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AbstractÐThe widespread adoption of Positioning, Navigation,
and Timing (PNT) services in many applications across modern
society, has given rise to the development of various alternative
PNT systems, aiming at addressing the Global Positioning System
(GPS) vulnerabilities. In this paper, we introduce a collaborative-
based PNT solution by jointly exploiting the use of UAV-assisted
wireless networks and the collaboration among the targets and
the collaborator nodes in the network, who have unknown and
a rough estimate of their position and timing, respectively. The
minimization problem of the overall system’s and each collabo-
rator node’s and target’s position and timing estimation error is
formulated and solved based on the principles of potential games.
The existence of a Nash Equilibrium (NE) of the corresponding
game is proven, while two different approaches to obtain the
game’s NE are studied and their tradeoffs are evaluated. The
first one follows a game-theoretic approach and the second one
is based on the principles of reinforcement learning. A detailed
numerical evaluation is performed, via modeling and simulation,
in order to demonstrate the benefits and tradeoffs of the proposed
PNT solution.

Index TermsÐPositioning, Navigation, Timing, Unmanned
Aerial Vehicles, Game Theory, Reinforcement Learning.

I. INTRODUCTION

Positioning, Navigation, and Timing (PNT) is an important

research topic, as the PNT services are necessary for almost

every modern application, such as disaster management and

rescue planning, smart transportation, healthcare monitoring,

logistics and supply chain management, just to name few.

Nowadays, the dominant PNT service provider is the Global

Navigation Satellite System (GNSS), with the most representa-

tive example being the Global Positioning System (GPS) [1].

However, the applicability and accuracy of the GPS can be

hampered either by man-made or unintentional interference to

the satellite signals received by the targets, high power attenua-

tion of the signals due to long propagation distances, spoofing,

and jamming [2]. In such cases, GPS-denial phenomena are

observed or the provided GPS-based PNT services’ accuracy

is very low. Thus, the need for development of alternative

PNT solutions, which can seamlessly substitute or complement

the GPS-based PNT services, is more pressing than ever. In

this paper, a novel PNT on the air framework is introduced

by exploiting the use of Unmanned Aerial Vehicles (UAVs),
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which act as flying anchor nodes. A collaborative-based PNT

solution is designed enabling the different types of nodes

in the system, to collaborate among each other in order to

minimize their experienced positioning and timing error. Those

nodes refer to the targets and collaborator nodes, who have

unknown and a rough estimate of their positioning and timing,

respectively. In particular, the UAVs and the collaborator nodes

support the targets to improve the accuracy in determining

their position and timing. The aforementioned optimization

goal is treated through a game theoretic formulation, while two

different approaches are studied in order to obtain the game’s

stable operation point. The first one follows a game-theoretic

approach and the second one is based on the principles of

reinforcement learning. The drawbacks and benefits of each

one of the aforementioned techniques are also analyzed and

evaluated.

A. Related Work

The design of alternative PNT solutions and systems has

recently attracted the interests of the research community

aiming at supporting both indoor and outdoor use case scenar-

ios [3]. A fingerprint-based localization technique for indoor

environments is introduced in [4] dealing with the problem of

fingerprint similarity based on a deep neural network approach,

where the original fingerprints are replaced by the hidden

layer parameters. Similarly, in [5], a broad learning system

is designed exploiting the targets’ received signals’ channel

state information to deal with the problems of data loss and

noise interference in the fingerprint database. The authors in

[6] exploit the Bluetooth Low Energy (BLE) Received Signal

Strength Indicator (RSSI) based on the targets’ wearable wrist

watch signals in order to feed a self-supervised machine learn-

ing model that performs the targets’ localization. An indoor

localization model is proposed in [7] using the concurrent

angle of arrival estimation based on signals transmitted by

ultra-wide band radios aiming at reducing the number of

required packet exchanges in order to determine the targets’

position.

