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ALGORITHMICALLY EFFECTIVE DIFFERENTIALLY PRIVATE SYNTHETIC DATA

YIYUN HE, ROMAN VERSHYNIN, AND YIZHE ZHU

Abstract

We present a highly effective algorithmic approach for generating ε-differentially private synthetic data

in a bounded metric space with near-optimal utility guarantees under the 1-Wasserstein distance. In partic-

ular, for a dataset X in the hypercube [0, 1]d, our algorithm generates synthetic dataset Y such that the ex-

pected 1-Wasserstein distance between the empirical measure of X and Y is O((εn)−1/d) for d ≥ 2, and is

O(log2(εn)(εn)−1) for d = 1. The accuracy guarantee is optimal up to a constant factor for d ≥ 2, and up to a

logarithmic factor for d = 1. Our algorithm has a fast running time of O(εdn) for all d ≥ 1 and demonstrates

improved accuracy compared to the method in [12] for d ≥ 2.

1. INTRODUCTION

Differential privacy has become the benchmark for privacy protection in scenarios where vast

amounts of data need to be analyzed. The aim of differential privacy is to prevent the disclosure

of information about individual participants in the dataset. In simple terms, an algorithm that has

a randomized output and produces similar results when given two adjacent datasets is considered

to be differentially private. This method of privacy protection is increasingly being adopted and

implemented in various fields, including the 2020 US Census [2, 29, 28] and numerous machine

learning tasks [24].

A wide range of data computations can be performed in a differentially private manner, including

regression [17], clustering [37], parameter estimation [21], stochastic gradient descent [36], and deep

learning [1]. However, many existing works on differential privacy focus on designing algorithms

for specific tasks and are restricted to queries that are predefined before use. This requires expert

knowledge and often involves modifying existing algorithms.

One promising solution to this challenge is to generate a synthetic dataset similar to the original

dataset with guaranteed differential privacy [27, 8, 31, 7, 10, 11, 12]. As any downstream tasks are

based on the synthetic dataset, they can be performed without incurring additional privacy costs.

1.1. Private synthetic data. Mathematically, the problem of generating private synthetic data can

be defined as follows. Let (Ω, ρ) be a metric space. Consider a dataset X = (X1, . . . ,Xn) ∈ Ωn.

Our goal is to construct an efficient randomized algorithm that outputs differentially private synthetic

data Y = (Y1, . . . , Ym) ∈ Ωm such that the two empirical measures

µX =
1

n

n∑

i=1

δXi
and µY =

1

m

m∑

i=1

δYi

are close to each other. We measure the utility of the output by EW1(µX , µY), where W1(µX , µY)
is the 1-Wasserstein distance, and the expectation is taken over the randomness of the algorithm.

The Kantorovich-Rubinstein duality (see, e.g., [47]) gives an equivalent representation of the 1-

Wasserstein distance between two measures νX and µY :

W1(µX , µY) = sup
Lip(f)≤1

(∫
fdµX −

∫
fdµY

)
, (1.1)
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where the supremum is taken over the set of all 1-Lipschitz functions on Ω. Since many machine

learning algorithms are Lipschitz [48, 32, 15, 35], Equation (1.1) provides a uniform accuracy guar-

antee for a wide range of machine learning tasks performed on synthetic datasets whose empirical

measure is close to µX in the 1-Wasserstein distance.

1.2. Main results. The most straightforward way to construct differentially private synthetic data is

to add independent noise to the location of each data point. However, this method can result in a

significant loss of data utility as the amount of noise needed for privacy protection may be too large

[20]. Another direct approach could be to add noise to the density function of the empirical measure

of X , by dividing Ω into small subregions and perturbing the true counts in each subregion. However,

Laplacian noise may perturb the count in a certain subregion to negative, causing the output to become

a signed measure. To address this issue, we introduce an algorithmically effective method called the

Private Measure Mechanism.

Private Measure Mechanism (PMM). PMM makes the count zero if the noisy count in a subregion

is negative. Instead of a single partition of Ω, we consider a collection of binary hierarchical parti-

tions on Ω and add inhomogeneous noise to each level of the partition. However, the counts of two

subregions do not always add up to the count of the region at a higher level. We develop an algorithm

that enforces the consistency of counts in regions at different levels. PMM has O(εdn) running time

while the running time of the approach in [12] is polynomial in n.

The accuracy analysis of PMM uses the hierarchical partitions to estimate the 1-Wasserstein dis-

tance in terms of the multi-scale geometry of Ω and the noise magnitude in each level of the partition.

In particular, when Ω = [0, 1]d, by optimizing the choice of the hierarchical partitions and noise

magnitude, PMM achieves better accuracy compared to [12] for d ≥ 2. The accuracy is optimal rate

up to a constant factor for d ≥ 2, and up to a logarithmic factor for d = 1. We state it in the next

theorem.

The hierarchical partitions appeared in many previous works on the approximation of distributions

under Wasserstein distances in a non-private setting, including [4, 18, 50]. In the differential privacy

literature, the hierarchical partitions are also closely related to the binary tree mechanism [22, 16] for

differential privacy under continual observation. However, the accuracy analysis of the two mecha-

nisms is significantly different. In addition, the TopDown algorithm in the 2020 census [3] also has

a similar hierarchical structure and enforces consistency, but the accuracy analysis of the algorithm is

not provided in [3].

Theorem 1.1 (PMM for data in a hypercube). Let Ω = [0, 1]d equipped with the ℓ∞ metric. PMM

outputs an ε-differentially private synthetic dataset Y in time O(εdn) such that

EW1(µX , µY) ≤




C log2(εn)(εn)−1 if d = 1,

C(εn)−
1
d if d ≥ 2.

Private Signed Measure Mechanism (PSMM). In addition to PMM, we introduce an alternative

method, the Private Signed Measure Mechanism, that achieves optimal accuracy rate on [0, 1]d when

d ≥ 3 in poly(n) time. The analysis of PSMM is not restricted to 1-Wasserstein distance, and it can

be generalized to provide a uniform utility guarantee of other function classes.

We first partition the domain Ω into m subregions Ω1, . . . ,Ωm. Perturbing the counts in each

subregion with i.i.d. integer Laplacian noise gives an unbiased approximation of µY with a signed

measure ν. Then we find the closest probability measure ν̂ under the bounded Lipschitz distance by

solving a linear programming problem.

In the proof of accuracy for PSMM, one ingredient is to estimate the Laplacian complexity of the

Lipschitz function class on Ω and connect it to the 1-Wasserstein distance. This type of argument
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is similar in spirit to the optimal matching problem for two sets of random points in a metric space

[38, 39, 9]. When Ω = [0, 1]d, PSMM achieves the optimal accuracy rate O((εn)−1/d) for d ≥ 3.

For d = 2, PSMM achieves a near-optimal accuracy O(log(εn)(εn)−1/2). For d = 1, the accuracy

becomes O((εn)−1/2).
For the case when d = 2, we believe that the bound in Corollary 3.7 could be improved to

C
√
log(εn)/

√
εn by replacing Dudley’s chaining bound in Proposition 3.2 with the generic chaining

bound in [39, 19] involving the γ1 and γ2 functionals on Ω. We will not pursue this direction in this

paper.

Comparison to previous results. [42] proved that it is NP-hard to generate private synthetic data

on the Boolean cube which approximately preserves all two-dimensional marginals, assuming the

existence of one-way functions. There exists a substantial body of work for differentially private

synthetic data with guarantees limited to accuracy bounds for a finite set of specified queries [5, 40,

23, 43, 33, 46, 12, 13, 14].

