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Abstract

In this work we establish an algorithm and distribution independent non-asymptotic trade-o� between the model
size, excess test loss, and training loss of linear predictors. Speci�cally, we show that models that perform well on
the test data (have low excess loss) are either “classical” – have training loss close to the noise level, or are “modern”
– have a much larger number of parameters compared to the minimum needed to �t the training data exactly.

We also provide a more precise asymptotic analysis when the limiting spectral distribution of the whitened
features is Marchenko-Pastur. Remarkably, while the Marchenko-Pastur analysis is far more precise near the
interpolation peak, where the number of parameters is just enough to �t the training data, it coincides exactly with
the distribution independent bound as the level of overparametrization increases.

1 Introduction

Classical statistics and machine learning models have traditionally been analyzed in regimes where the training
loss (also known as the empirical risk) approximates the test loss. In contrast, many modern deep learning systems
obtain a much lower loss on the training set than on the test set. In recent years there has been a growing theoretical
understanding that di�erent models that �t noisy data perfectly (interpolate the data) can nevertheless generalize
optimally or nearly optimally. �is phenomenon, which has come to be known as “benign over��ing” [1] or “harmless
interpolation” [2] can be shown to provably occur in a wide array of se�ings including for non-parametric weighted
nearest neighbor type methods [3, 4, 5, 6], linear regression [7, 1, 2, 8, 9, 10, 11, 12], random features and kernel
methods [13, 14, 15, 16], and neural networks [17, 18, 19, 17, 20], to give just some representative examples of recent
literature. Each of these works reveal a set of su�cient conditions on the data and learning algorithm for which
benign over��ing is possible. However, a common aspect is overparametrization: the number of model parameters is
signi�cantly larger than what is required to �t all the training data.

Indeed, a striking feature of many current models is their size, reaching billions or even trillions parameters [21].
A clue to understanding the need for a large number of parameters is provided by the double descent generalization
curve proposed in [22] which qualitatively describes the relation between model size and its test performance. �e
shape of the curve suggests that interpolating models need to be signi�cantly over-parameterized compared to the
“interpolation threshold” (the minimum number of parameters needed to �t the training data) to achieve near-optimal
performance. However, despite the demonstration of double descent and benign over��ing for many speci�c se�ings,
there is li�le literature which seeks to understand necessary conditions for such phenomena to occur. �e most
signi�cant step in this direction was made by Holzmüller [23] which shows that double descent is universal for
minimum norm (ridgeless) linear regression and implies the necessity of overparameterization for these interpolating
models to have good performance.

Yet, in practice models are trained using iterative (gradient-based) methods which are typically stopped early,
well before convergence to a truly interpolating solution. Indeed, pushing models to �t the data perfectly can be
prohibitively computationally expensive and is usually unnecessary. �us, while the interpolation analyses are
insightful for understanding modern machine learning, they are a limit case for the se�ings of most practical interest.
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In this paper, we aim to shed light on these issues by analyzing the connection between the training (empirical)
loss, the expected (test) loss and the number of parameters for general linear models. Speci�cally, we show that
for any algorithm producing a linear predictor with near-optimal expected loss, the output model must either be
“classical” with the training loss relatively large – close to the noise level, or have a large excess over-parameterization
(i.e., the number of parameters relative to the minimum necessary to just �t the training data without concern for
generalization)1. �e trade-o� between the empirical loss and the number of parameters is universal in the sense that
it holds for any algorithm which outputs a linear predictor using any non-degenerate feature map for any regression
problem with noise.

Furthermore, we provide a more precise analysis under additional distributional and asymptotic assumptions.
Remarkably, the universal bound is tight (up to constant factors) for this far more special “asymptotic Gaussian” case
when the model is su�ciently over-parameterized and obtains training loss strictly below the noise level.

To introduce the se�ing of interest, consider a general regression problem where we are given a training set of
n samples Dn = {(xi, yi)}ni=1 with xi ∈ Rd and yi ∈ R. We assume that each point is sampled (xi, yi) ∼i.i.d. P
for some distribution P on Rd × R. For a function f : Rd → R we de�ne its training (empirical) loss R̂n(f) and its
expected (test) loss R(f) as

R̂n(f) :=
1

n

n∑
i=1

(y − f(xi))
2, R(f) := E(x,y)(y − f(x))2.

�e regression function is de�ned as f?(x) := E(y |x). It is well-known that f?(x) is the optimal predictor for
regression in the sense of minimizing the expected loss:

f?(x) = arg min
f
R(f).

�us for an arbitrary predictor f , it makes sense to consider the excess loss

E(f) := R(f)−R(f?)

as a measure of the performance of f compared to the best theoretically achievable test loss. Finally we assume that
the problem has noise level of at least σ2, that is for almost all x

Var(y |x) ≥ σ2.

Note that the last condition directly implies thatR(f?) ≥ σ2. We now consider a general p-dimensional linear feature
model φp : Rd → Rp of the form

β(x) = βTφp(x), β ∈ Rp.
Here the map φp can be deterministic or random. �e optimal linear predictor β? is given by

β? = arg min
β∈Rp

R(β).

It is clear that the excess loss of β compared to best predictor f? is bounded from below by the excess loss of β
compared to the best linear predictor β?

E(β) ≥ E lin(β) := R(β)−R(β?).

Assume now that we have an algorithm A that given the training data Dn, outputs a linear predictor β = A(Dn),
with the empirical loss bounded by τ ≥ 0 relative to the noise level almost surely i.e.,

R̂n(A(Dn))/σ2 ≤ τ.

Additionally, assume that φp is non-degenerate (see Section 2 for the exact conditions). Our main result is the
following lower bound on the expected excess loss

EDn∼Pn E(A(Dn)) ≥ EDn∼Pn E lin(A(Dn)) ≥

{
σ2 n

p (1−
√
τ)2, τ < 1

0 τ ≥ 1
(1)

1�e“classical” vs “modern” distinction is based on the empirical loss rather than the number of parameters. �us, for models rich enough to �t
the training data perfectly, it is a consequence of the training algorithm rather than an inherent property of the model as such. Indeed, models in
classical se�ings can still be highly parametric, as is the case for the traditional analyses of kernel machines (e.g., [24]), which can be viewed as
in�nite-dimensional linear models.
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Remark 1. �e case of τ ≥ 1 necessarily results in a trivial bound. Indeed, suppose that Var(y |x) = σ2, and the
optimal predictor is linear. �en the “oracle” algorithm that always outputs β? for any input has expected training loss
EDn∼Pn [R̂n(β?)] = σ2 while its expected excess loss EDn∼Pn [E(β?)] = 0. In general, our lower bound applies to any
algorithm (even ones with knowledge of β?) and for any problem instance. In contrast, minimax results lower bound the
performance of any algorithm on worst case problem instances.

