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One dominant approach to evaluate the causal e�ect of a treatment is through
panel data analysis, whereby the behaviors of multiple units are observed over
time. The information across time and units motivates two general approaches: (i)
horizontal regression (i.e., unconfoundedness), which exploits time series patterns,
and (ii) vertical regression (e.g., synthetic controls), which exploits cross-sectional
patterns. Conventional wisdom often considers the two approaches to be di�erent.
We establish this position to be partly false for estimation but generally true for
inference. In the absence of any assumptions, we show that both approaches yield
algebraically equivalent point estimates for several standard estimators. However,
the source of randomness assumed by each approach leads to a distinct estimand
and quantification of uncertainty even for the same point estimate. This emphasizes
that researchers should carefully consider where the randomness stems from in their
data as it has direct implications for the accuracy of inference.

Keywords: horizontal regression, vertical regression, unconfoundedness, syn-
thetic controls, causal inference, minimum norm estimators.

1. INTRODUCTION

In a seminal paper, Abadie and Gardeazabal (2003) set out to investigate the eco-
nomic impact of terrorism in Basque Country. Prior to the outset of terrorist activity
in the early 1970’s, Basque Country was considered to be one of the wealthiest regions
in Spain. After thirty years of turmoil, however, its economic activity dropped sub-
stantially relative to its neighboring regions. Although intuition a�rms that Basque
Country’s economic downturn can be attributed, at least partially, to its political and
civil unrest, it is di�cult to quantitatively isolate the economic costs of conflict. In
response to this challenge, Abadie and Gardeazabal (2003) introduced the synthetic
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(a) Symmetric regressions. (b) Asymmetric regressions.

Figure 1.—1a: Estimates of OLS with minimum ¸2-norm; see Section 3.1.1. 1b: Estimates of simplex
regression. HZ and VT estimates correspond to colored solid and dashed-dotted lines, respectively. The
outset of terrorism is the vertical line and Basque Country’s observed GDP is in solid black. Notably,
the OLS point estimates likely su�er from overfitting.

controls framework. At its core, synthetic controls constructs a synthetic Basque Coun-
try from a weighted composition of control regions that are largely una�ected by the
instability to estimate Basque Country’s economic evolution in the absence of terror-
ism. This novel concept has inspired an entire subliterature within econometrics that is
“arguably the most important innovation in the policy evaluation literature in the last
15 years” (Athey and Imbens, 2017).

Researchers have historically tackled problems of this flavor using repeated observa-
tions of units across time, i.e., panel data, where a subset of units are exposed to a
treatment during some time periods while the other units are una�ected. In the study
above, the per capita gross domestic product (GDP) of 17 Spanish regions are measured
from 1955–1998. Basque Country is the sole treated unit and the remaining regions are
the control units; the pre- and post-treatment periods are defined as the time horizons
before and after the first wave of terrorist activity, respectively.

Synthetic controls has become a cornerstone for panel studies in recent years and
across numerous fields. Beforehand, the unconfoundedness approach (Rosenbaum and
Rubin, 1983, Imbens and Wooldridge, 2009) served as a common workhorse. Whereas
synthetic controls posits a relation between treated and control units that is stable
across time, unconfoundedness posits a relation between treated and pretreatment pe-
riods that is stable across units. Accordingly, synthetic controls exploits cross-sectional
correlation patterns while unconfoundedness exploits time series correlation patterns.
Considering the panel data format, unconfoundedness and synthetic controls based
methods are commonly referred to as horizontal (HZ) and vertical (VT) regressions, re-
spectively. Given their conceptual and computational distinctions, the two approaches
are considered to be di�erent from one another (Athey et al., 2021).

Yet, contrary to conventional wisdom, it turns out that HZ and VT regressions can
yield identical point estimates. As Figure 1a shows, when the regression models are
learned via ordinary least squares (OLS), then the two approaches produce the same
economic evolution for Basque Country in the absence of terrorism. Figure 1b, by con-
trast, shows that when the regression models are enforced to lie within the simplex—
as proposed by Abadie and Gardeazabal (2003) for VT regression—then the two ap-
proaches output contrasting economic trajectories. To make matters more intriguing,
Figure 2 indicates that even when the two regressions arrive at the same point estimate,
the corresponding confidence intervals can be markedly di�erent under di�erent sources
of randomness. The juxtaposition of these figures beg two questions:
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(a) OLS under a HZ model. (b) OLS under a VT model.

Figure 2.—Confidence intervals for OLS with minimum ¸2-norm constructed from HZ-based (left) and
VT-based (right) generative models; see Section 4.1.1. The VT-based confidence intervals are degenerate.

Q1: “When are HZ and VT point estimates identical?”
Q2: “When the point estimates are identical, how does the source of

randomness impact inference?”

Contribution. This article provides a technical contribution to Q1 and a conceptual
contribution to Q2. For Q1, we classify various widely studied regression formulations
into (i) a symmetric class that yields algebraically identical point estimates and (ii)
an asymmetric class that yields algebraically contrasting point estimates. These results
hold without any assumptions on the data generating process or data configuration.

With this result in place, we proceed to tackle Q2 by staying within the symmetric
class and studying properties of the estimator with randomness stemming from (i) time
series patterns, (ii) cross-sectional patterns, and (iii) both patterns simultaneously. We
conduct our analysis from a model-based perspective, which attributes randomness to
the potential outcomes, and a design-based perspective, which attributes randomness
to the mechanism assignment of treatment. Even under the most stylized assumptions
within each framework, we demonstrate that each source of randomness leads to a
distinct estimand and variance for the same point estimate.

While the specific estimands and variances may vary with the underlying assump-
tions, the general message remains invariant. In this spirit, we construct distinct confi-
dence intervals for each source of randomness based on our model-based assumptions
and asymptotic analysis. Though these intervals are unlikely to be practical for real-
world settings, they are a useful device to conduct data-inspired simulations and empir-
ical applications in illustrating our key concept. Indeed, our findings highlight that the
confidence interval developed for one estimand often has incorrect coverage for another.
Altogether, our results emphasize that the source of randomness that researchers as-
sume has direct implications for the accuracy of inference that can be conducted. This
further motivates the need for a principled framework to check researchers’ assumptions,
which is left as important future work.
Organization. Section 2 overviews the panel data framework. Sections 3–4 provide one
set of answers for Q1–Q2. Section 5 illustrates concepts developed in this article. Sec-
tion 6 summarizes our findings. We relegate mathematical proofs to Appendices A–B.
Notation. Let I be the identity matrix. Let 1 and 0 be the vectors of ones and zeros,
respectively. The curled inequality denotes ≤ the generalized inequality, i.e., compo-
nentwise inequality between vectors and matrix inequality between symmetric matrices.
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Figure 3.—Panel data format with rows and columns indexed by units and time, respectively.

Let ¶ denote the elementwise product. For vectors a and b, let Èa, bÍ = a
Õ
b denote the

inner product. Let tr(A) denote the trace of A. We define 0/0 = 0 when applicable.

2. THE PANEL DATA FRAMEWORK

We anchor on the Basque study to introduce the panel data framework and relevant
notations. Panel data contains observations of N units over T time periods. The Basque
study, for instance, consists of per capita GDP across N = 17 Spanish regions over T =
43 years. In each time period t, each unit i is characterized by two potential outcomes,
Yit(0) and Yit(1), which correspond to its outcome in the absence and presence of
a binary treatment, respectively. The potential outcomes framework posits that each
region possesses two possible levels of economic activity each year, one that is immune
to terrorism and one that is a�ected by terrorism. In reality, however, we can only
observe one economic state—this is the fundamental challenge of causal inference.

Let Ai œ {0,1} and Bt œ {0,1} be the indicator variables for whether the ith unit and
tth period are treated. We write the observed outcome as

Yit = AiBt · Yit(1) + (1 ≠ AiBt) · Yit(0). (1)

Often, we observe all N units without treatment (control) for T0 time periods, i.e.,
Ai = Bt = 0 for all i Æ N and t Æ T0. For the remaining T1 = T ≠ T0 time periods, N1

units receive treatment while the remaining N0 = N ≠ N1 units remain under control,
i.e., if we label the first N0 units as the control group, then Ai = Bt = 0 for all i Æ N0

and t > T0, and Ai = Bt = 1 for all i > N0 and t > T0. In the study of Abadie and
Gardeazabal (2003), Basque Country is the single treated unit, thus N1 = 1 and N0 = 16.
The first wave of terrorist activity partitions the time horizon into pre- and post-
treatment periods of lengths T0 = 15 and T1 = 28 years, respectively.

For ease of exposition, this article considers a single treated unit and single treated
period indexed by the N th unit and T th time period, respectively, i.e., AN = BT = 1 and
Ai = Bt = 0 for all other i Æ N0 and t Æ T . However, our results hold for any (i, t) pair
where i > N0 is a treated unit and t > T0 is a treated period. We organize our observed
control data into an N ◊T matrix, Y = [Yit], as shown in Figure 3. In our example, yN =
[YNt : t Æ T0] œ RT0 represents Basque Country’s economic evolution prior to the outset
of terrorism; Y 0 = [Yit : i Æ N0, t Æ T0] œ RN0◊T0 represents the control regions’ economic
evolution prior to the outset of terrorism; and yT = [YiT : i Æ N0] œ RN0 represents the
control regions’ economic evolution after the outset of terrorism. Our object of interest
is Basque Country’s counterfactual GDP in the absence of terrorism, YNT (0).
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2.1. Time Series Versus Cross-Sectional Based Regressions
The information across time and units motivates two natural ways to estimate the

missing (N,T )th entry. These perspectives are explored in two large and mostly separate
bodies of work (Athey et al., 2021).

2.1.1. Horizontal Regression and Unconfoundedness
The unconfoundedness literature operates on the concept that “history is a guide to

the future”. As such, unconfoundedness methods express outcomes in the treated period
as a weighted composition of outcomes in the pretreatment periods. This is carried out
by regressing the control units’ treated period outcomes yT on its lagged outcomes Y 0

and applying the learned regression coe�cients to the treated unit’s lagged outcomes
yN to predict the missing (N,T )th outcome. Following Athey et al. (2021), we refer to
such methods as horizontal (HZ) regression.

2.1.2. Vertical Regression and Synthetic Controls
The synthetic controls literature is built on the concept that “similar units behave

similarly”. Therefore, synthetic controls methods express the treated unit’s outcomes
as a weighted composition of control units’ outcomes. This is carried out by regressing
the treated unit’s lagged outcomes yN on the control units’ lagged outcomes Y

Õ
0

and
applying the learned regression coe�cients to the control units’ treated period outcomes
yT to predict the missing (N,T )th outcome. Following Athey et al. (2021), we refer to
such methods as vertical (VT) regression.

2.1.3. Conventional Wisdom
The dimensions of the data often guide the choice of estimator. In fact, the unregu-

larized forms of HZ and VT regressions are cautioned against when T > N and N > T ,
respectively, due to overfitting (Abadie et al., 2015, Doudchenko and Imbens, 2016, Li
and Bell, 2017, Athey et al., 2021). With regularization, however, Athey et al. (2021)
argues the two approaches can be applied to the same setting. This allows HZ and VT re-
gressions to be systematically compared through methods such as cross-validation.

In parallel, the growth rates of the two literatures have also exhibited asymmetry.
While the development of the unconfoundedness literature has seemingly plateaued,
the synthetic controls literature continues to rapidly expand. Across many domains,
synthetic controls based methods are arguably the de facto approach for panel studies.

3. POINT ESTIMATION

Q1: “When are HZ and VT point estimates identical?”

We tackle Q1 by studying algebraic properties of the HZ and VT point estimates.
Below, we denote the singular value decomposition of Y 0 as Y 0 =

qR
¸=1

s¸u¸v
Õ
¸ = USV

Õ,
where u¸ œ RN0 and v¸ œ RT0 are the left and right singular vectors, respectively, s¸ œ R
are the ordered singular values, and R = rank(Y 0) Æ min{N0, T0}. Let U œ RN0◊R and
V œ RT0◊R be the matrices formed by the left and right singular vectors, respectively,
and S œ RR◊R be the diagonal matrix of singular values. The pseudoinverse is Y

†
0

=qR
¸=1

(1/s¸)v¸u
Õ
¸ = V S

≠1
U

Õ.
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3.1. Classifying Notable Least Squares Formulations
We present several of the most widely studied regression formulations in the HZ and

VT literatures. This list is far from exhaustive given the vastness of these literatures.

