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Abstract

Energy-based models (EBMs) have gained
popularity for controlled text generation due
to their high applicability to a wide range of
constraints. However, sampling from EBMs
is non-trivial, as it often requires a large num-
ber of iterations to converge to plausible text,
which slows down the decoding process and
makes it less practical for real-world appli-
cations. In this work, we propose BOLT,
which relies on tunable biases to directly ad-
just the language model’s output logits. Unlike
prior work, BOLT maintains the generator’s
autoregressive nature to assert a strong con-
trol on token-wise conditional dependencies
and overall fluency, and thus converges faster.
When compared with state-of-the-arts on con-
trolled generation tasks using both soft con-
straints (e.g., sentiment control) and hard con-
straints (e.g., keyword-guided topic control),
BOLT demonstrates significantly improved
efficiency and fluency. On sentiment control,
BOLT is 7x faster than competitive baselines,
and more fluent in 74.4% of the evaluation
samples according to human judges.

1 Introduction

Generating text using pre-trained language mod-
els (PLMs) to satisfy user-specified constraints
is an important task to allow practical usage of
PLMs. Common controlled text generation meth-
ods include training conditional language mod-
els (Keskar et al., 2019; Zhang et al., 2020) or
attribute-based fine-tuning of PLMs (Liu et al.,
2020; Zhang and Song, 2022). Yet, these meth-
ods are often resource-intensive and infeasible for
large models like GPT-3 (Brown et al., 2020).
Furthermore, these methods assume access to
large amounts of attribute-specific data and are
inflexible for new constraints. On the contrary,
inference-time methods (Qin et al., 2022; Kumar
et al., 2022; Mireshghallah et al., 2022) directly
steer the generations without model re-training or
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Figure 1: Sentiment controllability (i.e., % of genera-
tions with a given sentiment, as estimated by a classi-
fier) against sampling speed for different energy-based
methods. BOLT shows a pronounced improvement in
decoding speed with comparable or better control.

fine-tuning. In particular, energy-based models
(EBMs) (LeCun et al., 2006) have demonstrated
greater flexibility, since they can accommodate ar-
bitrary energy functions (Khalifa et al., 2021; Qin
et al., 2022; Kumar et al., 2022).

Despite their benefits, sampling from EBMs
presents profound challenges.  Notably, the
sampling process, which is often done through
Langevin Dynamics (Welling and Teh, 2011) or
Gibbs Sampling (Goyal et al., 2022), requires a
substantial number of iterations to converge to
readable sequences of text. This can significantly
slow down the decoding process, rendering the
methods unusable in real-world applications.

In this paper, we propose BOLT', that uses a
sequence of tunable Biases Over LogiTs of the
PLM’s output layer, to steer the generation to-
wards specified constraints. The biases are tuned
through a gradient-based process, with the goal
of minimizing the energy of the generated se-
quences. In contrast to prior research which
mainly investigates non-autoregressive decoders,
BOLT maintains the autoregressive generation

'Our code is available at https://github.com/
launchnlp/BOLT.



process, thus resulting in both fast convergence
with fewer iterations, since conditional dependen-
cies between tokens are exploited, and improved
fluency. Fig. 1 demonstrates that the sampling
process of recent EBM-based methods—MuCola
(Kumar et al., 2022), Mix&Match (Mireshghal-
lah et al., 2022), and COLD (Qin et al., 2022)—is
slower on a sentiment control task, e.g., generat-
ing 20 tokens using 10 seconds on average, while
BOLT only takes 1.4 seconds.

We conduct controlled generation experiments
over three tasks: sentiment control, toxicity avoid-
ance, and keyword-guided topic control, encom-
passing both soft and hard constraint-based gener-
ation problems. BOLT’s outputs achieve the low-
est perplexity across all tasks, while being 7x and
17x faster than COLD and MuCola, respectively,
on sentiment control. Additionally, BOLT shows
superior controllability in toxicity avoidance while
obtaining comparable controllability on the other
two tasks. Lastly, according to human evaluation,
74.4% and 51.0% of samples produced by BOLT
in sentiment control and toxicity avoidance are
rated as more fluent than those by multiple com-
parison methods.

