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Abstract

Generative models have demonstrated impres-

sive results on Aspect-based Sentiment Analy-

sis (ABSA) tasks, particularly for the emerging

task of extracting Aspect-Category-Opinion-

Sentiment (ACOS) quadruples. However, these

models struggle with implicit sentiment expres-

sions, which are commonly observed in opin-

ionated content such as online reviews. In this

work, we introduce GEN-SCL-NAT, which

consists of two techniques for improved struc-

tured generation for ACOS quadruple extrac-

tion. First, we propose GEN-SCL, a super-

vised contrastive learning objective that aids

quadruple prediction by encouraging the model

to produce input representations that are dis-

criminable across key input attributes, such as

sentiment polarity and the existence of implicit

opinions and aspects. Second, we introduce

GEN-NAT, a new structured generation for-

mat that better adapts pre-trained autoregres-

sive encoder-decoder models to extract quadru-

ples in a generative fashion.

Experimental results show that GEN-SCL-

NAT achieves top performance across three

ACOS datasets, averaging 1.48% F1 improve-

ment, with a maximum 1.73% increase on the

LAPTOP-L1 dataset. Additionally, we see sig-

nificant gains on implicit aspect and opinion

splits that have been shown as challenging for

existing ACOS approaches.

1 Introduction

Aspect-based sentiment analysis (ABSA) is the

task of extracting fine-grained sentiment informa-

tion from text. Applications of this task range from

social media opinion mining and empathetic dialog

assistants to product review analysis (Zhang et al.,

2022).

Common ABSA subtasks involve identifying

aspect term mentions and their corresponding as-

pect categories, associating them with supporting

opinion terms, and/or sentiment polarity that is im-

plicitly or explicitly expressed within the text.

While over 30% of sentiment expressions con-

tain implicit language (Cai et al., 2021), existing

methods struggle with these, performing signifi-

cantly worse on examples with implicit aspects

and/or opinions. These cases, such as ªit took an

hour to be seatedº, are more difficult for models

as they lack common indicative explicit aspect and

opinion terms, e.g., ªthe serviceº and ªslowº.

In this work, we address the ACOS quadruple

extraction task, particularly for formulations sup-

porting implicit aspects and opinions. We build

off Zhang et al. (2021), a state-of-the-art T5-based

technique outputting parseable structured ACOS

quadruple predictions for a given text. We intro-

duce GEN-SCL-NAT1, consisting of two novel

modifications to this approach. First, we modify

the model training objective, adding GEN-SCL,

an auxiliary supervised contrastive learning objec-

tive that tasks the model to discriminably repre-

sent examples across key characteristics such as

the existence of implicit aspects and opinions, and

the expressed sentiment polarity. A supervised

contrastive loss is used to maximize the margin

between inconsistent examples and minimize it be-

tween consistent examples. Second, we introduce a

modified generation target format with GEN-NAT,

where we improve the naturalness of the target

format in three ways: by (1) replacing existing

aspect category labels with human-readable cat-

egory descriptions, (2) enforcing a reproducible

ªscan-basedº inter-quadruple ordering for multi-

quad cases, and (3) modifying the intra-quadruple

format to reflect a natural causal ordering of quadru-

ple components that aligns with auto-regressive de-

coding. Figure 1 outlines the ACOS task and our

GEN-SCL-NAT approach.

Leveraging these techniques, we show improved

performance on ACOS benchmarks, with respec-

tive ACOS F1 improvements of 1.64%, 1.08% and

1Code and models are made available at https://
github.com/jpeper/GEN_SCL_NAT.



Figure 1: Overview of the GEN-SCL-NAT ACOS approach. GEN-NAT uses natural category descriptions and

intuitive quadruple ordering to align the target output with the encoder-decoder’s pre-training and auto-regressive

nature. GEN-SCL trains the model to discriminably represent three sentiment characteristics during training: (1)

sentiment polarity, (2) aspect term type, and (3) opinion term type. For each characteristic, we project the summed

encoder final hidden states into a 1024-dimension characteristic representation via a simple fully-connected layer.