While the bound above is very general, a more precise analysis is possible asymptotically under additional
distributional assumptions. Assume that n, p → ∞ with limiting ratio limn/p = γ and that the limiting spectral
distribution is Marchenko-Pastur with aspect ratio γ (see Appendix B), which is the case if for example the covariates
are Gaussian. Additionally assume that the true model is linear with additive noise obeying certain mild moment
conditions (see Section 3 for details). De�ne

E?(τ) = inf
A s.t. R̂n(A(Dn))≤τσ2

EDn∼Pn [E(A(Dn))]

i.e., E?(τ) is the minimal expected excess loss for any algorithm with training loss at most τσ2. In this se�ing, it turns
out that the bound in Eq. (1) becomes tight when p� n namely,

E?(τ) ∼ σ2n

p
(1− τ1/2)2 as p/n→∞, τ ∈ [0, 1]. (2)

For small τ and γ < 1 the bound can be improved to the following 2:

E?(τ) ≥ σ2 n

p− n

(
1− τ1/2

√
p

p− n

)2

, τ ∈ [0, 1− γ]. (3)

In fact, the bound is tight up to an o(
√
τ) error term. Furthermore, under the same conditions, at the interpolation

peak p = n, we have the following precise expression for the minimal expected excess loss

E?(τ) = σ2

(
1

4τ
+
τ

4
− 1

2

)
. (4)

A few observations are now in order.

Comparison at interpolation (τ = 0). A special case of our general result Equation (1) is for τ = 0, namely
when we only consider models that interpolate the data. It is instructive to compare our bound with some of the
existing work in that se�ing. For τ = 0 we obtain a lower bound for the excess loss of σ2 · n/p which matches the
result in [2] (Corollary 1). �e result in [2] is given for the well-speci�ed linear se�ing and requires speci�c covariate
assumptions such as Gaussianity, but holds with high probability rather than just in expectation.

A lower bound for minimum norm interpolating linear models without distributional assumptions is given in [23].
�e bound is of the form σ2 ·n/(p−n+ 1) and is signi�cantly tighter near the interpolation peak p = n. Remarkably,
their general bound which holds under minimal assumptions, almost matches the exact computation for the Gaussian
case in [8] which yields σ2 · n/(p− n− 1) for p ≥ n+ 2.

Remark 2. We note that while the results in [23] are stated for minimum norm predictors, their analysis implies an
algorithm independent lower bound for interpolating models, which is sharper than our bound in Equation (1) for τ = 0.

Comparison between interpolating and non-interpolating regimes. We will now compare the interpolating
regime (τ = 0) with the non-interpolating regime (τ > 0).

a. �e peak behavior (p ≈ n). �e general results in [23] demonstrate a sharp peak at the interpolation threshold
p = n. Indeed, the analysis for the Gaussian se�ing [8] shows that the peak is in fact in�nite. Note however,
any non-zero regularization a�enuates the peak, making it �nite (e.g., [14]). Note that τ can also be viewed as
regularization. In the asymptotic MP se�ing Equation (4) shows that the expected loss has a pole singularity τ−1

2Note that in the limit n
p−n ∼

γ
1−γ and p

p−n ∼
1

1−γ .
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at the peak. �us the transition between interpolating and non-interpolating regimes is discontinuous in terms of
the height of the interpolation peak. Hence we see that our general bound in Equation (1) is loose close to the peak,
which is to be expected as it is continuous in τ at 0, while the actual expected loss is discontinuous. In contrast, the
Marchenko-Pastur se�ing bound in Equation (3) is much more accurate.

b. �e “tail” behavior (p � n). In sharp contrast to the peak, our general bound show that the “tail” (p � n)
behavior of the generalization curve is remarkably stable with respect to τ . Achieving nearly optimal excess risk
requires either τ > 1− o(1) or p� n (or both, of course). �us interpolating and non-interpolating solutions require
essentially the same level of over-parameterization to approach optimality as long as the loss of non-interpolating
models is at least slightly lower than the noise level.

Furthermore, for any empirical loss smaller than the noise level (τ < 1), when p � n the general bound in
Equation (1) matches the asymptotic analysis in the Marchenko-Pastur se�ing . �is is remarkable, as the general
bound is not asymptotic and makes essentially no assumptions on the covariate distribution, regression function, or
the structure of the noise, yet it is still tight in the limit of increasing overparametrization.

While the interpolation peak is a striking feature of the generalization curve, the tail behavior is arguably
more important for understanding practical applications. Indeed, the tail behaviour seems consistent with over-
parameterization in practical models which are routinely trained so that the training loss is signi�cantly lower than
the test loss but far from zero. In contrast, the peak is a less robust phenomenon which describes only speci�c regime
of training and is highly sensitive to the presence of regularization.

Convergence rates. A classical line of statistical analysis is concerned with convergence rates for various estimation
problems. Typically statistical rates for regression (see e.g., [25]) are of the form

E(f̂n) = O(n−α), α > 0

where f̂n is a predictor based on a training set with n samples andαmay depend on some notion of data dimensionality,
such as the dimension of the data manifold.

We note that such parametric or non-parametric rates are easily compatible with our analysis. As a corollary of
our lower bound Equation (1), we can see that in order to achieve such a rate with a linear model the model either
needs to have excess over-parameterization inversely proportional to the rate, i.e., p = Ω(n1+α) or to be in the
“classical regime” where τ = 1− on(1) i.e., the train error essentially at the noise level. Note that in general (e.g., for
a random feature model [26]) the number of features p is a property of the model and is distinct from any notion of
data dimensionality. Moreover, note that to simply achieve low training error it is only necessary that p = Ω(n) as
only p = n features are necessary to interpolate the training data, hence the condition p = Ω(n1+α) is additionally
requiring at least nα times the number of parameters to achieve the desired excess loss rate.

Interestingly, there are also se�ings where near-interpolation is necessary to approach optimal generalization [27,
28, 29]. Our results imply that in these se�ings signi�cant excess over-parameterization is unavoidable. Of the
aforementioned works, the most closely related to ours work [27] which studies high-dimensional linear regression.
Moreoever, they study the optimal test loss subject to a training loss constraint as we do in this paper. However, a key
di�erence is that their results hold in a Bayesian se�ing where the true model is drawn from some prior distribution
and all losses are averaged over this prior whereas our results hold even for a �xed target function. In particular, only
in our se�ing can an estimator achieve zero excess loss using �nitely many samples.

Finally, we note that the trade-o� presented in this paper is reminiscent of the trade-o� between smoothness
and over-parameterization discovered in [30], which shows that over-parameterization is necessary to �t noisy data
smoothly. In contrast to [30] which does not consider generalization, predictors that generalizes well while ��ing
noise need to be “spiky” rather than smooth, hence over-parameterization in our paper serves a di�erent function.

2 Universal Lower Bound

First let us introduce some notation. We de�ne the training data matrices

X :=
(
xT
1 , . . . ,x

T
n

)
∈ Rn×d, y := (y1, . . . , yn) ∈ Rn

4



so that Dn = (X,y) ∼ Pn. If (x, y) ∼ P then we will use PX to denote the marginal distribution on x. We will use
the following abbreviated notation for the expectations

Ey,X := EDn∼Pn , E(x,y) := E(x,y)∼P , Ex := Ex∼PX
.

We de�ne the feature matrix and feature covariance matrix

Φ :=
(
φp(x1)T, . . . , φp(xn)T

)
∈ Rn×p, Σ := Ex[φp(x)φp(x)T] ∈ Rp×p.

We will also make use of the whitened feature-matrix

W := ΦΣ−1/2 ∈ Rn×p

and the whitened empirical covariance matrix

G :=
1

p
WW T ∈ Rn×n.

We now state our main result

�eorem 1 (Universal Lower Bound). Let n, p ≥ 1. Assume that P and φp satisfy the following

1. Ey2 <∞ which implies R(f?) <∞,

2. Var(y |x) ≥ σ2 almost surely over x,

3. rank(Φ) = min(n, p) almost surely.