2 Related Work

Popular methods for controlled generation of-
ten rely on attribute-conditioned language model-
ing (Krause et al., 2021), model fine-tuning (Khal-
ifa et al., 2021), or prompt tuning (Yang et al.,
2022), all requiring intensive model training and
attribute-specific data. This paper instead fo-
cuses on inference-time methods that require no
model training. Prior work under this paradigm
mainly adjusts the output token probabilities to-
ward constraint-satisfying sequences (Dathathri
et al., 2020; Yang and Klein, 2021). For instance,
Dathathri et al. (2020) leverage gradients from an
attribute classifier to update the LM hidden state
to guide the generation. However, one notable
drawback of such techniques is the requirement
of learning specialized models such as attribute
classifiers (Dathathri et al., 2020) and future-aware
classifiers (Yang and Klein, 2021). Another fam-
ily of methods searches for optimal sequences
through optimization in the continuous space. For
instance, MuCoCo (Kumar et al., 2021) uses con-
strained continuous optimization, solved by La-
grangian multipliers and gradient descent. Qin
et al. (2022) further enhance the gradient-based
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Figure 2: Overview of BOLT. Dashed green lines de-
note the straight-through estimation (STE), which con-
verts the continuous distribution to a one-hot vector and
allows the gradients to be back-propagated.

optimization method by using Langevin Dynam-
ics. Their main issue is that they require numerous
sampling iterations to converge since raw logits
or embeddings are optimized without considering
conditional dependencies among tokens. BOLT,
on the contrary, maintains the token dependencies
through autoregressive decoding while optimizing
for the constraints through the added biases.

3 The BOLT Model

Energy-based controlled generation aims to pro-
duce a sequence of tokens that minimize an en-
ergy function, with lower energy indicating more
constraints being satisfied (Qin et al., 2022; Ku-
mar et al., 2022). While sampling techniques such
as rejection sampling can be used to sample low-
energy sequences (Mireshghallah et al., 2022),
such sampling requires the usage of an appropri-
ate proposal distribution and is typically slow in
practice. Instead, we propose to tune a set of bi-
ases at inference time with the goal of steering the
decoding process towards generating low-energy
sequences.

The overview of our framework is displayed in
Fig. 2. At each decoding step ¢, we add the tunable
bias y? € RY to the PLM predicted logits y/M ¢
RY as follows:

yi =y +we -y, (1)

where w; controls the contribution of the bias. As
a result of the autoregressive decoding, the con-
trol effect at later time steps is compounded from
previous steps. One way to mitigate that is to
have smaller weights for biases at later time steps.



Therefore, we model the weights using a decreas-
ing linear function of ¢, i.e., wy = 1 — %, which is
found to work best in practice.’

Typically, we sample a discrete token y; from
the word distribution softmax (y¢), and then
feed it back to the PLM for further decod-
ing. However, this would require backpropaga-
tion through the sampling process to optimize the
biases. As a workaround, we use the straight-
through gradient estimator (STE) (Bengio et al.,
2013), which converts y; to a one-hot vector y;
in the forward pass and bypasses y; in the back-
ward pass to allow gradients to be applied to y;.>
¥+ designates the argmax token, i.e., the position
with the highest logit value in y; is set as 1, and
0 for the rest. The one-hot vector ¥, is fed to the
PLM for next-step decoding.

After decoding for L steps, we ob-
tain a sequence of one-hot vectors ¥y;.z)
=[¥1,¥2, .-, ¥1_1,¥z]. Then, we update y?
with gradient descent to minimize the energy
function E(¥;. L]).4 Thus, BOLT tunes the biases
with the goal of steering the PLM to generate
sequences with low energies. Finally, the output
sentence [y1,Yy2,...,YL—1,yr] can be derived
from yy.7) through multiple iterations of gradient
descent until the constraints are satisfied (e.g.,
the toxicity probability of generated sequence is
lower than a threshold) or a predefined maximum
iteration number is reached.

Energy Functions. Following previous work,
we experiment with both soft constraints, applied
on sentiments and non-toxicity, and hard con-
straint, for requiring the existence of certain key-
words in the generations. We describe the cor-
responding energy functions below. Additionally,
we use a fluency-encouraging component to main-
tain the coherence of the generated text.

Soft Constraints. We use attribute classifiers
as discriminators for soft constraints. The energy
output by the discriminator is defined as Ey,p; =
*pdis(cb_,[l:L])’C € C. Here pdis(C’g[lzL]) is the
probability of the sequence g;.7) with the attribute
c by the attribute classifier, and C' is the set of at-
tributes, e.g., positive and negative.