1.73% on the REST, LAPTOP, and LAPTOP-L1

datasets. We also see significant gains on exam-

ples with challenging implicit language, averaging

1.47% improvement on this subset. Finally, we

conduct an ablation study that shows the comple-

mentary behavior of GEN-NAT and GEN-SCL.

2 ACOS Quadruple Extraction Task

Formulation

We follow Zhang et al. (2021) and Cai et al. (2021)

in formulating ABSA as a joint quadruple extrac-

tion task, where the goal is to extract an unordered

set of ACOS quadruples Q1, Q2, ...Qn in text T ,

where Qi = (ai, ci, oi, si) contains a corresponding

aspect term, aspect category, opinion term, and sen-

timent polarity. Quadruples can lack clear support-

ing aspect and/or opinion spans, and these cases

are marked as implicit. Figure 1 displays the ACOS

task and quadruple components.

3 Methodology

In this section we (1) introduce GEN-SCL, a task-

specific supervised contrastive learning (SCL) ob-

jective, and (2) propose GEN-NAT, an enhanced

ACOS quadruple generation target format that ad-

dresses weaknesses in existing methods.

3.1 GEN-SCL Supervised Contrastive Loss

We propose GEN-SCL, an auxiliary SCL objec-

tive that encourages the encoder-decoder model to

discriminably represent several key characteristics

of the input while concurrently fine-tuning for the

downstream generation task of ACOS quadruple

extraction. We task the model with learning rep-

resentations of example-level Sentiment, Aspect

and Opinion characteristics. Figure 1 indicates the

label sets for each characteristic.

Representation Generation Process Similar to

Li et al. (2021), we generate representations for

example xi by feeding the sum-pooled encoder rep-

resentation Mean(Encode(xi)) through a single

unique fully-connected layer FCc for each char-

acteristic c ∈ {Sentiment,Aspect, Opinion}.

This generates representation hci. In our experi-

ments the dimensionality of the input and outputs

to the fully-connected layers are both 1024.

SCL Formulation Supervised contrastive learn-

ing encourages the model to maximize the repre-

sentation similarity between same-label examples,

and to minimize it for different-label examples. We

follow Sedghamiz et al. (2021) in their general SCL

formulation, where for characteristic c and training

example xi in training mini-batch M , the loss is:

Lc
i =

−1

|P (i)|

∑

p∈P (i)

log
esim(hci,hcp)/τ

∑
b∈B(i) e

sim(hci,hcb)/τ
(1)

To ensure each example xi ∈ M has at least one

same-label example for comparison, we first extend

M with one dropout-altered view per mini-batch el-

ement, perturbing each example representation hci

with dropout probability p = 0.1 while maintain-

ing the original label. This becomes M∗. B(i) ≡
M∗ \ xi is all other examples in the extended mini-

batch, and P (i) ≡ {p ∈ B(i) : ycp = yci} is the

subset with a matching label.

Final training objective We add to the exist-

ing decoder cross-entropy loss LCE our three

characteristic-specific losses:

(2)Ltotal = LCE + α1LSCL_sentiment

+α2LSCL_aspect+α3LSCL_opinion



In our experiments we set α1 = α2 = α3 = α,

tuning α and the SCL temperature τ on the dev set,

with values reported in Table 5.

3.2 GEN-NAT Structured Generation Format

Existing Structured Generation Formulation

We build off Zhang et al. (2021) who define

the generation target as a linearization of Qi =
(ai, ci, oi, si) to an output format P :

Pc(ci) is Ps(si) becausePa(ai) is Po(oi) (3)

Pc(ci) = ci and Ps(si) is the mapping of si options

[positive, neutral, negative] to [ªgreatº, ªokayº,

ªbadº]. Pa(ai) = ai and Po(oi) = oi for explicit

cases, but are respectively ªitº and ªnullº for im-

plicit cases. Quadruples are concatenated with a

separator token to form the final output:

P (Q1) [SSEP ] ... [SSEP ] P (Qn) (4)

GEN-NAT Structured Generation Modifications

We implement three modifications to the existing

paraphrase generation format to aid in decoding.

