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Abstract—The widespread adoption of Positioning, Navigation,
and Timing (PNT) services in many applications across modern
society, has given rise to the development of various alternative
PNT systems, aiming at addressing the Global Positioning System
(GPS) vulnerabilities. In this paper, we introduce a collaborative-
based PNT solution by jointly exploiting the use of UAV-assisted
wireless networks and the collaboration among the targets and
the collaborator nodes in the network, who have unknown and
a rough estimate of their position and timing, respectively. The
minimization problem of the overall system’s and each collabo-
rator node’s and target’s position and timing estimation error is
formulated and solved based on the principles of potential games.
The existence of a Nash Equilibrium (NE) of the corresponding
game is proven, while two different approaches to obtain the
game’s NE are studied and their tradeoffs are evaluated. The
first one follows a game-theoretic approach and the second one
is based on the principles of reinforcement learning. A detailed
numerical evaluation is performed, via modeling and simulation,
in order to demonstrate the benefits and tradeoffs of the proposed
PNT solution.

Index Terms—Positioning, Navigation, Timing, Unmanned
Aerial Vehicles, Game Theory, Reinforcement Learning.

I. INTRODUCTION

Positioning, Navigation, and Timing (PNT) is an important
research topic, as the PNT services are necessary for almost
every modern application, such as disaster management and
rescue planning, smart transportation, healthcare monitoring,
logistics and supply chain management, just to name few.
Nowadays, the dominant PNT service provider is the Global
Navigation Satellite System (GNSS), with the most representa-
tive example being the Global Positioning System (GPS) [1].
However, the applicability and accuracy of the GPS can be
hampered either by man-made or unintentional interference to
the satellite signals received by the targets, high power attenua-
tion of the signals due to long propagation distances, spoofing,
and jamming [2]. In such cases, GPS-denial phenomena are
observed or the provided GPS-based PNT services’ accuracy
is very low. Thus, the need for development of alternative
PNT solutions, which can seamlessly substitute or complement
the GPS-based PNT services, is more pressing than ever. In
this paper, a novel PNT on the air framework is introduced
by exploiting the use of Unmanned Aerial Vehicles (UAVs),
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which act as flying anchor nodes. A collaborative-based PNT
solution is designed enabling the different types of nodes
in the system, to collaborate among each other in order to
minimize their experienced positioning and timing error. Those
nodes refer to the targets and collaborator nodes, who have
unknown and a rough estimate of their positioning and timing,
respectively. In particular, the UAVs and the collaborator nodes
support the targets to improve the accuracy in determining
their position and timing. The aforementioned optimization
goal is treated through a game theoretic formulation, while two
different approaches are studied in order to obtain the game’s
stable operation point. The first one follows a game-theoretic
approach and the second one is based on the principles of
reinforcement learning. The drawbacks and benefits of each
one of the aforementioned techniques are also analyzed and
evaluated.

A. Related Work

The design of alternative PNT solutions and systems has
recently attracted the interests of the research community
aiming at supporting both indoor and outdoor use case scenar-
ios [3]. A fingerprint-based localization technique for indoor
environments is introduced in [4] dealing with the problem of
fingerprint similarity based on a deep neural network approach,
where the original fingerprints are replaced by the hidden
layer parameters. Similarly, in [5], a broad learning system
is designed exploiting the targets’ received signals’ channel
state information to deal with the problems of data loss and
noise interference in the fingerprint database. The authors in
[6] exploit the Bluetooth Low Energy (BLE) Received Signal
Strength Indicator (RSSI) based on the targets’ wearable wrist
watch signals in order to feed a self-supervised machine learn-
ing model that performs the targets’ localization. An indoor
localization model is proposed in [7] using the concurrent
angle of arrival estimation based on signals transmitted by
ultra-wide band radios aiming at reducing the number of
required packet exchanges in order to determine the targets’
position.