�en for any algorithm A which outputs a linear feature model A(Dn) with training loss almost surely at most τσ2

EDn∼Pn E(A(Dn)) ≥ σ2n

p
(1−

√
τ)2.

Remark 3. Note that we can consider the feature map φp to be random as well, for instance taking φp to be a neural
network with output dimension p and random weights θ. It is o�en the case that Assumption 3 will hold almost surely
over θ (see �eorem 10 in [23]). Since the weights are independent of the data, as an immediate corollary to �eorem 1 we
get the same lower bound when additionally taking expectation over θ.

Now that we have stated our main result and gave some of its interpretations and consequences, we will move on
to giving its proof which is pleasantly elementary. We will start by se�ing up relevant de�nitions and providing some
starting lemmas, before moving on to the core proof.

2.1 Proof of �eorem 1

Under the assumptions of �eorem 1 we de�ne the minimal excess test loss of τ -over��ing p-dimensional linear
feature models trained on the dataset Dn of n samples as

E?(τ ;n, p) := min
β∈Rp

E(β) s.t. R̂n(β) ≤ τσ2.

It then su�ces to show that
EDn∼Pn [E?(τ ;n, p)] ≥ σ2n

p
(1−

√
τ)2.

We will bound the excess test loss E(β) by comparing it with the excess loss with respect to the optimal linear model
E lin(β). Let us denote the optimal linear predictor as

β? := arg min
β∈Rp

R(β). (5)

For further analysis we will need the following two basic lemmas which are standard results characterizing the
excess linear loss. �e proofs can be found in Appendix A.
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Lemma 1 (Optimal Linear Predictor). De�ne β? as in Eq. (5). �en

1. β? is the orthogonal projection of f? onto the subspace of linear functionsH = {β(x) : β ∈ Rp} in L2,

2. E(f) := R(f)−R(f?) = Ex[(f(x)− f?(x))2],

3. E lin(β) := R(β)−R(β?) = Ex[(β(x)− β?(x))2].

�e �rst claim above establishes the equivalent characterization of the optimal linear predictor as a projection
of the optimal predictor onto the space of linear functions. �e second claim asserts that the excess loss of a given
function is its L2 distance to the optimal function, and similarly the third claim asserts that the excess loss a linear
function is its L2 distance to the optimal linear function. We now state the second lemma.
Lemma 2 (Excess Linear Loss). �e excess loss is lower bounded by the excess linear loss, that is E(β) ≥ E lin(β).
Moreover we can write the excess linear loss explicitly as

E lin(β) =
∥∥∥Σ1/2(β − β?)

∥∥∥2.
�e results above concern the excess (linear) loss of a given predictor. However to establish lower bounds we will
consider the minimal value of this quantity subject to a training loss constraint. De�ne the minimal excess linear loss
E lin? (τ) for training dataset Dn as

E lin? (τ) = min
β∈Rp

E lin(β) s.t. R̂n(β) ≤ τσ2.

LetW = ΦΣ−1/2 be the whitened features. De�ne the random vectors

ξnoise = (yi − f?(xi))i∈[n] ∈ Rn, ξlin = (f?(xi)− β?(xi))i∈[n] ∈ Rn

and let ξ = ξnoise + ξlin. We give an alternate optimization problem for characterizing the minimal excess linear loss
which will be more amenable to analysis later on. �e same equivalence (for τ = 0) appears in the proof of �eorem
1 in [2], however as it is not a very standard result in the literature and is crucial to the rest of our analysis, we record
the statement and its proof here.
Lemma 3 (Minimal Excess Linear Loss). We can equivalently write E lin? (τ) as

E lin? (τ) = min
b∈Rp

‖b‖22 s.t.
1

n
‖Wb− ξ‖22 ≤ τσ

2, (6)

and E?(τ) ≥ E lin? (τ).

Proof. By de�nition we can write the training loss as

R̂n(β) =
1

n
‖Φβ − y‖2.

Note that y = Φβ? + ξ, hence

Φβ − y = Φβ − (Φβ? + ξ)

= Φ(β − β?)− ξ

= ΦΣ−1/2Σ1/2(β − β?)− ξ

= WΣ1/2(β − β?)− ξ.

�erefore by Lemma 2 we see that E lin? (τ) is equivalent to

min
β

∥∥∥Σ1/2(β − β?)
∥∥∥2 s.t. 1

n

∥∥∥WΣ1/2(β − β?)− ξ
∥∥∥2 ≤ τσ2,

which a�er making the following substitution over the optimization variable

b = Σ1/2(β − β?)

can be seen to be equivalent to Eq. (6).
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Before proceeding to the proof of the theorem, we state one more lemma which will be useful for dealing with
quadratic forms involving the noise vector. �e proof is in Appendix A.

Lemma 4 (Expectation Over Noise). Let f : Rn×d → Sn+ be any PSD matrix valued function. �en,

Ey,X [ξTf(X)ξ] ≥ σ2EX Tr(f(X)).

Moreover, if Var(y |x) = σ2 almost surely and f? = β? then the above is an equality.

We are now ready to give the proof of our main �eorem 1. We will proceed to lower bound E lin? (τ) which will
then imply the lower bound in �eorem 1 by the previous lemmas. To lower bound E lin? (τ) we will apply weak duality
to the optimization problem in Lemma 3. Interestingly, as we will see later (see Eq. (13)), it turns out that this dual
lower bound reveals that the minimal excess linear loss can be bounded below by the test loss of a ridge regression
estimator on an auxiliary problem coming from Lemma 3 (see Remark 5).

Proof of �eorem 1. Consider the optimization problem in Eq. (6) de�ning E lin? (τ). �e associated Lagrangian is

L(b, η) = ‖b‖22 + η

(
1

n
‖Wb− ξ‖22 − τσ

2

)
for η ≥ 0 and the dual function is

g(η) = inf
b
L(b, η).

A�er some rearrangement, we can rewrite the Lagrangian as

L(b, η) = bT
(
I +

η

n
W TW

)
b− 2η

n
bTWξ +

η

n
‖ξ‖22 − ητσ

2

which is a convex quadratic objective in b. Hence we can minimize it by se�ing the derivative to zero. �e gradient
of L(b, η) is given by

∇b L(b, η) = 2
(
I +

η

n
W TW

)
b− 2η

n
W Tξ

hence se�ing this equal to zero and solving for the optimal b we get

b?(η) = arg min
b
L(b, η)

= η(nI + ηW TW )−1W Tξ

= W T((n/η)I +WW T)−1ξ

=
1

p
W T

(
n

p

1

η
I +

1

p
WW T

)−1
ξ.

By weak duality we have that for any η ≥ 0,

E lin? (τ) ≥ g(η) = L(b?(η), η).

For convenience we make the following change of variables

λ :=
n

p

1

η

which is a bijection between [0,+∞] and itself. �us in terms of λ we can write

L(b, λ) = ‖b‖2 +
n

pλ

(
1

n
‖Wb− ξ‖2 − τσ2

)
(7)

b?(λ) =
1

p
W T

(
λI +

1

p
WW T

)−1
ξ (8)

7



where interestingly b?(λ) happens to be the ridge regression estimator with ridge parameter λ on whitened covariates
W with pure noise target ξ. For all λ ≥ 0 we have the lower bound

E lin? (τ) ≥ g(λ).