(1) We revise Pc(ci), now defining it as a mapping

of the raw ci (e.g. ªLaptop#Usabilityº) to a natural

category description (e.g. ªthe laptop usabilityº).

Note: we also change the sentiment linearization

Ps(si), simply using [ªpositiveº, ªneutralº, ªneg-

ativeº], as we observe ªokayº can often imply

negative sentiment within review text (e.g ªThe

food was just okay. I wouldn’t return.º). (2) For

multi-output cases, per Meng et al. (2020), a con-

sistent ordering is useful in training even when

predicting unordered sets; following them, we use

a ªscan-basedº ordering, outputting quadruples by

their last-occurring explicit aspect or opinion term.

Quadruples with only implicit aspect and opinion

spans are generated last in random order. (3) We re-

vise the quadruple linearization format, following

Mao et al. (2022) in outputting the quadruple ele-

ments in a natural top-down causal ordering: (c, a,

o, s). Now, sentiment prediction is conditioned on

aspect and opinion outputs. We also partition some

quadruple components with ª|º to reduce parsing

ambiguity when mapping the predictions back to

ACOS format.

Our resultant NAT generation format is as fol-

lows:

Pc(ci) | the Pa(ai) is Po(oi) | Ps(si) (5)

4 Experiment Setup

We detail the experiment setup for evaluating our

techniques on the ACOS task.

REST LAPTOP LAPTOP-L1

#Categories 13 121 21

#Sentences 2286 4076 4076

#EAEO Quads 2429 (66.4%) 3269 (56.8%) 3269 (56.8%)

#IAEO Quads 530 (14.5%) 910 (15.8%) 910 (15.8%)

#EAIO Quads 350 (9.57%) 1237 (21.5%) 1237 (21.5%)

#IAIO Quads 349 (9.54%) 342 (5.94%) 342 (5.94%)

#Quads/Sent 1.60 1.42 1.42

Table 1: Dataset statistics. Over 33% of REST quadru-

ples contain implicit language, as do 43% in LAPTOP*.

E: explicit, I: implicit, A: aspect, O: opinion. E.g., IAEO

refers to ªimplicit aspect, explicit opinionº.

REST LAPTOP LAPTOP-L1

BERT Backbone

TAS-BERT-ACOS∗ 33.53 27.31 ±

Extract-Classify-ACOS∗ 44.61 35.80 ±

T5 Backbone

Seq2Path∗ 58.06 41.45 ±

PARAPHRASE 60.97 44.08 60.73

GEN-NAT-SCL (ours) 62.62† 45.16† 62.46†

Table 2: Overall F1 performance of quadruple extrac-

tion techniques on the REST, LAPTOP and LAPTOP-

L1 datasets. Scores are averaged over 5 unique runs.
∗Results are from Cai et al. (2021) and Mao et al. (2022).

†: method is significantly better than PARAPHRASE

(one-tailed unpaired t-test, p < 0.05).

ACOS Datasets Table 1 reports dataset statistics.

The RESTaurant and LAPTOP datasets (Cai et al.,

2021) are drawn from restaurant and e-commerce

domains and are ACOS-labeled reviews including

implicit aspects and opinions. LAPTOP-L1 differs

from LAPTOP only by the category label granu-

larity, using only the 21 top-level categories of the

two-level category hierarchy in LAPTOP.

Model Comparisons We compare five ACOS

techniques, considering both implicit aspect and

implicit opinion cases as done in Cai et al. (2021).

• TAS-BERT-ACOS: Cai et al. (2021) devise

a two-step pipelined method, incorporating TAS-

BERT (Wan et al., 2020) for triplet extraction.

• Extract-Classify-ACOS: Cai et al. (2021)

leverage BERT (Devlin et al., 2018) to extract

aspect-opinion pairs then perform category and sen-

timent linking.