Several other techniques have been introduced in the litera-

ture to design alternative PNT solutions by exploiting different

types of communication technologies [8]. The Long-Range

(LoRa) wireless technology is investigated in [9] to design

an RSSI-based localization algorithm aiming at reducing the

effect of Gaussian and non-Gaussian noise during the local-



ization process. The PNT services are supported by a robot in

[10], which moves on a predefined trajectory, collects RSSI

data from the targets, and determines their positions based

on the signals’ angle of arrival. Accurate PNT services are

also very critical in maritime and underwater rescue operations

[11]. The authors in [12] exploit the linear frequency modu-

lated signals transmitted by underwater moving targets within

a mobile underwater accoustic array network and they deter-

mine the targets’ position velocity by exploiting the signals’

propagation delay and Doppler effect. Similarly, in [13], the

underwater targets localize themselves by accoustically polling

beacon signals statically deployed at well-known locations

following an Extended Kalman Filter approach. A channel

charting-aided localization mechanism is introduced in [14] for

millimeter wave networks by exploiting the multipath channel

state information of the targets’ received signals from at least

four base stations.

Precise and real-time PNT services for vehicles and in

general, outdoor moving targets, becomes challenging due to

various factors, such as shadow areas, e.g., tunnels, high-

rise buildings, densely vegetated areas, etc [15]. The authors

in [16] deal with the problem of missing measurements of

signals between multiple tags attached to a vehicle and anchor

nodes by introducing a Euclidean distance matrix completion

approach that determines the bounds of the missing measure-

ments. An asynchronous advantage actor-critic algorithm is

proposed in [17] based on the principles of reinforcement

learning in order to determine the optimal targets’ positioning

by performing corrections on the raw GPS observations. Also,

a particle swarm optimization technique is introduced in [18]

to perform the localization of the Unmanned Aerial Vehicles

(UAVs) by reducing the time complexity and localization error.

A different approach is followed in [19], where the authors use

drone aerial images to train a deep learning model in order to

perform human subjects localization.

Recently, the concept of cooperation among targets or in

general, localization-related equipment has been introduced

as a novel approach to reduce the position and timing error

[20]. In [21], a multi-hypothesis Extended Kalman Filter

technique is proposed to enable the estimation of the relative

position and orientation between vehicles, in cases of high

initial uncertainty. In [22], a fully connected wireless powered

communication network (WPCN) is considered, where the

targets determine their positions by exploiting the signals

transmitted by remote energy access points in order for all

the targets to harvest energy. A cooperative PNT model among

UAVs is discussed in [23], where a UAV, with known position,

broadcasts periodically its position, in order for the other

UAVs, with unknown position, to measure the signals’ direc-

tion of arrival and ultimately, determine their positions. A low-

cost high-performance distributed spatio-temporal information

based on cooperative positioning algorithm is proposed in [24]

for 3D wireless networks, supporting any type of ranging

measurements, e.g., RSSI, angle of arrival, that can determine

the relative position among targets.

B. Contributions & Outline

Though the current state-of-the-art has demonstrated

tremendous progress in designing alternative PNT solutions,

the joint problem of determining the targets’ position and

timing, i.e., clock difference among the targets and anchor

nodes, remains highly unexplored. Also, the vast majority

of the proposed alternative PNT solutions suffer from high

computational complexity, e.g., deep learning-based models,

or require dedicated equipment.

Towards addressing those issues, a novel PNT on the

air framework is proposed in this paper by exploiting the

UAV-assisted wireless networks and introducing collaboration

among the targets and the collaborator nodes, who have

unknown and a rough estimate of their position and timing,

respectively. The ultimate goal of the PNT on the air frame-

work is to accurately determine the position and timing of

both the targets and collaborator nodes under both static and

mobile use case scenarios. The novel key contributions of our

research work are summarized below.

1) A novel collaborative-based PNT architecture is in-

troduced consisting of UAVs, collaborator nodes and

targets. The UAVs act as flying base stations, supporting

the PNT services, while the collaborator nodes have

a rough estimate of their position and timing. The

UAVs and the collaborator nodes support the targets to

accurately determine their position and timing, which

initially are completely unknown to them.

