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Abstract

In this work we investigate the dynamics of (stochastic) gradient descent when training a single-
neuron ReLU autoencoder on orthogonal inputs. We show that for this non-convex problem there
exists a manifold of global minima all with the same maximum Hessian eigenvalue and that gradient
descent reaches a particular global minimum when initialized randomly. Interestingly, which min-
imum is reached depends heavily on the batch-size. For full batch gradient descent, the directions
of the neuron that are initially positively correlated with the data are merely rescaled uniformly,
hence in high-dimensions the learned neuron is a near uniform mixture of these directions. On the
other hand, with batch-size one the neuron exactly aligns with a single such direction, showing that
when using a small batch-size a qualitatively different type of “feature selection” occurs.

1. Introduction and Related Work

Recent years have witnessed the impressive successes of neural networks across a wide variety of
domains. However their ability to generalize to unseen data is still not fully understood [16, 28]. One
potential explanation is that gradient-based optimization algorithms have an “implicit bias” towards
models that can generalize well [2, 3, 8, 9, 12, 17, 18, 20, 22]. In particular, it has been observed
that the choice of step-size and batch-size in these algorithms can make a substantial difference
in the generalization performance of trained neural networks, with generally better performance
obtained when using larger step-sizes and smaller batch-sizes [11, 13, 25]. These observations
have inspired a surge of research aimed at more deeply understanding the particular benefits of
small-batch stochastic gradient descent (SGD) over full-batch gradient descent (GD) [5, 10, 15, 26].
Most of this prior work has focused on the supervised learning setting where the data is labeled.
However, given the currently massive interest in unsupervised learning [4, 6, 19], it is crucial to
better understand the implicit bias of optimization algorithms in the unsupervised setting.

In this work, we consider a simple unsupervised setting where we are given a dataset of orthogonal
input vectors and train a single-neuron autoencoder to reconstruct the inputs using gradient descent
started from a random initialization. Since the network has only a single neuron, it is generally im-
possible to perfectly reconstruct all of the inputs, but it is still of interest to understand what gradient
descent will learn, the quality of learned solutions, and the role of different hyperparameters.

In this setting, we show that there exists a manifold of solutions which achieve the global minimum
value, and that gradient descent with a random initialization is able to find a minimum. However, for
different choices of the batch size, gradient descent finds qualitatively different minima. In the full
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batch setting (c.f. Section 2.3), we show that gradient descent essentially only modifies the norm
of the random initialization: the direction of the learned weight vector is almost identical to its
randomly-initialized direction. In contrast, for batch-size one we observe empirically (c.f. Section
3) that SGD “rotates” the neuron significantly during training, eventually aligning it with a single
datapoint, and prove that this occurs in a simplified setting (c.f. Section 2.4). Additionally, we show
that the maximum Hessian eigenvalue at these minima are identical, suggesting that this measure of
“flatness” is insufficient to characterize the implicit bias in this setting.

We note that previous works have also considered the dynamics of gradient descent for learning
single-neuron architectures [7, 14, 23, 27]. However, to the best of our knowledge none of these
previous works considered unsupervised learning with autoencoders or establish a separation be-
tween the minima learned using gradient descent with different batch sizes.

2. Main Results
2.1. Setting

Our model of interest is a simple weight-tied auto-encoder f(x;w) : R™ — R"

f(@;w) = wo({w, x)),  ¢(t) = max(t,0) (1)

parameterized by one-neuron w € R", with no bias, and ReLU activation. Assume we are given
a dataset D = {a,...,a,} where the a; € R" are orthonormal and necessarily m < n. Let
(a1,as,...,a,) be the completion to an orthonormal basis of R™. We will be interested in charac-
terizing the dynamics of (stochastic) gradient descent on the standard reconstruction objective

m

LwiD) = > twiay), Awz) = @ fww)] @

=1

Remark 1 One can view this setting as a very simple instance of the sparse coding model popular
in the dictionary learning literature (e.g. [1, 21]) where the ground-truth dictionary is orthogonal
and the latent codes are one-hat encodings with no observation noise.

We will consider SGD training with batch-size b and constant step-size «, namely
1
w(t+1) =w(t) —ay > Ve l(w;a), B(t)C[m], |BEt)=b, t=0,1,... (@3)
1€B(t)
where a simple calculation gives the gradient of the pointwise loss
Vo lw;z) = ¢ (w,2)) - [zw + (w,2)L,] - (f(z;w) —x), ¢t):=1>0). @

We will be most interested in understanding the convergence behavior from a random initialization
w;(0) ~ig N(0,02../n), i € [n] for some constant gini, > 0. There are many possible instantia-
tions of Eq. (3) based on the choice of mini-batch order B(¢) including the following

(GD) Full-batch GD (b = m) where B(t) = [m] for all ¢.
(SGD) Stochastic GD (b = 1) where B(t) = {i:} and i; ~;;q Unif([m]) for all ¢.
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Figure 1: Visualization of optimization trajectories for GD, CSGD, and SGD with m = n = 2. All
three methods are initialized at w(0) = (0.1,0.08) " and run with step size o = 0.25.

(CSGD) Cyclic Stochastic GD (b = 1) where B(t) = {¢t mod m}.

Our theoretical results analyse in particular GD in Section 2.3 and CSGD in Section 2.4.

2.2. Visualization of convergence behaviors on toy example

To illustrate how the batch size and mini-batch order influence the solutions found by gradient
descent, we run full-batch GD, stochastic GD, and cyclic stochastic GD on the simple toy example
where D = {a1, a2} with a; = (1,0)" and az = (0,1)7, that is, the dataset is given by standard
basis vectors in R2. For all three methods, we initialize at w(0) = (0.1,0.08) ". As we will see in
Section 2.3 and Section 2.4, full-batch GD must converge to w, = (0.781,0.625) whereas cyclic
SGD converges to a;.