[49] considered differentially private synthetic data in [0, 1]d with guarantees for any smooth

queries with bounded partial derivatives of order K , and achieved an accuracy of O(ε−1n− K
2d+K ).

Recently, [12] introduced a method based on superregular random walks to generate differentially

private synthetic data with near-optimal guarantees in general compact metric spaces. In particular,

when the dataset is in [0, 1]d, they obtain EW1(µX , µY) ≤ C log
3
2d (εn)(εn)−

1
d . A corresponding

lower bound of order n−1/d was also proved in [12, Corollary 9.3]. PMM matches the lower bound

up to a constant factor for d ≥ 2, and up to a logarithmic factor for d = 1.

In terms of computational efficiency, PMM runs in time O(εdn). This is more efficient compared

to the algorithm in [12].

Organization of the paper. The rest of the paper is organized as follows. In Section 2, we introduce

some background on differential privacy and distances between measures. We will first introduce and

analyze the easier and more direct method PSMM before our main result. In Section 3, we describe

PSMM in detail and prove its privacy and accuracy for data in a bounded metric space, and detailed

results are provided for the case for the hypercube. In Section 4, we introduce PMM and analyze its

privacy and accuracy. Optimizing the choices of noise parameters, we obtain the optimal accuracy on

the hypercube with O(εdn) running time, which proves Theorem 1.1.

Additional proofs are included in Appendix A. We use a variant of Laplacian distribution, called

discrete Laplacian distribution, in PMM and PSMM. The definition and properties of discrete Lapla-

cian distribution are included in Appendix B.

2. PRELIMINARIES

Differential Privacy. We use the following definition from [24]. A randomized algorithm M pro-

vides ε-differential privacy if for any input data D,D′ that differs on only one element (or D and D′

are adjacent data sets) and for any measurable set S ⊆ range(M), there is

P
{
M(D) ∈ S

}

P
{
M(D′) ∈ S

} ≤ eε.

Here the probability is taken from the probability space of the randomness of M.

Wasserstein distance. Consider a metric space (Ω, ρ) with two probability measures µ, ν. Then the

1-Wasserstein distance (see e.g., [47] for more details) between them is defined as

W1(µ, ν) := inf
γ∈Γ(µ,ν)

∫

Ω×Ω
ρ(x, y)dγ(x, y),
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where γ(µ, ν) is the set of all couplings of µ and ν.

Bounded Lipschitz distance. Let (Ω, ρ) be a bounded metric space. The Lipschitz norm of a func-

tion f is defined as

‖f‖Lip := max

{
Lip(f),

‖f‖∞
diam(Ω)

}
,

where Lip(f) is the Lipschitz constant of f . Let F be the set of all Lipschitz functions f on Ω with

‖f‖Lip ≤ 1. For signed measures µ, ν, we define the bounded Lipschitz distance:

dBL(µ, ν) := sup
f∈F

(∫
fdµ−

∫
fdν

)
.

One can easily check that this is a metric. Moreover, in the special case where µ and ν are both

probability measures, moving f by a constant does not change the result of
∫
fdµ−

∫
fdν. Therefore,

for a bounded domain Ω, we can always assume f(x0) = 0 for a fixed x0 ∈ Ω, then‖f‖∞ ≤ diam(Ω)
when computing the supremum in (1.1). This implies dBL-metric is equivalent to the classical W1-

metric when µ, ν are both probability measures on a bounded domain Ω:

W1(µ, ν) = sup
Lip(f)≤1

(∫
fdµ−

∫
fdν

)
= sup

f∈F

(∫
fdµ−

∫
fdν

)
= dBL(µ, ν). (2.1)

3. PRIVATE SIGNED MEASURE MECHANISM (PSMM)

We will first introduce PSMM, which is an easier and more intuitive approach. The procedure of

PSMM is formally described in Algorithm 1. Note that in the output step of Algorithm 1, the size

of the synthetic data m′ depends on the rational approximation of the density function of ν̂, and we

discuss the details here. Let v̂1, . . . , v̂m be the weight of the probability measure ν̂ on y1, . . . , ym,

respectively. We can choose rational numbers r1, . . . , rm such that maxi∈[m] |ri − ν̂i| is arbitrarily

small. Let m′ be the least common multiple of the denominators of r1, . . . , rm, then we output the

synthetic dataset Ŷ containing m′ri copies of yi for i = 1, . . . ,m.

Before analyzing the privacy and accuracy of PSMM, we introduce a useful complexity measure

of a given function class, which quantifies the influence of the Laplacian noise on the function class.

Algorithm 1 Private Signed Measure Mechanism

Input: true data X = (x1, . . . , xn) ∈ Ωn, partition (Ω1, . . . ,Ωm) of Ω, privacy parameter ε > 0.

Compute the true counts: Compute the true count in each regime ni = #{xj ∈ Ωi : j ∈ [n]}.

Create a new dataset: Choose any element yi ∈ Ωi independently of X , and let Y be the

collection of ni copies of yi for each i ∈ [n].
Add noise: Perturb the empirical measure µY of Y and obtain a signed measure ν such that

ν({yi}) := (ni + λi)/n,

where λi ∼ LapZ(1/ε) are i.i.d. discrete Laplacian random variables.

Linear programming: Find the closest probability measure ν̂ of ν in dBL-metric using Algo-

rithm 2, and generate synthetic data Ŷ from ν̂.

Output: synthetic data Ŷ = (y1, . . . , ym′) ∈ Ωm′
for some integer m′.
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Algorithm 2 Linear Programming

Input: A discrete signed measure ν supported on Y = {y1, . . . , ym}.

Compute the distances: Compute the pairwise distances {‖yi − yj‖∞, i > j}.

Solve the linear programming: Solve the linear programming problem with 2m2 variables and

m+ 1 constraints:

min

m∑

i,j=1

‖yi − yj‖∞(uij + u′ij) + 2 vi

s.t.

m∑

j=1

(uij − u′ij) + vi + τi ≥ ν({yi}), ∀i ≤ m,

m∑

i=1

τi = 1,

uij , u
′
ij , vi, τi ≥ 0, ∀i, j ≤ m, i 6= j.

Output: a probability measure ν̂ with ν̂({yi}) = τi.

3.1. Laplacian complexity. Given the Kantorovich-Rubinstein duality (1.1), to control the W1-

distance between the original measure and the private measure, we need to describe how Lipschitz

functions behave under Laplacian noise. As an analog of the worst-case Rademacher complexity

[6, 25], we consider the worst-case Laplacian complexity. Such a worst-case complexity measure

appears since the original dataset is deterministic without any distribution assumption.

Definition 3.1 (Worst-case Laplacian complexity). Let F be a function class on a metric space Ω.

The worst-case Laplacian complexity of F is defined by

Ln(F) := sup
X1,...,Xn∈Ω

E


sup
f∈F

∣∣∣∣∣∣
1

n

n∑

i=1

λif(Xi)

∣∣∣∣∣∣


 , (3.1)

where λ1, . . . , λn ∼ Lap(1) are i.i.d. random variables.

Since Laplacian random variables are sub-exponential but not sub-gaussian, its complexity mea-

sure is not equivalent to the Gaussian or Rademacher complexity, but it is related to the suprema

of the mixed tail process [19] and the quadratic empirical process [34]. Our next proposition bounds

Ln(F) in terms of the covering numbers of F . Its proof is a classical application of Dudley’s chaining

method (see, e.g., [45]).