2) A minimization problem of the overall system’s and

each collaborator node’s and target’s position and timing

estimation error is formulated and solved based on the

principles of potential games. Specifically, the problem

is addressed as a non-cooperative game among the col-

laborator nodes and the targets, who select their accurate

position and timing strategy in order to minimize the

estimation error. The existence of a Nash Equilibrium

(NE) for the non-cooperative game is proven.

3) A Synchronous (BRD) and Asynchronous (BRD) Best

Response Dynamics algorithm are introduced to deter-

mine the NE. Also, following the principles of log-

linear reinforcement learning (RL), two alternative RL

algorithms are introduced to determine the NE based on

the exploration and learning phases.

4) A detailed evaluation is performed, via modeling and

simulation, to quantify the accuracy and time complexity

of the proposed PNT on the air framework. A thor-

ough study of the trade-off between time complexity

and accuracy for the alternative introduced algorithmic

approaches, i.e., Best Response Dynamics and RL, is

provided, as well as a comparative evaluation of the

proposed PNT on the air framework to the state-of-the-

art is presented. Finally, the accuracy of the proposed

model under targets’ mobility scenario is evaluated.

The remainder of this paper is organized as follows, Section

II presents the PNT on the air system model and provides an

overview of the overall proposed framework. The minimiza-
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tion problem of the targets’ and collaborator nodes’ position

and timing estimation error is formulated and solved in Section

III, while different algorithmic approaches (i.e.e, BRD and/or

RL based) that determine the NE are discussed in Section III-A

and III-B, respectively. The detailed numerical evaluation is

provided in Section IV, and Section V concludes the paper.

II. SYSTEM MODEL

A novel PNT on the air system model is considered,

consisting of a set of UAVs U “ t1, . . . , u, . . . , Uu, a set

of collaborator nodes (or simply called collaborators) C “
t1, . . . , c, . . . , Cu, and a set of targets T “ t1, . . . , t, . . . , T u.

An overview of the considered topology is presented in Fig. 1

[25]. The UAVs have perfect knowledge of their position and

timing (PT) Pu “ txu, yu, zu,∆tuu, while the collaborators

have a rough estimate of their PT P̂c “ tx̂c, ŷc, ẑc, ∆̂tcu. The

targets have fully unknown PT P̂t “ tx̂t, ŷt, ẑt, ∆̂ttu. The

collaborators and the targets collaborate with each other, by

exploiting the signals transmitted by the UAVs in order to

accurately determine their PT [26]. The operation of the PNT

on the air framework is demonstrated in Fig. 2.

Specifically, each target and collaborator j P T Y C, send a

ranging request beacon signal with fixed transmission power

P [W], which is received by the UAVs Uj Ď U and other

collaborators Cj Ď C within the corresponding coverage area.

Then, the corresponding UAVs Uj and collaborators Cj send

a ranging reply beacon signal with transmission power P [W]

including digital information of their PT, i.e., Pu,@u P Uj , and

P̂c,@c P Cj . Through this process, each target and collaborator

j P T Y C has identified its neighborhood and has been

informed about the PT of its neighbors, i.e., Pu,@u P Uj , and

P̂c,@c P Cj . Then, each target and collaborator j P T Y C,

can measure the pseudoranges dj,c,@c P Cj and dj,u,@u P Uj

based on the received power:

P rec
j,k “ P

Gtrans
k Grec

j

Lj,k

(1)

where k “ tc, uu,@c P Cj ,@u P Uj , Gtrans
k denotes the

gain of the transmitting node’s k antenna, Grec
j is the gain

of the receiving node’s j antenna [27], and Lj,k captures the

power attenuation model, which is given in Eq. 2, based on

the Okumura Ð Hata model [28] for large cities scenarios,

where fc [Hz] is the carrier frequency, htrans
k [m] is the

height of the transmitting node k, hrec
j [m] is the height

of the receiving node, and dj,k [m] denotes the measured

pseudorange, i.e., distance, among the target or collaborator

j and the transmitting node k.