Taking expectations, we have the following bound

Ey,X
[
E lin? (τ)

]
≥ Ey,X [L(b?(λ), λ)] = Ey,X‖b?(λ)‖2 +

n

pλ
Ey,X

(
1

n
‖Wb?(λ)− ξ‖22 − τσ

2

)
. (9)

LetG = WW T/p andG(λ) = G+ λI. Denote the eigenvalues ofG as λ1 ≥ λ2 ≥ . . . ≥ λn. We will show

Ey,X‖b?(λ)‖2 ≥ σ2

p
EX Tr

(
G(λ)−1GG(λ)−1

)
=
σ2

p
EX

n∑
i=1

λi
(λi + λ)2

(10)

Ey,X
1

n
‖Wb?(λ)− ξ‖22 ≥

σ2

n
EX Tr

(
GG(λ)−1 − I

)2
=
σ2

n
EX

n∑
i=1

(
λ

λi + λ

)2

(11)

using Lemma 4. For Eq. (10) we have the following

Ey,X‖b?(λ)‖2 =
1

p
Ey,X

[
ξTG(λ)−1GG(λ)−1ξ

]
≥ σ2

p
EX Tr

(
G(λ)−1GG(λ)−1

)
.

Similarly, for Eq. (11)

Ey,X
1

n
‖Wb?(λ)− ξ‖22 =

1

n
Ey,X [ξT(GG(λ)−1 − I)2ξ]

≥ σ2

n
EX Tr

(
GG(λ)−1 − I

)2
.

Note that by the full rank assumption, λ1 ≥ · · · ≥ λmin(n,p) > 0 and λmin(n,p)+1 = . . . = λn = 0 almost surely.
De�ne the function f : [0,+∞]→ R as

f(λ) :=
1

n

n∑
i=1

(
λ

λi + λ

)2

=
1

n

min(n,p)∑
i=1

(
λ

λi + λ

)2

+ max(0, 1− p/n).

Note that f is continuous and infλ f(λ) = f(0) = max(0, 1− p/n) and supλ f(λ) = f(∞) = 1. �erefore as long
as 1− p/n ≤ τ there exists λ? such that

f(λ?) =
1

n

n∑
i=1

(
λ?

λi + λ?

)2

= τ. (12)

Otherwise if 1− p/n > τ , then by taking λ→ 0, we have that

1

λ
· Ey,X

(
1

n
‖Wb?(λ)− ξ‖22 − τσ

2

)
→∞,

which by inequality Eq. (9) implies Ey,X
[
E lin? (τ)

]
= +∞ and any lower bound holds trivially. �us we will assume

that p/n ≥ 1 − τ , in which case we will be able to obtain a non-vacuous result. Let λ? be the random variable
dependent onX that satis�es Eq. (12). �en by Eq. (11) we have that

Ey,X
(

1

n
‖Wb?(λ?)− ξ‖22 − τσ

2

)
≥ 0.

8



�us from Eq. (9) we have that

Ey,X
[
E lin? (τ)

]
≥ Ey,X‖b?(λ?)‖2 +

n

pλ?
Ey,X

(
1

n
‖Wb?(λ?)− ξ‖22 − τσ

2

)
≥ Ey,X‖b?(λ?)‖2. (13)

Hence from Eq. (10) we have

Ey,X
[
E lin? (τ)

]
≥ σ2n

p
· EX

1

n

n∑
i=1

λi
(λi + λ?)2

. (14)

�us to lower bound E[E lin? (τ)] we can try to lower bound the following

1

n

n∑
i=1

λi
(λi + λ?)2

subject to 1

n

n∑
i=1

(
λ?

λi + λ?

)2

= τ, (15)

by a quantity that we can later easily bound in expectation overX . Note that if λ1 = . . . = λn = λ, then

λ? = λ

√
τ

(1−
√
τ)

and 1

n

n∑
i=1

λi
(λi + λ?)2

=
1

λ
(1−

√
τ)2 (16)

and if λ? = 0 then
n∑
i=1

λi
(λi + λ?)2

=
1

n

n∑
i=1

1

λi
≥ n

n∑
i=1

λi

(17)

where the last inequality is the AM-HM inequality (Lemma 11). �erefore a possible lower bound for Eq. (15) is

1

n

n∑
i=1

λi
(λi + λ?)2

≥ n
n∑
i=1

λi

(1−
√
τ)2, (18)

as it satis�es the edge cases in Eqs. (16) and (17). We will show that this inequality in fact holds.

By Eq. (12), to prove that Eq. (18) holds, it su�ces to show that for any a1 ≥ . . . ≥ an ≥ 0 and x ≥ 0,

1

n

n∑
i=1

ai
(ai + x)2

≥ n
n∑
i=1

ai

1−

√√√√ 1

n

n∑
i=1

(
x

ai + x

)2
2

which upon rearranging is equivalent to√√√√ 1

n

n∑
i=1

ai
(ai + x)2

√√√√ 1

n

n∑
i=1

ai +

√√√√ 1

n

n∑
i=1

(
x

ai + x

)2

≥ 1. (19)

Let us �x a1 ≥ . . . ≥ an ≥ 0 and consider the function g : [0,∞)→ [0,∞) de�ned as the le�-hand side of the above

g(x) =

√√√√ 1

n

n∑
i=1

ai
(ai + x)2

√√√√ 1

n

n∑
i=1

ai +

√√√√ 1

n

n∑
i=1

(
x

ai + x

)2

. (20)

We can show g(x) is decreasing by computing the derivative which is given as follows

g′(x) =
1

n

n∑
i=1

ai
(ai + x)3

·

( 1

n

n∑
i=1

1

(ai + x)2

)−1/2
−

(
1

n

n∑
i=1

ai

)1/2

·

(
1

n

n∑
i=1

ai
(ai + x)2

)−1/2.
9



�erefore to show that g′(x) ≤ 0, by rearranging the above expression it su�ces show that

1

n

n∑
i=1

ai
(ai + x)2

≤

(
1

n

n∑
i=1

ai

)
·

(
1

n

n∑
i=1

1

(x+ ai)2

)
.

�e above however follows immediately from Chebyshev’s Sum Inequality (Lemma 12). �erefore we have shown
that g(x) is decreasing. Since in Eq. (20) it is easy to see that lim

x→∞
g(x) = 1, it follows that g(x) ≥ 1 for all x ≥ 0,

which proves Eq. (19). Now taking Eq. (19) and plugging in to Eq. (14) we get that

Ey,X E lin? (τ) ≥ σ2n

p
· EX

1

n

n∑
i=1

λi
(λi + λ?)2

≥ σ2n

p
· EX

n
n∑
i=1

λi

(1−
√
τ)2

≥ σ2n

p
(1−

√
τ)2

n

EX
n∑
i=1

λi

(Jensen’s Inequality)

= σ2n

p
(1−

√
τ)2,

where the last equality holds since EX
n∑
i=1

λi = EX Tr(G) = n.

Remark 4. One may wonder if the following lower bound

1

n

n∑
i=1

λi
(λi + λ?)2

≥ 1

n

n∑
i=1

1

λi
(1−

√
τ)2, (21)

could have been used in place of Eq. (18) as it also satis�es the same edge cases. �is however is not a valid inequality. To
see this, take n = 2 and let λ1 = ε, λ2 = 1− ε, and τ ∈ (1/2, 1). �en as ε→ 0, it is easy to see since

τ =
1

n

n∑
i=1

(
λ?

λi + λ?

)2

≈ 1

2
+

1

2

(
λ?

1 + λ?