Proposition 3.2 (Bounding Laplacian complexity with Dudley’s entropy integral). Suppose that

(Ω, ρ) is a metric space and F is a set of functions on Ω. Then

Ln(F) ≤ C inf
α>0

(
2α+

1√
n

∫ ∞

α

√
logN (F , u, ‖ · ‖∞)du+

1

n

∫ ∞

α
logN (F , u, ‖ · ‖∞)du

)

where N (F , u, ‖ · ‖∞) is the covering number of F and C > 0 is an absolute constant.

In particular, we are interested in the case where F is the class of all the bounded Lipschitz func-

tions. One can find the result in [41] or more explicit bound in [26] that for the set F of functions f
with‖f‖Lip ≤ 1, its covering number satisfies

N (F , u, ‖ · ‖∞) ≤
(
8

u

)N (Ω,u/2,ρ)

.
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When Ω = [0, 1]d, a better bound on the covering number for Lipschitz functions is available from

[41, 48]:

N (F , u, ‖ · ‖∞) ≤
(
2
⌈
2/u

⌉
+ 1

)
2N([0,1]d,u/2,‖·‖∞),

which implies the following corollary.

Corollary 3.3 (Laplacian complexity for Lipschitz functions on the hypercube). Let Ω = [0, 1]d with

the ‖ · ‖∞ metric, and F be the set of all Lipschitz functions f on Ω with‖f‖Lip ≤ 1. We have

Ln(F) ≤





Cn−1/2 if d = 1,

C log n · n−1/2 if d = 2,

Cd−1n−1/d if d ≥ 3.

Discrete Laplacian complexity. Laplacian complexity can be useful for differential privacy algo-

rithms based on the Laplacian mechanism [24]. However, since PSMM perturbs counts in each

subregion, it is more convenient for us to add integer noise to the true counts. Instead, we will use the

worst-case discrete Laplacian complexity defined below:

L̃n(F) := sup
X1,...,Xn∈Ω

E


sup
f∈F

∣∣∣∣∣∣
1

n

n∑

i=1

λif(Xi)

∣∣∣∣∣∣


 , (3.2)

where λ1, . . . , λn ∼ LapZ(1) are i.i.d. discrete Laplacian random variables.

In particular, LapZ(1) has a bounded sub-exponential norm, therefore the proof of Proposition 3.2

works for discrete Laplacian random variables as well. Consequently, Corollary 3.3 also holds for

L̃n(F), with a different absolute constant C .

3.2. Privacy and Accuracy of Algorithm 1. The privacy guarantee of Algorithm 1 can be proved

by checking the definition. The essence of the proof is the same as the classical Laplacian mechanism

[24].

Proposition 3.4 (Privacy of Algorithm 1). Algorithm 1 is ε-differentially private.

We now turn to accuracy. The linear programming problem stated in Algorithm 2 has (2m2+2m)
many variables and (m+1) many constraints, which can be solved in polynomial time in m. We first

show that Algorithm 2 indeed outputs the closest probability measure to ν in the dBL-distance in the

next proposition.

Proposition 3.5. For a discrete signed measure ν on Ω, Algorithm 2 gives its closest probability

measure in dBL-distance with the same support set with a polynomial running time in m.

Now we are ready to analyze the accuracy of Algorithm 1. In PSMM, independent Laplacian noise

is added to the count of each sub-region. Therefore, the Laplacian complexity arises when considering

the expected Wasserstein distance between the original empirical measure and the synthetic measure.

Theorem 3.6 (Accuracy of Algorithm 1). Suppose (Ω1, . . . ,Ωm) is a partition of (Ω, ρ) and F is the

set of all functions with Lipschitz norm bounded by 1. Then the measure ν̂ generated from Algorithm 1

satisfies

EW1(µX , ν̂) ≤ max
i

diam(Ωi) +
2m

εn
L̃m(F).

Note that diam(Ωi) ≍ m−1/d can be satisfied when we take a partition of Ω = [0, 1]d where each

Ωi is a subcube of the same size. Using the formula above and the result of Laplacian complexity for

the hypercube in Corollary 3.3, one can easily deduce the following result.
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Corollary 3.7 (Accuracy of Algorithm 1 on the hypercube). Take m = ⌈εn⌉ and let (Ω1, . . . ,Ωm) be

a partition of Ω = [0, 1]d with the norm ‖ · ‖∞. Assume that diam(Ωi) ≍ m−1/d. Then the measure

ν̂ generated from Algorithm 1 satisfies

EW1(µX , ν̂) ≤





C(εn)−
1
2 if d = 1,

C log(εn)(εn)−
1
2 if d = 2,

C(εn)−
1
d if d ≥ 3.

4. PRIVATE MEASURE MECHANISM (PMM)

4.1. Binary partition and noisy counts. A binary hierarchical partition of a set Ω of depth r is a

family of subsets Ωθ indexed by θ ∈ {0, 1}≤r , where

{0, 1}≤k = {0, 1}0 ⊔ {0, 1}1 ⊔ · · · ⊔ {0, 1}k, k = 0, 1, 2 . . . ,

and such that Ωθ is partitioned into Ωθ0 and Ωθ1 for every θ ∈ {0, 1}≤r−1. By convention, the cube

{0, 1}0 consists of a single element ∅. We usually drop the subscript ∅ and write n instead of n∅.

When θ ∈ {0, 1}j , we call j the level of θ. We can also encode a binary hierarchical partition of Ω in

a binary tree of depth r, where the root is labeled Ω and the j-th level of the tree encodes the subsets

Ωθ for θ at level j.

Let (Ωθ)θ∈{0,1}≤r be a binary partition of Ω. Given true data (x1, . . . , xn) ∈ Ωn, the true count nθ

is the number of data points in the region Ωθ, i.e.

nθ :=
∣∣∣
{
i ∈ [n] : xi ∈ Ωθ

}∣∣∣ .

We will convert true counts into noisy counts n′
θ by adding Laplacian noise; all regions on the same

level will receive noise of the same expected magnitude. Formally, we set

n′
θ := (nθ + λθ)+ , where λθ ∼ LapZ(σj),

and j ∈ {0, . . . , r} is the level of θ. At this point, the magnitudes of the noise σj can be arbitrary.

4.2. Consistency. The true counts nθ are non-negative and consistent, i.e., the counts of subregions

always add up to the count of the region:

nθ0 + nθ1 = nθ for all θ ∈ {0, 1}≤r−1.

The noisy counts n′
θ are non-negative, but not necessarily consistent. Algorithm 3 enforces consis-

tency by adjusting the counts iteratively, from top to bottom. In the case of the deficit, when the

sum of the two subregional counts is smaller than the count of the region, we increase both subre-

gional counts. In the opposite case or surplus, we decrease both subregional counts. Apart from this

requirement, we are free to distribute the deficit or surplus between the subregional counts.

It is convenient to state this requirement by considering a product partial order on Z
2
+, where we

declare that (a0, a1) � (b0, b1) if and only if a0 ≤ b0 and a1 ≤ b1. We call the two vectors a, b ∈ Z
2

comparable if either a � b or b � a. Furthermore, L(a) denotes the line x+ y = a on the plane.