Several other techniques have been introduced in the litera-
ture to design alternative PNT solutions by exploiting different
types of communication technologies [8]. The Long-Range
(LoRa) wireless technology is investigated in [9] to design
an RSSI-based localization algorithm aiming at reducing the
effect of Gaussian and non-Gaussian noise during the local-



ization process. The PNT services are supported by a robot in
[10], which moves on a predefined trajectory, collects RSSI
data from the targets, and determines their positions based
on the signals’ angle of arrival. Accurate PNT services are
also very critical in maritime and underwater rescue operations
[11]. The authors in [12] exploit the linear frequency modu-
lated signals transmitted by underwater moving targets within
a mobile underwater accoustic array network and they deter-
mine the targets’ position velocity by exploiting the signals’
propagation delay and Doppler effect. Similarly, in [13], the
underwater targets localize themselves by accoustically polling
beacon signals statically deployed at well-known locations
following an Extended Kalman Filter approach. A channel
charting-aided localization mechanism is introduced in [14] for
millimeter wave networks by exploiting the multipath channel
state information of the targets’ received signals from at least
four base stations.

Precise and real-time PNT services for vehicles and in
general, outdoor moving targets, becomes challenging due to
various factors, such as shadow areas, e.g., tunnels, high-
rise buildings, densely vegetated areas, etc [15]. The authors
in [16] deal with the problem of missing measurements of
signals between multiple tags attached to a vehicle and anchor
nodes by introducing a Euclidean distance matrix completion
approach that determines the bounds of the missing measure-
ments. An asynchronous advantage actor-critic algorithm is
proposed in [17] based on the principles of reinforcement
learning in order to determine the optimal targets’ positioning
by performing corrections on the raw GPS observations. Also,
a particle swarm optimization technique is introduced in [18]
to perform the localization of the Unmanned Aerial Vehicles
(UAV5s) by reducing the time complexity and localization error.
A different approach is followed in [19], where the authors use
drone aerial images to train a deep learning model in order to
perform human subjects localization.

Recently, the concept of cooperation among targets or in
general, localization-related equipment has been introduced
as a novel approach to reduce the position and timing error
[20]. In [21], a multi-hypothesis Extended Kalman Filter
technique is proposed to enable the estimation of the relative
position and orientation between vehicles, in cases of high
initial uncertainty. In [22], a fully connected wireless powered
communication network (WPCN) is considered, where the
targets determine their positions by exploiting the signals
transmitted by remote energy access points in order for all
the targets to harvest energy. A cooperative PNT model among
UAVs is discussed in [23], where a UAV, with known position,
broadcasts periodically its position, in order for the other
UAVs, with unknown position, to measure the signals’ direc-
tion of arrival and ultimately, determine their positions. A low-
cost high-performance distributed spatio-temporal information
based on cooperative positioning algorithm is proposed in [24]
for 3D wireless networks, supporting any type of ranging
measurements, e.g., RSSI, angle of arrival, that can determine
the relative position among targets.

B. Contributions & Outline

Though the current state-of-the-art has demonstrated
tremendous progress in designing alternative PNT solutions,
the joint problem of determining the targets’ position and
timing, i.e., clock difference among the targets and anchor
nodes, remains highly unexplored. Also, the vast majority
of the proposed alternative PNT solutions suffer from high
computational complexity, e.g., deep learning-based models,
or require dedicated equipment.

Towards addressing those issues, a novel PNT on the
air framework is proposed in this paper by exploiting the
UAV-assisted wireless networks and introducing collaboration
among the targets and the collaborator nodes, who have
unknown and a rough estimate of their position and timing,
respectively. The ultimate goal of the PNT on the air frame-
work is to accurately determine the position and timing of
both the targets and collaborator nodes under both static and
mobile use case scenarios. The novel key contributions of our
research work are summarized below.

1) A novel collaborative-based PNT architecture is in-
troduced consisting of UAVs, collaborator nodes and
targets. The UAVs act as flying base stations, supporting
the PNT services, while the collaborator nodes have
a rough estimate of their position and timing. The
UAVs and the collaborator nodes support the targets to
accurately determine their position and timing, which
initially are completely unknown to them.

2) A minimization problem of the overall system’s and
each collaborator node’s and target’s position and timing
estimation error is formulated and solved based on the
principles of potential games. Specifically, the problem
is addressed as a non-cooperative game among the col-
laborator nodes and the targets, who select their accurate
position and timing strategy in order to minimize the
estimation error. The existence of a Nash Equilibrium
(NE) for the non-cooperative game is proven.

3) A Synchronous (BRD) and Asynchronous (BRD) Best
Response Dynamics algorithm are introduced to deter-
mine the NE. Also, following the principles of log-
linear reinforcement learning (RL), two alternative RL
algorithms are introduced to determine the NE based on
the exploration and learning phases.