3.1.1. Description of Least Squares Formulations
Penalized least squares. A large class of formulations are expressed as follows:

(a) HZ regression: for ⁄1,⁄2 Ø 0,

‚– = argmin
–

ÎyT ≠ Y 0–Î2

2
+ ⁄1Î–Î1 + ⁄2Î–Î2

2
, with ‚Y hz

NT (0) = ÈyN , ‚–Í. (2)

(b) VT regression: for ⁄1,⁄2 Ø 0,

‚— = argmin
—

ÎyN ≠ Y
Õ
0
—Î2

2
+ ⁄1Î—Î1 + ⁄2Î—Î2

2
, with ‚Y vt

NT (0) = ÈyT , ‚—Í. (3)

We overview common choices for (⁄1,⁄2) and describe the corresponding strategy.
I: Ordinary least squares (OLS). Arguably, the mother of all regressions is OLS, where
⁄1 = ⁄2 = 0. OLS is an unconstrained problem with possibly infinitely many solutions.
In such settings, one particular solution is the vector with minimum ¸2-norm; this
minimizer is unique and described through the pseudoinverse. OLS has been analyzed
in numerous panel study works, including Hsiao et al. (2012), Li and Bell (2017), and
Li (2020).

II: Principal component regression (PCR). To formalize PCR, let Y
(k)

0
=

qk
¸=1

s¸u¸v
Õ
¸

denote the rank k < R approximation of Y 0 that retains the top k principal components.
HZ and VT PCR corresponds to replacing Y 0 with Y

(k)

0
within (2) and (3), respectively,

with ⁄1 = ⁄2 = 0. In words, PCR first finds a k dimensional representation of the
covariate matrix via principal component analysis; then, PCR performs OLS with the
compressed k dimensional covariates. Within the synthetic controls literature, Amjad
et al. (2018, 2019) and Agarwal et al. (2021) utilize PCR.
III: Ridge regression. Ridge considers ⁄1 = 0 and ⁄2 > 0. When Y 0 is rank deficient,
the gram matrix, i.e., Y

Õ
0
Y 0 for HZ regression and Y 0Y

Õ
0

for VT regression, is ill-
conditioned. This can discourage the usage of OLS. Ridge provides a remedy by adding
a ridge on the diagonal of the gram matrix, which increases all eigenvalues by ⁄2, thus
removing the singularity problem. Ben-Michael et al. (2021) explores properties of a
doubly robust estimator that utilizes HZ ridge regression.
IV: Lasso regression. Lasso considers ⁄1 > 0 and ⁄2 = 0. Lasso is a popular tool for
estimating sparse linear coe�cients in high-dimensional regimes. Because the criterion
not strictly convex, there are possibly infinitely many solutions. Thus, for our analysis
of lasso only, we make the mild assumption that the entries of Y 0 are drawn from a
continuous distribution. This guarantees the lasso solution to be unique (Tibshirani,
2013). Several notable works in the synthetic controls literature, e.g., Li and Bell (2017),
Carvalho et al. (2018), and Chernozhukov et al. (2021), analyze the lasso.
V: Elastic net regression. Elastic net considers ⁄1,⁄2 > 0. At a high level, elastic net
selects variables similar to the lasso, but deals with correlated variables more gracefully
as with ridge. When ⁄2 > 0, the criterion is strictly convex so the solution is unique.
Doudchenko and Imbens (2016) propose an elastic net synthetic controls variant.
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Constrained least squares.

VI: Simplex regression. The next formulation constrains the regression weights to lie
within the simplex, i.e., the weights are nonnegative and sum to one:

(a) HZ regression: for ⁄ Ø 0,

‚– = argmin
–:–Õ1=1,–≤0

ÎyT ≠ Y 0–Î2

2
+ ⁄Î–Î2

2
, with ‚Y hz

NT (0) = ÈyN , ‚–Í. (4)

(b) VT regression: for ⁄ Ø 0,

‚— = argmin
—:—Õ1=1,—≤0

ÎyN ≠ Y
Õ
0
—Î2

2
+ ⁄Î—Î2

2
, with ‚Y vt

NT (0) = ÈyT , ‚—Í. (5)

We consider a vanishing ¸2 penalty since ⁄ = 0 (standard formulation) can induce
multiple minima (Abadie and L’Hour, 2021). When ⁄ > 0, the criterion becomes strictly
convex and the solution is unique. Simplex regression is the original formulation set
forth in the pioneering works of Abadie and Gardeazabal (2003), Abadie et al. (2010,
2015), and its properties continue to be actively studied today. Attractive aspects of
simplex regression include interpretability, sparsity, and transparency (Abadie, 2021).

3.1.2. Classification Results
To answer Q1, we classify the regression formulations into a (i) symmetric class and

an (ii) asymmetric class. We use the shorthand HZ = VT if the two approaches produce
algebraically identical point estimates and HZ ”= VT otherwise.
I: Symmetric class. We first state the symmetric formulations.

Theorem 1: HZ = VT for (i) OLS with (‚–, ‚—) as the minimum ¸2-norm solutions:

‚Y hz

NT (0) = ‚Y vt

NT (0) = ÈyN ,Y
†
0
yT Í =

Rÿ

¸=1

(1/s¸)ÈyN ,v¸ÍÈu¸,yT Í;

(ii) PCR with the same choice of k < R:

‚Y hz

NT (0) = ‚Y vt

NT (0) = ÈyN , (Y (k)

0
)†

yT Í =
kÿ

¸=1

(1/s¸)ÈyN ,v¸ÍÈu¸,yT Í;

(iii) ridge regression with the same choice of ⁄2 > 0:

‚Y hz

NT (0) = ‚Y vt

NT (0) = ÈyN , (Y Õ
0
Y 0 + ⁄2I)≠1

Y
Õ
0
yT Í =

Rÿ

¸=1

s¸

s
2

¸ + ⁄2

ÈyN ,v¸ÍÈu¸,yT Í.

Theorem 1 might seem familiar at first glance. As observed in Abadie et al. (2015) and
Ben-Michael et al. (2021, Lemma 2), the point estimates associated with HZ OLS and
HZ ridge can be written as linear combinations of the elements in yT , which take the
same linear forms as the corresponding VT point estimates. However, their results stop
short of establishing algebraic equivalence as in Theorem 1. In this view, Theorem 1 is
perhaps surprising. It demonstrates that the HZ and VT perspectives—while appearing
to be di�erent—are, in fact, two equivalent ways of approaching the same problem



8

when the regression model belongs to the symmetric class. Notably, the identity holds
without any assumptions on the data generating process.

Theorem 1 also holds for any data configuration. Thus, it clarifies that HZ and
VT OLS are not invalid when T > N and N > T , respectively. In fact, the OLS es-
timate can even be written as È‚–,Y

Õ
0

‚—Í, which incorporates both regression models. It
is likely that the prior misconception arose from the fact that infinitely many solutions
can exist depending on the dimensions of the data and chosen approach. Among these
solutions, however, is the unique minimum ¸2-norm model, which is the solution when
the objective is optimized via gradient descent. This phenomena is known as “implicit
regularization”, where the optimization algorithm is biased towards a particular solu-
tion even though the bias is not explicit in the objective function (Neyshabur et al.,
2015, Gunasekar et al., 2017).

Through its connection to the ¸2-penalty, the minimum ¸2-norm also o�ers a high-
level intuition for the root of symmetry. More specifically, observe that the ridge model
converges to the OLS model with minimum ¸2-norm as ⁄2 æ 0. Since the PCR model
is precisely the OLS minimum ¸2-norm model that is restricted to the space spanned
by the top k principal components, we conjecture that the geometry of the ¸2-ball is
the likely source of symmetry for HZ and VT point estimation.
II: Asymmetric class. Next, we state the class of asymmetric formulations.

Theorem 2: HZ ”= VT for (i) lasso, (ii) elastic net, and (iii) simplex regression.

A common thread of the objective functions in the asymmetric class is a penalty or
constraint that promotes sparse models. Such regularizers are noticeably absent in the
symmetric formulations. This suggests that geometries of the ¸1-ball and simplex that
encourage sparsity are likely sources of asymmetry for HZ and VT point estimation.

3.2. Doubly Robust Regression
These recent years have seen a surge of interest in doubly robust (DR) estimators.

Within panel data, we discuss two prominent works that are rising in popularity.

3.2.1. Synthetic Di�erence-in-Di�erences
An important approach that continues to dominate empirical work in panel data is

the di�erence-in-di�erences (DID) estimator (Ashenfelter, 1978). In essence, DID posits
an additive outcome model with unit- and time-specific fixed e�ects, known colloqui-
ally as the “parallel trends” assumption. Arkhangelsky et al. (2021) anchors on the
DID principle and brings in concepts from the unconfoundedness and synthetic controls
literatures to derive a DR estimator called synthetic di�erence-in-di�erences (SDID). In
our setting, the SDID prediction for the missing (N,T )th potential outcome is

‚Y sdid

NT (0) =
ÿ

iÆN0

‚—iYiT +
ÿ

tÆT0

‚–tYNt ≠
ÿ

iÆN0

ÿ

tÆT0

‚—i ‚–tYit

= ÈyT , ‚—Í + ÈyN , ‚–Í ≠ È‚—,Y 0 ‚–Í, (6)

where ‚– and ‚— represent general HZ and VT models, respectively. Observe that ‚– =
(1/T0)1 and ‚— = (1/N0)1 recovers DID. Moving beyond simple DID to performing a
weighted two-way bias removal, Arkhangelsky et al. (2021) propose to learn ‚– via
simplex regression and ‚— via simplex regression with an ¸2-penalty.
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3.2.2. Augmented Synthetic Controls
Ben-Michael et al. (2021) introduce the augmented synthetic control (ASC) estimator,

which uses an outcome model to correct the bias induced by the classical synthetic con-
trols estimator.1 Concretely, the ASC estimator predicts the missing (N,T )th potential
outcome as

‚Y asc

NT (0) = „MNT (0) +
ÿ

iÆN0

‚—i(YiT ≠ „MiT (0)), (7)

where „MiT (0) is the estimator for the (i, T )th entry. Ben-Michael et al. (2021) instan-
tiate „MiT (0) =

q
tÆT0

‚–tYit. Plugging this HZ outcome model into (7) then gives

‚Y asc

NT (0) = ÈyT , ‚—Í + ÈyN , ‚–Í ≠ È‚—,Y 0 ‚–Í. (8)

We consider this particular variant of ASC since it takes the same form as SDID, as
seen in (6). In contrast to Arkhangelsky et al. (2021), Ben-Michael et al. (2021) learns
‚– via ridge regression and ‚— via simplex regression.

3.2.3. Connecting DR Regression to HZ and VT Regressions
We refer to SDID and ASC, as defined in (6) and (8), respectively, as DR regression. To

complement the existing results on DR regression for panel data, we leverage Theorem 1
to study properties of DR regression when (‚–, ‚—) come from the symmetric class.

Corollary 1: DR = HZ = VT for (i) (‚–, ‚—) as the OLS minimum ¸2-norm solutions
and (ii) (‚–, ‚—) as the PCR solutions with the same choice of k < R.

Corollary 1 o�ers two interpretations. On the one hand, DR regression implicitly
exploits only one pattern in the data if (‚–, ‚—) are implicitly regularized or learned via
PCR. On the other hand, HZ and VT regressions implicitly exploit both patterns in the
data for the same considerations on (‚–, ‚—). We keep with the latter perspective as it
is similar in spirit to the “OLS is doubly robust” argument in Robins et al. (2007) but
for the panel data setting. As Section 4 discusses, the second interpretation is further
justified when randomness stems from both patterns of the data as well.

3.3. Intercepts
Intercepts can be included in the HZ regression model by modifying the ¸2-errors in

(2) and (4) as ÎyT ≠ Y 0– ≠ –01Î2

2
; similarly, they can be included in the VT regression

model by modifying ¸2-errors in (3) and (5) as ÎyN ≠ Y
Õ
0
— ≠ —01Î2

2
. We discuss the role

of intercepts for point estimation below.

Corollary 2: HZ ”= VT for (i) OLS, (ii) PCR, and (iii) ridge with intercepts.

We develop an intuition for Proposition 2 by interpreting intercepts in panel studies.
A nonzero time intercept, –0, allows for a permanent constant di�erence between the

1See Abadie and L’Hour (2021) for a bias correction of synthetic controls through matching.
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treated and pretreatment periods; a nonzero unit intercept, —0, allows for a permanent
constant di�erence between the treated and control units. These systematic structures
then create an asymmetry between the two regressions. Below, we propose a method-
ology based on centering the data that allows for intercepts yet retains symmetry.

3.3.1. Including Intercepts and Retaining Symmetry through Data Centering
Let Y 0 be twice centered, i.e., the rows and columns of Y 0 are mean zero. This can be

satisfied by applying I ≠ (1/N0)11Õ and I ≠ (1/T0)11Õ to the left and right, respectively,
of Y 0. Consider the following modified formulations.

(a) HZ regression: for ⁄ Ø 0,

(‚–0, ‚–1, ‚–) = argmin
(–0,–1,–)

ÎyT ≠ Y 0– ≠ –01Î2

2
+ ÎyN ≠ –11Î2

2
+ ⁄Î–Î2

2
(9)

‚Y hz

NT (0) = ÈyN , ‚–Í + ‚–0 + ‚–1. (10)

(b) VT regression: for ⁄ Ø 0,

(‚—0, ‚—1, ‚—) = argmin
(—0,—1,—)

ÎyN ≠ Y
Õ
0
— ≠ —01Î2

2
+ ÎyT ≠ —11Î2

2
+ ⁄Î—Î2

2
(11)

‚Y vt

NT (0) = ÈyT , ‚—Í + ‚—0 + ‚—1. (12)

Similar to before, OLS corresponds to ⁄ = 0, PCR corresponds to OLS with Y
(k)

0
for

k < R in place of Y 0, and ridge regression corresponds to any ⁄ > 0.