Hard Constraints. We follow Qin et al. (2022)

*Multiple options for w are explored, with more details
given in Appendix A.

3We describe the implementation of STE in Appendix B.

*In practice, we apply reparameterization to the biases to
reduce memory usage. Details are given in Appendix C.1.

and Kumar et al. (2022) and use the differentiable
BLEU (Liu et al., 2022), which measures unigram
similarity of the generated sentence and target key-
words. This energy can be represented as Epqq =
—diff-BLEU(¥(1.1), [w1, ..., wk]), where wy is a
keyword expected to appear in the generation.

Fluency Constraints. We define a fluency-
encouraging energy function corresponding to the
negative probability of the generated sequence ac-
cording to an external PLM, specifically GPT2-
large, given by E fjyent=— ZtL:l p(Yt|y <t), where
v is the t-th token and § - is the sequence gener-
ated until step ¢.

In order to ensure the fluency of samples, we
incorporate the fluency energy function with both
soft and hard constraints, where the total energy
function E,,pt + A1 Efiuent is used for soft con-
straints, and Epqrq + A2Efyent for hard con-
straints, where \; and Ay are hyperparameters.’

4 Experiments and Results

4.1 Constraints and Energy Functions

Following Kumar et al. (2022), we conduct exper-
iments on two soft constraint tasks: 1) sentiment
control and 2) toxicity avoidance. For sentiment
control, we collect 15 prompts from Dathathri
et al. (2020). For each prompt, every model gen-
erates 20 sentences of 3 different lengths (12, 20,
and 50 tokens) per sentiment (positive and nega-
tive). This results in a total of 1800 generations.
Moreover, we extract 1,000 prompts from Real-
ToxicityPrompts (Gehman et al., 2020) to assess
toxicity avoidance, with each model generating 25
sentences per prompt.

For hard constraint task, we use keyword-
guided topic control as done by Dathathri et al.
(2020). We use the same set of 15 prompts, with
each model generating sentences of 20 tokens,
for 7 topics. For each combination of topic and
prompt, 20 sentences are generated. We extract
4 keywords as constraints per topic. Full lists of
keywords and prompts are in Appendix D. In ad-
dition, we perform experiments on CommonGen
test set (Lin et al., 2020), which comprises 1,498
sets of keywords. For each set of keywords, each
model aims to generate a single sentence that in-
corporates all of the given keywords.

For formulating the energy functions, we con-
struct the discriminators in F,y; for sentiment

3 Appendix C.2 describes how to search A1 and \a.



Model Int. Clsf.t  Ext. CIsf.t PPL| Dist-31 REP-3gram| Speedt Fll{:"T‘a“ govil'T
COLD 61.46 5510  9.09 030 0.013 2.04 - -

MuCola 93.22 8655 1136 055 0.057 080 | 100  65.0
Mix&Match  96.09 8498 6675  0.82 0.006 162 | 156 339
BOLT 95.78 80.12 812  0.65 0.002 1379 | 744 567

Table 1: Results on sentiment control, with the best results in bold and the second best underlined. Int. Clsf.
and Ext. CIsf.: accuracy for intended sentiments, given by an internal or an external classifier. Average scores
are reported for PPL: perplexity by GPT2-XL; Dist-3: portion of distinct trigrams in each set of generations per
prompt; REP-3gram: repeated trigrams; Speed: tokens per second. Flu.: % of each model’s generations judged
as the most fluent by humans. Con.: % of each model’s generations conveying intended sentiments as labeled by
humans. Details on the metrics and human evaluation are in Appendix E.

control and toxicity avoidance by training 1) a sen-
timent classifier on Yelp polarity corpus (Zhang
et al., 2015), and 2) a toxicity detection classi-
fier on Jigsaws (Jain et al., 2022), following the
settings in Mireshghallah et al. (2022). During
generation, the desired attribute c is set as either
positive or negative in sentiment control,
and as non-toxic in toxicity avoidance. For
keyword-guided topic control, we use the set of
4 extracted keywords from each topic to compute
FEparq. More details of discriminator training are
given in Appendix C.3.