At each step, Algorithm 3 uses a transformation fθ : Z2
+ → Z

2
+ ∩ L(mθ). It can be chosen arbi-

trarily; the only requirement is that fθ(x) be comparable with x. The comparability requirement is

natural and non-restrictive. For example, the uniform transformation selects the closest point in the

discrete interval Z2
+ ∩ L(mθ) in (say) the Euclidean metric. Alternatively, the proportional transfor-

mation selects the point in the discrete interval Z2
+ ∩ L(mθ) that is closest to the line that connects

the input vector and the origin.
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Algorithm 3 Consistency

Input: non-negative numbers (n′
θ)θ∈{0,1}≤r , where n′ is a nonnegative integer.

set m := n′.
for j = 0, . . . , r − 1 do

for θ ∈ {0, 1}j do

transform the vector (n′
θ0, n

′
θ1) ∈ Z

2
+ into any comparable vector (mθ0,mθ1) ∈ Z

2
+ ∩

L(mθ).
end for

end for

Output: non-negative integers (mθ)θ∈{0,1}≤r .

4.3. Synthetic data. Algorithm 3 ensures that the output counts mθ are non-negative, integer, and

consistent. They are also private since they are a function of the noisy counts n′
θ, which are private

as we proved. Therefore, the counts mθ can be used to generate private synthetic data by putting mθ

points in cell Ωθ. Algorithm 4 makes this formal.

Algorithm 4 Private Measure Mechanism

Input: true data X = (x1, . . . , xn) ∈ Ωn, noise magnitudes σ0, . . . , σr > 0.

Compute true counts: Let nθ be the number of data points in Ωθ.

Add noise: Let n′
θ := (nθ + λθ)+, where λθ ∼ LapZ(σj) are i.i.d. random variables,

Enforce consistency: Convert the noisy counts (n′
θ) to consistent counts (mθ) using Algo-

rithm 3.

Sample: Choose any mθ points in each cell Ωθ, θ ∈ {0, 1}r independently of X .

Output: the set of all these points as synthetic data Y = (y1, . . . , ym) ∈ Ωm.

4.4. Privacy and accuracy of Algorithm 4. We first prove that Algorithm 4 is differentially private.

The proof idea is similar to the classic Laplacian mechanism. But now our noise is of differential

scale for each level, so more delicate calculations are needed.

Theorem 4.1 (Privacy of Algorithm 4). The vector of noisy counts (nθ + λθ) in Algorithm 4 is ε-

differentially private, where

ε =
r∑

j=0

1

σj
.

Consequently, the synthetic data Y generated by Algorithm 4 is ε-differentially private.

Having analyzed the privacy of the synthetic data, we now turn to its accuracy. It is determined by

the magnitudes of the noise σj and by the multiscale geometry of the domain Ω. The latter is captured

by the diameters of the regions Ωθ, specifically by their sum at each level, which we denote

∆j :=
∑

θ∈{0,1}j
diam(Ωθ) (4.1)

and adopt the notation ∆−1 := ∆0 = diam(Ω). In addition to ∆j , the accuracy is affected by the

resolution of the partition, which is the maximum diameter of the cells, denoted by

δ := max
θ∈{0,1}r

diam(Ωθ).
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Theorem 4.2 (Accuracy of Algorithm 4). Algorithm 4 that transforms true data X into synthetic data

Y has the following expected accuracy in the Wasserstein metric:

EW1 (µX , µY) ≤
2
√
2

n

r∑

j=0

σj∆j−1 + δ.

Here µX and µY are the empirical probability distributions on the true and synthetic data, respec-

tively.

The privacy and accuracy guarantees of Algorithm 4 (Theorems 4.1 and 4.2) hold for any choice

of noise levels σj . By optimizing σj , we can achieve the best accuracy for a given level of privacy.

Theorem 4.3 (Optimized accuracy). With the optimal choice of magnitude levels (A.4), Algorithm 4

that transforms true data X into synthetic data Y is ε-differential private, and has the following

expected accuracy in the 1-Wasserstein distance:

EW1 (µX , µY) ≤
√
2

εn

( r∑

j=0

√
∆j−1

)2
+ δ.

Here µX and µY are the empirical measures of the true and synthetic data, respectively.

Corollary 4.4 (Optimized accuracy for hypercubes). When Ω = [0, 1]d equipped with the ℓ∞ metric,

with the optimal choice of magnitude levels (A.4) and the optimal choice of

r =

{
log2(εn)− 1 if d = 1,

log2(εn) if d ≥ 2,

we have

EW1(µX , µY) .





log2(εn)

εn
, if d = 1,

(εn)−1/d, if d ≥ 2.

Remark 4.5 (Computational efficiency of Algorithm 4). Since a binary hierarchical partition has 2r

cells in total, the running time of Algorithm 4 is O(2r). When Ω = [0, 1]d, with the same optimal

choice of r in Corollary 4.4, the running time of PMM becomes O(εdn).

4.5. Proof of Theorem 4.2. For the proof of Theorem 4.2, we introduce a quantitative notion for the

incomparability of two vectors on the plane. For vectors a, b ∈ Z
2
+, we define

flux(a, b) :=

{
0 if a and b are comparable,

min
(
|a1 − b1| , |a2 − b2|

)
otherwise.

Lemma 4.6 (Flux as incomparability). flux(a, b) is the ℓ∞-distance from a to the set of points that

are comparable to b.

For example, if a = (1, 9) and b = (6, 7), then flux(a, b) = 2. Note that a has a distance 2 to the

vector (1, 7) which is comparable with b.

Lemma 4.7 (Flux as transfer). Suppose we have two bins with a1 and a2 balls in them. Then one can

achieve b1 and b2 balls in these bins by:

(a) first making the total number of balls correct by adding a total of (b1 + b2) − (a1 − a2) balls to

the two bins (or removing, if that number is negative);

(b) then transferring flux
(
(a1, a2), (b1, b2)

)
balls from one bin to the other.
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For example, suppose that one bin has 1 ball and the other has 9. Then we can achieve 6 and 7
balls in these bins by first adding 3 balls to the first bin and transferring 2 balls from the second to the

first bin. As we noted above, 2 is the flux between the vectors (1, 9) and b = (6, 7).
Lemma 4.7 can be generalized to the hierarchical binary partition of Ω as follows.

Lemma 4.8. Consider any data set X ∈ Ωn, and let (nθ)θ∈{0,1}r be its counts. Consider any

consistent vector of non-negative integers (mθ)θ∈{0,1}r . Then one can transform X into a set Z ∈ Ωm

that has counts (mθ)θ∈{0,1}r by:

(a) first making the total number of points correct by adding a total of m−n points to Ω (or remove,

if that number is negative);

(b) then transferring flux
(
(nθ0, nθ1), (mθ0,mθ1)

)
points from Ωθ0 to Ωθ1 or vice versa, for all

j = 0, . . . , r − 1 and θ ∈ {0, 1}j .

Combining the concept of the flux and our algorithm, the following two lemmas are useful in the

proof of Theorem 4.2.

Lemma 4.9. In Algorithm 4, we have

flux
(
(nθ0, nθ1), (mθ0,mθ1)

)
≤ max

(
|λθ0| ,|λθ1|

)

for all j = 0, . . . , r − 1 and θ ∈ {0, 1}j .

Lemma 4.10. For any finite multisets U ⊂ V such that all elements in U are from Ω, one has

W1(µU , µV ) ≤
∣∣V \ U

∣∣
|V | · diam(Ω).

Proof. (Proof of Theorem 4.2) Owing to Lemma 4.8 and Lemma 4.9, the creation of synthetic data

from the true data X 7→ Y , described by Algorithm 4, can be achieved by the following three steps.