Figure 1 visualizes the optimization trajectory of the coordinates for each of the three methods in
R2. We see that both GD and CSGD converge to points as predicted by our theory. Figure 1 also
shows that SGD converges to a9, showing that randomness in the mini-batch order can lead to a
different convergence behavior compared with cyclic SGD. Unlike CSGD, SGD is seen with as
more often during an early stage of iterations, and hence it converges to as eventually.

2.3. Full Batch Gradient Descent

We now characterize the dynamics of full-batch gradient descent training. That is we analyse the
dynamics of w(t) when b = m in Eq. (3). First let us define the following set

S(t) ={i € [m] : (wy, a;) > 0}, )

that is S(¢) is the indices of datapoints with which w is positively correlated at time ¢. For con-
venience let S := S(0). Due to our assumption of random initialization we can assume that
(w(0),a;) # 0 for all i € [n] since this occurs almost surely. Thus we can assume that S is
non-empty, otherwise from Eq. (4) it is easy to see that w(t) = w(0) for all t. Let IIg be the
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orthogonal projection onto span(a; : i € S), that is
IIs(x) = Z (ai, x) a;.
ieS

We then have the following limiting characterization the proof of which is given in Appendix A.
Theorem 2 Assume that the initialization w(0) satisfies the following

1. ||lw(0)] <1,

2. |S| > 0and (a;,w(0)) #0 Vi € [n]
and the step-size o < m/5. Then full-batch gradient descent iterates w(t) converges to w, where

. s(w(0)
7 s (w ()]

Corollary 3 Assume that w;(0) ~i;q N(0,02 . /n) for i € [n] where o < 1is a constant and
m = Q(n). Then with probability at least 1 — O(n™1),
max lim (a;, w(t)) = O(n~Y?), w(t) = w(t)/ |w(t)].

1€[m] t—00

2.4. Cyclic Stochastic Gradient Descent

In this section we consider the case of batch-size one. We analyse a simplified set-up where m =
n = 2 and the mini-batch order remains fixed throughout. For convenience, we will relabel the data
indices so that D = {ag, a1 } and assume that 5(t) = {a;q} where t%2 is 0 if ¢ is even and 1 if ¢
is odd. In Conjecture 6 we conjecture that similar results hold true for more general settings.

As in Section 2.3 we can assume that at initialization (a;, wg) # 0 for i € [n]. Recall the definition
of the set S := S(0) from Eq. (5). From the updates in Eq. (4) it is clear that w; = wy for all ¢ if S
is empty. If |S| = 1, then it is clear that w; — a; where 7 € S since the dynamics are equivalent to
full-batch gradient descent with batch-size one on the dataset D = {a;}. Therefore, we concentrate
on the case when |S| = 2. We have the following characterization proven in Appendix B.

Theorem 4 Assume that m = n = 2 and the initialization w(0) satisfies the following
1. (w(0),ap) > 0and (w(0),ap) > (w(0),ar)
2. |lw(0)]| < 1, (w,a;) #0foralli=0,1

and the step-size a < 1/4. Then the CSGD iterates w(t) converge to ag as t — oo.

Corollary 5 Assume m = n = 2 and w;(0) ~iqa N(0,02,,/n). Then with probability at least
some universal constant § > 0, running full-batch gradient descent and cyclic stochastic gradient
descent initialized from w(0) converge to difference solutions.

Our result in Theorem 4 is limited in the fact that it only covers the case where m = n = 2,
(w(0),ap) > (w(0),a), and the mini-batches follow a fixed, cyclic order. However, we believe
that this result can be a useful stepping stone for showing a much more general behavior of SGD
which we conjecture below. We have observed this conjectured behavior consistently in simulations
(e.g. Section 3) and are currently working on providing a theoretical analysis.
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Conjecture 6 For any m,n € N such that 1 < m < n running SGD (or cyclic SGD) on the
autoencoder objective Eq. (1) from an initialization w(0) such that (w(0), a;) > 0 for some i € [m)|
and with step-size « = O(1) will almost surely converge to a; for some i € S.

2.5. Loss Landscape

In this section we will study properties of different stationary points of GD and (cyclic) SGD for the
one-neuron autoencoder Eq. (1). Our first result characterizes the manifold of global minima.

Theorem 7 (Global Minima) The minimum value of the loss objective L(w) from Eq. (2) is equal
to L* and is attained on the set M where

* m—1 Ny 3 :
L ::W7 M= ZCZ'GZ'ZCD"'vazoandZCi:1 :
i=1

=1

Theorem 2 shows that full batch gradient descent converges to the following solution

GD (wo, a;) 2
w, = Z —Fa;, ®= Z (wo, a;) (6)
i€S \/6 €S
where S is defined in Eq. (5). By the above theorem w$P is a global minimum. In Conjecture 6 we
conjecture that in general (C)SGD converges to

wEGD = a;, forsomei € S. @)
Interestingly, this point is also a global minimum. Thus, both algorithms optimally minimize the
loss objective, but from a “feature learning” perspective achieve qualitatively different solutions,
since SGD learns a “pure” datapoint whereas GD learns a “mixture”.

As both algorithms converge to global minima, the solutions reached are identical in terms of loss
value and have gradient zero. Thus, it is a natural question to understand the second-order behavior

of these critical points. The Hessians at the critical points w$P and w$GP are given below.

Proposition 8 The Hessians of the loss objective at wSP Eq. (6) and w3CP Eq. (7) are

1 41 1
Hgp = quv ﬁ(’wSD) = o E Clgaér + D E E (wo, ay) <w0, a;) aiaz + oo I, (8
LesS LesS ieS

3 1
Hggp := V2, L(wiCP) = Eaiaj +—L 9)

A major thread of deep learning research seeks to understand the connection between the “flat-
ness” of local minima, the properties of different optimization algorithms, and generalization per-
formance. Such measures of flatness are usually related to the eigenspectrum of the Hessian. We
characterize the Hessian eigenspectra of H ¢p and Hggp below.