4.2 Baselines

We compare with three energy-based methods: 1)
COLD (Qin et al., 2022), which performs sam-
pling by iteratively updating a sequence of token-
level logits using Langevin dynamics; 2) MuCola
(Kumar et al., 2022) is similar to COLD, but sam-
ples the sequence of token embeddings instead
of logits; 3) Mix&Match (Mireshghallah et al.,
2022) uses Gibbs sampling to draw a batch of sen-
tences and determine their acceptance or rejection
using the energy function, repeated until conver-
gence.> Implementation details of baselines can
be found in Appendix C.4.

4.3 Results and Analysis

As shown in Table 1, on sentiment control, we
observe that BOLT is 7x faster than compar-
isons while achieving comparable controllability.
Though MuCola has the best control, as measured
by the external classifier and human judgment,
it generates repetitive trigrams more frequently.
Moreover, as rated by human judges, 74.4% of the
BOLT generations are preferred over other mod-

®Mix&Match’s code only supports sentiment control.
Therefore, we only compare with their results on the senti-
ment control task.

Avg. max, Toxicity Human Eval.
Model - povicity *  Prob. * PP [Flu.7 Tox. |
GPT2-L 0.404 0.307 6.64 -
COLD 0.340 0.239 1712 | 31.5 16.9
MuCola 0.309 0.142 35.09 | 17.5 16.0
BOLT 0.265 0.111 12.77 | 51.0 15.5

Table 2: Results on toxicity avoidance. Avg. max Tox-
icity: maximum toxicity (by Perspective API) of the
generations per prompt; Toxicity Prob.: the probabil-
ity of generating a toxic sentence of all generations per
prompt; Flu.: % of generations rated as most fluent;
Tox.: % of generations labeled as toxic by humans.
Evaluations are described in Appendix E.

Model Succ.(%)T PPL| REP-3gram|
COLD 100 15.93 0.001
MuCola 100 124.99 0.002
BOLT 100 8.94 0.003

Table 3: Results on keyword-guided topic control.
Succ.: the success rate of generations containing at
least one specified keyword.

els’ outputs, in terms of fluency. This is further
demonstrated by the sample outputs in Tables 4
and 7, where BOLT’s generated text is more co-
herent and sensible.

Similar observations are made on the toxic-
ity avoidance task. As seen in Table 2, BOLT
achieves the lowest toxicity levels. More than half
of BOLT’s generations are judged to be more flu-
ent than the baselines, which we argue is due to the
fact that BOLT maintains the LM’s autoregressive
decoding nature.

Results on keyword-guided topic control (Ta-
ble 3) further echo the advantage of BOLT. While
ensuring the inclusion of specified keywords in the
generated sentence is relatively easy for all mod-
els, BOLT stands out with its more fluent and nat-
ural generations.



Model Samples

Sentiment Control (positive)

COLD The chicken is cooked in a pan of water
and spices, then covered

The chicken, is a perfect, and very, very,
very, very

The chicken was exceptional. also on dis-
play were judge chambers, master of
The chicken skin is a wonderful source of
protein, and it’s great

MuCola

Mix&Match

BOLT

Toxicity Avoidance

COLD In the midst of this class discussion, a stu-
dent asked why so many straight men are
attracted by gay men, to the point where
they are willing and able to sleep with
men who

In the midst of this class discussion, a
student asked why so many straight men
would date gay men. “Because it’s eas-
ier!” Ho-Chunk interjected.

In the midst of this class discussion, a stu-
dent asked why so many straight men had
difficulty with women. I responded that it
was because they were not used to being
in relationships with

MuCola

BOLT

Keyword-guided Topic Control

COLD The last time I server keyboard, server,
and client, the only time the keyboard is
on the keyboard, keyboard

The last time I heard from him was when
he Linux fight between some UFC fight-
ers and the tournament in Linux. I

The last time Linux server was in the
news, it was when Microsoft announced
that Windows Server 2012 would be re-
leased with

MuCola

BOLT

Table 4: Sample generations on three tasks. Prompts
are in gray. Keywords are highlighted in blue.

Overall, BOLT demonstrates a faster decod-
ing speed and generates text with superior fluency,
while maintaining comparable or better controlla-
bility than the baselines. This makes BOLT par-
ticularly suitable for practical use cases. In future
work, we plan to apply BOLT to other controlled
generation tasks and explore its potential usage for
data augmentation (Malandrakis et al., 2019; Ku-
mar et al., 2020).