Based on this process, each target and collaborator knows

the pseudoranges dj,k,@k P Uj Y Cj , and the PT of each

neighbor node, i.e., Pu,@u P Uj , and P̂c,@c P Cj . Then, by

implementing the Iterative Least Square (ILS) algorithm [29],

each target and collaborator can determine an initial estimate

of their PT, i.e., P̂t,@t P T , and P̂c,@c P Cj .

III. POSITIONING, NAVIGATION, AND TIMING ON THE AIR

The goal of the proposed PNT on the air framework is to

accurately determine the position and timing of all the targets

and collaborators by minimizing the estimation error that is

experienced by each one of them, and by jointly minimizing

the estimation error in the overall examined system. Initially,

we define the Euclidean distance of the PT estimations among

all the involved entities in the PNT system, as follows:

d̂pP̂j , P̂kq “

#

||P̂j ´ Pk||, if k P Uj

||P̂j ´ P̂k||, if k P Cj
(3)

The Euclidean distance d̂pP̂j , P̂kq is an estimation per-

formed by each target and collaborator j P T Y C, based

on the neighborhood identification process, as presented in

Section II. Also, each target and collaborator has measured

the distance from its neighbors and can receive the clock

offset information from them through the neighborhood iden-

tification process, thus, the corresponding measured distance

dj,k,@j P T Y C,@k P Uj Y Cj . Therefore, the position

and timing estimation error experienced by each target and

collaborator j, is derived as follows:

ϵpP̂j , P̂kq “ rdj,k ´ d̂pP̂j , P̂kqs2 (4)

The goal of each target and collaborator j P T Y C is to

minimize its experienced position and timing estimation error,

thus, the corresponding optimization problem is formulated as

follows:

min
tP̂ju

@jPT YC

ÿ

@kPUjYCj

ϵpP̂j , P̂kq (5)

From a system’s perspective, the goal of the system is to

minimize the overall system’s position and timing estimation

error, thus, the corresponding optimization problem is formu-

lated as follows:

min
tP̂ju

@jPT YC

F pP̂j , P̂kq “
ÿ

@jPT YC

ÿ

@kPUjYCj

ϵpP̂j , P̂kq (6)

Towards solving the optimization problems presented in

Eq. 5 and Eq. 6, we formulate the interactions among the

targets and the collaborators as a non-cooperative game G “
rJ , tSju@jPJ , tUju@jPJ s, where J “ T Y C is the set of
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players, i.e., targets and collaborators, Sj is the strategy set of

positioning and timing strategies for node j, and Ujpsj , s´jq
denotes the node’s j payoff function, where Ujpsj , s´jq “
ř

@kPUjYCj
ϵpP̂j , P̂kq.

Definition 1. (Nash Equilibrium) A strategy vector s
˚ “

ps˚
1
, . . . , s˚

j , . . . , s
˚
Jq is a Nash Equilibrium for the non-

cooperative game G “ rJ , tSju@jPJ , tUju@jPJ s, iff

Ujps˚
j , s

˚
´jq ď Ujps

1

j , s
˚
´jq, @s

1

j P Sj , where s
˚
´j “

rs˚
1
, . . . , s˚

j´1
, s˚

j`1
, . . . , s˚

J s.

Towards showing the existence of at least one

Nash Equilibrium for the non-cooperative game

G “ rJ , tSju@jPJ , tUju@jPJ s, we use the theory of

potential games.

Definition 2. (Exact Potential Game) A non-cooperative

game G is an exact potential game iff:

Φpsj , s´jq ´ Φps
1

j , s´jq “ Ujpsj , s´jq ´ Ujps
1

j , s´jq

where Φpsj , s´jq is the potential function.

Focusing on the non-cooperative game G “
rJ , tSju@jPJ , tUju@jPJ s, the following theorem proves

that it is an exact potential game, thus, it admits at least one

Nash Equilibrium [30].