)2

it must be that λ? is bounded below and does not go to 0. However that means that the le�-hand side of Eq. (21) is bounded
above whereas the right hand side goes to in�nity.

Remark 5. �e lower bound via weak duality (see Eq. (13)) reveals that the minimal excess linear loss is lower bounded
by the test loss of a ridge estimator on a di�erent, auxiliary problem coming from Lemma 3. In this auxiliary problem the
covariates are whitened and the training targets are the noise ξ as opposed to y. �e ridge parameter of the estimator
is exactly the Lagrange multiplier corresponding to the training error constraint. �is ridge estimator requires oracle
knowledge of the feature covariance Σ and the noise vector ξ. Note that the lower bound arises purely from the variance
due to label noise since this oracle ridge estimator is an unbiased estimator for the original problem.

3 Lower Bounds under Marchenko-Pastur Asymptotics

In this section we analyze E?(τ ;n, p) more precisely under additional asymptotic distributional assumptions. As
mentioned earlier, this will allow us to assess the tightness of our general lower bound given in �eorem 1. Speci�cally,
we assume the following se�ing which has been used to analyse ridge regression in several prior works including
[31, 32, 7]:

10



[MP] Assume n, p → ∞ so that n/p → γ ∈ (0,+∞). Recall the matrix G = WW T/p which has eigenvalues
λ1, . . . , λn. Let µp be the empirical spectral distribution ofG,

µp(A) =
1

n
|{λi ∈ A}|, A ⊂ R.

�en we have the following convergence in the weak topology

µp → MP(γ)

where MP(γ) is the Marchenko-Pastur distribution with aspect ratio γ (see Appendix B).

[Lin] �e optimal model is linear and noise is additive:

y = βT
?φ(x) + ε,

where the noise ε satis�es E[ε] = 0, E[ε2] = σ2, and E[ε4+η] <∞ for some η > 0.

Remark 6. Assumption MP holds whenever the entries of W are distributed i.i.d with mean zero and variance 1.
In particular, this holds if φ(x) ∼ N (0,Σ) for any Σ � 0. By assuming the optimal model is linear we have that
E?(τ) = E lin? (τ). Additionally, since Var(y |x) = Var(ε) = σ2 almost surely, the inequality in Lemma 4 is an equality.

Let m(z; γ) denote the Stieltjes transform of the Marchenko-Pastur Law and let m′(z; γ) be the derivative with
respect to z (see Appendix B). Under the above assumptions we have the following analytical characterization of the
asymptotic minimal excess error.

Proposition 1 (MP Asymptotics). Under AssumptionsMP and Lin, the asymptotic minimal excess error is given by
the following analytical expression

E?(τ, γ) := lim
n,p→∞
n/p→γ

E?(τ ;n, p) = σ2γ[m(−λ; γ)− λm′(−λ; γ)] (22)

where λ satis�es the �xed point equation
λ2m′(−λ; γ) = τ. (23)

Proof. For any λ ≥ 0, by Assumption Lin we can use Proposition 13 to get the asymptotic versions of Eqs. (10), (11)

‖b?(λ)‖2 ∼ σ2 1

p
Tr
(
G(λ)−1GG(λ)−1

)
1

n
‖Wb?(λ)− ξ‖2 ∼ σ2 1

n
Tr
(
GG(λ)−1 − I

)2
where an ∼ bn denotes that |an − bn| → 0 almost surely. �en by Assumption MP

1

p
Tr
(
G(λ)−1GG(λ)−1

)
=

1

p

n∑
i=1

λi
(λi + λ)2

=
n

p

∫
s

(s+ λ)2
dµp(s)→ γ

∫
s

(s+ λ)2
dMPγ(s) ,

1

n
Tr
(
GG(λ)−1 − I

)2
=

1

n

n∑
i=1

(
λ

λi + λ

)2

=

∫ (
λ

s+ λ

)2

dµp(s)→
∫ (

λ

s+ λ

)2

dMPγ(s) .

�erefore if λ? is the unique solution to the �xed point equation∫ (
λ?

s+ λ?

)2

dMPγ(s) = τ (24)

then the constraint becomes tight almost surely

1

n
‖Wb?(λ?)− ξ‖2 − τσ2 → 0.

11
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101 102

p/n 1/

10 3

10 2

10 1

100

Ex
ce

ss
 L

os
s

 with 2 = 1, fixed 
= 0.10 exact
= 0.10 bound
= 0.30 exact
= 0.30 bound
= 0.50 exact
= 0.50 bound

(b) For �xed τ we plot the exact value of E?(1/γ) using Eq. (22)
[solid] and the lower bound from Eq. (28) [dashed].

�e pair (b(λ?), λ?) is the unique KKT point and since a minimizer of the primal problem exists due to continuity of
the objective and compactness of the constraint set, this pair is asymptotically the primal/dual optimal variables and

E?(τ ;n, p) ∼ ‖b?(λ?)‖2 → σ2γ

∫
s

(s+ λ?)2
dMPγ(s)

where λ? satis�es Eq. (24). We can write the integrals that appear above in terms of the Stieltjes transform∫
s

(s+ z)2
dMPγ(s) =

∫ [
1

s+ z
− z

(s+ z)2

]
dMPγ(s) = m(−z; γ)− zm′(−z; γ),∫ (

z

s+ z

)2

dMPγ(s) = z2
∫

1

(s+ z)2
dMPγ(s) = z2m′(−z; γ).

�us we can write E?(τ, γ) as

σ2γ[m(−λ; γ)− λm′(−λ; γ)] s.t. λ2m′(−λ; γ) = τ.

Remark 7. Note that by Remark 5, E?(τ, γ) should be equal to the asymptotic test risk of a ridge regression predictor on
isotropic Gaussian covariates with ridge parameter λ satisfying Eq. (23), when the target function is zero. Indeed our
calculations match results obtained in previous calculations of this limiting risk, for example Corollary 5 in [7].

For convenience in later proofs, let use de�ne the following functions

E(λ, γ) = m(−λ; γ)− λm′(−λ; γ), (25)
f(λ, γ) = λ2m′(−λ; γ). (26)

Note that f is strictly increasing in λ, so we can de�ne the inverse function f−1(τ, γ) so that

f(f−1(τ, γ), γ) = τ. (27)

Using our characterization of the minimal excess error in Proposition 1 we will now derive lower bounds in �eorems
2 and 4 and an exact expression when γ = 1 in �eorem 5.

�eorem 2 (MP Lower Bound). By �eorem 1, for �xed τ ∈ [0, 1], the minimum excess error satis�es

E?(τ, γ) ≥ σ2γ(1−
√
τ)2 (28)

for all γ ∈ (0,+∞). �e dependence on τ is in fact tight since

inf
γ∈(0,∞)

E?(τ, γ)/γ = σ2(1−
√
τ)2. (29)

12



Proof. Observe that as γ → 0, the spectral eigenvalue distribution ofWW T/p is converging to a point mass at 1.
�erefore, recalling the function f de�ned in Eq. (26), by the Dominated Convergence �eorem

lim
γ→0

f(λ, γ) = lim
γ→0

∫
s∈[1−√γ,1+√γ]

λ2

(s+ λ)2
dHγ (s) =

λ2

(1 + λ)2

hence by continuity

lim
γ→0

f−1(τ, γ) =

√
τ

(1−
√
τ)
.

�us le�ing λ = limγ→0 f
−1(τ, γ), we get

lim
γ→0

E?(τ, γ)

σ2γ
= lim
γ→0

∫
s∈[1−√γ,1+√γ]

s

(s+ λ)2
dHγ (s) =

1

(1 + λ)2
= (1−

√
τ)2.