1. Transform the n-point input set X to an m-point set X1 by adding or removing|m− n| points.

2. Transform X1 to X2 by moving at most max
(
|λθ0| ,|λθ1|

)
many data points for each j = 0, 1, . . . , r−

1 and θ ∈ {0, 1}j between the two parts of the region Ωθ.

3. Transforms X2 to the output data Y by relocating points within their cells.

We will analyze the accuracy of these steps one at a time.

Analyzing Step 2. The total distance the points are moved at this step is bounded by

r−1∑

j=0

∑

θ∈{0,1}j
max

(
|λθ0| ,|λθ1|

)
diam(Ωθ) =: D. (4.2)

Since |X1| = m, it follows that

W1(µX1
, µX2

) ≤ D

m
. (4.3)

Combining Steps 1 and 2. Recall that step 1 transforms the input data X with |X | = n into X1

with|X1| = m = n+ sign(λ) · ⌊|λ|⌋ by adding or removing points, depending on the sign of λ.

Case 1: λ ≥ 0. Here X1 is obtained from X by adding ⌊λ⌋ points, so Lemma 4.10 gives

W1(µX , µX1
) ≤ λ

m
·∆0.

Combining this with (4.3) by triangle inequality, we conclude that

W1(µX , µX2
) ≤ λ∆0 +D

m
≤ λ∆0 +D

n
.
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Case 2: λ < 0. Here X1 is obtained from X by removing a set X0 of n − m = ⌊|λ|⌋ points.

Furthermore, by our analysis of step 2, X2 is obtained from X1 by moving points the total distance at

most D. Therefore, X2∪X0 (as a multiset) is obtained from X = X1 ∪X0 by moving points the total

distance at most D, too. (The points in X0 remain unmoved.) Since |X | = n, it follows that

W1(µX , µX2∪X0
) ≤ D

n
.

Moreover, Lemma 4.10 gives

W1(µX2
, µX2∪X0

) ≤ |X0|
|X2 ∪ X0|

· diam(Ω) ≤ |λ|∆0

n
.

(Here we used that the multiset X2∪X0 has the same number of points as X , which is n.) Combining

the two bounds by triangle inequality, we obtain

W1(µX , µX2
) ≤ |λ|∆0 +D

n
. (4.4)

In other words, this bound holds in both cases.

Analyzing Step 3. This step is the easiest to analyze: since Y is obtained from X2 by relocat-

ing the points are relocated within their cells, and the maximal diameter of the cells is δ, we have

W1(µX2
, µY) ≤ δ. Combining this with (4.4) by triangle inequality, we conclude that

W1(µX , µY) ≤
|λ|∆0 +D

n
+ δ.

Taking expectation. Recall the definition of D from (4.2). We get

EW1(µX , µY) ≤
1

n


E

[
|λ|

]
∆0 +

r−1∑

j=0

∑

θ∈{0,1}j
E

[
max

(
|λθ0| ,|λθ1|

)]
diam(Ωθ)


+ δ.

Since λ ∼ LapZ(σ0), by (B.1) we have E
[
|λ|

]
≤ (E(λ)2)1/2 ≤

√
2σ0. Similarly, since λθ0 and λθ1

are independent LapZ(σj+1) random variables, E
[
max

(
|λθ0| ,|λθ1|

)]
≤ 2

√
2σj+1. Substituting

these estimates and rearranging the terms of the sum will complete the proof. �
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APPENDIX A. ADDITIONAL PROOFS

A.1. Proof of Proposition 3.2.

Proof. We will apply the chaining argument (see, e.g., [45, Chapter 8]) to deduce a bound similar to

Dudley’s inequality.

Step 1: (Finding nets)

Define εj = 2−j for j ∈ Z and consider an εj-net Tj of F of size N (F , εj , ‖ · ‖∞). Then for any

f ∈ F and any level j, we can find the closest element in the net, denoted πj(f). In other words,

there exists πj(f) s.t.

πj(f) ∈ Tj , ‖f − πj(f)‖∞ ≤ εj .
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Let m be a positive integer to be determined later, we have the telescope sum together with triangle

inequality

E sup
f∈F

1

n

∣∣∣∣∣∣

n∑

i=1

f(Xi)λi

∣∣∣∣∣∣
≤ E sup

f∈F

1

n

∣∣∣∣∣∣

n∑

i=1

(
f − πm(f)

)
(Xi) · λi

∣∣∣∣∣∣

+

m∑

j=j0+1

E sup
f∈F

1

n

∣∣∣∣∣∣

n∑

i=1

(
πj(f)− πj−1(f)

)
(Xi) · λi

∣∣∣∣∣∣
.

Note that when j = j0 is small enough, Ω can be covered by πj0(f) ≡ 0.

Step 2: (Bounding the telescoping sum)

For a fixed j0 < j ≤ m, we consider the quantity

E sup
f∈F

1

n

∣∣∣∣∣∣

n∑

i=1

(
πj(f)− πj−1(f)

)
(Xi) · λi

∣∣∣∣∣∣
.

For simplicity we will denote ai = ai(f) as the coefficient 1
n

(
πj(f)− πj−1(f)

)
(Xi). Then we have

|ai| ≤
1

n

∥∥f − πj−1(f)
∥∥
∞ +

1

n

∥∥πj(f)− f
∥∥
∞ ≤ 1

n
(εj + εj−1) ≤

3εj
n

.

Since {λi}i∈[n] are independent subexponential random variables, we can apply Bernstein’s in-

equality to the sum
∑

i aiλi. Let K = 3εj , we have

P





∣∣∣∣∣∣

n∑

i=1

aiλi

∣∣∣∣∣∣
> t



 ≤ 2 exp


−cmin

(
t2

‖a‖22
,

t

‖a‖∞

)


≤ 2 exp


−cmin

(
t2

K2/n
,

t

K/n

)


= 2exp


−cnmin

(
t2

K2
,
t

K

)
 ,

Then we can use the union bound to control the supreme. Define N = |Tj | · |Tj−1| ≤ |Tj |2,

P



sup

f∈F

∣∣∣∣∣∣

n∑

i=1

aiλi

∣∣∣∣∣∣
> t



 ≤ 2N exp


−cnmin

(
t2

K2
,
t

K

)
 ∧ 1

= 2 exp


logN − cnmin

(
t2

K2
,
t

K

)
 ∧ 1

≤ 2 exp

(
logN − cn

t2

K2

)
∧ 1

+ 2 exp

(
logN − cn

t

K

)
∧ 1
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and hence

E sup
f∈F

∣∣∣∣∣∣

n∑

i=1

aiλi

∣∣∣∣∣∣
=

∫ ∞

0
2 exp

(
logN − cn

t2

K2

)
∧ 1dt

+

∫ ∞

0
2 exp

(
logN − cn

t

K

)
∧ 1dt

:= I2 + I1.

We will compute them separately.

I1 =

∫ ∞

0
2 exp

(
logN − cn

t

K

)
∧ 1dt

=
K logN

cn
+

∫ ∞

K logN/cn
2 exp

(
logN − cn

t

K

)

=
K logN

cn
+

∫ ∞

0
2 exp

(
−cn

t

K

)

≤ CK
logN

n

I2 =

∫ ∞

0
2 exp

(
logN − cn

t2

K2

)
∧ 1dt

=

√
K2 logN

cn
+

∫ ∞
√

K2 logN/cn
2 exp

(
logN − cn

t2

K2

)

=

√
K2 logN

cn
+

∫ ∞

0
2 exp

(
−cn

t2

K2
− 2

√
cn logN

t

K

)

≤
√

K2 logN

cn
+

K√
cn logN

≤ CK

√
logN

n
.