Theorem 1. The non-cooperative game G “
rJ , tSju@jPJ , tUju@jPJ s is an exact potential game with

potential function:

Φpsj , s´jq “
F psj , s´jq

2
“

ř

@jPT YC

ř

@kPUjYCj

ϵpsj , skq

2
.

Proof: Initially, we determine the difference of node’s j

payoff function for two alternative strategies sj , s
1

j , while the

rest of the nodes keep their strategies the same, i.e., s´j .

Ujpsj , s´jq ´ Ujps
1

j , s´jq “
ÿ

@kPNj

ϵpsj , skq ´
ÿ

@kPNj

ϵps
1

j , skq

where Nj “ Uj Y Cj and J “ T Y C. Then, we analyze the

potential function, as follows [31]:

Φpsj , s´jq “ 1

2

ř

@jPJ

ř

@kPNj

ϵpsj , skq “ 1

2
r

ř

@kPNj

ϵpsj , skq `

ř

@nPJ
n‰j

ř

@kPNj

ϵpsn, skqs “ 1

2
r

ř

@kPNj

ϵpsj , skq `

ř

@nPJ
n‰j

rp
ř

@kPNn

k‰j

ϵpsn, skqq ` ϵpsn, sjqss “ 1

2
r

ř

kPNj

ϵpsj , skq `

ř

@nPJ
n‰j

ř

@kPNn

k‰j

ϵpsn, skq `
ř

@nPJ
n‰j

ϵpsn, sjqs.

It is noted that if two nodes n, j are not neighbors, then,

they cannot measure the distances among each other, thus:

ϵpsn, sjq “ 0, if n, j R Nj

Based on this observation, the last term of the potential

function can be written as follows:
ř

@nPJ
n‰j

ϵpsn, sjq “
ř

@nPNj

ϵpsn, sjq `
ÿ

@nRNj

n‰j

ϵpsn, sjq

looooooomooooooon

= 0

“

ř

@nPNj

ϵpsn, sjq.

Therefore, the potential function can be written as follows:

Φpsj , s´jq “ 1

2
r

ř

@kPNj

ϵpsj , skq `
ř

@nPJ
n‰j

ř

@kPJn

k‰j

ϵpsn, skq `

ř

@nPNj

ϵpsn, sjqs “ 1

2
r2

ř

@kPNj

ϵpsj , skq `
ř

@nPJ
n‰j

ř

@kPNn

k‰j

ϵpsn, skqs “
ř

@kPNj

ϵpsj , skq `

1

2

ř

@nPJ
n‰j

ř

@kPNn

k‰j

ϵpsn, skq.

By taking the difference of the potential function for two

alternative strategies sj , s
1

j , we have:

Φpsj , s´jq ´ Φps
1

j , s´jq “
ř

@kPNj

ϵpsj , skq `

1

2

ř

@nPJ
n‰j

ř

@kPNn

k‰j

ϵpsn, skq ´
ř

@kPNj

ϵps
1

j , skq ´

1

2

ř

@nPJ
n‰j

ř

@kPNn

k‰j

ϵpsn, skq “
ř

@kPNj

ϵpsj , skq ´
ř

@kPNj

ϵps
1

j , skq “

Ujpsj , s´jq ´ Ujps
1

j , s´jq.

Thus, the non-cooperative game G “
rJ , tSju@jPJ , tUju@jPJ s is an exact potential game and

has at least one Nash Equilibrium.



Algorithm 1 Synchronous Best Response Dynamics (SBRD)

1: Input: Pu, @u P U , P̂c, @c P C

2: Output: s˚

3: Initialization: i “ 0, Convergence “ 0, si“0 randomly

selected strategy.