4) A detailed evaluation is performed, via modeling and
simulation, to quantify the accuracy and time complexity
of the proposed PNT on the air framework. A thor-
ough study of the trade-off between time complexity
and accuracy for the alternative introduced algorithmic
approaches, i.e., Best Response Dynamics and RL, is
provided, as well as a comparative evaluation of the
proposed PNT on the air framework to the state-of-the-
art is presented. Finally, the accuracy of the proposed
model under targets’ mobility scenario is evaluated.

The remainder of this paper is organized as follows, Section
II presents the PNT on the air system model and provides an
overview of the overall proposed framework. The minimiza-
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tion problem of the targets’ and collaborator nodes’ position
and timing estimation error is formulated and solved in Section
III, while different algorithmic approaches (i.e.e, BRD and/or
RL based) that determine the NE are discussed in Section III-A
and III-B, respectively. The detailed numerical evaluation is
provided in Section IV, and Section V concludes the paper.

II. SYSTEM MODEL

A novel PNT on the air system model is considered,
consisting of a set of UAVs U = {1,...,u,...,U}, a set
of collaborator nodes (or simply called collaborators) C =
{1,...,¢,...,C}, and a set of targets 7 = {1,...,¢,...,T}.
An overview of the considered topology is presented in Fig. 1
[25]. The UAVs have perfect knowledge of their position and
timing (PT) P, = {zu, Yu, 2u, A, }, while the collaborators
have a rough estlmate of their PT P = {Z¢, Yo, 2c, At <}. The
targets have fully unknown PT P, = {xt,yt,zt7Att} The
collaborators and the targets collaborate with each other, by
exploiting the signals transmitted by the UAVs in order to
accurately determine their PT [26]. The operation of the PNT
on the air framework is demonstrated in Fig. 2.

Specifically, each target and collaborator j € 7 U C, send a
ranging request beacon signal with fixed transmission power
P [W], which is received by the UAVs U{; < U and other
collaborators C; < C within the corresponding coverage area.
Then, the corresponding UAVs U{; and collaborators C; send
a ranging reply beacon signal with transmission power P [W]
including digital information of their PT, i.e., P, Vu € U;, and
P.,Vce C;. Through this process, each target and collaborator
j € T u C has identified its neighborhood and has been
informed about the PT of its neighbors, i.e., Py, Vu € U;, and
PC,VC € C;. Then, each target and collaborator j € 7 U C,
can measure the pseudoranges d; ., Vc € C; and d; ., Yu € U,
based on the received power:

Gl]&ﬁransGrec
rec _ Pij (l)
k

” Lik
where k = {c,u},Ve € C;,Vu € U;, Gi"™5 denotes the
gain of the transmitting node’s k antenna, G;°“ is the gain
of the receiving node’s j antenna [27], and L ; captures the
power attenuation model, which is given in Eq. 2, based on
the Okumura — Hata model [28] for large cities scenarios,

where f. [Hz] is the carrier frequency, h};"“"s [m] is the
height of the transmitting node k,h7 [m] is the height
of the receiving node, and d;; [m] denotes the measured
pseudorange, i.e., distance, among the target or collaborator
7 and the transmitting node k.

Based on this process, each target and collaborator knows
the pseudoranges d;, Yk € U; U C;, and the PT of each
neighbor node, i.e., Py, Vu € U;, and f’ch € C;. Then, by
implementing the Iterative Least Square (ILS) algorithm [29],
each target and collaborator can determine an initial estimate
of their PT, i.e., P;,¥t € T, and P, Vc e C;.

ITII. POSITIONING, NAVIGATION, AND TIMING ON THE AIR

The goal of the proposed PNT on the air framework is to
accurately determine the position and timing of all the targets
and collaborators by minimizing the estimation error that is
experienced by each one of them, and by jointly minimizing
the estimation error in the overall examined system. Initially,
we define the Euclidean distance of the PT estimations among
all the involved entities in the PNT system, as follows:
i®, b )_{Hlfjlfkn, if kel )

||PJ - Pk||, if ke Cj

The Euclidean distance d(P;,P}) is an estimation per-
formed by each target and collaborator j € 7 U C, based
on the neighborhood identification process, as presented in
Section II. Also, each target and collaborator has measured
the distance from its neighbors and can receive the clock
offset information from them through the neighborhood iden-
tification process, thus, the corresponding measured distance
djx, Vi € T uCVk € U; u C;. Therefore, the position
and timing estimation error experienced by each target and
collaborator j, is derived as follows:

e(Pj, Pr) = [dj, — d(P;, Pi)]” )