Corollary 3: HZ = VT for the symmetric estimators in Theorem 1 under the for-
mulations set in (9) and (11) with Y 0 being twice centered.

We inspect (10) and (12) to understand the implications of Corollary 3. First, we
recall Theorem 1, which establishes that the HZ and VT estimates share the same
“base” estimate, i.e., ÈyN , ‚–Í = ÈyT , ‚—Í. Next, we note that ‚–0 = ‚—1 = (1/N0)1Õ

yT and
‚—0 = ‚–1 = (1/T0)1Õ

yN , which correspond to the time and unit fixed e�ects, respectively.
Intuitively, the modified point estimates in (10) and (12) include both fixed e�ect models
to compensate for Y 0 being twice centered. Putting everything together, the modified
HZ and VT point estimates are algebraically identical.

4. INFERENCE

Q2: “When the HZ and VT point estimates are identical, how does the source
of randomness impact inference?”

To answer Q2, we study the inferential properties of the counterfactual prediction.
Formal discussions for classical inference require an explicit postulation on the source of
randomness. This article takes both a model-based approach, which makes assumptions
about the distribution of the potential outcomes, and a design-based approach, which
makes assumptions about the assignment mechanism of treatment. Within each setting,
we consider a natural notion of randomness stemming from (i) time series patterns, (ii)
cross-sectional patterns, and (iii) both patterns simultaneously.
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Before we formalize these notions, we emphasize that the goal of this section is not to
accurately model reality and propose novel confidence intervals for practice. The goal
is to provide a simple example that illustrates the role of randomness in conducting
inference; namely, that each source of randomness leads to a unique uncertainty quan-
tification even for the same point estimate. Therefore, stylized though our assumptions
may be, they o�er an informative example to communicate this message.

Setting. To isolate the role of randomness, we focus on OLS and its minimum ¸2-norm
solutions: ‚– = Y

†
0
yT and ‚— = (Y Õ

0
)†

yN . Theorem 1 and Corollary 1 establish that the
HZ, VT, and DR approaches all yield algebraically equivalent point estimates for this
setting. As such, we denote the point estimate as ‚YNT (0) without any superscripts.

4.1. Model-Based Inference
Recall (1). The model-based perspective views the potential outcomes, {Yit(0), Yit(1)},

as stochastic and treatment assignments, {Ai,Bt}, as fixed. Within this framework, we
consider a classical regression model. Though this postulation is certainly not always
plausible, it is useful in studying how the assumed source of randomness a�ects the
accuracy of inference that can be conducted.

4.1.1. Three Generative Models
We now study properties of ‚YNT (0) under three di�erent sources of randomness.

I: HZ model. The HZ model considers time series patterns as the source of randomness.

Assumption 1: We have

YiT =
ÿ

tÆT0

–
ú
t Yit + ÁiT , i = 1, . . . ,N0. (13)

Here, –
ú is a vector of unknown coe�cients and {ÁiT }N0

i=1
are zero mean idiosyncratic

errors that are independent over i = 1, . . . ,N0, conditional on (yN ,Y 0).

Assumption 1 posits the errors are zero mean and conditionally independent across
space. The former property implies that the regressors, i.e., lagged outcomes, are uncor-
related with the errors; this is also known as strict exogeneity. Naturally, Assumption 1
motivates the HZ approach, whereby the statistical uncertainty of ‚YNT (0) is governed
by the construction of ‚– from (yT ,Y 0), i.e., the in-sample uncertainty.

II: VT model. The VT model considers cross-sectional patterns as the source of ran-
domness.

Assumption 2: We have

YNt =
ÿ

iÆN0

—
ú
i Yit + ÁNt, t = 1, . . . , T0. (14)

Here, —
ú is a vector of unknown coe�cients and {ÁNt}T0

t=1 are zero mean idiosyncratic
errors that are independent over t = 1, . . . , T0, conditional on (yT ,Y 0).
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Assumption 2 is analogous to Assumption 1. Hence, the statistical uncertainty of
‚YNT (0) under the VT model is governed by the construction of ‚— from (yN ,Y 0).

III: DR model. We introduce a new model, the DR model, that considers aspects of the
previous HZ and VT models. At a high level, the DR model considers time series and
cross-sectional patterns as two distinct sources of randomness.

Assumption 3: We have (13) and (14). Here, {ÁiT }N0
i=1

and {ÁNt}T0
t=1 have zero mean

and are independent over i = 1, . . . ,N0 and t = 1, . . . , T0, conditional on Y 0.

Assumption 3 posits that Y 0 contains all measured confounders and the errors are
independent across both time and units. As a result, the statistical uncertainty of
‚YNT (0) under the DR model is governed by the constructions of both ‚– and ‚—.

4.1.2. Model-Based Asymptotic Results on Inference
Equipped with our three models, we o�er a model-based response to Q2. We denote

the error covariance matrices as �hz

T = Cov(ÁT |yN ,Y 0), �vt

N = Cov(ÁN |yT ,Y 0), �dr

T =
Cov(ÁT |Y 0), and �dr

N = Cov(ÁN |Y 0), where ÁT = [ÁiT : i Æ N0] and ÁN = [ÁNt : t Æ T0].
Recalling the SVD of Y 0 from Section 3, we denote H

u = UU
Õ and H

v = V V
Õ as the

projections onto the columnspace and rowspace of Y 0, respectively.

Theorem 3—Informal (precise statement in Appendix C): (i) [HZ model] Under
Assumption 1 and suitable moment conditions, we have as N0 æ Œ

(vhz

0
)≠1/2 · ( ‚YNT (0) ≠ µ

hz

0
) d≠æ N (0,1),

where µ
hz

0
= ÈyN ,H

v
–

úÍ and v
hz

0
= ‚—

Õ
�hz

T
‚—. (ii) [VT model] Under Assumption 2 and

suitable moment conditions, we have as T0 æ Œ

(vvt

0
)≠1/2 · ( ‚YNT (0) ≠ µ

vt

0
) d≠æ N (0,1),

where µ
vt

0
= ÈyT ,H

u
—

úÍ and v
vt

0
= ‚–Õ�vt

N ‚–. (iii) [DR model] Under Assumption 3 and
suitable moment conditions, we have as N0, T0 æ Œ

(vdr

0
)≠1/2 · ( ‚YNT (0) ≠ µ

dr

0
) d≠æ N (0,1),

where µ
dr

0
= È–ú

,Y
Õ
0
—

úÍ and

v
dr

0
= (Hu

—
ú)Õ�dr

T (Hu
—

ú) + (Hv
–

ú)Õ�dr

N (Hv
–

ú) + tr(Y †
0
�dr

T (Y Õ
0
)†�dr

N ).

Theorem 3 shows that the estimand and variance are controlled by time series pat-
terns under the HZ model, cross-sectional patterns under the VT model, and both
patterns under the DR model. It is critical to underline once more that the emphasis of
Theorem 3 is not on the specific estimands and variances associated with each model,
which are, of course, subject to our specific assumptions. Rather, the emphasis is this:
each model measures uncertainty with respect to a distinct estimand. This message is
invariant to the particular assumptions imposed by the researcher. That is, Assump-
tions 1–3 can be tweaked in numerous ways to yield di�erent estimands and variances
than those stated above. Nevertheless, we expect these quantities to change from one
source of randomness to another. This clarifies that the assumed source of randomness
has substantive implications for conducting inference.
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4.1.3. Model-Based Confidence Intervals
In Section 5, we look to breathe life into our message above by studying the trade-

o�s of conducting inference under di�erent sources of randomness through data-inspired
simulations and empirical applications. To this end, we construct separate HZ, VT, and
DR confidence intervals based on the results in Theorem 3 under homoskedastic and
heteroskedastic errors. These intervals are either unbiased or conservative under our
assumptions. For ease of exposition, we present their formulations in Appendix C.2.

4.2. Design-Based Inference
The design-based perspective views the potential outcomes, {Yit(0), Yit(1)}, as fixed

and treatment assignments, {Ai,Bt}, as stochastic. Within this framework, we consider
the assignment mechanisms introduced in Bottmer et al. (2021). As Bottmer et al.
(2021) notes, these assumptions are not always plausible, but they underlie the placebo
tests that are commonly used in synthetic controls analyses.

4.2.1. Three Designs
Let A œ {0,1}N with 1Õ

A = 1 and B œ {0,1}T with 1Õ
B = 1 be the indicator vectors

for the treated unit and treated time period, respectively.

I: HZ design. The HZ design considers the treated period to be randomly selected.

Assumption 4: We have

P(B = b) =
I

1/T, if bt œ {0,1} ’t, 1Õ
b = 1

0, otherwise.
(15)

II: VT design. The VT design considers the treated unit to be randomly selected.

Assumption 5: We have

P(A = a) =
I

1/N, if ai œ {0,1} ’i, 1Õ
a = 1

0, otherwise.
(16)

III: DR design. The DR design considers both the treated period and treated unit to
be randomly selected.

Assumption 6: We have (15) and (16), where A and B are independent.

4.2.2. Design-Based Estimator
To conduct design-based analysis, we consider all possible treatment assignments,

not only the realized assignment. Let Y
ú

it (0) be the OLS fit of Yit(0) using outcomes up
to and including time t, but not thereafter, i.e., Y

ú
it (0) = Èx,W

†
zÍ, where W = [Yj· :

j ”= i, · < t], x = [Yi· : · < t], and z = [Yjt : j ”= i]. The design-based estimator is

‚Y (0) =
ÿ

iÆN

ÿ

tÆT

AiBt · Y
ú

it (0).
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Again, the stochasticity of ‚Y (0) stems from the assignments since Y
ú

it (0) is fixed. Hence,
the model-based and design-based estimators share the same point estimate for the
realized assignment, but di�er in their formulations and attributions of randomness.

4.2.3. Connecting Model-Based and Design-Based Perspectives

In Table I, we summarize the estimands associated with the model-based and design-
based estimators for the three sources of randomness in consideration. We examine the
realized (N,T )th assignment for concreteness.

TABLE I
Model-based and design-based estimands under different sources of randomness. We use
the shorthand –̃

ú = H
v
–

ú and —̃
ú = H

u
—

ú and consider the realized (N, T )th assignment.

Source of Randomness Model-Based Estimand Design-Based Estimand

Time E[‚YNT (0)|yN , Y 0] =
q

tÆT0
–̃ú

t YNt E[‚Y (0)|A] = 1
T

q
tÆT

Y ú
Nt(0)

Unit E[‚YNT (0)|yT , Y 0] =
q

iÆN0
—̃ú

i YiT E[‚Y (0)|B] = 1
N

q
iÆN

Y ú
iT (0)

Time and Unit E[‚YNT (0)|Y 0] =
q

iÆN0

q
tÆT0

–ú
t —ú

i Yit E[‚Y (0)] = 1
NT

q
iÆN

q
tÆT

Y ú
it(0)

Since the model-based and design-based frameworks attribute randomness di�erently,
their expectations are taken over di�erent probability measures. Nevertheless, the two
estimators recover similar estimands for each source of randomness. With time sourced
randomness, both estimands are weighted compositions of outcomes across time, which
Bottmer et al. (2021) calls the “HZ” e�ect. With unit sourced randomness, both esti-
mands are weighted compositions of outcomes across units, also called the “VT” e�ect.
Finally, with time and unit sourced randomness, both estimands are weighted compo-
sitions of outcomes across time and units, which we coin the “DR” e�ect.

4.3. From Insights to Practice

Collectively, Theorem 3 and Table I illustrate that di�erent sources of randomness
lead to di�erent estimands and di�erent quantifications of uncertainty even for the
same point estimate. The connection between assumptions of randomness and resulting
estimands has also been highlighted in related contexts, e.g., Abadie et al. (2020),
Bottmer et al. (2021), and Sekhon and Shem-Tov (2021). Translated to practice, these
results stress that researchers’ assumptions on the source of randomness matter for
inference, as they usually do in observational research. As we demonstrate in the next
section, these choices are substantively important in the three applications we consider.

5. ILLUSTRATIONS

This section illustrates key concepts developed in this article. Our report is based on
three canonical synthetic controls studies: (i) terrorism in Basque Country, (ii) Califor-
nia’s Proposition 99 (Abadie et al., 2010), and (iii) the reunification of West Germany
(Abadie et al., 2015).
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5.1. Background on Case Studies

Basque study. See Sections 1–2 for details.

California study. This study examines the e�ect of California’s Proposition 99, an anti-
tobacco legislation, on its tobacco consumption. The panel data contains per capita
cigarette sales of N = 39 U.S. states over T = 31 years. There are T0 = 18 pretreatment
observations and N0 = 38 control units. Our interest is to estimate California’s cigarette
sales in the absence of Proposition 99.

