%N(f,ej,u lso)
Fer 7 li=1

n

+\/lOgN(]:’€j’ H i Hoo))

n
Then for any o > 0, we can always choose m such that 2a < ¢, < 4a and bound the sum above
with integral

1 n
E sup — XN < C
sup ;f( ) (

J=jo+1

1
200 + —

Vi / VRN T

1 [
+5/ 10gN(f,u,||'Hoo)du>-

(A.1)
Taking infimum over a: completes the proof of the first inequality.
Now assume F is the set of all functions f with || f||1ip < 1. From [26, Lemma 4.2], we can bound
the covering number of F by the covering number of 2 as follows:
log N(F, u, || - [loc) < log(8/u) N, u/2, p).
As aresult, for any o > 0,

Lo(F) < C <2a+%/a

This completes the proof.

- V1og(8/u) N (Q,u/2, p)du + % /

log(8/u) N(Q,u/2,p)du> :
A.2. Proof of Corollary 3.3.

O
Proof. For Q = [0, 1]¢ with [+,-norm, we have diam(f2) = 1 and the covering number

N([Ov 1]d7u7 || : ||OO) < u_d

Then, as the domain = [0, 1]¢ is connected and centered, we can apply the bound for the covering
number of F from [48, Theorem 17]:

N(F,u, | - [leo) < (2 [2/u] + 1) N (0.1 u/2, 1)

= 1og N(F,u, || loo) S N(Q0/2,]| - lloe) S (w/2)7.
Applying the inequality above to (A.1), we get

L,<C <2a + % /:O(u/2)—d/2du+ % /:O(u/2)_ddu> .

Compute the integral for the case d = 2 and d > 3,
2 2 2 /a\!

_cl2 —log—+— [ =
<a+\/ﬁoga+n<> >

Ln(f) <

ofans 2. 1 al‘%+21 a\1¢

a _ . JE— R — p—

vn %_1 2 n 2

(A2)

ifd=2.

ifd > 3.
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Choosing o = 2n~/ finishes the cases for d > 2.
When d = 1, the Dudley integral in (A.2) is divergent. However, note that diam(F) < 2 and
hence log N (F, u,|| - ||so) = 0 for u > 1. From (A.1), we have

L, (F) §C<2a—|——/ (u/2)"?du+ = /1(u/2)_1du>

§C<2a+%\/_ﬁ@+%logé>.

The optimal choice of a is v ~ n~'/2, which gives us the result for d = 1. U

A.3. Proof of Proposition 3.4.

Proof. Tt suffices to prove that the steps from &’ to the sign measure v in Algorithm 1 is e-differentially
private since the remaining steps are only based on v. Notice that both py,r are supported on
Y1,...,Y,, we can identify the two discrete measures as m dimensional vectors in the standard
simplex, denoted [y, 7, respectively. Consider two data sets X and X5 differ in one point. Suppose
we deduced iy, , pty, and vy, v, through the first four steps of Algorithm 1 from &, Ay, respectively.
We know two vectors iy, , iy, are different at one coordinate, where the difference is bounded by
1/n.
Then

Plvi=n) _ypBAN=nt—m)i; _ rpep(-enln - 7))
P {v,=n} HIP’{AZ—n (1 — T13)i } _Hexp(—sn!(n—u—w)i!)

=1
< exp (enluy, — py, 1) < e

By writing PP {VZ‘ es } = Zne gP {1/,- = 7]} for ¢ = 1, 2, the inequality above implies Algorithm 1

is e-differentially private. O

A.4. Proof of Proposition 3.5.

Proof. For two signed measures 7, v supported on ), the dpy -distance between 7 and v is

dBL(T,V = sup Zf yz {yz _V({yz})) .

I fllLip<1 | =1

For simplicity, we denote f; = f(vy;), vi = v({y;}) and 7, = 7({y;}). Then we note that for any f
with || f||Lip < 1, only (fi);[,) matters in the definition above. Therefore, suppose v and 7 are fixed,
computing the dpy,-distance is equivalent to the following linear programming problem:

max Z(VZ — Tz)fz
=1

1
st fi— f5 < v — Yjlloo, Vi,j <m,i#j,
— [i+Fi <Y — Yjlloo, Vi,j <m,i# j,
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After a change of variable f/ = f; + 1, we can rewrite it as

m

max Z(VZ — ) fl — (V(Q) — 1)
=1

st fi—= 1 <y = Yjlloo Vi, j < m,i#j,
— L4 £ < lYi = Yilloos Vi, j < m,i#
0< fi <2, Vi < m.