Lemma 9 The Hessian matrix Hgp from Eq. (8) has eigenvalue 4/m with multiplicity 1 cor-

responding to eigenvector wSP, eigenvalue 1 /m with multiplicity n — |S| and eigenvalue 0 with

multiplicity | S| — 1.
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Lemma 10 The Hessian matrix Hggp from Eq. (9) has eigenvalue 4/m with multiplicity 1 corre-

sponding to eigenvector wSCSP and eigenvalue 1/m with multiplicity n — 1.

From the above we have the following observations. Both Hgp and Hggp have the same max-
imum eigenvalue corresponding to the respective solutions w$™ and w3GP. The matrix Hgp is
however generally rank deficient for random initializations since |S| > m/4 with high probability.
In contrast, the matrix Hggp is full-rank. Lastly we can compute the respective traces

4+n—15] 3+n

TI'(HGD) = Tr(HSGD) = m .

m

Note that if m = Q(n), then |S| = Q(n) with high probability and so Tr(H gp) < Tr(Hscp).

3. Numerical Experiments

Here we use simulated data to investigate the convergence behavior of GD, SGD, and CSGD. We fix
n = 100 and m € {20, 80}, corresponding to a small and large m. The dataset D = {a1,...,an}
is given by columns of an orthonormal matrix drawn at random, and the initialization w(0) is drawn
from N\ (0, (<7i2nit /n)-1,,) with oy, = 0.1. For each of the methods, we run the method for 7' = 10*
iterations with step-size av = 0.25, and repeat for 100 trials. Table 1 shows the maximum correla-
tions between the limit points of each method and datapoints, i.e., max;c(,(w(7T'), a;), averaged
over 100 trials. We observe that cyclic SGD converges to one of the datapoints, as predicted by our
theory in the simplified set-up, and similarly for stochastic GD as we conjecture. Proving this is the
subject of current ongoing work. Whereas full-batch GD fails to converge to any of the datapoints,
and as expected from Corollary 3, the correlation further degrades as m increases.

Settings  full-batch GD  cyclic SGD  ordinary SGD
m =20 0.612(0.099) 1.0(<107% 1.0(<107%)
m =80 0.394(0.059) 1.0(<107% 1.0(<107%)

Table 1: Maximum correlations between limit points of different methods and datapoints in simu-
lated data with n = 100, averaged over 100 simulated datasets.

4. Conclusion

In this work, we studied the dynamics of gradient descent for single-neuron autoencoders, showing
that gradient descent with a small enough step-size finds a global minimum for this non-convex
problem. Different from previous works about learning single-neuron architectures (e.g. [27]), we
show that in our setting the choice of batch-size strongly influences the solution found by gradient
descent. Although both full batch GD and cyclic SGD reach global minima of the loss objective,
the latter becomes highly correlated with a datapoint leading to an arguably more “meaningful”
solution. In addition to the obtained loss, the maximal eigenvalue of the Hessians of both solutions
are also identical, suggesting that this notion of sharpness is limited for this setting. Looking ahead,
it is an exciting direction for future work to extend to more general settings (see Conjecture 06),
especially ones involving non-orthogonal data and multi-neuron autoencoders.
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Appendix A. Proofs for Section 2.3
A.1. Proof of Theorem 2

In this section we will give the proof of Theorem 2. Throughout we will make the assumptions
given in the theorem statement. Let us make some definitions. Define the vector of correlations
with the datapoints

c(t) = ((w(t),a1),...,(w(t),a,)) € R"”

and as before define
S(t) ={i € [m]:c(t) >0}, S(t)°=I[n]\S()

where for convenience we let S := S(0) and S¢ := S¢(0). Let IIg be the orthogonal projection
onto span(a; : i € S) and IIge be the projection onto the complement, that is

IIg(x) = Z (aj,z)a;, Ilge(x)= Z (aj,x)a; =z — Ilg(x).
€S jese
Furthermore we will define
O(t) = [Ts(w@)]* =D ci(t)?, () = |Tge(w(t)]]* = Y (1),
€S jeSse

Lastly we define the rescaled step-size 1 := a/m. By assumption < 1/9. If at time ¢, we have
¢i(t) # 0forall i € [n], then from Egs. (3, 4) we can write the full-batch gradient update as follows

it +1) = ailt) + mes()(2 — 20(t) — W(D)), i€St)

Gt +1) = ¢)(t) = ncy(B(0). je sy
To reduce notational clutter in the following we will sometimes suppress the time index ¢ and write
for example ¢; := ¢;(t), ¢} := ¢;(t + 1), and A¢; = ¢} — ;.

Let P(t) be the following statement:
foralli € [n], ¢i(t) # 0and S(t) = S(0)

and let Q)(¢) be the statement that P (k) is true for all 0 < k < t. Observe that by assumption P(0)
is true. If P(¢) is true, then we can write the full-batch update at time ¢ as follows

Ac;i =nci(2 — 29 — ), 1€ 8 (10)
Acj = —ne;P. jese (11)

We will eventually show in Corollary 14 that P(t) is true for all ¢. We will first show an invariant
for a weighted norm-like quantity under the assumption Q(¢) holds.

Lemma 11 If Q(t) is true, then
)
() + WD) < 1. (12)
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Proof We will prove this by induction on ¢. By assumption the statement is true for ¢ = 0.
Assuming the statement is true for time ¢ — 1 > 0, we will then show that it is true for time .

Assume (1) is true and consider the update at time ¢ — 1.

AD < 5pd(1— & — /2), (13)
AV < —nd. (14)

Since P(t — 1) is true, by Lemma 12

AD = 29D(2 — 28 — ) + n*D(2 — 28 — T)?
AV = —2pdW + 1? P2 V.