We further evaluate BOLT on another hard
constrain control task based on the CommonGen
dataset. This task is more challenging, since it
requires the generation to include an average of
4.5 provided keywords. We compare the perfor-
mance of BOLT with that of COLD and Mu-
Cola. Based on the results presented in Table 5,
BOLT achieves comparable coverage and gener-
ates fewer repetitions, with an increased perplex-
ity. The worse fluency can be attributed to the
tradeoff made by BOLT between controllability

Model Coverage(%)T PPL] REP-3gram|
COLD 94.7 18.55 0.214
MuCola 99.8 25.94 0.022
BOLT 99.2 34.63 0.000

Table 5: Results on CommonGen. Coverage: % of
keywords covered in model generations.

and fluency. Our experiments show that ensuring
the inclusion of all specified keywords often re-
quires a larger number of iterations for BOLT to
converge, compared to other tasks discussed ear-
lier in the paper. Unfortunately, this increased op-
timization process causes disruption of the origi-
nal autoregressive decoding outputs, resulting in
less fluent generations. This suggests future re-
search directions that explore different types of
hard constraint energy functions (Zhukov and Kre-
tov, 2017; Casas et al., 2018) and optimization
methods (Rennie et al., 2017; Liu et al., 2017) to
handle hard constraints with multiple keywords,
aiming for faster convergence and higher-quality
sentence generation.

5 Conclusion

We introduce BOLT, an energy-based model for
controlled text generation. It uses a sequence of
tunable biases applied to the logits of the PLM’s
output layer to guide the generation towards spec-
ified constraints or attributes. Through experi-
mental evaluations on controlled text generation
tasks involving both soft and hard constraints, we
demonstrate the effectiveness of BOLT in terms
of both speed and fluency.

Limitations

While BOLT shows an impressive performance
in imposing soft constraints and some hard con-
straints, it still lacks when it comes to imposing
harder constraints, for e.g., keyword control with
more than three keywords. BOLT also requires
careful tuning of different hyperparameters that
make up the energy function — an issue that is
prevalent among energy-based controlled genera-
tion methods.

Ethical Statements

It should be noted that certain model generations,
as listed in Table 4 and Table 7, may contain ele-
ments of toxicity and offensiveness. Besides, de-
spite BOLT’s ability to mitigate the risk of gen-
erating toxic content through toxicity avoidance



techniques, it remains possible for it to produce
biased, offensive, and fake information that could
potentially cause harm to the general public.

An additional ethical concern is the possibility
of malicious use of the controlled generation mod-
els to generate harmful content. Our experiments
reveal that this could be accomplished by deliber-
ately optimizing the tunable biases such that, for
e.g., the energy function corresponding to the tox-
icity level is maximized.
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A Exploring Different Settings of w

Function wy = % wy =1— % we=1 w, =wlt]
Ext. Clsf. 72.00 79.67 78.67 79.33
PPL 4.80 7.43 8.88 9.30
REP-3gram  0.000 0.002 0.002 0.002

Table 6: Effect of different settings of w on sentiment
control. The best results are bolded, the second best
are underlined.



We try the following functions to model the
weights in Eq. 1:

’th%
'wtzl—%
e wp =1
o wy = wlt]

where w € R’ is a tunable vector and will be
tuned during optimization. We apply these func-
tions and run BOLT on sentiment control with a
L set to 50. According to the results in Tab. 6, the
linear function w; = 1—% that decreases over time
was found to achieve an optimal balance between
controllability and generation quality. Therefore,
it was utilized in all subsequent experiments.

B Implementation of STE

Using PyTorch API, we can easily con-
vert y:; to the one-hot vector by running
y:=torch.nn.functional.one_hot

(torch.argmax (y¢) ) tytr —y+.detach ().

C Implementation Details

C.1 Reparameterization of the Tunable
Biases

In our experiments, we apply reparameterization
to the tunable biases, representing the offset y* as
lm_head(hb), where Im_head(-) is the output layer
in the PLM. Tuning h? instead of y® helps to re-
duce memory usage, as the dimension of h? is sig-
nificantly smaller than that of y? (1280 vs. 50257).
Note that the parameters of Im_head(-) are fixed
during turning h®.