Next, we can consider the dual problem of the linear programming problem above. The duality
theory in linear programming [44, Chapter 12] showed that the original problem and the dual problem
have the same optimal solution. Let u;;,u}; > 0 be the dual variable for the linear constraints about
fi — fj and —f] + f7, and let v; > 0 be the dual variable for the equation f; < 2. As the linear
programming above is in the standard form, by the duality theory, it is equivalent to

min Yy = yjlloo(uij + ufy) + 20 — (v() — 1)

i#]

s.t. Z(uzg — ;) + v > v — T, Vi <m,
JF#i
uij7u§j,vi20 Vi, j < m,i# j.

To find the minimizer 7 for a given v, we regard 7; as variables and add the constraints of 7 being
a probability measure. Also, we can eliminate the constant v(£2) — 1 in the target function. So we get
the linear programming problem:

min > lyi — yilloo (g + uiy) + 2v;
i#]
s.t. Z(u” — u;j) +v; + T > v, Vi < m,

u’ij7u;javi77—i20 Vl,jﬁm,z#j
There are 2m? variables in total and m + 1 linear constraints, and the minimizer ()™, is what we
want. g

A.5. Proof of Theorem 3.6.

Proof. We transformed the original data measure px with three steps: py — py — v — 0.
Step 1: For the first step in the algorithm, we have Wi (ux, uy) < max; diam(€2;). This follows
from the definition of 1-Wasserstein distance.

Step 2: In this step, v is no longer a probability measure, and we consider dpy,(py, ) instead:

Bdor (uy,v) =B sup_ | [ fuy— [ fav

”f”LipSl
- ng AN n m~
=E sup Iy <— +— - —> = — L, (F). (A.3)
I fllLip=<1 ; ) n.on n en (%)
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Step 3: For the last step, we have dpp(v,7) < dpp(uy,v) because ¥ is the closest probability
measure to v from Proposition 3.5. As a result, we have

Wi(p, 7)) = dpr(p, 7) < dpL(pa, py) + deL(py, v) + dpL(v, D)
< Wilpa, py) + 2dpr(py, v) < max diam(§;) + 2dpr. (uy, v)-

After taking the expectation, we can apply (A.3) to get the desired inequality. U

A.6. Proof of Corollary 3.7.

Proof. Using Theorem 3.6, we have

2 ~
EWi(px,?) < maxdiam(Q;) + E—:Lm(f).

By assumption we have max; diam(§;) =< m~/¢ < (en)~'/¢. And by 3.3 we have the bound for
the Laplacian complexity

C(en)1/? ifd=1,
Ln(F) << Clogn - (en) /2 ifd=2,
C(en) /4 if d > 3.

When d > 3, the two terms are comparable. And when d = 1, 2, the Laplacian complexity dominates
the error. Combining the two inequalities gives the result. O

A.7. Proof of Theorem 4.1. Theorem 4.1 can be obtained by applying the parallel composition
lemma [24]. Here we present a self-contained proof by considering an inhomogeneous version of the
classical Laplacian mechanism [24].

Lemma A.1 (Inhomogeneous Laplace mechanism). Let F' : Q" — RF be any map, s = (si)le €

R'i be a fixed vector, and N = ()\,-)le be a random vector with independent coordinates \; ~
Lapy(s;). Then the map x — F(x) + X is e-differentially private, where

€= supHF(m) - F@)H@(S) .

Here the supremum is over all pairs of input vectors in Q" that differ in one coordinate, and)||z || 0(s) =

k
Zi:1|zi| /si.
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Proof of Lemma A.1. Suppose z,z € Q" differs in exactly one coordinate. Consider the density
functions of the inputs having the same output y = F(z) + A\ = F(&) + A € Z*F. We have

P{F(x) + A=y} P{A=y—F(z)}
]P’{F(fc)JrX:y} P{Xzy—F(gz)}

f:leXP <—W)
?:lexp <—W)

I
I1

"1

== Ity = F@)il - Ity ~ F@)i)
i=1 "

< exp (uF<x> @)