By the induction hypothesis, ®+ (5/8)¥ < 1. Since ®, ¥ > 0, this implies in particular that ® < 1
and ® + ¥ /2 < 1. Combined with the fact that 7 < 1/5 we obtain Eq. (13)

AD = 29D(2 — 28 — ) 4+ *D(2 — 20 — T)?
=4n®(1 — & — U/2) +4n(l —  — ¥/2) - [n®(1 — & — V/2)]
And(1 — & — U/2) + gn(l — o —U/2)
nd(1— & — v/2).
Similarly, for Eq. (14)

AV = —2pdT 4 1?2V
= —2ndV + ndV[nd]

1
< =2ndV + 57@\11 < —ndv.
Now observe that from the previous inequalities
5 5
AP+ =T | =Ad+ AT
8 8
5
<5nd(1—-&—V/2)— gT]CI)\I’

= 5n®(1 — (® + 57/8))
< 5n(® + 50 /8)(1 — ( + 5T/8)).

Since 7 < 1/5, by Lemma 21 and the induction hypothesis it follows that Eq. (12) is true. |

Lemma 12 Assume P(t) is true. We have the following update equations for ® and V.

AD =29d(2 — 20 — U) + 2P (2 — 20 — T)? (15)
AV = —2pdV + P20, (16)

10
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Proof This follow from straight-forward calculations

AD=0'-d=> () —c

€S

= (¢ —ci) (¢ + i)
€S

= nei(2 - 28 — 0)(26; + ne;(2 — 28 — 1))
€S

=20 (2-20-0)+7> cI(2-2P - V)

€S 1€S
=2P(2 - 2% — U) + 7°D(2 — 20 — V)%

and similarly

AT =T T =) ()*—c

jEeS®

=Y (=) + )
jeSse

= > —ne;®(2¢; — 1e;®)
jeSse

oY e Y o

jeSse jeSse
= 2PV + n* D2V,

Now we show some important monotonicity properties of the correlations under the assumption of
Q(t). As corollaries we will see that P(t) is true for all ¢ and that ¢ and ¥ are monotone quantities.

Lemma 13 Assume Q(t) is true. Then,
1. ci(t+1) >c¢(t) fori € S,
2. ¢j(t+1)-¢j(t) > 0and|cj(t + 1)| < |¢;(t)| for j € S°.

Proof We prove this by induction on ¢. Assume the statement is true for £ — 1 > 0 and consider
the update at time ¢. By the induction hypothesis ¢;(t) > ... > ¢;(0) > 0 fori € S. Since Q(?) is
true, by Lemma 11 we have that & + (9/16)¥ < 1 which implies in particular that 2® + ¥ < 2.
Therefore since P(t) is true, from Eq. (10) we have Ac¢; = n¢;(2 — 20 — ¥) > 0 fori € S
which implies ¢;(t + 1) > ¢;(t) which shows the first claim. Furthermore, from Eq. (11) we have
c;- = (1 — n®)c;. Since , @ € (0, 1), it follows that 0 < 1 — n® < 1 from which we easily get the
second claim. |

Corollary 14 [f P(0) is true, then P(t) is true for all t.

11
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Proof This is immediate from the previous lemma which gives that if ¢ € .S, then ¢;(¢) > 0 for all
tandif j € S°N [m] then ¢;(t) < 0 for all ¢. [ |

Corollary 15 & is monotone increasing and V is monotone decreasing.

Proof This is also immediate from the previous lemma which gives that c;(#)? is monotone increas-
ing for i € S and ¢;(t)? is monotone decreasing for j € S¢. [ |

Therefore from now on we can assume P(t) is true for all ¢, hence the dynamics obey the update
equations Egs. (10, 11) and Egs. (15, 16). Now let us characterize the limiting behaviors of ® and
v,

Lemma 16 Ast — oo, ®(t) — 1 and U(t) — 0.

Proof For the first claim observe that from Eq. (15)
AD = 2p®D(2 — 28 — U) + > B(2 — 20 — U)? > 2yB(2 — 20 — V).
Furthermore since ® + (9/16)¥ < 1 by Lemma 11, we have

2-2@-@22(1-@)-%(1-@):3(1-@).

Therefore since ®(¢) is increasing by Corollary 15 we have
4 4
AD > §n<I>(1 - ) > §n@(0) (1= ).

Thus, by Lemma 20
0<1—-®(t) <(1—P(0)) - exp(—rt)

where x := (4/9)n®(0) > 0, hence ®(¢) — 1. Since

0<W(t) < — (1 (t))
we see U(t) — 0. [ |
Now we are ready to complete the proof of Theorem 2. Define the quantity,

I(t) = n(2 —20(t) — (1)).

Then by unrolling Eq. (10),

t—1
ci(t) =ci(0) [JA+T(k), i€s. (17)
k=0
Note that we can write Eq. (15) as
—— =or+41?
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hence unrolling the update over ¢ yields

t—1
= (0) [H(l +T'(k))
k=0
Therefore we have the relation
t—1
®(t)
[[a+1(®) =/~
o ®(0)
which combined with Eq. (17) implies that
(T (0 .
<i(t) S ©) 1eS.

o(t) ©(0)’
Since ®(t) — 1, we get the same result as before

Ci<0)
®(0)’

Ci(t) —

Since ¥ — 0 it is clear that ¢;(t) — 0 for j € S°. Therefore we see that

15 (w(0))

W = s (w(0)]

as desired.

A.2. Proof of Corollary 3

In this section we give the proof of Corollary 3. For convenience, we will say an event occurs w.h.p.
if it occurs with probability at least 1 — O(n~!). By Theorem 2 we have that

Is(w(0)) = > _ (w(0),a;) a;.