Therefore we concluded that for a fixed level j,

E sup
f∈F

∣∣∣∣∣∣

n∑

i=1

aiλi

∣∣∣∣∣∣
≤ CK

(
logN

n
+

√
logN

n

)
. εj

(
logN

n
+

√
logN

n

)

Step 3: (Bounding the last entry)

For the last entry in the telescoping sum, similarly, we denote ai :=
1
n

(
f − πm(f)

)
(Xi) and we

have |ai| ≤ εm/n. Then

sup
f∈F

∣∣∣∣∣∣

n∑

i=1

aiλi

∣∣∣∣∣∣
≤ εm

n

n∑

i=1

|λi|,

and the expectation satisfies

E sup
f∈F

∣∣∣∣∣∣

n∑

i=1

aiλi

∣∣∣∣∣∣
≤ εm

n

n∑

i=1

E |λi| . εm.
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Step 4: (Combining the bound and choosing m) Combining the two integrals together, we deduce

that for any X1, . . . ,Xn ∈ Ω,

E sup
f∈F

1

n

∣∣∣∣∣∣

n∑

i=1

f(Xi)λi

∣∣∣∣∣∣
≤ C


εm +

m∑

j=j0+1

εj

(
logN (F , εj , ‖ · ‖∞)

n

+

√
logN (F , εj , ‖ · ‖∞)

n

)
 .

Then for any α > 0, we can always choose m such that 2α ≤ εm < 4α and bound the sum above

with integral

E sup
f∈F

1

n

∣∣∣∣∣∣

n∑

i=1

f(Xi)λi

∣∣∣∣∣∣
≤ C

(
2α +

1√
n

∫ ∞

α

√
logN (F , u, ‖ · ‖∞)du

+
1

n

∫ ∞

α
logN (F , u, ‖ · ‖∞)du

)
. (A.1)

Taking infimum over α completes the proof of the first inequality.

Now assume F is the set of all functions f with ‖f‖Lip ≤ 1. From [26, Lemma 4.2], we can bound

the covering number of F by the covering number of Ω as follows:

logN (F , u, ‖ · ‖∞) ≤ log(8/u)N (Ω, u/2, ρ).

As a result, for any α > 0,

Ln(F) ≤ C

(
2α+

1√
n

∫ ∞

α

√
log(8/u)N (Ω, u/2, ρ)du+

1

n

∫ ∞

α
log(8/u)N (Ω, u/2, ρ)du

)
.

This completes the proof. �

A.2. Proof of Corollary 3.3.

Proof. For Ω = [0, 1]d with l∞-norm, we have diam(Ω) = 1 and the covering number

N ([0, 1]d, u, ‖ · ‖∞) ≤ u−d.

Then, as the domain Ω = [0, 1]d is connected and centered, we can apply the bound for the covering

number of F from [48, Theorem 17]:

N (F , u, ‖ · ‖∞) ≤
(
2
⌈
2/u

⌉
+ 1

)
2N([0,1]d,u/2,‖·‖∞),

=⇒ logN (F , u, ‖ · ‖∞) . N (Ω, u/2, ‖ · ‖∞) . (u/2)−d.

Applying the inequality above to (A.1), we get

Ln ≤ C

(
2α+

1√
n

∫ ∞

α
(u/2)−d/2du+

1

n

∫ ∞

α
(u/2)−ddu

)
. (A.2)

Compute the integral for the case d = 2 and d ≥ 3,

Ln(f) ≤





C

(
2α+

2√
n
log

2

α
+

2

n

(
α

2

)−1
)

if d = 2.

C

(
2α+

2√
n
· 1
d
2 − 1

(
α

2

)1− d
2

+
2

n
· 1

d− 1

(
α

2

)1−d
)

if d ≥ 3.
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Choosing α = 2n−1/d finishes the cases for d ≥ 2.

When d = 1, the Dudley integral in (A.2) is divergent. However, note that diam(F) ≤ 2 and

hence logN (F , u, ‖ · ‖∞) = 0 for u > 1. From (A.1), we have

Ln(F) ≤ C

(
2α+

1√
n

∫ 1

α
(u/2)−1/2du+

1

n

∫ 1

α
(u/2)−1du

)

≤ C

(
2α+

2(
√
2−√

α)√
n

+
2

n
log

1

α

)
.

The optimal choice of α is α ∼ n−1/2, which gives us the result for d = 1. �

A.3. Proof of Proposition 3.4.

Proof. It suffices to prove that the steps from X to the sign measure ν in Algorithm 1 is ε-differentially

private since the remaining steps are only based on ν. Notice that both µY , ν are supported on

Y1, . . . , Ym, we can identify the two discrete measures as m dimensional vectors in the standard

simplex, denoted µY , ν , respectively. Consider two data sets X1 and X2 differ in one point. Suppose

we deduced µY1
, µY2

and ν1, ν2 through the first four steps of Algorithm 1 from X1,X2, respectively.

We know two vectors µY1
, µY2

are different at one coordinate, where the difference is bounded by

1/n.

Then

P
{
ν1 = η

}

P
{
ν2 = η

} =

m∏

i=1

P
{
λi = n(η − µY1

)i
}

P
{
λi = n(η − µY2

)i
} =

m∏

i=1

exp(−εn|(η − µY1
)i|)

exp(−εn|(η − µY2
)i|)

≤ exp
(
εn‖µY2

− µY1
‖1
)
≤ eε.

By writing P
{
νi ∈ S

}
=

∑
η∈S P

{
νi = η

}
for i = 1, 2, the inequality above implies Algorithm 1

is ε-differentially private. �

A.4. Proof of Proposition 3.5.

Proof. For two signed measures τ, ν supported on Y , the dBL-distance between τ and ν is

dBL(τ, ν) = sup
‖f‖Lip≤1

∣∣∣∣∣∣

m∑

i=1

f(yi)
(
τ({yi})− ν({yi})

)
∣∣∣∣∣∣
.

For simplicity, we denote fi = f(yi), νi = ν({yi}) and τi = τ({yi}). Then we note that for any f
with ‖f‖Lip ≤ 1, only (fi)i∈[m] matters in the definition above. Therefore, suppose ν and τ are fixed,

computing the dBL-distance is equivalent to the following linear programming problem:

max

m∑

i=1

(νi − τi)fi

s.t. fi − fj ≤ ‖yi − yj‖∞, ∀i, j ≤ m, i 6= j,

− fi + fj ≤ ‖yi − yj‖∞, ∀i, j ≤ m, i 6= j,

− 1 ≤ fi ≤ 1, ∀i ≤ m.
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After a change of variable f ′
i = fi + 1, we can rewrite it as

max
m∑

i=1

(νi − τi)f
′
i −

(
ν(Ω)− 1

)

s.t. f ′
i − f ′

j ≤ ‖yi − yj‖∞, ∀i, j ≤ m, i 6= j,

− f ′
i + f ′

j ≤ ‖yi − yj‖∞, ∀i, j ≤ m, i 6= j,

0 ≤ f ′
i ≤ 2, ∀i ≤ m.