By Eq. (28), we have that the limit equals the in�mum

lim
γ→0

E?(τ, γ)

σ2γ
= inf
γ∈(0,∞)

E?(τ, γ)

σ2γ

which shows Eq. (29).

From the above �eorem 2 we saw that E?(τ, γ)/γ → (1−
√
τ)2 as γ → 0, achieving its in�mum in the limit. In

the following theorem we will show that moreover E?(τ, γ)/γ is strictly increasing in γ which implies in particular
that Eq. (28) becomes strictly looser as γ grows.

�eorem 3. For �xed τ ∈ (0, 1], the ratio of the minimum excess error E?(τ, γ) to γ is increasing in γ, that is

dE?(τ, γ)/γ

dγ
= σ2 dE(f−1(τ, γ), γ)

dγ
> 0, γ ∈ (0,+∞)

where the function E is de�ned in Eq. (25).

Proof. Let λ = f−1(τ, γ). By the chain rule

dE(f−1(τ, γ), γ)

dγ
=
∂E(λ, γ)

∂γ
+
∂E(λ, γ)

∂λ

∂f−1(τ, γ)

∂γ
. (30)

We will compute the following three terms in Eq. (30)

(1) :
∂E(λ, γ)

∂γ
, (2) :

∂E(λ, γ)

∂λ
, (3) :

∂f−1(τ, γ)

∂γ
.

�e computation of the �rst two terms is direct

∂E(λ, γ)

∂γ
=
∂m(−λ; γ)

∂γ
− λ∂m

′(−λ; γ)

∂γ
,

∂E(λ, γ)

∂λ
= −2m′(−λ; γ) + λm′′(−λ; γ).

For the third term, we take the derivative with respect to γ on both sides of Eq. (27) which yields

∂f(λ, γ)

∂λ

∂f−1(τ, γ)

∂γ
+
∂f(λ, γ)

∂γ
= 0.

Hence a�er re-arranging we have

∂f−1(τ, γ)

∂γ
= −

∂f(λ,γ)
∂γ

∂f(λ,γ)
∂λ

= −
λ2 ∂m

′(−λ;γ)
∂γ

2λm′(−λ; γ)− λ2m′′(−λ; γ)
.
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Figure 2: For �xed γ = n/p we plot the exact value of E?(τ) using Eq. (22) [solid] and the �rst-order Taylor approximation
around τ = 0 from Eq. 31 [dashed]. Observe that as γ → 1 the approximation becomes less tight for larger values of τ .

Computing the product of terms (2) and (3) gives

∂E(λ, γ)

∂λ

∂f−1(τ, γ)

∂γ
= λ

∂m′(−λ; γ)

∂γ
.

Finally pu�ing everything together in Eq. (30) yields

dE(f−1(τ, γ), γ)

dγ
=
∂E(λ, γ)

∂γ
+
∂E(λ, γ)

∂λ

∂f−1(τ, γ)

∂γ

=
∂m(−λ; γ)

∂γ
− λ∂m

′(−λ; γ)

∂γ
+ λ

∂m′(−λ; γ)

∂γ

=
∂m(−λ; γ)

∂γ

∣∣∣∣∣
λ=f−1(τ,γ)

> 0,

where the last inequality follows from Lemma 10.

�e previous bound provides a lower bound on the minimum excess risk that holds for all τ ∈ [0, 1] and becomes
tight as γ → 0 i.e. the amount of overparametrization becomes large. However, the bound is loose for small τ near
the interpolation peak γ = 1. To understand behavior in this regime, for a �xed γ we compute a local expansion of
E?(τ, γ) around E?(0, γ). Instead of directly analyzing the function E?(τ, γ), we work with the function

√
E?(t, γ)

where we re-parametrize in terms of t :=
√
τ . We then obtain the bound by taking the �rst-order Taylor expansion

of this function around t = 0 and then arguing it is a lower bound by showing the function is convex. In the end we
convert this into lower bound on the original function E?(τ, γ). It is important to re-parametrize in terms of

√
τ since

the derivative of E?(τ, γ) with respect to τ at 0 is −∞, as is also true for the lower bound in Eq. (28). Intriguingly, as
we explain in Remark 8, taking the Taylor expansion of the square-root of E? yields a tighter approximation rather
than directly expanding E?.
�eorem 4 (MP lower bound for small τ ). For �xed γ ∈ (0, 1) and τ ∈ [0, 1− γ] we have

E?(τ, γ) ≥ σ2γ

1− γ

(
1−

√
τ√

1− γ

)2

. (31)
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Moreover, the lower bound is tight up to o(
√
τ) error.

Proof. In the proof we will o�en suppress the dependence on γ and express dependence on τ in terms of t :=
√
τ . In

particular, recalling the functions E, f , and f−1 de�ned in Eqs. (25), (26), and (27) we use

E?(t) := E?(τ, γ), f−1(t) := f−1(τ, γ)

E(λ) := E(λ, γ), f(λ) := f(λ, γ),

and as a result Eq. (27) becomes
f(f−1(t)) = t2. (32)

�e �rst-order Taylor approximation of
√
E?(t) around t = 0 is given by

P1(t) :=
√
E?(0) + t · d

dt

√
E?(t)

∣∣∣
t=0

=
√
E?(0) +

t

2
√
E?(0)

· E ′?(0). (33)

where as t→ 0+ √
E?(t) = P1(t) + o(t). (34)

Note that since limt→0+ f
−1(t, γ) = 0 for any γ, by Lemma 8 we

E?(0) = σ2γ lim
λ→0+

[m(−λ; γ)− λm′(−λ; γ)] = σ2γ lim
λ→0+

m(−λ; γ) =
σ2γ

1− γ
.

Furthermore le�ing λ = f−1(t), we have by the chain rule

E ′?(t) = σ2γ
dE(f−1(t))

dt
= σ2γ

dE(λ)

dλ

df−1(t)

dt
. (35)

We can directly calculate the �rst term

dE(λ)

dλ
= −2m(−λ; γ) + λm′′(−λ; γ).

By di�erentiating both sides of Eq. (32) with respect to t we get

df−1(t)

dt

df(λ)

dλ
= 2t.

�erefore rearranging the above gives

df−1(t)

dt
=

2t

f ′(λ)
=

2t

2λm′(−λ; γ)− λ2m′′(−λ; γ)

=
2λ
√
m′(−λ; γ)

2λm′(−λ; γ)− λ2m′′(−λ; γ)

=
2
√
m′(−λ; γ)

2m′(−λ; γ)− λm′′(−λ; γ)
.

Hence from Eq. (35) we see
E ′?(t) = −2σ2γ

√
m′(−λ, γ). (36)

Observe that since m′(−λ; γ) ≥ 0, the derivative E ′?(t) ≤ 0. Furthermore, since λ is increasing in t and m′(−λ; γ) is
decreasing in λ, it follows that m′(−λ; γ) is decreasing in t. �us E ′?(t) is increasing, i.e. E ′′? (t) ≥ 0. Using Lemma 9

E ′?(0) = lim
λ→0+

−2σ2γ
√
m′(−λ, γ) = −2γσ2 1

(1− γ)3/2
.
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Plugging this into the Taylor approximation P1(t) in Eq. (33) we get that

P1(t) = σ

√
γ

1− γ
− σt

√
1− γ
γ

γ

(1− γ)3/2

= σ

√
γ

1− γ

(
1− t 1√

1− γ

)
.