€S

Therefore our goal is to show that

1 ~
m ) I.I]l w t = — 1N 7 = ( ) 71/2
Z‘E[E:'Ti{] <a 7ti\oo ( )> v D ieas%(c (0) (n )’

w.h.p where @ = Y ¢;(0)2. We will do so by bounding ® and max;cg ¢;(0) individually w.h.p.
i€s
First of all, note that since |.S| follows a Binomial distribution Binom(n,1/2), by a Chernoff bound
18, we have |S| > n/4 w.h.p. Since ¢;(0) = (w(0), a;) ~ia N(0,02,,/n) it follows that condi-
tional on S
¢ =2 ci(0)® ~ofe/n-X*(IS))
€S

13
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where x2(k) denotes a chi-squared random variable with k-degrees of freedom. A standard tail

bound Lemma 17 implies that w.h.p,
o2

P > ‘S‘ 1n1t
4n

which combined with our bound on | S| yields ® > o2, /16 w.h.p. Furthermore, a standard inequal-
ity for the maximum of independent Gaussians Lemma 19, gives that w.h.p,

21
max ¢;(0) < max¢;(0) < a‘init\/w‘
€S ZE[TL] n

Finally combining everything yields

1 Cinit 2logn
— 0) < - Oinj
\/ar?eaé“’( ) S = o=

= O0(n""?logn)

w.h.p as desired.

Lemma 17 (Chi-square Tail Bound [24]) If X ~ x2%(k) then for all t € (0,1),
Pr[X < k(1 —t)] < exp(—kt?/8).

Lemma 18 (Chernoff Bound) Let X = Z?:l X; where X; = 1 with probability p; and X; = 0
with probability 1 — p;, and all X; are independent. Let 1 = E(X) = > """ | p;. Then

Pr(X < (1= 08)u) < exp(—pd®/2)
forall § € (0,1).
Lemma 19 (Maximum of Gaussians) Ler X1, ..., X, ~q N(0, 02). Then,

2
Pr <maxX v 202%logn > t> < exp (2 >

i€[n]
A.3. Auxiliary Lemmas
Lemma 20 Consider a sequence {x;}cn which satisfies
Tpy1 — @ > (1 — x4)
forallt € N, where ¢; € (0,1] and xo < 1. Then

¢
1—x,5<1_[1—cZ )(1 — zp) <exp( ch> 1—x0)

=1

Proof Rearranging
Tep1 — ¢ > c(1 — )

yields
(I=zpq1) < (1 —c)(1 — )

14
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hence unrolling the recursion yields

1— a2 < (1= )1 = )
=1

and then the inequality 1 — z < e™ 7 yields

H(l —¢)(1 —xp) <exp (— ZCZ> (1 —x0).

i=1 =1

Lemma 21 Let {x}1en be a sequence such that xo < 1 and
Tep1 — xp < Awg(1 — )

for X < 1. Then xy < 1 forallt € N.

Proof Assume the statement is true for ¢ < 7. Observe that the function
f(@) = (14 Nz — \2?

has derivative
flz)=1+X-2\

hence f is strictly increasing on the interval (—oo, 1] and f(1) = 1. Therefore since z7 € [0, 1),
we have that z711 < f(z7) < 1 completing the claim. [ |

Appendix B. Proofs for Section 2.4
B.1. Dynamics of Cyclic SGD

First let recall our setting. We assume that at each time step ¢ we process example x; where x; =
a;99 and t%2 is 0 when t is even and 1 when ¢ is odd. Let y; = (wy, ag) and z; = (w;, a;). From
Egs. (3, 4) it follows that the dynamics are given by

Yer1 = ye(1 4+ a(2 - 2yt2 - Z?))
21 = 2(1 — ayf)
for t%2 = 0 and
Y1 = (1 — az?)
zig1 = z(l+ (2 — 227 — y7))

for t%2 = 1. For convenience we let F : R? — R? denote the function which gives the two-step
update (Y42, zt+2) = F(yt, 2¢) for t%2 = 0. We will make use of the following definitions

15
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* Define the potential function V (y, z) = z/y. We will show that under the given initial condi-
tions the potential is always decreasing after every two-steps.

e Define V_ = {(y,2) € (0,1)? : V(F(y,2)) — V(y,z) < 0} as the set of points where the
potential strictly decreases after two-steps.

e Define A = {(y,2) € (0,1)? 1y > 2 > 0,y? + 22 < 1 + a/4}. We will show that A C V_
and that A is an invariant set under F, i.e. (y,2) € A implies F(y, z) € A.

B.2. Proof of Theorem 4
We first begin with the observation that y, z: € (0,1) for all ¢.
Lemma 22 Ify, 2o € (0,1) and o < 1/4 then y;, z € (0, 1) for all t.

Proof We inducton t. If t%2 = 0, then 3,11 = v (14+a(2—2y? —2?) > 3:(1—a) > 0 and similarly
zi01 = 2(1 — ay?) > 2(1 — a) > 0. Therefore 4,11, 2141 > 0. Furthermore ;11 < 2z; < 1 and
Yir1 < ye(1 + 2a(1 — y?)) < 1 by Lemma 30. The case for t%2 = 1 is analogous. [

Now we begin by with some observations about the behavior of the squared norm N; = y? + 22 in
Lemma 24, 25, and 26. The first result Lemma 24 says that V; is strictly increasing while NV; < 1
since y; > 0 by Lemma 22. The second result Lemma 25 says that if at some point N; > 1, then
Ny > 1 for all ¥ > t. Therefore since Ny < 1 it follows that N; > Ny for all t. The last result
Lemma 26 states that [V, is always at most 1 + «/4, so in fact No < N; < 1+ a/4 for all ¢.

Now we will consider the subsequence of even iterates (yo, z91) for ¢ = 0,1, ... Let us recall the
sets V_ and A from Appendix B.1. In Proposition 27 we show that A C V_. Then by Lemmas
22 and 26, along with the definition of V_ it is easy to see that A is invariant under F', that is if
(y,z) € Athen F(y, z) € A. Since by assumption (yo, z0) € ‘A, this will imply that (ya, z2¢) € A
for all ¢ and that V' (yo;, z9) is strictly decreasing. Thus V' (yay, 22¢) — Vi > 0.

We claim that V, = 0. For the sake of contradiction assume that V, > 0. Let N; = y? + 22
Since by assumption Ny < 1, by Lemmas 24, 25, and 26, we have that for all £, 0 < Ny <
Noy < 1+ a/4. Since V, < zo1/yar < 20/yo < 1, the sequence {(yar, 221)} C K1 C V_ where

K1 = {(rcosf,rsinf) : 0 € [arctan(Vy),7/4],r € [No,1 + a/4]}. Since K; is a compact set
this is a contradiction by Proposition 23, therefore V, = 0.