West Germany study. This study examines the economic impact of the 1990 reunifica-
tion in West Germany. The panel data contains per capita GDP of N = 17 countries
over T = 44 years. There are T0 = 30 pretreatment observations and N0 = 16 control
units. Our interest is to estimate West Germany’s GDP in the absence of reunification.

5.2. Data-Inspired Simulation Studies

In an attempt to document our analysis in a realistic environment, we calibrate our
simulations to our three studies. As previewed in Section 4.1.3, we conduct a model-
based analysis using the confidence intervals derived from Theorem 3. We reiterate
that these intervals may not be practical for many real-world settings as they are
rooted in our stylized assumptions and asymptotic analysis. Hence, the purpose of this
section is not to advocate for their usage. Instead, these intervals are a vehicle to better
understand the trade-o�s in conducting inference under di�erent sources of randomness.

5.2.1. Data Generating Process

We consider the single treated unit and time period setting. Specifically, we consider
the actual treated unit, e.g., Basque Country, and focus on the first post-treatment
period, e.g., one year after the outset of terrorism; hence, T = T0 + 1. Using the actual
data, we generate the underlying regression models as

–
ú = argmin

–
Îy

ú
T ≠ Y

ú
0
–Î2

2
and —

ú = argmin
—

Îy
ú
N ≠ (Y ú

0
)Õ

—Î2

2
,

where y
ú
N = [YNt : t Æ T0], y

ú
T = [YiT : i Æ N0], and Y

ú
0

= [Yit : i Æ N0, t Æ T0].
Observationally, we have access to (yN ,yT ,Y 0), which are defined as follows: Let Y 0

be the rank r approximation of Y
ú
0
, where r is chosen as the minimum number of sin-

gular values needed to capture at least 99.9% of Y
ú
0
’s spectral energy. We sample yT ≥

N (Y 0–
ú
, (N0 ≠ r)≠1Îy

ú
T ≠ Y

ú
0
–

úÎ2

2
I) and yN ≥ N (Y Õ

0
—

ú
, (T0 ≠ r)≠1Îy

ú
N ≠ (Y ú

0
)Õ

—
úÎ2

2
I).

We then define three (latent) estimands: (i) µ
hz

0
= ÈyN ,H

v
–

úÍ, (ii) µ
vt

0
= ÈyT ,H

u
—

úÍ,
and (iii) µ

dr

0
= È–ú

,Y
Õ
0
—

úÍ, where (Hu
,H

v) are computed from Y 0. These estimands
correspond to Theorem 3 and Table I.

5.2.2. Simulation Results

For the purposes of stability, we conduct 5000 replications of the above DGP for each
study. In the ¸th simulation repeat, we learn the regression coe�cients as

‚–(¸) = argmin
–

Îy
(¸)

T ≠ Y 0–Î2

2
and ‚—

(¸)

= argmin
—

Îy
(¸)

N ≠ Y
Õ
0
—Î2

2
.
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Figure 4.—Example illustration of Section 5.2.2 for one simulation repeat. Here, the HZ interval
(blue) covers the HZ estimand but undercovers the VT and DR estimands. The VT interval (orange)
covers the HZ and VT estimands but undercovers the DR estimand; however, relative to the HZ interval,
the VT interval overcovers the HZ estimand. The DR interval (green) covers all estimands but overcovers
the HZ and VT estimands relative to their respective intervals.

TABLE II
Coverage probability for nominal 95% confidence intervals across 5000 replications.

Case study ‚vhz
0 ‚vvt

0 ‚vdr
0

µhz
0 µvt

0 µdr
0 µhz

0 µvt
0 µdr

0 µhz
0 µvt

0 µdr
0

Basque 0.92 0.74 0.66 0.99 0.92 0.87 1.00 0.97 0.94

California 0.94 1.00 0.92 0.66 0.93 0.61 0.96 1.00 0.95

W. Germany 0.93 1.00 0.91 0.48 0.94 0.46 0.95 1.00 0.93

TABLE III
Average coverage length for nominal 95% confidence intervals across 5000 replications.

The length is normalized by the magnitude of the corresponding point estimate.

Case study ‚vhz
0 ‚vvt

0 ‚vdr
0

Basque 0.02 0.03 0.04

California 0.07 0.03 0.08

W. Germany 0.03 0.01 0.03

The point estimate is ‚Y (¸)

NT (0) = Èy(¸)

N , ‚–(¸)Í = Èy(¸)

T , ‚—
(¸)

Í. We construct separate HZ, VT,
and DR (homoskedastic) confidence intervals, denoted as (‚vhz(¸)

0 , ‚vvt(¸)

0 , ‚vdr(¸)

0 ), centered
around the point estimate. The estimands do not change in our replications.

In Tables II and III, we report the coverage probabilities (CP) and average lengths
(AL), respectively, for each confidence interval with respect to each estimand at the
95% nominal mark across all simulation repeats; see Figure 4 for an illustration of one
repeat. Across all three studies and with respect to µ

hz

0
, the coverage of the HZ interval

is closer to the nominal coverage than that of the VT and DR intervals as the latter two
can substantially under- or over-cover. This storyline is consistent for the VT interval
with respect to µ

vt

0
and the mixed interval with respect to µ

dr

0
.

Collectively, our formal results and simulations demonstrate that (i) the choice of
estimand directly a�ects the accuracy of inference; and (ii) the variance formulas de-
veloped for one estimand may not have the correct coverage for another estimand.
Accordingly, researchers should carefully consider the source of randomness in their
data as it can have a significant influence over their ability to conduct valid inference.
These conclusions are in line with those drawn in Sekhon and Shem-Tov (2021), which
analyzes the classical di�erence-in-means estimator with respect to standard estimands
for randomized control trials.
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Figure 5.—Top and bottom figures correspond to symmetric and asymmetric estimators, respectively.
From left to right, the figures are indexed by the Basque, California, and West Germany studies. Across
all figures, the treated year is the dotted vertical line; the observed trajectory is in solid black; and the
HZ and VT counterfactual trajectories are colored solid and dashed-dotted lines, respectively.

5.3. Empirical Applications
Next, we analyze our three case studies of interest. All estimators are trained on

pretreatment data only, and the point and variance estimation formulas are separately
applied for the treated unit at each post-treatment period t > T0. We continue to use
the confidence intervals from Section 4.1.3.

5.3.1. Implementation Details
For ridge, lasso, and elastic net regressions, we use the default scikit-learn hyper-

parameters (⁄1,⁄2). For PCR, we choose the number of principal components k via the
approach described in Section 5.2. This yields k = 2 for the Basque study, k = 3 for
the California study, and k = 4 for the West Germany study. We implement simplex
regression using the code made available at https://matheusfacure.github.io/python-
causality-handbook/15-Synthetic-Control.html.

5.3.2. Point Estimation
Figure 5 visualizes the counterfactual trajectories generated by the estimators in

Section 3.1. Our findings reinforce Theorems 1 and 2. On a separate note, we observe
that within the Basque study, the OLS estimates are wildly di�erent from the others—
likely due to overfitting—and HZ simplex regression reduces to the last observation
carried forward (LOCF) estimator. In the California and West Germany studies, the
estimates are all qualitatively similar with the exception of the HZ simplex regression,
which again reduces to LOCF. In fact, the OLS and ridge estimates appear to overlap,
as well as the lasso and elastic net estimates.

https://matheusfacure.github.io/python-causality-handbook/15-Synthetic-Control.html
https://matheusfacure.github.io/python-causality-handbook/15-Synthetic-Control.html
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5.3.3. Inference
We present the OLS-based confidence intervals in Figure 6.2 As a final reminder,

the emphasis of Figure 6 is that the intervals associated with each model can vary in
width; we do not put any stock in the specific magnitudes of these widths. With this
in mind, consider the Basque study. The top row of plots shows that µ

vt

0
is more accu-

rately estimated than both µ
hz

0
and µ

dr

0
. Put di�erently, there is less uncertainty about

conducting inference on µ
vt

0
relative to the other estimands. At the same time, these

plots indicate that if µ
hz

0
or µ

dr

0
are the estimands of interest, then the VT confidence

interval will undercover in both settings. Analogous statements apply to the remaining
subfigures. As with our simulations, the large potential di�erences in coverage reinforce
the importance of properly reasoning through the source of randomness in the data.

6. CONCLUSION

This article contributes to panel data analysis in two primary ways: (i) we prove that
HZ, VT, and DR approaches—while seemingly very di�erent—all yield algebraically
identical point estimates for several standard settings, i.e., these approaches can be
equivalent ways of looking at the same problem in the absence of any additional con-
siderations; (ii) further, we demonstrate that even though these approaches may share
the same point estimate, the source of randomness assumed by each approach leads to
di�erent estimands and di�erent quantifications of uncertainty.

Our results show that assumptions made by researchers that may appear arbitrary
about the source of randomness result in di�erent inferences. This is expected in ob-
servational work because no randomization was actually implemented. Nevertheless, it
is important to check the sensitivity of reported results to these randomness source
assumptions. A potentially fruitful path forward is to build upon the principles of
predictability, computability, and stability (PCS) (Yu and Kumbier, 2020) to create
measures that incorporate our uncertainty over randomness source assumptions. We
leave it to future work to formalize a treatment of this problem.
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APPENDIX A: Proofs for Point Estimation
A.1. Proof of Theorem 1

Proof: (i) [OLS] Consider HZ regression. The optimality conditions state

Ò–ÎyT ≠ Y 0–Î2

2
= 0.

Solving for –, we derive Y
Õ
0
Y 0– = Y

Õ
0
yT . Using the pseudoinverse, we obtain ‚– =

(Y Õ
0
Y 0)†

Y
Õ
0
yT = Y

†
0
yT . Thus, the HZ prediction is given by ‚Y hz

NT (0) = ÈyN ,Y
†
0
yT Í.
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Following the arguments above for VT regression, we obtain ‚— = (Y Õ
0
)†

yN and
‚Y vt

NT (0) = ÈyT , (Y Õ
0
)†

yN Í. Given that (Y Õ
0
)† = (Y †

0
)Õ, the proof for OLS is complete.

(ii) [PCR] The proof follows that of OLS with Y
(k)

0
in place of Y 0.

(iii) [Ridge] Following the proof for OLS, we obtain ‚Y hz

NT (0) = ÈyN , (Y Õ
0
Y 0 +⁄2I)≠1

Y
Õ
0
yT Í

and ‚Y vt

NT (0) = ÈyT , (Y 0Y
Õ
0
+⁄2I)≠1

Y 0yN Í. Observing (Y Õ
0
Y 0 +⁄I)≠1

Y
Õ
0

= Y
Õ
0
(Y 0Y

Õ
0
+

⁄I)≠1 completes the proof. Q.E.D.

A.2. Proof of Theorem 2
To prove Theorem 2, we first establish our results for lasso and elastic net in Ap-

pendix A.2.1 and simplex regression in Appendix A.2.2, and then assemble them to-
gether in Appendix A.2.3.

A.2.1. Lasso & Elastic Net Regressions
We first establish a general result in Lemma 1 for ¸p-penalties, where p = 2/K and

K is an integer Ø 1, based on the contributions of Ho� (2017). More formally, consider

(a) HZ regression: for K Ø 1 and ⁄ > 0,

‚– = argmin
–

ÎyT ≠ Y 0–Î2

2
+ ⁄Î–Îp

p, with ‚Y hz

NT (0) = ÈyN , ‚–Í. (17)

(b) VT regression: for K Ø 1 and ⁄ > 0,

‚— = argmin
—

ÎyN ≠ Y
Õ
0
—Î2

2
+ ⁄Î—Îp

p, with ‚Y vt

NT (0) = ÈyT , ‚—Í. (18)

Note that K = 2 yields lasso regression while K > 2 yields non-convex penalties. As
such, we will use Lemma 1 to establish our results for lasso and elastic net regressions.
We relegate the proof of Lemma 1 to Appendix A.2.4.

Lemma 1: For any K Ø 1 and ⁄ > 0, a HZ and VT regression solution is

‚Y hz

NT (0) = ÈyN , ‚–1 ¶ · · · ¶ ‚–KÍ, and ‚Y vt

NT (0) = ÈyT , ‚—
1

¶ · · · ¶ ‚—KÍ,

where for every k Æ K,

‚–k =
3

D(‚–≥k)Y Õ
0
Y 0D(‚–≥k) + ⁄

K
I

4≠1

D(‚–≥k)Y Õ
0
yT ,

‚—k =
3

D(‚—≥k)Y 0Y
Õ
0
D(‚—≥k) + ⁄

K
I

4≠1

D(‚—≥k)Y 0yN ,

‚–≥k = ‚–1 ¶ · · ·¶ ‚–k≠1 ¶ ‚–k+1 ¶ · · ·¶ ‚–K , ‚—≥k = ‚—
1
¶ · · ·¶ ‚—k≠1

¶ ‚—k+1
¶ · · ·¶ ‚—K , and D(‚–≥k)

and D(‚—≥ k) are diagonal matrices formed from ‚–≥k and ‚—≥k, respectively.