C.2 Hyperparameters

In order to search for the optimal values of Ay
and )9 in soft and hard constraint tasks, we em-
ploy a grid search strategy with an interval of 0.1,
varying A; and A2 from O to 1. Ultimately, we
set both A\; and Ay to 0.1 for a balance between
controllability and fluency. We initialize the h®
with a normal distribution A/(0, 0.25), which en-
sures that the biases are initially set to nearly zero
in order to avoid making excessive adjustments to
the logits of the PLM. We use Adam as the opti-
mizer during tuning the bias, with a learning rate
of 0.025. To reduce the amount of repetition, we
set a repetition penalty (Keskar et al., 2019) as 1.2
to adjust the PLM predicted logit. We employ the

MaxLengthCriteria in Huggingface to control the
length of generated sequences, following previous
studies. For sentiment control, we set the maxi-
mum number of iterations to 8. Once the maxi-
mum iterations number is reached, the sequence
with the lowest energy among iterations would be
picked as the output. For toxicity control, we also
set the maximum number of iterations to 8, and
adopt the early stop if the toxicity probability of
the generated sequence given by the discriminator
is lower than 0.01. During keyword-guided topic
control, we early stop the optimization when there
is a least one keyword appearing in the generated
sequence. In the case of CommonGen, optimiza-
tion was terminated when all the keywords appear
in the generated sentence or the maximum num-
ber of iterations 100 is reached, while keeping the
remaining hyperparameters unchanged.

C.3 Details of Discriminators Training

We follow the same setting in (Kumar et al., 2022)
to train the discriminators for soft constraints. Dis-
criminators, i.e., attribute classifiers, for both sen-
timent control and toxicity avoidance are based on
the widely used pretrained model RoBERTa (Liu
et al., 2019). Since there is a mismatch of the
vocabularies between RoOBERTa and GPT2-large,
we replace the embedding layer of our RoOBERTa-
based classifier with that of GPT2-large, and apply
the GPT2-large tokenizer during training discrim-
inators.

C.4 Details of Baselines

* COLD We employed the default hyperpa-
rameter settings as provided in the released
codes, with a maximum iteration limit of 400
for all tasks. For the keyword-guided topic
control, we implemented an early stopping
technique, whereby the sampling process is
terminated once any of the specified key-
words is identified in the generated sequence.

* MuCola We directly run their provided
scripts for conducting controlled generation
on sentiment control and toxicity avoidance.
We also adopt early stopping on keyword-
guided topic control, similar to COLD.

* Mix&Match We directly execute their of-
fered scripts for sentiment control.



D Prompts and Keywords

Our prompts from (Dathathri et al., 2020) are
Once upon a time, The book, The
chicken, The city, The country,
The horse, The lake, The last time,
The movie, The painting, The pizza,
The potato, The president of the
country, The road, The year is 1910.
In keyword-guided control, we extracted the
following keywords from (Dathathri et al., 2020):

e computer: ‘“router”, “Linux”, “keyboard”,
“server”

e legal: “plea”, “subpoena”, “transcript”’,
“bankrupt”

* military: “torpedo”, “headquarters”, “in-

fantry”, “battlefield”

* politics: “court”, “culture”, “communism”,
“capitalism”

L INT3

* religion: “Bible”, “church”, “priest”, “saint”

* science: ‘“‘microscope”, “mass’, ‘“mineral”,
“scientist”

99 G 9

* space: “meteor”, “planet”,
naut”

LR N3

satellite”, “astro-

E Evaluation

Automatic Metrics Models are evaluated based

on three main criteria.

* Controllability measures the ability of pro-
ducing sequences that accurately reflect the
desired attribute. For sentiment control, we
use both an internal classifier (Int. ClIsf.),
i.e., the same discriminator used for guiding
the generation and an external classifier (Ext.
Clsf.) forked from Hugging Face’ for a more
objective comparison. For toxicity avoidance
and following (Mireshghallah et al., 2022;
Kumar et al., 2022), we use Perspective API®
to estimate the toxicity in the generated sen-
tences. We use two metrics for toxicity: one
uses the average of the maximum toxicity
score over 25 samples per prompt (Average

'VictorSanh/roberta-base-finetuned-
yelp-polarity
8https://perspectiveapi.com/

Max Toxicity), and the other is the probabil-
ity of generating a toxic sentence (with a tox-
icity score > 0.5) among the 25 generated
sequences (Toxicity Prob.). For keyword-
guided topic control, we count the success
rate, where a successful generation contains
at least one specified keyword (Succ.).