Now we claim that liminf Ny, > 1. If there exists ¢y such that Ny, > 1, then by Lemma 25
we have N; > 1 for all t > tg, hence liminf No; > 1. If however, N; < 1 for all ¢, then by
Lemma 24 No; is an increasing sequence, hence lim Noy = sup No;. We claim that sup Noy > 1.
Suppose for the sake of contradiction N, := sup Ny < 1. Then {(ya, z2:)} C K2 where Ko =
{(rcos@,rsin®) : r € [Ny, N,],0 € [0,7/4]}. By Lemma 24 it follows that for any (y, z) € Ko,
N(F(y,z)) — N(y,z) > 0 therefore by Proposition 23 with V' = —N we get a contradiction.

Now we show that lim(ya;, z2:) = (1,0). By Lemma 22

y%t = No; — (ZQt/?JQt)z : y%t > Nop — (ZZt/th)2

which implies that liminf y3, > liminf No; — lim(22:/y2:)? = 1 and since y3, < 1 we have
limsup y3, < 1. Therefore lim yo; = 1 and lim z9; = lim yo; - (22¢/y2¢) = 0. We have shown that

16
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the even subsequence converges to the desired limit point. Now invoking Lemma 29 which shows
the gradient norm is continuous at the limit point, we see that (¢, z;) — (1,0) as desired.
B.3. Auxiliary Results

Proposition 23 Let {x}7°, be a sequence in R™ such that there exists continuous F : R" — R"
and xy11 = F(xy) forallt = 0,1... Assume there exists a function V : R™ — R that is continuous
on a compact subset K C R™ such that for all x € K, V(F(z)) — V(x) < 0. Then there exists
to € N such that xy, & K.

Proof For the sake of contradiction assume that z; € C for all ¢. Define the quantity
e:=sup{V(F(x)) —V(z):x € L}.
By the continuity of V' and F' and the compactness of /C, it follows that € < 0. Therefore for any 7',

inf V(z) <V(xp)

zek .-
=V(zo) + ) V(z1) — Via)
-
V(o) + S VF() — Vi)
t=0
< V(zg) + €T.

However, the inequality

inf < T
inf V(z) <Vi(xg) +e¢

clearly cannot hold since by compactness the left-hand side is finite and the right-hand side ap-
proaches negative infinity for large enough 7'. |

Lemma 24 Define N; = y? + 22. Assume that Ny < 1 and that y;, z; € [0,1]. Then Niy1 > Ny
The inequality is strict if t%2 = 0 and y; > 0 or t%2 = 1 and z; > O.

Proof Let u; = y? and v; = z2. Assume t%2 = 0. Then

U1 — up = oug(2 — 2up — ) (2 + (2 — 2up — vy))

(
= 2au(2 — 2uy — vy) + ut(2 — 2u — vt)Q
= 20[’LL75(2 — 2Ut - Ut) + Ut(2 - 2Ut — 27}t + Ut)
)

> 20 (2 — 2us — vg) + @Pugv?

Vi1 — v = —aupug(2 — aug) > —2avpug
Therefore
Nip1 — Ny = (w1 — ug) + (p1 — v¢) > 20u(2 — 2up — 204) + aQUtth > daug(1 — Ny)

from which the claim easily follows. The case for t%2 = 1 follows by symmetry. |

17
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Lemma 25 Assume o < 1/4and yy,z € [0,1]. If y? + 27 > 1, then y7,, + 2z, > 1.
Proof Let N; = u; + v;. Observe that if t%2 = 0 then
Nip1 = 1 + veer = ur(1 4 a(2 — 2up — vp))? + ve(1 — auy)?

> up(1 4+ 2a(2 — 2up — vg)) + ve(1 — 2auy)
= uy + v + 200 (2 — 2uy — 2v4)

The above inequality can be written as
Nt+1 Z Nt + 4aut(1 - Nt)

Note that
Nt + 4aut(1 - Nt) Z 1

if and only if
(]. — 4ozut)(Nt - 1) > 0

which is true since N; < 1 and

a< <1/4

1
4Ut
by assumption. The case for t%2 follows by symmetry. |
Lemma 26 Assume o < 1/4. Ifyg + zg <1+ «/4, then yt2 + th <1+ «a/dforallt.

Proof We prove this by induction. Let N; = y? + 27. Assume N; < 1 + /4. Let u; = y? and
v; = 22. Assume t%2 = 0. Then we have

Nitr = u(14 a2 = Ny — up))? + (Ny — ug) (1 — o).
Let
F(N;onu) =u(l+ a2 =N —u)? + (N —u)(1 — au)?
=ua(2 - N)(a(2— N)+2(1 — au)) + N(1 — au)?
Note that f”(N) > 0 hence

yomax (V) = max(£(0), £(1+a/4)).

Note that

f0) = u(l+a2—u))? —u(l—au)? = dou(l+a(l—u)) < Sel[l()pl] dou(l+a(l—u)) =4a < 1.

Now fix N = 1 + a/4 and note that be re-arranging
f(N) = a*(3N — 4)u® + aufa(2 — N)*> +4(1 — N)] + N.

Note that
3N —-4=3-3a/4—4=—-1-3a/4<0

18
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and
a2-N)?+4(1—-N)=a(l —a/4)?-a <0

hence it is clear that f(N) < N. By symmetry (swapping v; for u;), an analogous result holds for
t%2 = 1. |

Proposition 27 The set A= {(y,2) 1y > 2> 0,y +22 <1+ a/4} CV_.