<ef

Therefore, we know x — F'(x) + A is e-differentially private. O

Proof of Theorem 4.1. Consider the map F'(X) = (ng) that transforms the input data into the vector
of counts. Suppose a pair of input data X’ and X differ in one point z;. Consider the corresponding
vectors of counts (ng) and (7p). For each level j = 0, ... ,r, the vectors of counts differ for a single
6 € {0,1}7, namely for the 6 that corresponds to the region €y containing x;. Moreover, whenever
such a difference occurs, we have|ng — 7ig| = 1. Thus, extending the vector (0)7_ t0 (09)gefo,13<

trivially (by converting o; to o for all § € {0,1}7), we have

ECRC NS SE i) SRS 3
=09 0e{0,1}J
Applying Lemma A.1, we conclude that the map X' — (ng + Ag) is e-differentially private. g

A.8. Proof of Theorem 4.3.

Proof. We will use the Lagrange multipliers procedure to find the optimal choices of ¢;. Given the
maximal layer r, recall Theorem 4.1, we should use our privacy budget as

1
€= —.
Z 0j
J=0
Therefore, we aim to minimize the accuracy bound with the specified privacy budget, namely

min EW; (ux, py) sta—Z—
Jj=0 9j

Recall the result in Theorem 4.2. Here ¢, n are given and ¢ is fixed as long as we determine the
maximal level r. So the minimization problem is

T T
. 1
min g ojAj_1 ste= g —.
o
j=0 j=0 "7



ALGORITHMICALLY EFFECTIVE DIFFERENTIALLY PRIVATE SYNTHETIC DATA 21

Consider the Lagrangian function

T

s
1
e, O t) = A —t — -
f(007 70-7‘a) ;O’] 7—1 ZUJ 3

and the corresponding equation

of  _of of
dog o, Ot
One can easily check that the equations above have a unique solution

0; = _ 5 where S-— > VA (A.4)
=0

0.

E«/Aj_l

and it is indeed a minimal point for f(oy,...,0.;t).
As a result, if we fix € and want Algorithm 4 to be e-differentially private, we should choose the
noise magnitudes as (A.4). Substituting these noise magnitudes into the accuracy Theorem 4.2, we

see that the accuracy gets bounded by 6—‘/35 240 O
A.9. Proof of Corollary 4.4.

Proof. Let 2 = [0, 1] with the ¢*° metric. The natural hierarchical binary decomposition of [0, 1]
(cut through the middle) makes subintervals of length diam () = 277 for 6 € {0,1}/,s0 A; =1
for all j, and the resolution is § = 27". Theorem 4.3 makes e-differential private synthetic data with
accuracy

V2(r +1)2
EW, (MX,#)J)S%

A nearly optimal choice for r is r = log,(en) — 1, which yields

(2 + \/5) logg(&?n)
EW < .
1 (MXa N)i) = en

+ 277,

The optimal noise magnitudes, per (A.4), are 0; = log3(en)/e. In other words, the noise does not
decay with the level.

Let Q = [0,1] for d > 1. The natural hierarchical binary decomposition of [0, 1] (cut through
the middle along a coordinate hyperplane) makes subintervals of length diam(Qg) =< 277 /d for § €
{0,1}7, so A= 27 . 9=i/d — 9(1=1/d)j for ]| 7, and the resolution is 6 = 2-7/d_Thus,

S=> VA~
j=0

Theorem 4.3 makes a e-differential private synthetic data with accuracy

1—1
2( d)r + 2—7“/d‘

EW: (pa, py) S
A nearly optimal choice for the depth of the partition is » = log,(en), which yields
EW: (nx, py) S (en) /7.

The optimal noise magnitudes, per (A.4), are

En

o)~ e l2b - H0—),

Thus, the noise decays with the level j, becoming O(1) per region for the smallest regions. O



22 YIYUN HE, ROMAN VERSHYNIN, AND YIZHE ZHU

A.10. Proof of Lemma 4.6.

Proof. 1f a, b are comparable, both values are zero. If a, b is not comparable, we can assume a; > by,
as < by without loss of generality. The set of points that are comparable to b is

{(1’1,1’2) € Zi_ | 1 < bl,:L'g < bg} U {(:L'l,:L'g) € Za_ | x> bl,l’Q > b2}

Note that the distance from « to the first set is|a; — b1 | and the distance from a to the second set is
|ag — ba|. Then flux(a, b) is the smaller one of the two distances, which is also the distance from a to
the union set. g

A.11. Proof of Lemma 4.7.