We now show that
√
E?(t) ≥ P1(t) by showing that

√
E?(t) is convex on [0, 1] for which it su�ces to show that the

second derivative is non-negative. Computing the second derivative, we get

d2

dt2

√
E?(t) =

E?(t)
2
√
E?(t)

− E ′?(t)
4E?(t)3/2

.

We can see that this is always non-negative since E?(t) ≥ 0 and from Eq. (36) and the accompanying remarks
E ′?(t) ≤ 0 and E ′′? (t) ≥ 0. Returning to the original τ parameterization, we have that for all τ ∈ [0, 1]

√
E?(τ) ≥ P1(

√
τ) = σ

√
γ

1− γ

(
1−

√
τ

1− γ

)
.

Note that for τ ≤ 1− γ, both sides of the above inequality are non-negative. Hence we can square both sides yielding

E?(τ, γ) ≥ σ2 γ

1− γ

(
1−

√
τ

1− γ

)2

which was the desired lower bound. �e fact that the bound is tight up to o(
√
τ) follows from Eq. (34).

Remark 8. Observe that from the above computations the �rst-order expansion of E?(t) is given by

E?(0) +
√
τE ′?(0) = σ2

√
γ

1− γ

(
1− 2

√
τ

1− γ

)
< σ2 γ

1− γ

(
1−

√
τ

1− γ

)2

≤ E?(τ)

which shows that expanding the square-root of the minimum excess error yields a tighter bound.

Note that the bound in Eq. (31) matches the lower bound in �eorem 2 as γ → 0. Interestingly, this bound has the
form of a multiplicative factor of the minimum interpolation (τ = 0) loss and is only valid for small τ . We will in fact
show that no bound of that form can capture the behavior of the excess loss for arbitrarily small τ > 0 as γ → 1 in
�eorem 5. In particular, we now show a discontinuity at τ = 0 when considering the peak n = p.

�eorem 5 (Excess Loss at Peak). For γ = 1 and τ ∈ (0, 1),

E?(τ, 1)

σ2
=

1

4τ
+
τ

4
− 1

2

hence as τ → 0,
E?(τ, 1) = Θ(τ−1).

Proof. Consider the Stieltjes transform m(−z; γ) and its derivative. At the interpolation peak γ = 1, we have

m(−z; 1) =
1

2

(√
1 + 4/z − 1

)
m′(−z; 1) = − z + 2

2z
√
z2 + 4z

+

√
z2 + 4z

2z2
.

One can then check that
z2m′(−z; 1) =

1√
1 + 4/z

.
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Hence the �xed point equation Eq. (23) can be wri�en as

τ = λ2m′(−λ; 1) =
1√

1 + 4/λ

which implies that λ satis�es the following √
1 + 4/λ =

1

τ
,

1

λ
=

1

4

(
1

τ2
− 1

)
.

Using the above relations, we can compute the minimum excess error using Eq. (22)

E?(τ, 1)

σ2
= m(−λ; 1)− λm′(−λ; 1)

=
1

2

(√
1 + 4/λ− 1

)
− τ

λ

=
1

2

(
1

τ
− 1

)
− 1

4

(
1

τ
− τ
)

=
1

4τ
+
τ

4
− 1

2
.

Remark 9. As mentioned earlier, a consequence of the above is that we cannot have a lower bound of the form
E?(τ ;n, p) ≥ E?(0;n, p) · f(τ) for some function f which satis�es f(τ) > 0 for τ > 0 since for any τ > 0,

lim
γ→1

E?(τ, γ)

E?(0, γ)
= 0.

4 Conclusion

In this work we demonstrated a trade-o� between the expected loss, empirical loss, and the number of parameters
for general linear models. In particular we have shown that near-optimal algorithms output models that are either
classical (with empirical loss approaching the noise level) or have signi�cant excess over-parameterization, i.e.,
have many more parameters than the number needed to �t the training data. �is trade-o� is universal as it is
non-asymptotic, holds for any algorithm, and any data distribution (under mild non-degeneracy assumptions).

We also provided a more precise asymptotic lower bound under Marchenko-Pastur distributional assumptions
near the classical double descent peak where the amount of overparametrization is just enough to interpolate the
data. Remarkably however, as the level of overparametrization increases the minimum excess loss exactly matches
the universal bound, demonstrating the tightness of the bound.

�e open questions that remain include extending our results to more general non-linear parametric families and
to classi�cation se�ings.
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A Missing Proofs from Section 2.1

In this section of the appendix, we supply missing proofs for some the auxiliary results used in the proof of �eorem
1 in Section 2.1. Recall that we denote the optimal linear predictor as β? := arg minβ∈Rp R(β).

Lemma 5 (Optimal Linear Predictor). De�ne β? as in Eq. (5). �en

1. β? is the orthogonal projection of f? onto the subspace of linear functionsH = {β(x) : β ∈ Rp} in L2,

2. E(f) := R(f)−R(f?) = Ex[(f(x)− f?(x))2,

3. E lin(β) := R(β)−R(β?) = Ex[(β(x)− β?(x))2].

Proof. By de�nition of the optimal linear predictor

β? = arg min
β∈H

R(β)

= arg min
β∈H

E(x,y)[(y − β(x))2]

= arg min
β∈H

E(x,y)[(y − f?(x))2 + (f?(x)− β(x))2] (since Ey|x[y − f?(x)] = 0)

= arg min
β∈H

Ex[(f?(x)− β(x))2],

which shows Claim 1. For Claim 2

R(f)−R(f?) = E(x,y)[(y − f(x))2]− E(x,y)[(y − f?(x))2]

= E(x,y)[(f(x)− f?(x))2]− 2E(x,y)[(f(x)− f?(x))(y − f?(x))]

= Ex[(f(x)− f?(x))2].

For Claim 3

R(β)−R(β?) = E(β)− E(β?)

= Ex[(f?(x)− β(x))2 − (f?(x)− β?(x))2]

= Ex[(β(x)− β?(x))2]− 2Ex[(f?(x)− β?(x))(β(x)− β?(x))]

= Ex[(β(x)− β?(x))2]

where the second equality holds from Claim 2 and the last equality holds from Claim 1 in Lemma 5.

Lemma 6 (Excess Linear Loss). �e excess loss satis�es the following lower bound

E(β) ≥ E lin(β) =
∥∥∥Σ1/2(β − β?)

∥∥∥2.
Proof. It is clear that E(β) ≥ E lin(β). Using Lemma 5 and the de�nition of Σ

E(β) = Ex(β(x)− β?(x))2

= Ex(βTφ(x)− βT
?φ(x))2

= (β − β?)TEx[φ(x)φ(x)T](β − β?)

=
∥∥∥Σ1/2(β − β?)

∥∥∥2.
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Recall that we de�ned the random vectors

ξnoise = (yi − f?(xi))i∈[n] ∈ Rn, ξlin = (f?(xi)− β?(xi))i∈[n] ∈ Rn

and let ξ = ξnoise + ξlin.

Lemma 7 (Expectation Over Noise). Let f : Rn×d → Sn+ be any PSD matrix valued function. �en,

Ey,X [ξTf(X)ξ] ≥ σ2EX Tr(f(X)). (37)

Moreover, if Var(y |x) = σ2 almost surely and f? = β? then the above is an equality.