Proof Let yp = rcosf and zp = rsind with € [0,7/2]. Consider fixing r and varying 6.
Observe that

1 —ay} 1 2— 227 —yi
V(F(rcosf,rsinf)) — V(rcosf,rsinf) = tanf - < ( ayg) 5 (1+of 221 vi) _ 1) .
(14 a(2 =2y — 27)) (1 — azy)
Therefore (yo, z0) € V_ iffthe following inequality holds
(1 - ayg) (1 - azf)

<

(I+a@-2y5 —23)) — 1 +a2—227—y7)

or equivalently
(1—ayd)(1+ a2 — 227 —43) < (1 — azd)(1+ a2 — 23 — 22)).
Let us observe that we can write the following terms solely as a function of  and .
2 =r-4

74 = 21— ayg)? = (r—y5) (1 — ayg)”
yi =51+ a2 -2y — 20)° =Yg (1 + (2 — r — yp))*.

Letting y = yo for convenience and substituting into the above inequality, it is equivalent to

fly;r) —gly;r) <0

where
flyir) = (1= ay®) (1 + a2 = 2(r — ) (1 — ay®)* — y* (1 + (2 — r — *))?])
g(yir) = (1 —a(r—y*)(1 —ay)®) (1 + a2 - r —?)).

By Lemma 32

d
@f(y; r)—g(y;r) <0.
Recalling y = r cos 6, by the chain rule
L @O — 9@ = Ll wsr) — 9w = L i) - gy ) (—rsing) > 0
a0 y\w)r gly\);r _dy yr gly;r d9_dy y;r g\y;r T s1m = U.
(18)

As cos(m/4) = sin(r/4) = 1/+/2, Lemma 28 states that if r < /1 + /4 then (7 cos 7 /4,7 sin 7 /4) €
V_, that is
f(rcosm/4;r) — g(rcosm/4;7) < 0.

19
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From Eq. (18) for 0 < ¢ < 7 /4
f(rcosih;r) — g(reosy;r) < f(rcosm/4;r) — g(rcosm/4;7) < 0
hence (r cos 1, rsiny)) € V_. Since
A= {(rcost,rsing) :r? <1+a/4,¢ €[0,7/4]}

this proves the claim. |

Lemma 28 If0 < y? < 1(1+ a/4) and a < 1/4, then (y,y) € V_.

Proof Observe that

z
(y,y) € V. — y—z—1>0 < Yy — 29> 0.

We will explicitly show that the last inequality for 3 such that y? < (1 + a/4)/2. We have that
1 =y(1+a(2 - 3y%)
21 =y(1 - ay?)

Therefore ( 2)
20(1 —y
=(14+6 0= — 22
y1 = (1+6)z1, = ay?
Thus we have that

y2— 22 =yi(l —azf) = z1(1 + (2 = 227 — y7))
=021 —a(l +0)2 — 202 + 2028 + (1 4 6)223
=210 — 20) + a2} (2 + 5 + 6%)
Substituting and factoring yields

_ 3 2y _ 2 ((a—1) 242 a(l—y*) | 202(1—y?)?
21(0—20)+azy (240407) = 2az1y (1 = o + (1 —ay”) (1 T oy’ + (1— ay?)?

Letting w = 1 — ay? we thus ys — 2o > 0 iff

1_2 221_22
af y)+a(2y)>>0
w w

a—1

+w2<1+

Letting b = 1 — q, it follows that a(1 — y?) = w — b and so the above is equivalent to
b —b  2(w—b)?
_+w2<1+w + (w2)>>0
w w w

which after clearing denominators and grouping terms is equivalent to
4w® — 5bw?* + 2wb* — b > 0.

The claim then follows from Lemma 31. [ |
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Lemma 29 Let ¢t be even and oo < 1/4. Then if max(1 — y;,2) < € < 1 then max(1l —
Ytr1, 2t1) < 26

Proof Just check the size of gradients
. aytzf <ae?<e.

o az(2— 222 —y?) < 20s <e.

|
B.4. Technical Lemmas
Lemma 30 Forn € (0,1/2], supgepoq (1 +n(1 — 7?)) = 1.
Proof Let f(x) = z(1 + n(1 — z?)), then f'(z) = 1 + n — 3nz?. Note that f'(z) > 0 iff
2% < HJ
31
and that since 7 < 1/2 implies
1+n 4
3n
we see that f/(z) > 0if 22 < 1, therefore SUpgepo,1) f(2) = f(1) = 1. [

Lemma 31 Assume o < 1/4and2y?> <1+ /4. Letw =1 — ay? andb =1 — . Then

dw® — 5bw? + 2wb* — b > 0.
Proof Let f(w,b) = 4w? — 5bw? + 2wb? — b. Since by assumption y? < (1 + «/4)/2,
2 Lo 0o
w>1—a/2—-a"/8= §(_b + 60+ 3).
Let us call
<

Wmin = 3

—b% 4 6b+3).
Observe that for w € [b, 1]
d 2 2 2
o (w,b) = 120 — 10w 4 25” > 145> — 105 > 0

since
140 =100 > 0 <= b>5/7 «— a <2/7

which is true since by assumption o < 1/4 < 2/7. Further, note that wy,;, > b since

8(wmin — b) = —b* +6b+3 —8b = —(b* +2b—3) = —(b+3)(b— 1),

21



GRADIENT DYNAMICS OF SINGLE-NEURON AUTOENCODERS

and 8(wmin — b) > 0 for b € [0, 1]. We thus have,

inf f(w7 b) = f(wmin) b)

WE[Win,1
Using Mathematica to simplify
1
f (winin, b) = =752 (b = 1)2(b* — 6b° — 2b% + 20 — 27).