Next, we can consider the dual problem of the linear programming problem above. The duality

theory in linear programming [44, Chapter 12] showed that the original problem and the dual problem

have the same optimal solution. Let uij , u
′
ij ≥ 0 be the dual variable for the linear constraints about

f ′
i − f ′

j and −f ′
i + f ′

j , and let vi ≥ 0 be the dual variable for the equation f ′
i ≤ 2. As the linear

programming above is in the standard form, by the duality theory, it is equivalent to

min
∑

i6=j

‖yi − yj‖∞(uij + u′ij) + 2 vi −
(
ν(Ω)− 1

)

s.t.
∑

j 6=i

(uij − u′ij) + vi ≥ νi − τi, ∀i ≤ m,

uij, u
′
ij , vi ≥ 0 ∀i, j ≤ m, i 6= j.

To find the minimizer τ for a given ν, we regard τi as variables and add the constraints of τ being

a probability measure. Also, we can eliminate the constant ν(Ω)− 1 in the target function. So we get

the linear programming problem:

min
∑

i6=j

‖yi − yj‖∞(uij + u′ij) + 2 vi

s.t.
∑

j 6=i

(uij − u′ij) + vi + τi ≥ νi, ∀i ≤ m,

m∑

i=1

τi = 1,

uij , u
′
ij , vi, τi ≥ 0 ∀i, j ≤ m, i 6= j.

There are 2m2 variables in total and m + 1 linear constraints, and the minimizer (τi)
m
i=1 is what we

want. �

A.5. Proof of Theorem 3.6.

Proof. We transformed the original data measure µX with three steps: µX −→ µY −→ ν −→ ν̂.
Step 1: For the first step in the algorithm, we have W1(µX , µY) ≤ maxi diam(Ωi). This follows

from the definition of 1-Wasserstein distance.

Step 2: In this step, ν is no longer a probability measure, and we consider dBL(µY , ν) instead:

EdBL(µY , ν) = E sup
‖f‖Lip≤1

∣∣∣∣
∫

fdµY −
∫

fdν

∣∣∣∣

= E sup
‖f‖Lip≤1

∣∣∣∣∣∣

m∑

i=1

f(yi)

(
ni

n
+

λi

n
− ni

n

)∣∣∣∣∣∣
=

m

εn
L̃m(F). (A.3)



ALGORITHMICALLY EFFECTIVE DIFFERENTIALLY PRIVATE SYNTHETIC DATA 19

Step 3: For the last step, we have dBL(ν, ν̂) ≤ dBL(µY , ν) because ν̂ is the closest probability

measure to ν from Proposition 3.5. As a result, we have

W1(µ, ν̂) = dBL(µ, ν̂) ≤ dBL(µX , µY) + dBL(µY , ν) + dBL(ν, ν̂)

≤ W1(µX , µY) + 2dBL(µY , ν) ≤ max
i

diam(Ωi) + 2dBL(µY , ν).

After taking the expectation, we can apply (A.3) to get the desired inequality. �

A.6. Proof of Corollary 3.7.

Proof. Using Theorem 3.6, we have

EW1(µX , ν̂) ≤ max
i

diam(Ωi) +
2m

εn
L̃m(F).

By assumption we have maxi diam(Ωi) ≍ m−1/d ≍ (εn)−1/d. And by 3.3 we have the bound for

the Laplacian complexity

L̃m(F) ≤





C(εn)−1/2 if d = 1,

C log n · (εn)−1/2 if d = 2,

C(εn)−1/d if d ≥ 3.

When d ≥ 3, the two terms are comparable. And when d = 1, 2, the Laplacian complexity dominates

the error. Combining the two inequalities gives the result. �

A.7. Proof of Theorem 4.1. Theorem 4.1 can be obtained by applying the parallel composition

lemma [24]. Here we present a self-contained proof by considering an inhomogeneous version of the

classical Laplacian mechanism [24].

Lemma A.1 (Inhomogeneous Laplace mechanism). Let F : Ωn → R
k be any map, s = (si)

k
i=1 ∈

R
k
+ be a fixed vector, and λ = (λi)

k
i=1 be a random vector with independent coordinates λi ∼

LapZ(si). Then the map x 7→ F (x) + λ is ε-differentially private, where

ε = sup
x,x̃

∥∥F (x)− F (x̃)
∥∥
ℓ1(s)

.

Here the supremum is over all pairs of input vectors in Ωn that differ in one coordinate, and‖z‖ℓ1(s) =∑k
i=1|zi| /si.
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Proof of Lemma A.1. Suppose x, x̃ ∈ Ωn differs in exactly one coordinate. Consider the density

functions of the inputs having the same output y = F (x) + λ = F (x̃) + λ̃ ∈ Z
k. We have

P
{
F (x) + λ = y

}

P

{
F (x̃) + λ̃ = y

} =
P
{
λ = y − F (x)

}

P

{
λ̃ = y − F (x̃)

}

=

∏k
i=1 exp

(
− |(y−F (x))i|

si

)

∏k
i=1 exp

(
− |(y−F (x̃))i|

si

)

= exp


−

k∑

i=1

1

si

(
|(y − F (x))i| − |(y − F (x̃))i|

)



≤ exp
(
‖F (x) − F (x̃)‖ℓ1(s)

)

≤ eε

Therefore, we know x 7→ F (x) + λ is ε-differentially private. �

Proof of Theorem 4.1. Consider the map F (X ) = (nθ) that transforms the input data into the vector

of counts. Suppose a pair of input data X and X̃ differ in one point xi. Consider the corresponding

vectors of counts (nθ) and (ñθ). For each level j = 0, . . . , r, the vectors of counts differ for a single

θ ∈ {0, 1}j , namely for the θ that corresponds to the region Ωθ containing xi. Moreover, whenever

such a difference occurs, we have|nθ − ñθ| = 1. Thus, extending the vector (σj)
r
j=0 to (σθ)θ∈{0,1}≤r

trivially (by converting σj to σθ for all θ ∈ {0, 1}j ), we have

∥∥∥F (X )− F (X̃ )
∥∥∥
ℓ1(σ)

=

r∑

j=0

1

σj

∑

θ∈{0,1}j
|nθ − ñθ| =

r∑

j=0

1

σj
= ε.

Applying Lemma A.1, we conclude that the map X 7→ (nθ + λθ) is ε-differentially private. �

A.8. Proof of Theorem 4.3.

Proof. We will use the Lagrange multipliers procedure to find the optimal choices of σj . Given the

maximal layer r, recall Theorem 4.1, we should use our privacy budget as

ε =

r∑

j=0

1

σj
.

Therefore, we aim to minimize the accuracy bound with the specified privacy budget, namely

minEW1(µX , µY) s.t. ε =
r∑

j=0

1

σj
.

Recall the result in Theorem 4.2. Here ε, n are given and δ is fixed as long as we determine the

maximal level r. So the minimization problem is

min

r∑

j=0

σj∆j−1 s.t. ε =

r∑

j=0

1

σj
.
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Consider the Lagrangian function

f(σ0, . . . , σr; t) :=
r∑

j=0

σj∆j−1 − t




r∑

j=0

1

σj
− ε




and the corresponding equation

∂f

∂σ0
= · · · = ∂f

∂σr
=

∂f

∂t
= 0.

One can easily check that the equations above have a unique solution

σj =
S

ε
√

∆j−1

where S =

r∑

j=0

√
∆i−1. (A.4)

and it is indeed a minimal point for f(σ0, . . . , σr; t).
As a result, if we fix ε and want Algorithm 4 to be ε-differentially private, we should choose the

noise magnitudes as (A.4). Substituting these noise magnitudes into the accuracy Theorem 4.2, we

see that the accuracy gets bounded by
√
2

εn S
2 + δ. �

A.9. Proof of Corollary 4.4.