The goal of each target and collaborator j € 7 u C is to
minimize its experienced position and timing estimation error,
thus, the corresponding optimization problem is formulated as
follows:

min Z e(P;, Py 5)

Pjlvjeroe viett; ue;

From a system’s perspective, the goal of the system is to
minimize the overall system’s position and timing estimation
error, thus, the corresponding optimization problem is formu-
lated as follows:

FP(P;,Pr) = )] D, Py Py) (6
VjeT uC VkeU;uC;

min

{Pj}VjETuC

Towards solving the optimization problems presented in
Eq. 5 and Eq. 6, we formulate the interactions among the
targets and the collaborators as a non-cooperative game G =
[T, {Sjtvjer: {Ujtvjes], where J = T u C is the set of
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Fig. 2: PNT on the air framework.
players, i.e., targets and collaborators, S; is the strategy set of
positioning and timing strategies for node j, and U,(s;,s_;)
denotes the node’s j payoff function, where Uj;(s;,s_;) =
szceujucj e(P;,Py).

Definition 1. (Nash Egquilibrium) A strategy vector s* =

(sf,...,s;’f7...7s>‘j) is a Nash Equilibrium for the non-
cooperative  game G/ = [J/, {Sitvieq: {Ujtvjes], iff
Uj(sf,s*;) < Uj(s;st,), Vs; € §j, where s*, =
[s’l"7...,s;’-‘fl,s;’-‘ﬂ,...,s?].

Towards showing the existence of at least one
Nash  Equilibrium for the non-cooperative game
G = [T ASjtvjes,{Uj}vjes], we use the theory of

potential games.

Definition 2. (Exact Potential Game) A non-cooperative
game G is an exact potential game iff:

O(sj,5-5) — ®(s;,5-5) = Uj(sj,8-5) — Uj(s;,5-)
where ®(s;,s_;) is the potential function.

Focusing on the non-cooperative game G =
[T {S;}vjes,{Uj}vjes], the following theorem proves
that it is an exact potential game, thus, it admits at least one
Nash Equilibrium [30].

Theorem 1. The non-cooperative game G =
[T ASj}vjeq, {Uj}vjes] is an exact potential game with
potential function:

6(Sj,Sk)
F(s;,s_; VjeT uC Vkell; uC;
@(sj,s_j) _ (S]7S J) _ JET EU; UL

2 2

3.2[log(11.75h5°)]* — 4.97[dB] (2)

Proof: Initially, we determine the difference of node’s j
payoff function for two alternative strategies s;,s;, while the
rest of the nodes keep their strategies the same, i.e., s_;.

Uij(sjrs—5) — Uj(s;,5-5) = Z €(sj,8k) — Z €(s;,sk)
VkEN]‘ VkENj

where J\/j =U; uCjand J =T uC. Then, we analyze the
potential function, as follows [31]:

O(sj,s-5) =5 X 2 elsjsk) = 5[ X elsjsp) +

VjeJ VkeN; VEkeN;

% 2 e(snyse)] = sl 2 elsjose)  +
VneJ VkeN; VkeN;
n#j .

2, €(snysk)) + e(snssy)l] = 3l 2 e(s)sk) +
VneJ VkeN, keN;
n#j k#j
%2, €(snysk) + X €(Sns))]-
VneJ VkeN,, vneJg
n#j  k#j n#j

It is noted that if two nodes n,j are not neighbors, then,
they cannot measure the distances among each other, thus:

€(sn,sj) =0, if n,j¢N;

Based on this observation, the last term of the potential
function can be written as follows:

S e(snisy) =X e(sn,s) + > elsn,s;) =

vneJ VneN; )
p J Vzgé./}f,
[ Sy —

=0
2, €(sn,s;).