Since b € [0,1)
b — 663 — 202 +20—27<1+2-27<0

hence f(wmin, b) > 0. [ |

Lemma 32 Assume r < 1+ «/4 is a constant. Define the following functions of y € [0, 1].

flysr) = (1 —ay’ )1 +al2=2(r —y*)(1 - ay®)® =y (1 + a2 —r = y*))?)
g(y;r) = (L —alr —y*)(1 —ay)) (L + a2 —r —y?)).
Then the following is true

ddyf(y; ")~ glyir) <0

Proof Making the substitution w = 1 — ay? <= ay? = 1 — w we have
flwir) =1 —ay®) (1 +al2=2(r —y*)(1 - ay®)* = > (L + a2 - r = ¢*))°])
= (1 —ay®)(1 + 20+ 2(ay® — ar)(1 — ay®)? — ay?(1 — ay® + a(2 —1))?)
= w[l + 20+ 20*(1 —w — ar) + (w — 1)(w + (2 — r))?].
=1 —alr—y)1-ay)*)(1+a2-r—y?)
= (14 (a? —ar)(1 - ay)’)(1 - ay® + a(2 = 1))
=1+ w1l —w—ar))(w+ a2 -71)).

g(w;r)

Using Mathematica we have that

4 (w;r) — g(w;r) = afa(2 —7)(r — 2+ 4w) + 6(3 — 2r)w? — 6(2 — r)w + 2

dw
= ap(r, w) + q(r, w)].
where
p(r,w) = a2 —7r)(r—2+ 4w)
q(r,w) = 6(3 — 2r)w?® + 6(r — 2)w + 2.
We now show that p(r, w) > 0 and ¢(r, w) > 0.

Proof that p(r, w) > 0

Note that r < 1 + a/4 < 2 hence 2 — r > 0 and since y2 < 1 it follows that w > 1 — «,
hence 4w > 4(1 — «) > 3 hence (r — 2 + 4w) > r + 1 > 0 since r > 0. Therefore p(r,w) =
a2—r)(r—2+4w)>0.

22



GRADIENT DYNAMICS OF SINGLE-NEURON AUTOENCODERS

Proof that ¢(r,w) > 0
Note that we can write

q(r,w) = 6(3 — 2r)w? + 6(r — 2)w + 2 = 6rw(l — 2w) + s(w)

for some function s of w. Since 1 — 2w < 1 — 2(1 — a) = —1 + 2a < 0 it follows that g is
decreasing in r therefore ¢(r,w) > q(1+«a/4) > q(1 + o, w). We can lower bound this as follows,
using < 1/4

q(1+ a,w) =6(3 —2(1+ a))w? —6(1 — a)w + 2
> 3w? — gw +2
> 3(3/4)% — (9/2)(3/4) +2 =15/16 > 0.
Therefore we have shown that

< Flwir) — glwir) > 0

and since w = 1 — a? by the chain rule this implies that

7f(y7 ) (ya ) — 0.

Appendix C. Proofs for Section 2.5
C.1. Proof of Theorem 7

Proof It is clear that when considering the minimum of the loss objective we can restrict our
m

consideration to w € span(ari,...,an,). Letw = Y ¢;a;. Then

L(w; D) Zuaz wo((w, a;))|

2
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m
Define the quantity B := > c?. Then
j=1

L(w;D) =

(il 1= cip(ci)® + ¢(ei) (B —c2>>

< —2Zcz ci +Zc2¢ i) +Z¢ ci)? i))
_ % <m 9 Z; cidle) + B Z; ¢(ci)2>

L <m _ 2271(:@(@) +ic? i¢<ci>2> .

Therefore to find a minimizer it suffices to minimize the quantity

S‘H S‘“

— ZZci(b(ci) + Zcde)(ci)Z. (19)
i=1 i=1  i=1

If we define

then Eq. (19) can be rewritten as
—2P+P(P+N)=P?-2P+ PN

where P, N > 0. It is easy to see that the minimum of this quantity is achieved precisely when
P =1, N =0, which is what we wished to prove. [ |

C.2. Hessians of Critical Points
Let us compute the Hessian of the loss function at a point w.

Lemma 33 The Hessian of the loss L at w is given by

V2£ Z ' ((w, ag) [ Hw||2 —2)- agagT +2(w, ay) (ang + waZ) + (w,ag>2 . I} )
Ee[m]

Proof For shorthand we will define E,, as the expectation over  ~ Unif(D).
V2L(w) = Exd/ ((w, ) [(Hsz —2)-xx’ +2(w,z) (zw' +wz') + (w,x)?- I}

= LS w.an) [l ~2)-asa] +2 (w.ar) (aw” +wa]) + w,an)? 1.
Le[m]
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Proof [Proof of Proposition 8] Let w := wSP = Y ies <w\;’£i> a;. Plugging into Lemma 33

Hep = *Z [ aa; + 2w, (Z <wo,a,~>(aiaz + aeaiT)) + (wo, ag)® I]

es \/5 €S \/5 o
= *Z —aga] + =" 2w, a) > (wo,a;) (aia) + ara]) + (w0 ag)” I
) ’ ¢ )
LesS ieS
1

:——Zagae + ZZ (wo, ag) (wo, a;) (a;a, + aa; )+7 I

les EES €S
:—lZa aT+ilZZ<w ay) (w a‘)a‘aT—i-l-I

m Ly m (b . 0, &y 0, &g 1Yy m .
lesS LeS ieS
Similarly if w := w3 = ay, for some k € S then
HSGD = — [—akak —+ 4akak —+ I] =
m m

Now we compute the eigenspectra of Hgp and Hggp. The eigenspectrum of Hggp is trivial,
hence we only prove the result for H gp.

Proof [Proof of Lemma 9] For convenience let H = H gp and define

o= W00,

Vo

Note that by the definition of ® in Eq. (6), we have } , ¢ Ce 1. Consider a unit vector v €
span(a;: £ € S)ie. v =3, sbeag with >, b7 = 1. Then

Huv = (:1 Z Z Cgciaia2> v

lesS ieS

= % Z Z Z Cgcibjaia;raj

Les ieS jes

= % Z Cgbg Z ;.

Les ies

Therefore if by = ¢y then Hv = (4/m)v and if ), 4 becy = 0 then Hv = 0. This gives |S]
orthogonal eigenvectors. Note that if v is orthogonal to span(a, : ¢ € S) then v is an eigenvector
with eigenvalue of 1/m. n
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