Lemma 2—Lasso & Elastic Net Regressions: HZ ”= VT for (i) lasso and (ii) elastic
net.
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Proof: (i) [Lasso] By Lemma 1 for K = 2 and ⁄ = ⁄1 > 0, a HZ regression solution
is

‚Y hz

NT (0) = ÈyN , ‚–1 ¶ ‚–2Í, (19)

where ‚–1+k =
!
D(‚–2≠k)Y Õ

0
Y 0D(‚–2≠k) + (⁄1/2)I

"≠1

D(‚–2≠k)Y Õ
0
yT for k œ {0,1}.

Similarly, a VT regression solution is given by

‚Y vt

NT (0) = ÈyT , ‚—
1

¶ ‚—
2
Í, (20)

where ‚—
1+k = (D(‚—

2≠k)Y 0Y
Õ
0
D(‚—

2≠k) + (⁄1/2)I)≠1
D(‚—

2≠k)Y 0yN for k œ {0,1}.
From (19) and (20), we see that the HZ regression solution can be linear in y and

at least quadratic in q. On the other hand, the VT regression solution can be linear in
q and at least quadratic in y. Since the lasso solution is unique under the assumption
the entries of Y 0 are drawn from a continuous distribution, this implies that HZ and
VT regressions do not yield matching estimates in general.
(ii) [Elastic net] Consider HZ regression. We rewrite (2) in a lasso formulation:

‚–ú = argmin
–ú

Îy
ú
T ≠ Y

ú
0
–

úÎ2

2
+ ⁄

úÎ–
úÎ1, (21)

where q
ú = (yÕ

T ,0Õ)Õ, Y
ú
0

= (1 + ⁄2)≠1/2(Y Õ
0
,
Ô

⁄2I)Õ, ⁄
ú = (1 + ⁄2)≠1/2

⁄1, and –
ú = (1 +

⁄2)1/2
–. We apply Lemma 1 to (21) with K = 2 and ⁄ = ⁄

ú
> 0 to obtain

‚Y hz

NT (0) = ÈyN , ‚–ú
1

¶ ‚–ú
2
Í

1 + ⁄2

, (22)

where ‚–ú
1+k =

!
(1 + ⁄2)≠1/2

D(‚–ú
2≠k)(Y Õ

0
Y 0 + ⁄2I)D(‚–ú

2≠k) + ⁄1
2

I
"≠1

D(‚–ú
2≠k)Y Õ

0
yT for

k œ {0,1}.
Similarly, for VT regression, we proceed as above to obtain

‚Y vt

NT (0) = ÈyT , ‚—
ú
1

¶ ‚—
ú
2
Í

1 + ⁄2

, (23)

where ‚—
ú
1+k =

1
(1 + ⁄2)≠1/2

D(‚—
ú
2≠k)(Y 0Y

Õ
0

+ ⁄2I)D(‚—
ú
2≠k) + ⁄1

2
I

2≠1

D(‚—
ú
2≠k)Y 0yN for

k œ {0,1}.
From (22) and (23), we see that the HZ solution can be linear in y and at least

quadratic in q. On the other hand, the VT solution can be linear in q and at least
quadratic in y. Since the elastic net regression solution is unique, this implies that
HZ and VT regressions do not yield matching estimates in general. Q.E.D.

A.2.2. Simplex Regression
Lemma 3—Simplex regression: HZ ”= VT for simplex regression.

Proof: Consider HZ regression. We write the Lagrangian of (4) as

‚– = argmin
–

ÎyT ≠ Y 0–Î2

2
+ ⁄Î–Î2

2
≠ (◊hz)Õ

– + ‹
hz(1Õ

– ≠ 1),
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where ◊
hz œ RT0 and ‹

hz œ R. By the KKT conditions, optimality is achieved if the
following are satisfied: (i) ‚– ≤ 0 and 1Õ ‚– = 1; (ii) ‚◊

hz

≤ 0; (iii) ‚◊hz

i ‚–i = 0 for i = 1, . . . , T0;
(iv) ‚– = (Y Õ

0
Y 0 + ⁄I)≠1(Y Õ

0
yT + (1/2)‚◊

hz

≠ (‚‹hz
/2)1). Thus, given primal and dual

feasible variables (‚–, ‚◊
hz

, ‚‹hz), we can write the final HZ prediction as

‚Y hz

NT (0) = ‚Y hz,ols

NT (0) + (1/2)yÕ
N (Y Õ

0
Y 0 + ⁄I)≠1(‚◊

hz

≠ ‚‹hz1),

where ‚Y hz,ols

NT (0) = y
Õ
N (Y Õ

0
Y 0 + ⁄I)≠1

Y
Õ
0
yT converges to the prediction corresponding

to the OLS solution with minimum ¸2-norm as ⁄ æ 0+. Similarly, for VT regression, the
KKT conditions are (i) ‚— ≤ 0 and 1Õ ‚— = 1; (ii) ‚◊

vt

≤ 0; (iii) ‚◊vt

i
‚—i = 0 for i = 1, . . . ,N0;

(iv) ‚— = (Y 0Y
Õ
0

+ ⁄I)≠1(Y 0yN + (1/2)‚◊
vt

≠ (‚‹vt
/2)1). For primal and dual feasible

variables (‚—, ‚◊
vt

, ‚‹vt), this yields

‚Y vt

NT (0) = ‚Y vt,ols

NT (0) + (1/2)yÕ
T (Y 0Y

Õ
0

+ ⁄I)≠1(‚◊
vt

≠ ‚‹vt1),

where ‚Y vt,ols

NT (0) = y
Õ
T (Y 0Y

Õ
0

+ ⁄I)≠1
Y 0yN converges to the prediction corresponding

to the OLS solution with minimum ¸2-norm as ⁄ æ 0+. Notably, as per Theorem 1,
‚Y hz,ols

NT (0) = ‚Y vt,ols

NT (0) = ‚Y ols

NT (0) for any ⁄ Ø 0. As a result,

‚Y hz

NT (0) = ‚Y ols

NT (0) + (1/2)yÕ
N (Y Õ

0
Y 0 + ⁄I)≠1(‚◊

hz

≠ ‚‹hz1) (24)

‚Y vt

NT (0) = ‚Y ols

NT (0) + (1/2)yÕ
T (Y 0Y

Õ
0

+ ⁄I)≠1(‚◊
vt

≠ ‚‹vt1). (25)

As seen from (24) and (25), the leading terms in the HZ and VT simplex regression
predictions are identical. The remaining terms, however, can di�er from one another.
As an example, consider N = T with Y 0 = I , yN = 0, yT = (1 + ⁄)(‚◊

vt

≠ ‚‹vt1). By
construction, observe that ‚— = (2(1+⁄))≠1(‚◊

vt

≠ ‚‹vt1). Recall from the KKT conditions
for VT regression that ‚— ≤ 0 and 1Õ ‚— = 1. Therefore, at least one entry of (‚◊

vt

≠ ‚‹vt1)
must be strictly positive. This yields

(1 + ⁄)≠1
y

Õ
T (‚◊

vt

≠ ‚‹vt1) = (‚◊
vt

≠ ‚‹vt1)Õ(‚◊
vt

≠ ‚‹vt1) > 0.

Combining the above, we obtain ‚Y hz

NT (0) = 0 and ‚Y vt

NT (0) > 0. Q.E.D.

A.2.3. Putting Everything Together—Proof of Theorem 2
Proof: The proof is immediate from Lemmas 2 and 3. Q.E.D.

A.2.4. Proof of Lemma 1: ¸p-penalties
Proof: We recall the Hadamard product parametrization (HPP): for any vector

z and integer K Ø 1, ÎzÎp
p = minz1¶···¶zK =z(1/K)

qK
k=1

ÎzkÎ2

2
, where ¶ denotes the

Hadamard (componentwise) product. We rewrite our subclass of ¸p-penalties, i.e., (17)
and (18), as sums of ¸2-penalties via the HPP technique:

(‚–1, . . . , ‚–K) = argmin
–1,...,–K

ÎyT ≠ Y 0(–1 ¶ · · · ¶ –K)Î2

2
+ ⁄

K

Kÿ

k=1

Î–kÎ2

2
(26)
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(‚—
1
, . . . , ‚—K) = argmin

—1,...,—K

ÎyN ≠ Y
Õ
0
(—

1
¶ · · · ¶ —K)Î2

2
+ ⁄

K

Kÿ

k=1

Î—kÎ2

2
, (27)

where ‚– = ‚–1 ¶ · · · ¶ ‚–K and ‚— = ‚—
1

¶ · · · ¶ ‚—K . Below, we leverage the results of Ho�
(2017), which provides an alternating ridge regression algorithm to solve for (26)–(27).

Consider HZ regression. Let us solve for –k by fixing –kÕ for k
Õ ”= k. To be-

gin, observe that (–1 ¶ · · · ¶ –K)Õ
Y

Õ
0
Y 0(–1 ¶ · · · ¶ –K) = –

Õ
k(Y Õ

0
Y 0 ¶ –≥k–

Õ
≥k)–k and

(–1 ¶ · · · ¶ –K)Õ
Y

Õ
0
yT = –

Õ
k(–≥k ¶ Y

Õ
0
yT ), where –≥k = –1 ¶ · · · ¶ –k≠1 ¶ –k+1 ¶ · · · ¶ –K .

This allows us to write the optimality conditions as

Ò–k

)
–

Õ
k

!
Y

Õ
0
Y 0 ¶ –≥k–

Õ
≥k + (⁄/K)I

"
–k ≠ 2–

Õ
k(–≥k ¶ Y

Õ
0
yT )

*
= 0.

This is quadratic in –k for fixed –≥k. Thus, the unique minimizer at convergence is

‚–k =
!
Y

Õ
0
Y 0 ¶ ‚–≥k ‚–Õ

≥k + (⁄/K)I
"≠1 (‚–≥k ¶ Y

Õ
0
yT ),

where ‚–≥k = ‚–1 ¶ · · · ¶ ‚–k≠1 ¶ ‚–k+1 ¶ · · · ¶ ‚–K . Leveraging properties of the Hadamard
product in Styan (1973), we rewrite Y

Õ
0
Y 0 ¶ ‚–≥k ‚–Õ

≥k = D(‚–≥k)Y Õ
0
Y 0D(‚–≥k) and

Y
Õ
0
yT ¶ ‚–≥k = D(‚–≥k)Y Õ

0
yT , where D(‚–≥k) is the diagonal matrix formed from ‚–≥k.

Thus, ‚–k = (D(‚–≥k)Y Õ
0
Y 0D(‚–≥k) + (⁄/K)I)≠1

D(‚–≥k)Y Õ
0
yT . Turning to VT regres-

sion, we have ‚—k = (D(‚—≥k)Y 0Y
Õ
0
D(‚—≥k) + (⁄/K)I)≠1

D(‚—≥k)Y 0yN , where ‚—≥k =
‚—

1
¶ · · · ¶ ‚—k≠1

¶ ‚—k+1
¶ · · · ¶ ‚—K and D(‚—≥k) is the diagonal matrix formed from ‚—≥k.

This completes the proof. Q.E.D.

A.3. Proof of Corollary 1

Proof: Consider OLS. Recall that ‚Y hz

NT (0) = ÈyN , ‚–Í with ‚– = Y
†
0
yT and ‚Y vt

NT (0) =
ÈyT , ‚—Í with ‚— = (Y Õ

0
)†

yN . By Theorem 1, ‚Y hz

NT (0) = ‚Y vt

NT (0). Thus,

‚Y dr

NT (0) = ÈyT , ‚—Í + ÈyN , ‚–Í ≠ È‚–,Y
Õ
0

‚—Í = 2ÈyT , ‚—Í ≠ È‚–,Y
Õ
0

‚—Í. (28)

Since (Y Õ
0
)† = (Y †

0
)Õ, we have

È‚–,Y
Õ
0

‚—Í = y
Õ
T (Y Õ

0
)†

Y
Õ
0
(Y Õ

0
)†

yN = y
Õ
T (Y Õ

0
)†

yN = y
Õ
T

‚—. (29)

Plugging (29) into (28), we conclude ‚Y dr

NT (0) = 2ÈyT , ‚—Í ≠ ÈyT , ‚—Í = ‚Y vt

NT (0) = ‚Y hz

NT (0).
Now, observe that the same arguments above hold when Y

(k)

0
takes the place of Y 0 for

any k < R. Therefore, the same reduction can be derived for PCR. Q.E.D.

A.4. Proof of Corollary 2
Proof: Let Y

hz

0
= [1,Y 0] and Y

vt

0
= [1,Y

Õ
0
]. The proof is immediate from Theorem 1

by noting that (Y hz

0
)Õ ”= Y

vt

0
. Q.E.D.