VneN, j

Therefore, the potential function can be written as follows:

B(sjs-j) = 5[ X e(sjse) + X X elsas) +
VEeEN; vneJ YkeT,
n#j k#j
2 €(sn,s5)] = 32 X e(sjse)  +
VneN; VEeN;
Z E(Sn;sk)] = Z E(Sj,Sk) +
VneJ VkeNy VEeEN;
n#j  k#j

1
3 X2
VneJ VkeN,
n kg ‘ .
By taking the difference of the potential function for two
alternative strategies s;, s;, we have:

’

€(Sn, sk)-

P(sj,s_;) ®(s;,5-5) = > e(sj,sk) +
Vke./\fj
3 2 >, c(sn,sk) - 2. €(sj,sk) —
VneJ VkeN, VkeN;
n#j  k#j )
3 5 2 elsnyse) = X e(sjisk) = X e(syisk) =
vneJ VkeNy, VEeN; VEeN;
n#j  k#j
Uj(sjys—;) — Uj(s;,8-5).
Thus, the non-cooperative game G =

[T, {S;}vjer: {Uj}vjes] is an exact potential game and
has at least one Nash Equilibrium. [ |



Algorithm 1 Synchronous Best Response Dynamics (SBRD)

1: Input: P, Vue U, P, VcelC
2: Output: s*

3. Initialization: i = 0, Convergence = 0, s'=° randomly
selected strategy.
4: while Convergence == 0 do
50 =1+ 1;
6: forall je J=TuC do
7: Determine s;'-‘i (Eq. 5) and Uj(s;’-‘i,si:jl) (Eq. 4),
given s,ji’1
8: end for
9 if|U;(s¥, s = U;(s§ s )| < 6, 6 small positive
number, Vj € J then
10: Convergence = 1
11:  end if

12: end while

Algorithm 2 Asynchronous Best

(ABRD)

1: Input: P, Vue U, P, VeeC
2: Output: s*

Response Dynamics

3. Inmitialization: i = 0, Convergence = 0, s*=° randomly
selected strategy.

4: while Convergence == 0 do

5: =1+ 1;

6:  Select randomly a node je J =T uC

7. The selected node determines s;'-‘i (Eq. 5) and deter-

mines U;(s¥?,s*0) (Eq. 4), given s_ji~!

8. i |U;(s¥, ") —U;(s¥™* s )| < 6, 6 small positive
number, Vj € J then

9: Convergence = 1

10:  end if

11: end while

A. Game Theory enabling PNT

Aiming at determining the Nash Equilibrium, a Best Re-
sponse Dynamics (BRD) approach can be followed, where
each target and collaborator performs a best response in
terms of selecting its position and timing, based on the
strategies selected by the other nodes in the system, aiming
at minimizing its experienced estimation error. If all the
targets and collaborators perform simultaneously their best
responses, then, the Synchronous BRD (SBRD) algorithm
is implemented, as described in Algorithm 1. If the nodes
perform their best responses in a sequential manner, then,
the Asynchronous BRD (ABRD) is adopted, as presented in
Algorithm 2. Those different decision-making patterns result
in the herding effect experienced among the targets and
the collaborators in the SBRD algorithm, resulting in worse
estimation error, but faster convergence time (given that all the
nodes update simultaneously their strategies) versus the ABRD
algorithm. Detailed comparative evaluation of the drawbacks
and benefits of the ABRD and SBRD algorithms are provided
in Section IV.

B. A Reinforcement Learning-based Perspective

The Nash equilibrium of the non-cooperative game G =
[T, {S;}vjes,{U;}vjes] can also be determined by adopting
a reinforcement learning-based approach. Specifically, in this
paper, we explore the benefits of the log-linear-based rein-
forcement learning (RL) and we design two alternative algo-
rithms, i.e., B-Logit, and Max-Logit. Both algorithms perform
an exploration of the node’s j strategy space by randomly
selecting a strategy s; with equal probability P(s;) = ﬁ
and determine the corresponding payoff U,(s;,s_;) that they
experience. Then, at the learning phase, each target and
collaborator update its strategy based on the probabilistic rules
(7a)-(7b) for the B-Logit algorithm and (8a)-(8b), for the
Max-Logit algorithm. The proposed log-linear RL algorithms
are presented in Algorithm 3, where 3 € R* captures the
learning parameter. It should be highlighted that the Max-Logit

Algorithm 3 B-Logit (Max-Logit) Algorithm

1: Input: P, Vueld, P, VeeC, B, I

2: Output: s*

3. Initialization: i = 0, Convergence = 0, sj-:O, Vn e J.
4: while Convergence == 0 do

50 1=1+1; ,

6:  Each target and collaborator node j selects sé with

equal probability ﬁ receives a payoff Uj(sé) and
. J :
updates s? based on Eq. 7a, 7b (Eq. 8a, 8b).
7. The rest of the nodes keep their previous strategies, i.e.,

i Gt—1
st =s",.
d 3
8: ifM—ZUi|<65 11 positi b
: T 7| <4, 6 small positive number
vVjeJ
then
9: Convergence = 1
10:  end if