4: while Convergence ““ 0 do

5: i “ i ` 1;

6: for all j P J “ T Y C do

7: Determine s
˚i
j (Eq. 5) and Ujps˚i

j , si´1

´j q (Eq. 4),

given s´j
i´1

8: end for

9: if |Ujps˚i
j , si´1

´j q´Ujps˚i`1

j , si´jq| ď δ, δ small positive

number, @j P J then

10: Convergence “ 1

11: end if

12: end while

A. Game Theory enabling PNT

Aiming at determining the Nash Equilibrium, a Best Re-

sponse Dynamics (BRD) approach can be followed, where

each target and collaborator performs a best response in

terms of selecting its position and timing, based on the

strategies selected by the other nodes in the system, aiming

at minimizing its experienced estimation error. If all the

targets and collaborators perform simultaneously their best

responses, then, the Synchronous BRD (SBRD) algorithm

is implemented, as described in Algorithm 1. If the nodes

perform their best responses in a sequential manner, then,

the Asynchronous BRD (ABRD) is adopted, as presented in

Algorithm 2. Those different decision-making patterns result

in the herding effect experienced among the targets and

the collaborators in the SBRD algorithm, resulting in worse

estimation error, but faster convergence time (given that all the

nodes update simultaneously their strategies) versus the ABRD

algorithm. Detailed comparative evaluation of the drawbacks

and benefits of the ABRD and SBRD algorithms are provided

in Section IV.

B. A Reinforcement Learning-based Perspective

The Nash equilibrium of the non-cooperative game G “
rJ , tSju@jPJ , tUju@jPJ s can also be determined by adopting

a reinforcement learning-based approach. Specifically, in this

paper, we explore the benefits of the log-linear-based rein-

forcement learning (RL) and we design two alternative algo-

rithms, i.e., B-Logit, and Max-Logit. Both algorithms perform

an exploration of the node’s j strategy space by randomly

selecting a strategy sj with equal probability P psjq “ 1

|J |

and determine the corresponding payoff Ujpsj , s´jq that they

experience. Then, at the learning phase, each target and

collaborator update its strategy based on the probabilistic rules

(7a)-(7b) for the B-Logit algorithm and (8a)-(8b), for the

Max-Logit algorithm. The proposed log-linear RL algorithms

are presented in Algorithm 3, where β P R
` captures the

learning parameter. It should be highlighted that the Max-Logit

Algorithm 2 Asynchronous Best Response Dynamics

(ABRD)

1: Input: Pu, @u P U , P̂c, @c P C

2: Output: s˚

3: Initialization: i “ 0, Convergence “ 0, si“0 randomly

selected strategy.

4: while Convergence ““ 0 do

5: i “ i ` 1;

6: Select randomly a node j P J “ T Y C

7: The selected node determines s
˚i
j (Eq. 5) and deter-

mines Ujps˚i
j , s˚i

´jq (Eq. 4), given s´j
i´1

8: if |Ujps˚i
j , si´1

´j q´Ujps˚i`1

j , si´jq| ď δ, δ small positive

number, @j P J then

9: Convergence “ 1

10: end if

11: end while

Algorithm 3 B-Logit (Max-Logit) Algorithm

1: Input: Pu, @u P U , P̂c, @c P C, β, I

2: Output: s˚

3: Initialization: i “ 0, Convergence “ 0, si“0

j , @n P J .

4: while Convergence ““ 0 do

5: i “ i ` 1;

6: Each target and collaborator node j selects s
i

1

j with

equal probability 1

|Sj | , receives a payoff Ujpsi
1

j q and

updates s
i
j based on Eq. 7a, 7b (Eq. 8a, 8b).

7: The rest of the nodes keep their previous strategies, i.e.,

s
i
´j “ s

i´1

´j .

8: if |

I
ř

i“0

ř

@jPJ

Ui
j

I
´

ř

@jPJ

U i
j | ď δ, δ small positive number

then

9: Convergence “ 1

10: end if

11: end while

algorithm can determine the Pareto optimal Nash Equilibrium

if it exists [30].