• Seq2Path: Mao et al. (2022) generate ACOS

quadruples as paths of a tree, supporting multiple

quadruples through multi-beam search and filtering

candidates via a learned discriminator token.

• PARAPHRASE: A generative T5 struc-

tured paraphrase generation model, producing a

parseable ACOS sequence prediction (Zhang et al.,

2021).

• GEN-SCL-NAT: Finally, our proposed

method, including the SCL and NAT components.



REST LAPTOP LAPTOP-L1

Method EAEO IAEO EAIO IAIO EAEO IAEO EAIO IAIO EAEO IAEO EAIO IAIO

TAS-BERT-ACOS 33.6 31.8 14.0 39.8 26.1 41.5 10.9 21.2 - - - -

Extract-Classify-ACOS 45.0 34.7 23.9 33.7 35.4 39.0 16.8 18.6 - - - -

PARAPHRASE 65.4 53.3 45.6 49.2 45.7 51.0 33.0 39.6 64.2 65.2 49.3 53.8

GEN-SCL-NAT (ours) 66.5 56.5† 46.2 50.7 45.8 54.0† 34.3 39.6 65.6 66.7 51.5† 53.7

Table 3: Breakdown of F1 performance per example split, with each split comprising reviews containing that

quadruple type. E: explicit, I: implicit, A: aspect, O: opinion. †: method is significantly better than PARAPHRASE

(one-tailed unpaired t-test, p < 0.05).

REST LAPTOP LAPTOP-L1 Avg. ∆

PARAPHRASE 60.97 44.08 60.73 -1.49

GEN-SCL-NAT 62.62† 45.16† 62.46† -

(-Sentiment SCL) 62.36† 45.72† 62.03† -0.05

(-Aspect SCL) 61.78 45.14† 61.68† -0.55

(-Opinion SCL) 60.68 44.71 61.77† -1.03

(-All SCL) 62.18† 44.03 62.12† -0.64

(-Multi-quad Ordering) 59.92 44.63 61.00 -1.56

(-Natural Category Labels) 61.28 43.94 61.96† -1.02

(-Intra-quad Ordering) 61.39 45.43† 61.48† -0.65

(-All NAT) 59.89 43.86 61.36 -1.26

Table 4: Ablation analysis of the GEN-SCL-NAT model.

F1 scores are reported, averaged over 5 runs. We com-

pare to the baseline PARAPHRASE model. The best

result is bolded. †: method is significantly better than

PARAPHRASE (one-tailed unpaired t-test, p < 0.05).

Experiment Details We report scores averaged

over five runs each with different random seeds.

For our GEN-* models, we adopt the 770M param-

eter T5-large (Raffel et al., 2019) as our pre-trained

generative encoder-decoder model. We report fur-

ther experiment details and hyperparameter settings

in Appendix A.

5 Results

We evaluate on the task of exact quadruple extrac-

tion using the F1 metric, where a correct extraction

requires all components are correct.

Overall Performance Table 2 reports the over-

all performance on the ACOS task. We find that

GEN-SCL-NAT outperforms other approaches on

all three datasets. The BERT pipeline approaches

struggle heavily, likely due to error-accumulation

over several sub-tasks and limited pre-training

alignment. Among T5 methods, Seq2Path per-

forms worst by over 3% on the two reported

datasets, perhaps due to limitations in their beam-

search candidate pruning method; in contrast

PARAPHRASE and our approach generate all

quadruples in one output sequence.

Explicit vs Implicit Performance Breakdown

Table 3 reports the results on four implicit/explicit

aspect/opinion data splits. Notably, our method is

adept at the IAEO and EAIO subsets, with aver-

age 2.56% and 1.37% respective increases of F1

over PARAPHRASE. We see *IO splits are consis-

tently more challenging than *EO splits, as models

have no supervised signal with which to localize

implicit opinions in the text. However, we still see

consistent EAIO gains from our method, along with

IAIO gains of 1.5% for the REST dataset. These

results speak to the improved predictive power of

our techniquesÐwe consistently outperform on the

difficult and sparse implicit subsets while still in-

creasing the average EAEO performance by 0.88%.