11: end while

algorithm can determine the Pareto optimal Nash Equilibrium
if it exists [30].

eﬂUj (si;l)

P(st =si71) = : . 7
(85 =s57) BUIGS ) 4 PUs()) (72)
P( : Z_,) eBUG(s5) by

S, = = — 7
J eBUJ(Sj 1) + eBUJ(Sj)
BU;(s:™h)
. e J
P i 1—1 — i _ 8

(55 =87)=— (P Py (8a)
- BU;(s)

P(s} —sl) = —— o (8b)
max{eﬂ ](Sj )7€ﬁ ](Sj )}

IV. EVALUATION & RESULTS

The performance evaluation of the proposed PNT solution is
achieved via modeling and simulation. Specifically, in Section
IV-A, the performance characteristics of the best response
dynamics and reinforcement learning-based algorithms are
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Fig. 4: Trade-off among accuracy and complexity of the PNT on the air framework.

demonstrated in terms of position and timing estimation er-
ror and convergence time. A detailed analysis of the trade-
off between the accuracy of the proposed model and the
corresponding complexity is provided in Section IV-B. The
performance of the proposed model under the mobility use
case scenario is analyzed in Section IV-C, while finally a
comparative evaluation of the proposed approach against other
state-of-the-art approaches is presented in Section IV-D. Un-
less otherwise explicitly stated, the simulation parameters that
were used throughout our evaluation are listed as follows:
Ul = 12, |C| = 7, |T| =5, P = 2 [W], Gi"*™s = 0
[dB], G%°¢ = 0 [dB], f. = 400 [MHz], hirens = 1.5 [m],
h;ec = 1.5 [m]. A Dell Tower Desktop with Intel i7 11700K
3.6GHz processor, 32 GB available RAM was used to conduct
the evaluation.

A. Game-theoretic versus Reinforcement Learning-based Po-
sitioning, Navigation, and Timing on the Air

In this section, the operational characteristics of the BRD
and RL algorithms are presented and compared in terms of the
targets’ estimation error, the system’s estimation error, and the
execution time in order to determine the Nash Equilibrium of
the non-cooperative game. Specifically, Fig. 3a presents each
target’s estimation error for the four proposed algorithmic im-
plementations, while they are also compared against the initial
estimation error that the targets experience by implementing
the Iterative Least Squares algorithm during the neighborhood
identification process. Fig. 3b-3c present the overall system’s
estimation error of the targets and collaborators’ position and
timing for the SBRD and ABRD algorithms and the B-Logit
and Max-Logit algorithms, respectively, as a function of the
corresponding execution time of the algorithms.

The results reveal that the BRD algorithms are executed
in a faster manner compared to the RL-based algorithms,
given their deterministic decision-making process. On the
other hand, the RL-based algorithms perform the exploration
and learning phases in order to explore all the potential
strategies that can minimize the estimation error experienced
by the targets and collaborators, thus, the execution time of
the RL-based algorithms is larger than the one of the BRD
algorithms. Nevertheless, it is highlighted that the RL-based
algorithms achieve lower system’s estimation error (Fig. 3c)
and lower estimation error for each target (Fig. 3a) given
that they thoroughly explore all the available strategies. More-
over, it is observed that the Max-Logit algorithm achieves
the best results in terms of both the targets (Fig. 3a) and
the overall system’s estimation error (Fig. 3c) given that it
determines the Pareto optimal Nash Equilibrium of the non-
cooperative game. Furthermore, the results reveal that the
ABRD algorithm suffers from higher execution time due to the
fact that the targets and collaborators update sequentially their
best response strategies, compared to the SBRD algorithm.
On the other hand, the SBRD algorithm, though it takes a
shorter time to converge compared to the ABRD algorithm,
it achieves a higher estimation error, as it suffers from the
herding effect among the targets and collaborators, who update
their strategies in a synchronous manner.