Proof. Recalling that ξ = ξnoise + ξlin. By de�nition of ξnoise we have that

Ey|X [ξnoise] = 0

and by the assumption on the noise variance we have almost surely

Ey|X [ξnoiseξ
T
noise] = diag((Var[y | xi])i∈[n]) � σ2I. (38)

Using these observations we have

Ey|X [ξTf(X)ξ] = Ey|X [ξTnoisef(X)ξnoise] + 2Ey|X [ξTlinf(X)ξnoise] + Ey|X [ξTlinf(X)ξlin]

= Tr
(
f(X)Ey|X [ξnoiseξ

T
noise]

)
+ 2ξTlinf(X)Ey|X [ξnoise] + ξTlinf(X)ξlin

= Tr
(
f(X)Ey|X [ξnoiseξ

T
noise]

)
+ ξTlinf(X)ξlin

≥ σ2 Tr(f(X)) + ξTlinf(X)ξlin

≥ σ2 Tr(f(X)),

where we used Eq. (38) in the �rst inequality and we used the assumption that f(X) is a PSD matrix for the last
inequality. By iterating expectations we have

Ey,X [ξTf(X)ξ] = EXEy|X [ξTf(X)ξ] ≥ σ2EX Tr(f(X))

as desired. Note that if Var(y |x) = σ2 then Eq. (38) becomes an equality and if f? = β? then ξlin = 0 and so it easy
to see that Eq. (37) is an equality as well.
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B Marchenko-Pastur Law

In this section, we will give some de�nitions, facts, and results concerning the Marchenko-Pastur Law.

De�nition 1 (Marchenko-Pastur Law). �e Marchenko-Pastur Law with aspect ratio γ, denotedMP(γ), is given the
probability distribution (

1− 1

γ

)
+

δ0 +
1

γ2πx

√
(b− x)(x− a)

where
a = (1−√γ)2, b = (1 +

√
γ)2.

De�nition 2 (Stieltjes Transform). For z > 0 and γ > 0, the Stieltjes transform of the Marchenko-Pastur law is

m(−z; γ) :=

∫
1

s+ z
dMPγ(s) =

−(1− γ + z) +
√

(1− γ + z)2 + 4γz

2γz

and its derivative satis�es

m′(−z; γ) =

∫
1

(s+ z)2
dMPγ(s)

=
−(1− γ + z)− 2γ

2γz
√

(1− γ + z)2 + 4γz
+

1

2γz
+

√
(1− γ + z)2 + 4γz − (1− γ + z)

2z2γ
.

Lemma 8. For any γ > 0,

lim
z→0+

m(−z; γ) =
1

1− γ

Proof. �is just follows from a direct computation

lim
z→0+

m(−z; γ) = lim
z→0+

−(1− γ + z) +
√

(1− γ + z)2 + 4γz

2γz

= lim
z→0+

−(1− γ + z)2 + (1− γ + z)2 + 4γz

2γz[(1− γ + z) +
√

(1− γ + z)2 + 4γz]

= lim
z→0+

2

(1− γ + z) +
√

(1− γ + z)2 + 4γz
=

1

1− γ
.

Lemma 9. For any γ > 0,

lim
z→0+

m′(−z; γ) =
1

(1− γ)3

Proof. By the de�nition of derivative

lim
z→0+

m′(−z; γ) = lim
z→0+

m(−z; γ)−m(0; γ)

−z

= lim
z→0+

1

z

(
(1− γ + z)−

√
(1− γ + z)2 + 4γz

2γz
+

1

1− γ

)

= lim
z→0+

(1− γ)(1− γ + z)− (1− γ)
√

(1− γ + z)2 + 4γz + 2γz

2γ(1− γ)z2

= lim
z→0+

(1− γ)2 + z(1 + γ)− (1− γ)
√

(1− γ + z)2 + 4γz

2γ(1− γ)z2

= lim
z→0+

[(1− γ)2 + z(1 + γ)]2 − (1− γ)2[(1− γ + z)2 + 4γz]

2γ(1− γ)z2[(1− γ)2 + z(1 + γ) + (1− γ)
√

(1− γ + z)2 + 4γz]

22



Observe that the numerator simpli�es as

[(1− γ)2 + z(1 + γ)]2 − (1− γ)2[(1− γ + z)2 + 4γz]

= (1− γ)4 + 2z(1− γ)2(1 + γ) + z2(1 + γ)2 − [(1− γ)4 + 2z(1− γ)2(1 + γ) + (1− γ)2z2]

= z2[(1 + γ)2 − (1− γ)2] = 4z2γ.

Hence

lim
z→0+

m′(−z; γ) = lim
z→0+

4γ

2γ(1− γ)[(1− γ)2 + z(1 + γ) + (1− γ)
√

(1− γ + z)2 + 4γz]

=
2

(1− γ)[(1− γ)2 + (1− γ)
√

(1− γ)2]
=

1

(1− γ)3
.

Lemma 10. For any z > 0,
∂m(−z; γ)

∂γ
> 0.

Proof. We can rewrite the Stieltjes transform as follows

m(−z; γ) =
−(1− γ + z) +

√
(1− γ + z)2 + 4γz

2γz

=
−(1− γ + z) +

√
(1− γ + z)2 + 4γz

2γz

(1− γ + z) +
√

(1− γ + z)2 + 4γz

(1− γ + z) +
√

(1− γ + z)2 + 4γz

=
2

(1− γ + z) +
√

(1− γ + z)2 + 4γz
.

�erefore it su�ces to show that

f(γ) = (1− γ + z) +
√

(1− γ + z)2 + 4γz

is decreasing in γ. Taking the derivative we see that

f ′(γ) = −1 +
−(1− γ + z) + 2z√
(1− γ + z)2 + 4γz

.

Note that f ′(γ)< 0 if and only if

2z − (1− γ + z)<
√

(1− γ + z)2 + 4γz.

Squaring both sides and clearing terms this is equivalent to

4z2 − 4z(1− γ + z)< 4γz.

Using the fact that z > 0 we can divide both sides by 4z to get

z − (1− γ + z)<γ

which is clearly true.
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C Auxiliary Lemmas

Lemma 11 (AM-HM inequality). Let x1, . . . , xn ∈ R. �en

n∑
i=1

1

xi
≥ n2

(
n∑
i=1

xi

)−1
.

Proof. By the Cauchy-Schwarz inequality

n2 =

(
n∑
i=1

√
xi ·

1
√
xi

)2

≤
n∑
i=1

√
xi

2 ·
n∑
i=1

1
√
xi

2 ,

which a�er re-arranging gives the desired inequality.

Lemma 12 (Chebyshev’s Sum Inequality [33]). If a1 ≤ a2 ≤ . . . ≤ an and b1 ≥ . . . ≥ bn then

1

n

n∑
i=1

aibi ≤

(
1

n

n∑
i=1

ai

)(
1

n

n∑
i=1

bi

)
.

Lemma 13 (Concentration of �adratic Forms, Lemma 7.6 from [32]). For each positive integer n, letAn be a random
n× n PSD matrix. Let ξ1, ξ2, . . . be a sequence of i.i.d random variables and denote ξn = (ξ1, . . . , ξn). �en if

• supn ‖An‖ = O(1)

• E[ξ1] = 0, E[ξ21 ] = σ2, and E[ξ4+η1 ] for some η > 0

we have the following convergence
1

n
ξTnAnξn −

σ2

n
Tr(An)→ 0

almost surely.
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