P psij “ s
i´1

j q “
eβUjpsi´1

n q

eβUjpsi´1

j
q ` eβUjpsi

1

j
q

(7a)

P psij “ s
i1

j q “
eβUjpsi

1

j q

eβUjpsi´1

j
q ` eβUjpsi

1

j
q

(7b)

P psij “ s
i´1

j q “
eβUjpsi´1

j
q

maxteβUjpsi´1

j
q, eβUjpsi

1

j
qu

(8a)

P psij “ s
i1

j q “
eβUjpsi

1

j q

maxteβUjpsi´1

j
q, eβUjpsi

1

j
qu

(8b)

IV. EVALUATION & RESULTS

The performance evaluation of the proposed PNT solution is

achieved via modeling and simulation. Specifically, in Section

IV-A, the performance characteristics of the best response

dynamics and reinforcement learning-based algorithms are
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Fig. 4: Trade-off among accuracy and complexity of the PNT on the air framework.

demonstrated in terms of position and timing estimation er-

ror and convergence time. A detailed analysis of the trade-

off between the accuracy of the proposed model and the

corresponding complexity is provided in Section IV-B. The

performance of the proposed model under the mobility use

case scenario is analyzed in Section IV-C, while finally a

comparative evaluation of the proposed approach against other

state-of-the-art approaches is presented in Section IV-D. Un-

less otherwise explicitly stated, the simulation parameters that

were used throughout our evaluation are listed as follows:

|U | “ 12, |C| “ 7, |T | “ 5, P “ 2 [W], Gtrans
k “ 0

[dB], Grec
j “ 0 [dB], fc “ 400 [MHz], htrans

k “ 1.5 [m],

hrec
j “ 1.5 [m]. A Dell Tower Desktop with Intel i7 11700K

3.6GHz processor, 32 GB available RAM was used to conduct

the evaluation.

A. Game-theoretic versus Reinforcement Learning-based Po-

sitioning, Navigation, and Timing on the Air

In this section, the operational characteristics of the BRD

and RL algorithms are presented and compared in terms of the

targets’ estimation error, the system’s estimation error, and the

execution time in order to determine the Nash Equilibrium of

the non-cooperative game. Specifically, Fig. 3a presents each

target’s estimation error for the four proposed algorithmic im-

plementations, while they are also compared against the initial

estimation error that the targets experience by implementing

the Iterative Least Squares algorithm during the neighborhood

identification process. Fig. 3b-3c present the overall system’s

estimation error of the targets and collaborators’ position and

timing for the SBRD and ABRD algorithms and the B-Logit

and Max-Logit algorithms, respectively, as a function of the

corresponding execution time of the algorithms.

The results reveal that the BRD algorithms are executed

in a faster manner compared to the RL-based algorithms,

given their deterministic decision-making process. On the

other hand, the RL-based algorithms perform the exploration

and learning phases in order to explore all the potential

strategies that can minimize the estimation error experienced

by the targets and collaborators, thus, the execution time of

the RL-based algorithms is larger than the one of the BRD

algorithms. Nevertheless, it is highlighted that the RL-based

algorithms achieve lower system’s estimation error (Fig. 3c)

and lower estimation error for each target (Fig. 3a) given

that they thoroughly explore all the available strategies. More-

over, it is observed that the Max-Logit algorithm achieves

the best results in terms of both the targets (Fig. 3a) and

the overall system’s estimation error (Fig. 3c) given that it

determines the Pareto optimal Nash Equilibrium of the non-

cooperative game. Furthermore, the results reveal that the

ABRD algorithm suffers from higher execution time due to the

fact that the targets and collaborators update sequentially their

best response strategies, compared to the SBRD algorithm.

On the other hand, the SBRD algorithm, though it takes a

shorter time to converge compared to the ABRD algorithm,

it achieves a higher estimation error, as it suffers from the

herding effect among the targets and collaborators, who update

their strategies in a synchronous manner.

B. Accuracy and Complexity Analysis

In this section, the trade-off between the accuracy and

the complexity of the four proposed algorithmic implemen-

tations is presented. Specifically, Fig. 4a presents the trade-

off between the execution time and the system’s estimation

error as the convergence criterion δ of the SBRD and ABRD
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algorithms becomes stricter. Similarly, Fig. 4b presents the

corresponding trade-off, as the learning parameter β increases,

thus, allowing for a more thorough exploration phase.