A.5. Proof of Corollary 3
Proof: Consider HZ ridge regression. The optimality conditions give

Ò(–0,–1,–)

)
ÎyT ≠ Y 0– ≠ –01Î2

2
+ ÎyN ≠ –11Î2

2
+ ⁄Î–Î2

2

*
= 0.
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Solving for –0, we have ‚–0 = (1/N0)ÈyT ,1Í, which uses Y
Õ
0
1 = 0. Solving for –1, we

have ‚–1 = (1/T0)ÈyN ,1Í. Finally, solving for –, we have ‚– = (Y Õ
0
Y 0 + ⁄I)≠1

Y
Õ
0
yT .

Identical arguments for VT regression yield ‚—0 = (1/T0)ÈyN ,1Í, ‚—1 = (1/N0)ÈyT ,1Í,
and ‚— = (Y 0Y

Õ
0

+ ⁄I)Y 0yN .
Further, Theorem 1 gives ÈyN , ‚–Í = ÈyT , ‚—Í. Observing that ‚–0 = ‚—1 and ‚—0 = ‚–1,

proves our ridge result. Setting ⁄ = 0 and using the pseudoinverse, we have our OLS
result. The result for PCR is established from OLS by substituting Y

(k)

0
for Y 0. This

completes the proof. Q.E.D.

APPENDIX B: Proofs for Inference
B.1. Proof of Theorem 3

To establish Theorem 3, we first state a few useful results.

Lemma 4—Theorem 2.7.1 of Lehmann (2000): Let Xi for i = 1, . . . , n be indepen-
dently distributed with means E[Xi] = ’i and variances ‡

2

i , and with finite third mo-
ments. Let X̄ = (1/n)

qn
i=1

Xi. Then Var(X̄)≠1/2 · (X̄ ≠E[X̄]) d≠æ N (0,1), provided
A

nÿ

i=1

E
#
|Xi ≠ ’i|3

$
B2

= o

A1 nÿ

i=1

‡
2

i
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B

.

Lemma 5: Consider a random vector x and random matrix A. Let E[x|A] = 0 and
Cov(x|A) = �. Then E[xÕ

Ax|A] = tr(A�).

Proof: (i) [HZ model] Let Assumption 1 hold. By (39), Lemma 4 yields

Var(‚YNT (0)|yN ,Y 0)≠1/2 · ( ‚YNT (0) ≠E[ ‚YNT (0)|yN ,Y 0]) d≠æ N (0,1).

To evaluate E[ ‚YNT (0)|yN ,Y 0], we first observe that

E[ ‚YNT (0)|yN ,Y 0] = E[ÈyN ,Y
†
0
yT Í|yN ,Y 0] = y

Õ
N Y

†
0
Y 0–

ú = y
Õ
N H

v
–

ú
. (30)

Moving to the variance term, we note that

Var(‚YNT (0)|yN ,Y 0) = y
Õ
N Cov(‚–|yN ,Y 0)yN . (31)

Towards evaluating the above, we note that

Cov(‚–|yN ,Y 0) = Y
†
0
Cov(ÁT |yN ,Y 0)(Y Õ

0
)† = Y

†
0
�hz

T (Y Õ
0
)†

. (32)

Plugging (32) into (31), we obtain

Var(‚YNT (0)|yN ,Y 0) = y
Õ
N Y

†
0
�hz

T (Y Õ
0
)†

yN = ‚—
Õ
�hz

T
‚—, (33)

where we recall that ‚— = (Y Õ
0
)†

yN . Putting it all together, we conclude

(‚—
Õ
�hz

T
‚—)≠1/2 · ( ‚YNT (0) ≠ ÈyN ,H

v
–

úÍ) d≠æ N (0,1).



26

(ii) [VT model] Let Assumption 2 hold. Following the arguments above, we have

(‚–Õ�vt

N ‚–)≠1/2 · ( ‚YNT (0) ≠ ÈyT ,H
u
—

úÍ) d≠æ N (0,1).

(iii) [DR model] Let Assumption 3 hold. We write

‚YNT (0) = y
Õ
N Y

†
0
yT =

ÿ

iÆN0

ÿ

tÆT0

(Y †
0
)itYiT YNt. (34)

Observe that (34) is a sum of independent random variables with E[YiT YNt|Y 0] =
E[YiT |Y 0]E[YNt|Y 0] and Var(YiT YNt|Y 0) = E[YiT |Y 0]2‡

2

Nt + E[YNt|Y 0]2‡
2

iT + ‡
2

iT ‡
2

Nt.
Lemma 4 then establishes that

Var(‚YNT (0)|Y 0)≠1/2 · ( ‚YNT (0) ≠E[ ‚YNT (0)|Y 0]) d≠æ N (0,1).

Our aim is to evaluate E[ ‚YNT (0)|Y 0] and Var(‚YNT (0)|Y 0). Towards the former, we use
Assumption 3 with the law of total expectation to obtain

E[ ‚YNT (0)|Y 0] = E
Ë
E[yÕ

N Y
†
0
(Y 0–

ú + ÁT )|ÁN ,Y 0]|Y 0

È

= E
Ë
(Y Õ

0
—

ú + ÁN )Õ
Y

†
0
Y 0–

ú|Y 0

È
= È—ú

,Y 0–
úÍ.

Note that we have used the fact that yN is deterministic given (ÁN ,Y 0). Similarly, by
the law of total variance,

Var(‚YNT (0)|Y 0) = E[Var(‚YNT (0)|ÁN ,Y 0)|Y 0] + Var(E[ ‚YNT (0)|ÁN ,Y 0]|Y 0). (35)

Following the derivation of (33), we have

E[Var(‚YNT (0)|ÁN ,Y 0)|Y 0] = (Y Õ
0
—

ú)Õ
A(Y Õ

0
—

ú) +E[ÁÕ
N AÁN |Y 0] + 2E[ÁÕ

N Y
Õ
0
—

ú|Y 0],(36)

where A = Y
†
0
�dr

T (Y Õ
0
)†. Notice that Assumption 3 gives E[ÁÕ

N Y
Õ
0
—

ú|Y 0] = 0. Since A

is deterministic given Y 0, Lemma 5 yields

E[ÁÕ
N AÁN |Y 0] = tr(A�dr

N ). (37)

Following the arguments that led to the derivation of (30), we have

Var(E[ ‚YNT (0)|ÁN ,Y 0]|Y 0) = Var(yÕ
N H

v
–

ú|Y 0) = (Hv
–

ú)Õ�dr

N (Hv
–

ú). (38)

Plugging (36), (37), and (38) into (35), we arrive at our desired result. Q.E.D.
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APPENDIX C: Inference

C.1. Model-Based Asymptotic Results on Inference

We state the moment conditions of Theorem 3. Let (‡hz

iT )2 = Var(ÁiT |yN ,Y 0) for i =
1, . . . ,N0. Define {(‡vt

Nt)2
, (‡dr

iT )2
, (‡dr

Nt)2} for i = 1, . . . ,N0 and t = 1, . . . , T0 with respect
to (�vt

N ,�dr

T ,�dr

N ) analogously. These are the conditions:

I: HZ condition.

A
ÿ

iÆN0

E
Ë
|‚—iÁiT |3| yN ,Y 0

ÈB2

= o

A1 ÿ

iÆN0

‚—2

i (‡hz

iT )2

23

B

. (39)

II: VT condition.

A
ÿ

tÆT0

E
#
|‚–tÁNt|3| yT ,Y 0

$
B2

= o

A1 ÿ

tÆT0

‚–2

t (‡vt

Nt)2

23

B

. (40)

III: DR condition.

A
ÿ

iÆN0

ÿ

tÆT0

E
Ë
|(Y †

0
)it {E[YiT |Y 0]ÁNt +E[YNt|Y 0]ÁiT + ÁiT ÁNt} |3 | Y 0

ÈB2

= o

Q

a
A

ÿ

iÆN0

ÿ

tÆT0

(Y †
0
)2

it

)
E[YiT |Y 0]2(‡dr

Nt)2 +E[YNt|Y 0]2(‡dr

iT )2 + (‡dr

iT )2(‡dr

Nt)2
*

B3
R

b .(41)

If (ÁiT , (‡hz

iT )2) are bounded, then (39) translates to
q

iÆN0
|‚—i|3 = o(Î‚—Î3

2
), which rules

out outlier coe�cients; a similar interpretation can be derived for (40). Similarly, if
(ÁiT ,ÁNt) and (‡2

iT ,‡
2

Nt) are bounded for all (i, t), then (41) loosely translates to
ÿ

iÆN0

|‚—i|3 +
ÿ

tÆT0

|‚–t|3 +
ÿ

iÆN0

ÿ

tÆT0

|(Y †
0
)it|3 = o

1
Î‚—Î3

2
+ Î‚–Î3

2
+ ÎY

†
0
Î3

F

2
,

which e�ectively bounds the magnitudes of the HZ and VT OLS coe�cients and pseu-
doinverse matrix entries.

C.2. Model-Based Confidence Intervals

We present the confidence intervals previewed in Section 4.1.3. Theorem 3 motivates
separate HZ, VT, and DR confidence intervals: for ◊ œ (0,1),

µ
hz

0
œ

5
‚YNT (0) ± z ◊

2

Ò
‚vhz

0

6
,

µ
vt

0
œ

Ë
‚YNT (0) ± z ◊

2


‚vvt

0

È
,

µ
dr

0
œ

5
‚YNT (0) ± z ◊

2

Ò
‚vdr

0

6
,
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where z ◊
2

is the upper ◊/2 quantile of N (0,1), and (‚vhz

0
, ‚vvt

0
, ‚vdr

0
) are the estimators of

(vhz

0
, v

vt

0
, v

dr

0
). We construct

‚vhz

0
= ‚—

Õ ‚�T
‚—, ‚vvt

0
= ‚–Õ ‚�N ‚–, ‚vdr

0
= ‚vhz

0
+ ‚vvt

0
≠ tr(Y †

0
‚�T (Y Õ

0
)† ‚�N ), (42)

where ‚�T and ‚�N are the estimators of (�hz

T ,�dr

T ) and (�vt

N ,�dr

N ), respectively. We
precisely define them under homoskedastic and heteroskedastic errors below. To reduce
ambiguity, we index (‚vhz

0
, ‚vvt

0
, ‚vdr

0
) by the covariance estimator. Recall H

u = UU
Õ and

H
v = V V

Õ. We define H
u
‹ = I ≠H

u and H
v
‹ = I ≠H

v. With this notation, the HZ and
VT in-sample errors are H

u
‹yT = yT ≠ Y 0 ‚– and H

v
‹yN = yN ≠ Y

Õ
0

‚—, respectively.
It is clear from (42) that (‚vhz

0
, ‚vvt

0
) are plug-in estimators for (vhz

0
, v

vt

0
). As such, we

discuss ‚vdr

0
with respect to v

dr

0
. Recall ‚– = H

v ‚– and ‚— = H
u ‚— by construction. To

justify the negative trace in ‚vdr

0
, note that ‚vhz

0
is a quadratic involving (yN ,yT ). Since

both quantities are random, the expectation of ‚vhz

0
induces an additional term that

precisely corresponds to the trace term in v
dr

0
. The same property holds for ‚vvt

0
. Thus,

‚vdr

0
corrects for this bias via the negative trace.

C.2.1. Homoskedastic Errors
Consider �hz

T with identical diagonal elements, i.e., �hz

T = (‡hz

T )2
I , where (‡hz

T )2 =
Var(ÁiT |yN ,Y 0) for i = 1, . . . ,N0. Let (�vt

N ,�dr

T ,�dr

N ) be defined analogously. We use
the standard variance estimators

‚�homo

T = 1
N0 ≠ R

ÎH
u
‹yT Î2

2
I,

‚�homo

N = 1
T0 ≠ R

ÎH
v
‹yN Î2

2
I, (43)

where R = rank(Y 0), which can be computed as R = tr(Hu) = tr(Hv).

Lemma 6: Consider homoskedastic errors. (i) [HZ model] Under Assumption 1, we
have

E[ ‚�homo

T |yN ,Y 0] = �hz

T and E[‚vhz,homo

0 |yN ,Y 0] = v
hz

0
.

(ii) [VT model] Under Assumption 2, we have

E[ ‚�homo

N |yT ,Y 0] = �vt

N and E[‚vvt,homo

0 |yT ,Y 0] = v
vt

0
.

(iii) [DR model] Under Assumption 3, we have

E[ ‚�homo

T |Y 0] = �dr

T , E[ ‚�homo

N |Y 0] = �dr

N , and E[‚vdr,homo

0 |Y 0] = v
dr

0
.

Lemma 6 is a well known result within the OLS literature, albeit it is typically
formalized under the stricter full column rank assumption. As a comparison with the
synthetic controls literature, we take note of the recent work of Agarwal et al. (2021).
Agarwal et al. (2021) propose a VT PCR estimator under the homoskedastic setting and
provide a similar confidence interval to that of (43) via large-sample approximations.
Under a closely related VT model, they propose ‚—

Õ ‚�homo

N
‚— in place of ‚–Õ ‚�homo

N ‚–. While
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the point estimate of Agarwal et al. (2021) also takes the form ÈyT , ‚—Í, their variance
estimator only depends on (yN ,Y 0); in comparison, ours depends on (yN ,yT ,Y 0).
Hence, the confidence interval as per Agarwal et al. (2021) is numerically identical
for every post-treatment point estimate while ours can vary across the post-treatment
periods, which may be favorable.