Proof. Case 1: a = (a1,a2) and b = (b, by) are comparable. If a < b, remove b; — a; balls from
bin 1 and by — a9 balls from bin 2 to achieve the result. If b < a, adding a; — b; balls to bin 1 and
ao — by balls to bin 2 to achieve the result.

Case 2: a = (a1,a2) and b = (by,by) are incomparable. Without loss of generality, we can
assume that a; — by > 0, as — by < 0.

Assume first that a; — by > by — ag. Then flux(a,b) = by — ag := M. Then A =: (a1 + a2) —
(b1 + b2) > 0. Removing A balls from bin 1 and transferring M balls from bin 1 to bin 2 achieves
the result. Note that there are enough balls in bin 1 to transfer, since M + A = ay — by € [0, aq].

Now assume that a; — by < by — ag. Then flux(a,b) = a; — by := M. Then A =: (b + by) —
(a1 + a2) > 0. Adding A balls to bin 2 and transferring A balls from bin 1 to bin 2 achieves the
result. ]

A.12. Proof of Lemma 4.8.

Proof. First, we make the total number of points in 2 correct by adding m — n points to 2 (or
removing, if that number is negative).

Apply Lemma 4.7 for the two parts of €2: bin {2 that contains ng points and bin 2y that con-
tains nq points. Since 2 already contains the correct total number of points m, we can make
the two bins contain the correct number of points, i.e. mg and m; respectively, by transferring
flux ((no,n1), (mo, m1)) points from one bin to the other.

Apply Lemma 4.7 for the two parts of Qg: bin Qg that contains ngy points and bin gy that
contains ng; points. Since {2y already contains the correct number of points mg, we can make
the two bins contain the correct number of points, i.e. mgo and mg; respectively, by transferring
flux ((noo, no1), (Mmoo, mm)) points from one bin to the other.

Similarly, since {2; already has the correct number of points m1, we can make €21y and {217 contain
the correct number of points mqg and mq; by transferring flux ((noo, no1), (Moo, mm)) points from
one bin to the other.

Continuing this way, we can complete the proof. Note that the steps of the iteration procedure
we described are interlocked. Each next step determines which subregion the transferred points are
selected from, and which subregion they are moved to in the previous step. For example, the original
step calls to add (or remove) m — n points to or from {2, but does not specify how these points
are distributed between the two parts €2y and €2;. The application of Lemma 4.7 at the next step
determines this. O

A.13. Proof of Lemma 4.9.
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Proof. We will derive this result from Lemma 4.6. First, let us compute the distance from a =
(ngo,ng1) to ' = (npy,ny,) = ((ngo + Aoo)+, (no1 +)\91)+). Since the map = — x4 is 1-
Lipschitz, we have

|a — b'HOO < max ([Ago| ;| A1) -
Furthermore, recall that by Algorithm 3, b is comparable to b = (mgg, mg1). An application of
Lemma 4.6 completes the proof. O

A.14. Proof of Lemma 4.10.

Proof. Finding the 1-Wasserstein distance in the discrete case is equivalent to solving the optimal

transformation problem. In fact, we can obtain uy from py by moving ‘V \ U‘ atoms of py, each

having mass 1/|V|, and distributing their mass uniformly over U. The distance for each movement

is bounded by diam(€2). Therefore the 1-Wasserstein distance between p; and vy is bounded by

% diam(2). O
APPENDIX B. DISCRETE LAPLACIAN DISTRIBUTION

Recall that the classical Laplacian distribution Lapg (o) is a continuous distribution with density

flz)= %exp (=|z| /o), z€R.

A random variable X ~ Lapp (o) has zero mean and
Var(Z) = 20°.

To deal with counts, it is more convenient to use the discrete Laplacian distribution Lapy(o), see
[30], which has probability mass function

f(2) U exp (—|z| /o), 2€Z

RS
where p, = exp(—1/0). A random variable Z ~ Lapy(c) has zero mean and
2po
Var(Z) = ——.
Thus, one can verify that discrete Laplacian has a smaller variance than its continuous counterpart:
Var(Z) < 202, (B.1)

but the gap vanishes for large o:
Var(Z) — 202 as o — oo.
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