The results reveal that as the convergence criterion δ be-

comes stricter for the BRD algorithms, their corresponding

execution time increases, while the accuracy of the system

improves in terms of experiencing lower estimation error

for the targets’ and collaborators’ position and timing. By

taking a closer look at the results, we also observe that

the ABRD algorithm is significantly impacted by the stricter

convergence criterion, in terms of its execution time, given

that the targets and collaborators perform their best responses

in a sequential manner (Fig. 4a). On the other hand, as the

learning parameter of the RL-based algorithms increases, the

targets and the collaborators explore more thoroughly their

strategy space, thus, resulting in significantly lower systems

estimation error (Fig. 4b). Also, the results reveal that under

all the examined scenarios the Max-Logit algorithm achieves

the lowest estimation error given that it determines the Pareto

optimal Nash Equilibrium of the non-cooperative game.

C. Targets Mobility and Positioning, Navigation, and Timing

In this section, we present the benefits of the proposed PNT

solution under a mobility use case scenario, where the target

moves within the same neighborhood (Fig. 5a), or between

neighborhoods (Fig. 5b). In the first case, i.e., Fig. 5a, the

UAVs and the collaborators that support each target remain

the same while the target moves. In the second case, where

the target moves from one neighborhood to another one, the

set of the UAVs and the collaborators that support its PNT

services dynamically change over time. The results reveal that

under both use case scenarios, the proposed PNT solution

can accurately determine the position and timing of the target

(shadowed presentation of the target) enabling its navigation

in a real-time manner. However, it is observed that when

the target moves between neighborhoods, the accuracy of the

proposed PNT solution deteriorates, as the target changes

dynamically the set of UAVs and collaborators that support

its PNT services.
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D. Comparative Evaluation

In this section, a comparative evaluation of: (i) Scenario

I: the total target estimation error of the collaborative-based

PNT solution (without the presence of collaborator nodes in

the system), (ii) Scenario II: the total target estimation error

of the collaborative-based PNT solution (with the presence

of collaborator nodes in the system), (iii) Scenario III: the

total target estimation error using the Iterative Least Squares

algorithm which represents the vast majority of the current

state-of-the-art approaches. Fig. 6 presents the estimation error

of the overall system and of all the targets for the proposed

PNT on the air framework versus the system’s estimation error

of the comparative scenario that performs the PNT without the

existence of collaborators. The results show that the proposed

PNT on the air framework achieves lower estimation error

under all the four proposed algorithmic implementations. By

taking a closer look at the results, we should highlight that in

the proposed PNT on the air framework, the resulting error is

lower compared to the scenario without collaborators, given

that the collaborators significantly contribute in improving

the overall system’s error. Also, the results confirm that the

Max-Logit algorithm achieves the lowest estimation error for

the targets and the collaborators, given that it determines the

Pareto optimal Nash Equilibrium of the non-cooperative game.



V. CONCLUSION AND FUTURE WORK

In this paper, a novel collaborative-based PNT on the

air framework is introduced by jointly exploiting the UAVs,

collaborators, and targets towards accurately determining the

position and timing of the two latter ones. An optimization

problem of minimizing the position and timing estimation

error of each target and collaborator, as well as of the

overall system, has been formulated and addressed as a non-

cooperative game among the targets and the collaborators. The

existence of at least one NE point has been proven, while

four alternative algorithmic implementation approaches have

been introduced - following the principles of best response

and reinforcement learning - in order to conclude to such

an NE point. A detailed evaluation analysis is presented to

demonstrate the benefits and tradeoffs of the proposed PNT

solution.

Part of our current and future work includes the extension of

the proposed model by considering a more holistic 3D network

architecture consisting of targets, collaborators, UAVs, and

high altitude platforms (HAPs), in order to exploit the full

potential of the 3D networking environment in delivering

accurate and reliable PNT services [32].
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