C.2.2. Heteroskedastic Errors
We adopt two strategies for the heteroskedastic setting.

I: Jackknife. The first estimator is based on the jackknife. Traditionally, the jackknife
estimates the covariance of the regression coe�cients (‚–, ‚—). By analyzing said esti-
mates, we derive the following:

‚�jack

T = diag
1

[Hu
‹ ¶ H

u
‹ ¶ I]† [Hu

‹yT ¶ H
u
‹yT ]

2
(44)

‚�jack

N = diag
1

[Hv
‹ ¶ H

v
‹ ¶ I]† [Hv

‹yN ¶ H
v
‹yN ]

2
. (45)

Lemma 7: Consider heteroskedastic errors. (i) [HZ model] Let Assumption 1 hold.
If (Hu

‹ ¶ H
u
‹ ¶ I) is nonsingular, then

E[ ‚�jack

T |yN ,Y 0] = �hz

T + �hz and E[‚vhz,jack

0 |yN ,Y 0] = v
hz

0
+ ‚–Õ�hz ‚–,

where �hz

¸¸ =
q

j ”=¸(‡hz

jT )2(Hu
¸j)2(1≠H

u
¸¸)≠2 for ¸ = 1, . . . ,N0. (ii) [VT model] Let Assump-

tion 2 hold. If (Hv
‹ ¶ H

v
‹ ¶ I) is nonsingular, then

E[ ‚�jack

N |yT ,Y 0] = �vt

N + �vt and E[‚vvt,jack

0 |yT ,Y 0] = v
vt

0
+ ‚—

Õ
�vt ‚—,

where �vt

¸¸ =
q

j ”=¸(‡vt

Nj)2(Hv
¸j)2(1≠H

v
¸¸)≠2 for ¸ = 1, . . . , T0. (iii) [DR model] Let Assump-

tion 3 hold. If (Hu
‹ ¶ H

u
‹ ¶ I) and (Hv

‹ ¶ H
v
‹ ¶ I) are nonsingular, then

E[ ‚�jack

T |Y 0] = �dr

T + �dr
, E[ ‚�jack

N |Y 0] = �dr

N + �dr
,

E[‚vdr,jack(Y 0)|Y 0]

= v
dr

0
+ (Hu

—
ú)Õ�dr(Hu

—
ú) + (Hv

–
ú)Õ�dr(Hv

–
ú) + tr(Y †

0
�dr(Y Õ

0
)†�dr),

where �dr

¸¸ and �dr

¸¸ are defined analogously to �hz

¸¸ and �vt

¸¸ , respectively, with (‡dr

jT )2 and
(‡dr

Nj)2 in place of (‡hz

jT )2 and (‡vt

Nj)2, respectively.

Lemma 7 establishes that the jackknife is conservative, provided (Hu
‹ ¶ H

u
‹ ¶ I)

and (Hv
‹ ¶ H

v
‹ ¶ I) are nonsingular. Strictly speaking, the jackknife is well defined

if these quantities are singular, as seen through the pseudoinverse in (44) and (45).
Lemma 7 considers the nonsingular case for simplicity. We remark that max¸ H

u
¸¸ < 1

and max¸ H
v
¸¸ < 1 are su�cient conditions for invertibility.

II: HRK-estimator. Next, we consider the covariance estimator proposed by Hartley
et al. (1969). We index this estimator by the authors, Hartley-Rao-Kiefer:

‚�HRK

T = diag
1

[Hu
‹ ¶ H

u
‹]≠1 [Hu

‹yT ¶ H
u
‹yT ]

2

‚�HRK

N = diag
1

[Hv
‹ ¶ H

v
‹]≠1 [Hv

‹yN ¶ H
v
‹yN ]

2
.
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Lemma 8: Consider heteroskedastic errors. (i) [HZ model] Let Assumption 1 hold.
If (Hu

‹ ¶ H
u
‹) is nonsingular, then

E[ ‚�HRK

T |yN ,Y 0] = �hz

T and E[‚vhz,HRK

0 |yN ,Y 0] = v
hz

0
.

(ii) [VT model] Let Assumption 2 hold. If (Hv
‹ ¶ H

v
‹) is nonsingular, then

E[ ‚�HRK

N |yT ,Y 0] = �vt

N and E[‚vvt,HRK

0 |yT ,Y 0] = v
vt

0
.

(iii) [DR model] Let Assumption 3 hold. If (Hu
‹ ¶H

u
‹) and (Hv

‹ ¶H
v
‹) are nonsingular,

then

E[ ‚�HRK

T |Y 0] = �dr

T , E[ ‚�HRK

N |Y 0] = �dr

N , and E[‚vdr,HRK

0 |Y 0] = v
dr

0
.

Lemma 8 establishes that the HRK estimator is unbiased, provided (Hu
‹ ¶ H

u
‹) and

(Hv
‹ ¶ H

v
‹) are invertible. To discuss su�cient conditions for invertibility, consider

(Hu ¶ H
u). A su�cient condition is strict diagonal dominance (Varga, 1962): (1 ≠

H
u
¸¸)2

>
q

j ”=¸(Hu
¸j)2. Notice that H

u is an orthogonal projector and is thus idempotent,
i.e., (Hu)2 = H

u, and symmetric. Therefore,

H
u
¸¸ = (Hu

¸¸)2 +
ÿ

j ”=¸

(Hu
¸j)2 =∆

ÿ

j ”=¸

(Hu
¸j)2 = H

u
¸¸(1 ≠ H

u
¸¸),

which allows us to simplify the condition as (1≠H
u
¸¸)2

> H
u
¸¸ ≠ (Hu

¸¸)2. Thus, max¸ H
u
¸¸ <

1/2 is a su�cient condition for invertibility. Since tr(Hu) = R, this restricts R < N0/2.
The same arguments apply for (Hv ¶ H

v).

C.2.3. Discussion

We highlight that Lemmas 6–8 only hold in expectation. For any particular real-
ization, ‚vdr

0
may exhibit unexpected properties. For instance, if tr(Y †

0
‚�T (Y Õ

0
)† ‚�N ) >

max{‚vhz

0
, ‚vvt

0
}, then ‚vdr

0
< min{‚vhz

0
, ‚vvt

0
}; thus, the mixed coverage will be smaller than

both HZ and VT coverages. In fact, ‚vdr

0
can be negative if tr(Y †

0
‚�T (Y Õ

0
)† ‚�N ) > ‚vhz

0
+‚vvt

0
,

which may occur if both HZ and VT in-sample errors are “too large”. For these sce-
narios, one naïve solution is to modify ‚vdr

0
as ‚vdr

0
= ‚vhz

0
+ ‚vvt

0
, which is conservative

by Lemmas 6–8. However, this case is arguably better resolved with a di�erent point
estimator altogether.

APPENDIX D: Proofs for Model-Based Confidence Intervals

We first state a useful lemma to prove Lemmas 6–8.

Lemma 9: [DR model] Let Assumption 3 hold. Then,

E[‚vdr

0
|Y 0] = (Hu

—
ú)ÕE[ ‚�T |Y 0](Hu

—
ú) + tr(Y †

0
E[ ‚�T |Y 0](Y Õ

0
)†�dr

N )

+ (Hv
–

ú)ÕE[ ‚�N |Y 0](Hv
–

ú) + tr(Y †
0
�dr

T (Y Õ
0
)†E[ ‚�N |Y 0])

≠ tr(Y †
0
E[ ‚�T |Y 0](Y Õ

0
)†E[ ‚�N |Y 0]).
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D.0.1. Proof of Lemma 6
Proof: (i) [HZ model] Let Assumption 1 hold. Taking note that H

u
‹Y 0 = 0,

ÎH
u
‹yT Î2

2
= y

Õ
T H

u
‹yT

= (Y 0– + ÁT )Õ
H

u
‹(Y 0– + ÁT )

= Á
Õ
T H

u
‹ÁT .

Applying Lemma 5 then gives

E[ÁÕ
T H

u
‹ÁT |yN ,Y 0] = tr(Hu

‹)(‡hz

T )2 = (N0 ≠ R)(‡hz

T )2
, (46)

where the final equality follows because the trace of a projection matrix equals its rank.
Taken altogether, we have E[ ‚�homo

T |yN ,Y 0] = �hz

T . Therefore,

E[‚vhz,homo

0 |yN ,Y 0] = ‚—
Õ
E[ ‚�homo

T |yN ,Y 0]‚— = v
hz

0
.

(ii) [VT model] Let Assumption 2 hold. Following the arguments above, we conclude
that E[ ‚�homo

N |yT ,Y 0] = �vt

N and E[‚vvt,homo

0 |yT ,Y 0] = v
vt

0
.

(iii) [DR model] Let Assumption 3 hold. Following the arguments that led to (46),
we obtain E[ ‚�homo

T |Y 0] = �dr

T and E[ ‚�homo

N |Y 0] = �dr

N . Applying Lemma 9 then gives
E[‚vdr,homo

0 |Y 0] = v
dr

0
. The proof is complete. Q.E.D.

D.1. Proof of Lemma 7

Proof: Before we establish the biases of ( ‚�jack

T , ‚�jack

N ), we first justify their forms.
Jackknife is a popular approach to estimate the covariances of (‚–, ‚—). Below, we follow
the standard techniques to derive the jackknife estimate of these objects, which will then
be used to derive ( ‚�jack

T , ‚�jack

N ). Without loss of generality, we begin with ‚–. Notably,
while standard derivations consider Y 0 with full column rank, we consider a general
matrix Y 0 that may be rank deficient. This di�erence is subtle so the following proof
is by no means novel. We provide it simply for completeness.

To describe the jackknife, we define ‚–≥i as the minimum ¸2-norm solution to (2),
where ⁄1 = ⁄2 = 0, without the ith observation, i.e.,

‚–≥i = (Y Õ
0,≥iY 0,≥i)†

Y
Õ
0,≥iyT,≥i, (47)

where Y 0,≥i and yT,≥i correspond to Y 0 and yT without the ith observation. We define
the pseudo-estimator as –̃i = T0 ‚–≠(T0 ≠1)‚–≥i. With these quantities defined, we write
the jackknife variance estimator as

‚V
jack

= 1
(T0 ≠ 1)2

ÿ

iÆN0

(–̃i ≠ ‚–)(–̃i ≠ ‚–)Õ
. (48)

To evaluate this quantity, we will rewrite ‚–≥i in a more convenient form. In particular,

Y
Õ
0,≥iY 0,≥i = Y

Õ
0
Y

Õ
0

≠ yiy
Õ
i

Y
Õ
0,≥iyT,≥i = Y

Õ
0
yT ≠ yiYiT ,
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where yi = [Yit : t Æ T0] is the ith row of Y 0. We do not assume that Y
Õ
0
Y 0 is nonsingu-

lar. As such, we use a generalized form of the Sherman-Morrison formula (Cline, 1965,
Meyer, 1973) to obtain

(Y Õ
0,≥iY 0,≥i)† = (Y Õ

0
Y 0)† + (1 ≠ H

u
ii)≠1(Y Õ

0
Y 0)†

yiy
Õ
i(Y

Õ
0
Y 0)†

. (49)

Recall ‚– = (Y Õ
0
Y 0)†

Y
Õ
0
yT and note YiT ≠ y

Õ
i ‚– is the ith element of ‚ÁT = H

u
‹yT . Using

these facts, we plug (49) into (47) to yield

‚–≥i =
#
(Y Õ

0
Y 0)† + (1 ≠ H

u
ii)≠1(Y Õ

0
Y 0)†

yiy
Õ
i(Y

Õ
0
Y 0)†$ (Y Õ

0
yT ≠ yiYiT )

= ‚– ≠ (Y Õ
0
Y 0)†

yiYiT + (1 ≠ H
u
ii)≠1(Y Õ

0
Y 0)†

yiy
Õ
i ‚– ≠ H

u
ii(1 ≠ H

u
ii)≠1(Y Õ

0
Y 0)†

yiYiT

= ‚– ≠ (1 ≠ H
u
ii)≠1(Y Õ

0
Y 0)†

yi‚ÁiT . (50)

Inserting (50) into our pseudo-estimate, we have

–̃i = T0 ‚– ≠ (T0 ≠ 1)
!

‚– ≠ (1 ≠ H
u
ii)≠1(Y Õ

0
Y 0)†

yi‚ÁiT

"

= ‚– + (T0 ≠ 1)(1 ≠ H
u
ii)≠1(Y Õ

0
Y 0)†

yi‚ÁiT . (51)

Inserting (51) into (48), we have

‚V
jack

= (Y Õ
0
Y 0)†

A
ÿ

iÆN0

‚Á2

iT

(1 ≠ H
u
ii)2

yiy
Õ
i

B

(Y Õ
0
Y 0)†

= (Y Õ
0
Y 0)†

Y
Õ
0
�Y 0(Y Õ

0
Y 0)†

,

where � is a diagonal matrix with �ii = ‚Á2

iT (1 ≠ H
u
ii)≠2. Equivalently, � = diag([Hu

‹ ¶
H

u
‹ ¶ I]†[‚ÁT ¶ ‚ÁT ]). It then follows that

y
Õ
N

‚V
jack

yN = ‚—
Õ
�‚—.