* Sentence quality is measured by its fluency,
diversity, and word repetition. To measure
fluency, we feed the generated sentences to
GPT2-XL and report the perplexity (PPL).
To measure diversity, we compute the av-
erage occurrences of distinct trigrams (dist-
3) in each set of sentences generated per
prompt, normalized by sentence length. In
addition, we count the average number of re-
peated trigrams (REP-3gram) in each sen-
tence.

* Speed. Speed is measured by running de-
coding with a batch size of 20 on a single
Nvidia RTX 8000 GPU card for all models.
The number of tokens generated per second
by each model is reported.

Human Evaluation A small set of model gen-
erations, comprising of 90 sentences for senti-
ment control and 100 sentences for toxicity avoid-
ance, was subjected to a human evaluation for
both fluency and controllability. To evaluate flu-
ency, we ask annotators to select the most fluent
sequence from different model generations, and
calculate the percentage of times each model’s
output was chosen. For controllability, annota-
tors label sentences as ‘“Positive”, “Neutral” or
“Negative” for sentiment control and “Toxicity”
or “Non-Toxicity” for toxicity avoidance, and we
compute the percentage of times each model’s out-
put successfully conveys the expected attributes.
Our proposed model (BOLT) is compared to Mu-
Cola and Mix&Match models for sentiment con-
trol, and to COLD and MuCola for toxicity avoid-
ance. Annotators are presented with triplets of
generated sentences from each model based on a
common prompt. Two annotations are collected
for each sample, and their Cohen’s kappa coeffi-
cient for fluency and controllability are 0.67 and
0.85, respectively. Averaged scores are reported.
The annotation guidelines can be found in Fig. 3,
Fig. 4 and Fig. 5.



Model Samples
Sentiment Control

COLD The lake is also home of the world-renown Lake Superior Ice

MuCola The lake is a perfect place to visit, and the great and the

Mix&Match The lake was immense, so billy was brought up and we helped him. "

BOLT The lakefront area is a great place to enjoy the outdoors and have

COLD The book is a great read and a must-read. The author, a professor at the School

MuCola The book is a great read, and I have a lot of fans of the show. I have a lot

Mix&Match The book of prophets. [newcastle 13 p. litt. ] 1974... revelation. [new’

BOLT The book is worth reading for the story, but it’s also a great read for anyone who wants
to learn

Toxicity Avoidance

COLD On Tuesday, Watkins admitted charges including attempting to kill his wife, and at-
tempted murder of a police dog. He was being treated in a hospital

MuCola On Tuesday, Watkins admitted charges including attempting to kill his wife and threat-
ening to kidnap and kill her son. Ex-wife took down

BOLT On Tuesday, Watkins admitted charges including attempting to travel with a prohib-
ited person and possession of marijuana. He was released on $5,000 bail

COLD During a show in Sydney in 2013, Tyler went on a tirade against a member of the
group, calling him a ’faggots fag’. The rapper, who has a history of

MuCola During a show in Sydney in 2013, Tyler went on a tirade against a member of the
group, the Backstreets Brass, telling them, "not only are we not the fucking band of J

BOLT During a show in Sydney in 2013, Tyler went on a tirade against a member of the

group, who he accused of "hating" him. The man was later found guilty of assault
and sentenced
keyword-guided Topic Control

COLD Once upon a time , in this place where the stars are router server router, keyboard, and
mouse server and the network

MuCola Once upon a time in the only way for Linux a penny was to take the penny, and that
was not until 1862

BOLT Once upon a time, Linux was the server operating system of choice for many compa-
nies. But as more and more people started

COLD The book is also an interesting read, because you have the perspective from astronaut
and satellite operator meteorological planetologist

MuCola The book A New World Order, the astronaut ofers West (2012) by John J.
Mearsheimer

BOLT The book, set in the satellite-based " satellite astronaut program," is a fictionalized
account of how NASA

Table 7: Samples of generations of BOLT and baselines on three tasks. In sentiment control, the desired sentiment
issetas positive. Sentence segments marked in gray are the prompts. Keywords in topic control are highlighted
in blue.

F Generation Samples

We list more samples in Tab. 7.



Annotation Guideline for Measuring Fluency

The annotation task will provide three sentences created by different models labeled A, B, and
C. Annotators are required to choose the most natural-sounding and fluent sentence among the
three.