Proof. Let Ω = [0, 1] with the ℓ∞ metric. The natural hierarchical binary decomposition of [0, 1]
(cut through the middle) makes subintervals of length diam(Ωθ) = 2−j for θ ∈ {0, 1}j , so ∆j = 1
for all j, and the resolution is δ = 2−r. Theorem 4.3 makes ε-differential private synthetic data with

accuracy

EW1 (µX , µY) ≤
√
2(r + 1)2

εn
+ 2−r.

A nearly optimal choice for r is r = log2(εn)− 1, which yields

EW1 (µX , µY) ≤
(2 +

√
2) log22(εn)

εn
.

The optimal noise magnitudes, per (A.4), are σj = log22(εn)/ε. In other words, the noise does not

decay with the level.

Let Ω = [0, 1]d for d > 1. The natural hierarchical binary decomposition of [0, 1]d (cut through

the middle along a coordinate hyperplane) makes subintervals of length diam(Ωθ) ≍ 2−j/d for θ ∈
{0, 1}j , so ∆j = 2j · 2−j/d = 2(1−1/d)j for all j, and the resolution is δ = 2−r/d. Thus,

S =
r∑

j=0

√
∆j−1 ∼ 2

1
2
(1− 1

d
)r.

Theorem 4.3 makes a ε-differential private synthetic data with accuracy

EW1 (µX , µY) .
2(1−

1
d
)r

εn
+ 2−r/d.

A nearly optimal choice for the depth of the partition is r = log2(εn), which yields

EW1 (µX , µY) . (εn)−1/d.

The optimal noise magnitudes, per (A.4), are

σj ∼ ε−12
1
2
(1− 1

d
)(r−j).

Thus, the noise decays with the level j, becoming O(1) per region for the smallest regions. �



22 YIYUN HE, ROMAN VERSHYNIN, AND YIZHE ZHU

A.10. Proof of Lemma 4.6.

Proof. If a, b are comparable, both values are zero. If a, b is not comparable, we can assume a1 > b1,

a2 < b2 without loss of generality. The set of points that are comparable to b is

{(x1, x2) ∈ Z
2
+ | x1 ≤ b1, x2 ≤ b2} ∪ {(x1, x2) ∈ Z

2
+ | x1 ≥ b1, x2 ≥ b2}.

Note that the distance from a to the first set is |a1 − b1| and the distance from a to the second set is

|a2 − b2|. Then flux(a, b) is the smaller one of the two distances, which is also the distance from a to

the union set. �

A.11. Proof of Lemma 4.7.

Proof. Case 1: a = (a1, a2) and b = (b1, b2) are comparable. If a � b, remove b1 − a1 balls from

bin 1 and b2 − a2 balls from bin 2 to achieve the result. If b � a, adding a1 − b1 balls to bin 1 and

a2 − b2 balls to bin 2 to achieve the result.

Case 2: a = (a1, a2) and b = (b1, b2) are incomparable. Without loss of generality, we can

assume that a1 − b1 ≥ 0, a2 − b2 ≤ 0.

Assume first that a1 − b1 ≥ b2 − a2. Then flux(a, b) = b2 − a2 := M . Then ∆ =: (a1 + a2) −
(b1 + b2) > 0. Removing ∆ balls from bin 1 and transferring M balls from bin 1 to bin 2 achieves

the result. Note that there are enough balls in bin 1 to transfer, since M +∆ = a1 − b1 ∈ [0, a1].
Now assume that a1 − b1 ≤ b2 − a2. Then flux(a, b) = a1 − b1 := M . Then ∆ =: (b1 + b2) −

(a1 + a2) > 0. Adding ∆ balls to bin 2 and transferring M balls from bin 1 to bin 2 achieves the

result. �

A.12. Proof of Lemma 4.8.

Proof. First, we make the total number of points in Ω correct by adding m − n points to Ω (or

removing, if that number is negative).

Apply Lemma 4.7 for the two parts of Ω: bin Ω0 that contains n0 points and bin Ω1 that con-

tains n1 points. Since Ω already contains the correct total number of points m, we can make

the two bins contain the correct number of points, i.e. m0 and m1 respectively, by transferring

flux
(
(n0, n1), (m0,m1)

)
points from one bin to the other.

Apply Lemma 4.7 for the two parts of Ω0: bin Ω00 that contains n00 points and bin Ω01 that

contains n01 points. Since Ω0 already contains the correct number of points m0, we can make

the two bins contain the correct number of points, i.e. m00 and m01 respectively, by transferring

flux
(
(n00, n01), (m00,m01)

)
points from one bin to the other.

Similarly, since Ω1 already has the correct number of points m1, we can make Ω10 and Ω11 contain

the correct number of points m10 and m11 by transferring flux
(
(n00, n01), (m00,m01)

)
points from

one bin to the other.

Continuing this way, we can complete the proof. Note that the steps of the iteration procedure

we described are interlocked. Each next step determines which subregion the transferred points are

selected from, and which subregion they are moved to in the previous step. For example, the original

step calls to add (or remove) m − n points to or from Ω, but does not specify how these points

are distributed between the two parts Ω0 and Ω1. The application of Lemma 4.7 at the next step

determines this. �

A.13. Proof of Lemma 4.9.
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Proof. We will derive this result from Lemma 4.6. First, let us compute the distance from a =
(nθ0, nθ1) to b′ = (n′

θ0, n
′
θ1) =

(
(nθ0 + λθ0)+, (nθ1 + λθ1)+

)
. Since the map x 7→ x+ is 1-

Lipschitz, we have ∥∥a− b′
∥∥
∞ ≤ max

(
|λθ0| ,|λθ1|

)
.

Furthermore, recall that by Algorithm 3, b′ is comparable to b = (mθ0,mθ1). An application of

Lemma 4.6 completes the proof. �

A.14. Proof of Lemma 4.10.

Proof. Finding the 1-Wasserstein distance in the discrete case is equivalent to solving the optimal

transformation problem. In fact, we can obtain µU from µV by moving
∣∣V \ U

∣∣ atoms of µV , each

having mass 1/|V |, and distributing their mass uniformly over U . The distance for each movement

is bounded by diam(Ω). Therefore the 1-Wasserstein distance between µU and νV is bounded by
|V \U |
|V | diam(Ω). �

APPENDIX B. DISCRETE LAPLACIAN DISTRIBUTION

Recall that the classical Laplacian distribution LapR(σ) is a continuous distribution with density

f(x) =
1

2σ
exp

(
−|x| /σ

)
, x ∈ R.

A random variable X ∼ LapR(σ) has zero mean and

Var(Z) = 2σ2.

To deal with counts, it is more convenient to use the discrete Laplacian distribution LapZ(σ), see

[30], which has probability mass function

f(z) =
1− pσ
1 + pσ

exp
(
−|z| /σ

)
, z ∈ Z

where pσ = exp(−1/σ). A random variable Z ∼ LapZ(σ) has zero mean and

Var(Z) =
2pσ

(1− pσ)2
.

Thus, one can verify that discrete Laplacian has a smaller variance than its continuous counterpart:

Var(Z) < 2σ2, (B.1)

but the gap vanishes for large σ:

Var(Z) → 2σ2 as σ → ∞.
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