To arrive at (44), we define ‚�jack

T = �. This corresponds to the EHW estimator with
the jackknife correction. We derive (45) for ‚— by applying the same arguments above.
Now, we will evaluate the biases of ( ‚�jack

T , ‚�jack

N ).
(i) [HZ model] Let Assumption 1 hold. We define (‡hz

iT )2 = Var(ÁiT |yN ,Y 0) for i =
1, . . . ,N0. Observe that

E[(Hu
‹ ¶ H

u
‹ ¶ I)†(‚ÁT ¶ ‚ÁT )|yN ,Y 0] = (Hu

‹ ¶ H
u
‹ ¶ I)†E[‚ÁT ¶ ‚ÁT |yN ,Y 0]. (52)

To evaluate (52), we follow the derivations of (30) and (32) to obtain

E[‚ÁT |yN ,Y 0] = H
u
‹Y 0–

ú = 0 (53)

Cov(‚ÁT |yN ,Y 0) = H
u
‹�hz

T H
u
‹. (54)

Recall that E[X2] = Var(X) +E[X]2 for any random variable X . Thus, combining (53)
with (54) gives

E[‚ÁT ¶ ‚ÁT |yN ,Y 0] = (Hu
‹�hz

T H
u
‹ ¶ I)1. (55)
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Let ‚“ = E[‚ÁT ¶ ‚ÁT |yN ,Y 0]. By (55), the ¸th entry of ‚“ can be written as

‚“¸ =
ÿ

j ”=¸

(Hu
j¸)2(‡hz

jT )2 + (1 ≠ H
u
¸¸)2(‡hz

¸T )2
,

where H
u
j¸ is the (j, ¸)th entry of H

u. In turn, this allows us to rewrite (55) as

‚“ = (Hu
‹ ¶ H

u
‹)�hz

T 1. (56)

Next, let ‚’ = (Hu
‹ ¶ H

u
‹ ¶ I)≠1 ‚“. Notice that the ¸th entry of ‚’ is given by

‚’¸ = (‡hz

¸T )2 +
ÿ

j ”=¸

(Hu
¸j)2

(1 ≠ H
u
¸¸)2

(‡hz

jT )2
.

Therefore, diag(‚’) = �hz

T + �hz, where �hz

¸¸ =
q

j ”=¸(‡hz

jT )2(Hu
¸j)2(1 ≠ H

u
¸¸)≠2 for ¸ =

1, . . . ,N0. Notice if max¸ H
u
¸¸ < 1, then (Hu

‹ ¶ H
u
‹ ¶ I) is nonsingular, i.e., the pseudo-

inverse is precisely the inverse. In this situation, plugging the above into (52) gives

E[ ‚�jack

T |yN ,Y 0] = diag
!
(Hu

‹ ¶ H
u
‹ ¶ I)≠1E[‚ÁT ¶ ‚ÁT |yN ,Y 0]

"

= diag
!
(Hu

‹ ¶ H
u
‹ ¶ I)≠1 ‚“

"

= diag(‚’)

= �hz

T + �hz
. (57)

From this, we conclude that

E[‚vhz,jack

0 |yN ,Y 0] = ‚—
Õ
E[ ‚�jack

T |yN ,Y 0]‚—

= ‚—
Õ
(�hz

T + �hz)‚—

= v
hz

0
+ ‚—

Õ
�hz ‚—,

where we note that ‚—
Õ
�hz ‚— Ø 0.

(ii) [VT model] Let Assumption 2 hold. Following the arguments above, we conclude
E[ ‚�jack

N |yT ,Y 0] = �vt

N + �vt, where �vt

¸¸ =
q

j ”=¸(‡vt

Nj)2(Hv
¸j)2(1 ≠ H

v
¸¸)≠2 for ¸ = 1, . . . , T0.

Thus, E[‚vvt,jack

0 |yT ,Y 0] = v
vt

0
+ ‚–Õ�vt ‚–, where we note that ‚–Õ�vt ‚– Ø 0.

(ii) [DR model] Let Assumption 3 hold. We define (‡dr

iT )2 = Var(ÁiT |Y 0) for i =
1, . . . ,N0 and (‡dr

Nt)2 = Var(ÁNt|Y 0) for t = 1, . . . , T0. Following the arguments that
led to (57), we obtain E[ ‚�jack

T |Y 0] = �dr

T + �dr, where �dr

¸¸ =
q

j ”=¸(‡dr

jT )2(Hu
¸j)2(1 ≠

H
u
¸¸)≠2 for ¸ = 1, . . . ,N0. Similarly, we obtain E[ ‚�jack

N |Y 0] = �dr

N + �dr, where �dr

¸¸ =q
j ”=¸(‡dr

Nj)2(Hv
¸j)2(1 ≠ H

v
¸¸)≠2 for ¸ = 1, . . . , T0. Applying Lemma 9 then gives

E[‚vdr,jack

0 |Y 0]

= v
dr

0
+ (Hu

—
ú)Õ�dr(Hu

—
ú) + (Hv

–
ú)Õ�dr(Hv

–
ú) + tr(Y †

0
�dr(Y Õ

0
)†�dr).

The proof is complete. Q.E.D.



34

D.2. Proof of Lemma 8

Proof: We adopt the strategy of Hartley et al. (1969) to prove our desired result.

(ii) [HZ model] Let Assumption 1 hold. As in the proof of Lemma 7, we define
‚ÁT = H

u
‹yT . Observe

E[(Hu
‹ ¶ H

u
‹)≠1(‚ÁT ¶ ‚ÁT )|yN ,Y 0] = (Hu

‹ ¶ H
u
‹)≠1E[‚ÁT ¶ ‚ÁT |yN ,Y 0]. (58)

To evaluate (58), we plug in (56) to obtain

E[(Hu
‹ ¶ H

u
‹)≠1(‚ÁT ¶ ‚ÁT )|yN ,Y 0] = (Hu

‹ ¶ H
u
‹)≠1(Hu

‹ ¶ H
u
‹)�hz

T 1 = �hz

T 1. (59)

Plugging (59) into (58) yields

E[ ‚�HRK

T |yN ,Y 0] = diag
!
(Hu

‹ ¶ H
u
‹)≠1E[‚ÁT ¶ ‚ÁT |yN ,Y 0]

"
= �hz

T . (60)

It then follows that E[‚vhz,HRK

0 |yN ,Y 0] = v
hz

0
.

(ii) [VT model] Let Assumption 2 hold. Following the same arguments as above, we
conclude E[ ‚�HRK

N |yT ,Y 0] = �vt

N and E[‚vvt,HRK

0 |yT ,Y 0] = v
vt

0
.

(ii) [DR model] Let Assumption 3 hold. Following the arguments that led to (60),
we obtain E[ ‚�HRK

T |Y 0] = �dr

T and E[ ‚�HRK

N |Y 0] = �dr

N . Applying Lemma 9 then gives
E[‚vdr,HRK

0 |Y 0] = v
dr

0
. The proof is complete. Q.E.D.

D.3. Proof of Lemma 9

Proof: By linearity of expectations,

E[‚vdr

0
|Y 0] = E[‚vhz

0
|Y 0] +E[‚vvt

0
|Y 0] ≠E[tr(Y †

0
‚�T (Y Õ

0
)† ‚�N )|Y 0]. (61)

We evaluate each term in (61).
Beginning with the first term, note that the randomness in ‚�T stems from ÁT and ‚—

is deterministic given (ÁN ,Y 0). As such, Assumption 3 with Lemma 5 gives

E[‚vhz

0
|Y 0] = E[‚—

Õ ‚�T
‚—|Y 0]

= E
Ë
E[‚—

Õ ‚�T
‚—|ÁN ,Y 0]|Y 0

È

= E
Ë
y

Õ
N Y

†
0
E[ ‚�T |Y 0](Y Õ

0
)†

yN |Y 0

È

= E
Ë
(Y Õ

0
—

ú + ÁN )Y †
0
E[ ‚�T |Y 0](Y Õ

0
)†(Y Õ

0
—

ú + ÁN )|Y 0

È

= (Hu
—

ú)ÕE[ ‚�T |Y 0](Hu
—

ú) + tr(Y †
0
E[ ‚�T |Y 0](Y Õ

0
)†�dr

N ).

By an analogous argument, we derive

E[‚vvt

0
|Y 0] = (Hv

–
ú)ÕE[ ‚�N |Y 0](Hv

–
ú) + tr(Y †

0
�dr

T (Y Õ
0
)†E[ ‚�N |Y 0]).
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Finally, we use the linearity of the trace operator with Assumption 3 to obtain

E[tr(Y †
0

‚�T (Y Õ
0
)† ‚�N )|Y 0] = E

Ë
E[tr(Y †

0
‚�T (Y Õ

0
)† ‚�N )|ÁN ,Y 0]|Y 0

È

= E
Ë
tr(Y †

0
E[ ‚�T |Y 0](Y Õ

0
)† ‚�N )|Y 0

È

= tr(Y †
0
E[ ‚�T |Y 0](Y Õ

0
)†E[ ‚�N |Y 0]).

Putting everything together completes the proof. Q.E.D.

APPENDIX E: Principal Component Regression
The results in Section 4, which are stated for OLS, immediately extend to PCR by

replacing Y 0 with Y
(k)

0
for any k < R. See Section 3 for details of the PCR method.

E.1. Comparing PCR to OLS
Intuitively, PCR-based models operate under the belief that the data is inherently

low-dimensional. We comment on several benefits of PCR over OLS. To begin, the
HZ and VT OLS variance estimators constructed in Section C.2 can su�er from degen-
eracy when N and T are of di�erent sizes. That is, if N < T , then the HZ in-sample
error is likely zero (otherwise known as overfitting), which causes the HZ coverage to
collapse on the point estimate; analogous statements hold for the VT coverage when
N > T . The PCR-based variance estimators, on the other hand, can avoid degeneracy
through the number of chosen principal components k (regularization). On a related
note, the nonsingularity conditions required for the jackknife and HRK variance esti-
mators can also be by controlled by k. See Agarwal et al. (2021) for various methods
on choosing k.

E.2. Empirical Applications—Extended
Here, we extend our analysis in Section 5.3.3 to include results for PCR. We present

the PCR-based confidence intervals for our three case studies in Figure E.1. For visual-
ization ease, we only plot the jackknife intervals. Notably, the same conclusions drawn
for OLS hold for PCR as well.

Co-editor [Name Surname; will be inserted later] handled this manuscript.
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(a) HZ model. (b) VT model. (c) DR model.

Figure E.1.—PCR estimates with jackknife confidence intervals. From top to bottom, the rows are
indexed by the Basque, California, and West Germany studies. From left to right, the columns are indexed
by the HZ, VT, and DR models.


	Introduction
	The Panel Data Framework
	Time Series Versus Cross-Sectional Based Regressions
	Horizontal Regression and Unconfoundedness
	Vertical Regression and Synthetic Controls
	Conventional Wisdom


	Point Estimation
	Classifying Notable Least Squares Formulations
	Description of Least Squares Formulations
	Classification Results

	Doubly Robust Regression
	Synthetic Difference-in-Differences
	Augmented Synthetic Controls
	Connecting DR Regression to HZ and VT Regressions

	Intercepts
	Including Intercepts and Retaining Symmetry through Data Centering


	Inference
	Model-Based Inference
	Three Generative Models
	Model-Based Asymptotic Results on Inference
	Model-Based Confidence Intervals

	Design-Based Inference
	Three Designs
	Design-Based Estimator
	Connecting Model-Based and Design-Based Perspectives

	From Insights to Practice

	Illustrations
	Background on Case Studies
	Data-Inspired Simulation Studies
	Data Generating Process
	Simulation Results

	Empirical Applications
	Implementation Details
	Point Estimation
	Inference


	Conclusion
	References
	Appendix A: Proofs for Point Estimation
	Proof of Theorem 1
	Proof of Theorem 2
	Lasso & Elastic Net Regressions
	Simplex Regression
	Putting Everything Together—Proof of Theorem 2
	Proof of Lemma 1: p-penalties

	Proof of Corollary 1
	Proof of Corollary 2
	Proof of Corollary 3

	Appendix B: Proofs for Inference
	Proof of Theorem 3

	Appendix C: Inference
	Model-Based Asymptotic Results on Inference
	Model-Based Confidence Intervals
	Homoskedastic Errors
	Heteroskedastic Errors
	Discussion


	Appendix D: Proofs for Model-Based Confidence Intervals
	Proof of Lemma 6
	Proof of Lemma 7
	Proof of Lemma 8
	Proof of Lemma 9

	Appendix E: Principal Component Regression
	Comparing PCR to OLS
	Empirical Applications—Extended