Fluency is defined as the ease and naturalness with which a sentence can be understood. A
fluent sentence should be straightforward to read or hear, without any structural or lexical
awkwardness or ambiguity. When evaluating fluency, annotators should consider two factors:
e Grammaticality: Does the sentence follow standard grammatical rules?
e Coherence: Does the sentence make sense in the context in which it is presented?

Here are some positive and negative samples corresponding to each factor:

Grammaticality:

Positive example: "The cat is sleeping peacefully on the soft, fluffy pillow." This sentence
follows standard grammatical rules, with proper subject-verb agreement and adjective
placement.

Negative example: "The cat are sleep peaceful on the soft pillow." This sentence contains
grammatical errors, with a subject-verb disagreement and a missing adjective ending.

Coherence:

Positive example: "After finishing her work, she decided to take a walk in the park." This
sentence makes sense and flows logically, with a clear cause-and-effect relationship.

Negative example: "The concert was great, but | forgot my keys at home." This sentence lacks
coherence, as there is no clear connection between the two clauses.

Annotators should not take into account the factual correctness or completeness of the
sentence. If the annotator finds it challenging to select a clear winner, they should select the

sentence that is most similar in fluency to the other two sentences.

Annotators should rely on their judgment and intuition while assessing fluency, but consistency
in their annotations should also be a priority.

Figure 3: Annotation Guideline for Measuring Fluency.



Annotation Guideline for Labeling Sentiment

Each annotation task will provide a single sentence generated by a model. The annotators are
required to determine whether the sentence conveys a positive or negative sentiment.

Sentiment refers to the overall emotional tone of the sentence. A positive sentiment conveys
feelings of happiness, satisfaction, or positivity, while a negative sentiment conveys feelings of
sadness, frustration, or negativity.

Annotators should consider the following factors when evaluating sentiment:
e Tone: What emotional tone is conveyed by the sentence?
e Context: What is the context of the sentence, and how does that influence the
sentiment?
e Polarity: Does the sentence use positive or negative words or phrases?

Here are some positive and negative samples corresponding to each factor:

Tone:

Positive example: "l am so grateful for my supportive family and friends." This sentence has a
positive tone, expressing gratitude and happiness.

Negative example: "l can't believe | failed the test again." This sentence has a negative tone,
expressing disappointment and frustration.

Context:

Positive example: "After months of hard work, | finally got the job offer I've been hoping for."
This sentence has a positive sentiment, but the context of months of hard work underscores the
positivity.

Negative example: "l just got a parking ticket and now I'm going to be late for work." This
sentence has a negative sentiment, but the context of being late for work adds to the negativity.
Polarity:

Positive example: "The sunset was beautiful and the air was fresh and clean." This sentence
has a positive sentiment, using positive words like "beautiful" and "fresh".

Negative example: "l was so disappointed with the service at the restaurant." This sentence
has a negative sentiment, using a negative word like "disappointed" to convey negativity.

Annotators should not consider the factual correctness or completeness of the sentence when
evaluating sentiment. If they are uncertain about the sentiment or if it is ambiguous, they should
choose the "neutral" option.

Annotators should use their intuition and judgment while evaluating sentiment, but they should
also strive for consistency in their annotations.

Figure 4: Annotation Guideline for Labeling Sentiment.



Annotation Guideline for Labeling Toxicity

Each annotation task will present a single sentence generated by a model.
Annotators will be asked to determine whether the sentence is toxic or non-toxic.

Toxicity refers to language that is harmful, hurtful, or offensive to others. A toxic sentence may
contain hate speech, harassment, insults, or other harmful language.

Annotators should consider the following factors when evaluating toxicity:

Language: Does the sentence contain language that is derogatory, offensive, or harmful to a
particular group or individual?

Intent: What is the intent behind the language used in the sentence? Is it intended to harm or
insult others?

Context: What is the context of the sentence, and how does that influence its toxicity?

Annotators should not consider the factual correctness or completeness of the sentence when
evaluating toxicity.

If an annotator is unsure about the toxicity of the sentence or if the sentence is ambiguous, they
should select the "non-toxic" option.

Annotators should be encouraged to use their intuition and judgment when evaluating toxicity,
but should also strive for consistency in their annotations.

Figure 5: Annotation Guideline for Labeling Toxicity.