B. Accuracy and Complexity Analysis

In this section, the trade-off between the accuracy and
the complexity of the four proposed algorithmic implemen-
tations is presented. Specifically, Fig. 4a presents the trade-
off between the execution time and the system’s estimation
error as the convergence criterion § of the SBRD and ABRD
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Fig. 5: Mobility analysis.

algorithms becomes stricter. Similarly, Fig. 4b presents the
corresponding trade-off, as the learning parameter /3 increases,
thus, allowing for a more thorough exploration phase.

The results reveal that as the convergence criterion § be-
comes stricter for the BRD algorithms, their corresponding
execution time increases, while the accuracy of the system
improves in terms of experiencing lower estimation error
for the targets’ and collaborators’ position and timing. By
taking a closer look at the results, we also observe that
the ABRD algorithm is significantly impacted by the stricter
convergence criterion, in terms of its execution time, given
that the targets and collaborators perform their best responses
in a sequential manner (Fig. 4a). On the other hand, as the
learning parameter of the RL-based algorithms increases, the
targets and the collaborators explore more thoroughly their
strategy space, thus, resulting in significantly lower systems
estimation error (Fig. 4b). Also, the results reveal that under
all the examined scenarios the Max-Logit algorithm achieves
the lowest estimation error given that it determines the Pareto
optimal Nash Equilibrium of the non-cooperative game.

C. Targets Mobility and Positioning, Navigation, and Timing

In this section, we present the benefits of the proposed PNT
solution under a mobility use case scenario, where the target
moves within the same neighborhood (Fig. 5a), or between
neighborhoods (Fig. 5b). In the first case, i.e., Fig. 5a, the
UAVs and the collaborators that support each target remain
the same while the target moves. In the second case, where
the target moves from one neighborhood to another one, the
set of the UAVs and the collaborators that support its PNT
services dynamically change over time. The results reveal that
under both use case scenarios, the proposed PNT solution
can accurately determine the position and timing of the target
(shadowed presentation of the target) enabling its navigation
in a real-time manner. However, it is observed that when
the target moves between neighborhoods, the accuracy of the
proposed PNT solution deteriorates, as the target changes
dynamically the set of UAVs and collaborators that support
its PNT services.

[ Scenario |
I Scenarioll
I Scenario lll

In (Target Estimation Error)

SBRD BinL
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Fig. 6: Comparative analysis.

D. Comparative Evaluation

In this section, a comparative evaluation of: (i) Scenario
I: the total target estimation error of the collaborative-based
PNT solution (without the presence of collaborator nodes in
the system), (ii) Scenario II: the total target estimation error
of the collaborative-based PNT solution (with the presence
of collaborator nodes in the system), (iii) Scenario III: the
total target estimation error using the Iterative Least Squares
algorithm which represents the vast majority of the current
state-of-the-art approaches. Fig. 6 presents the estimation error
of the overall system and of all the targets for the proposed
PNT on the air framework versus the system’s estimation error
of the comparative scenario that performs the PNT without the
existence of collaborators. The results show that the proposed
PNT on the air framework achieves lower estimation error
under all the four proposed algorithmic implementations. By
taking a closer look at the results, we should highlight that in
the proposed PNT on the air framework, the resulting error is
lower compared to the scenario without collaborators, given
that the collaborators significantly contribute in improving
the overall system’s error. Also, the results confirm that the
Max-Logit algorithm achieves the lowest estimation error for
the targets and the collaborators, given that it determines the
Pareto optimal Nash Equilibrium of the non-cooperative game.



V. CONCLUSION AND FUTURE WORK

In this paper, a novel collaborative-based PNT on the
air framework is introduced by jointly exploiting the UAVs,
collaborators, and targets towards accurately determining the
position and timing of the two latter ones. An optimization
problem of minimizing the position and timing estimation
error of each target and collaborator, as well as of the
overall system, has been formulated and addressed as a non-
cooperative game among the targets and the collaborators. The
existence of at least one NE point has been proven, while
four alternative algorithmic implementation approaches have
been introduced - following the principles of best response
and reinforcement learning - in order to conclude to such
an NE point. A detailed evaluation analysis is presented to
demonstrate the benefits and tradeoffs of the proposed PNT
solution.

Part of our current and future work includes the extension of
the proposed model by considering a more holistic 3D network
architecture consisting of targets, collaborators, UAVs, and
high altitude platforms (HAPs), in order to exploit the full
potential of the 3D networking environment in delivering
accurate and reliable PNT services [32].
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