6 Additional Analyses

6.1 GEN-SCL-NAT Ablation Study

We ablate the GEN-SCL-NAT model by withhold-

ing various components of the technique, including

each of the NAT enhancements and SCL losses.

Table 4 reports ablation results.

SCL Ablation We ablate each of the three SCL

objectives. We withhold each component of the

SCL loss, finding the opinion loss most impactful

(average decrease of 1.03%), and also observe de-

creases from the aspect and sentiment ablations.

Notably, we see the losses considering implicit lan-

guage phenomena (Aspect SCL, Opinion SCL) are

the most impactful, indicating the benefits of mod-

eling these challenging examples. We additionally

withhold all SCL losses (All SCL), observing no-

ticeable consistent performance degradation on all

datasets with the SCL component removed.

NAT Ablation Of the three NAT components,

we see that excluding scan-based multi-quad or-

dering (outputting quadruples in the order they

are mentioned in the text) has the largest impact

on overall performance. Notably, the impact is

largest on the REST dataset (62.62 → 59.92)
which contains more quadruples per example than

the Laptop datasets (average of 1.60 vs. 1.42).

This validates our intuition that proper output or-

dering is significant for multi-quadruple exam-

ples. Next, we see that natural category labels

are impactful, especially for the LAPTOP dataset

(45.16 → 43.94) containing a much larger cate-



Sentiment w/o GEN-SCL Aspect w/o GEN-SCL Opinion w/o GEN-SCL

Sentiment w/ GEN-SCL Aspect w/ GEN-SCL Opinion w/ GEN-SCL

Figure 2: T-SNE visualization of mean-pooled encoder final layer on the Restaurant dataset. Our GEN-SCL

objective encourages the encoder to produce with discriminable representations of three key input characteristics.

gory labelset (121 labels versus 13 and 21 for the

Restaurant and Laptop-L1 datasets). Finally, we

see GEN-SCL-NAT benefits from the intra-quad or-

dering, although not as noticeably as the other two

improvements. We see improvements on REST and

LAPTOP-L1, while performance was comparable

with and without for LAPTOP (45.16 → 45.43).
Overall, our full GEN-SCL-NAT method yields

consistently strong performance, with its compo-

nents working in unison to address challenging

properties that arise in the ACOS task (implicit

aspects and opinions, multi-quad examples, large

category labelsets).

6.2 GEN-SCL Representations

To better understand the behavior of the GEN-SCL

objective on the model hidden representations, we

generate t-SNE (Maaten and Hinton, 2008) visu-

alizations of the mean-pooled final encoder layer.

Figure 2 displays results on the Restaurant test set.

We see GEN-SCL enables the encoder to simulta-

neously represent sentiment, aspect, and opinion

information effectively.

7 Related Work

ACOS quadruple prediction is an emerging ABSA

task with structured generation techniques produc-

ing top results on the ACOS task (Zhang et al.,

2021; Mao et al., 2022; Zhang et al., 2022). Meng

et al. (2020) empirically demonstrate the impor-

tance of output ordering and formatting in gen-

erative unordered set prediction techniques for

keyphrase generation, motivating our exploration

of this direction. Supervised contrastive learning

(Khosla et al., 2020) is a popular technique for rep-

resentation learning and has proven useful for NLP

tasks (Sedghamiz et al., 2021). Li et al. (2021)

apply it to ABSA tasks during pre-training, but

only for representing positive vs negative senti-

ment. Our novel methods combine generation for-

mat improvements with a task-specific supervised

contrastive learning objective that learns to repre-

sent key ACOS characteristics.

8 Conclusion

In this work, we introduce GEN-NAT, a modi-

fied ACOS generation output format encompass-

ing three methods for improving the naturalness

of the decoded output sequences. We combine

this with GEN-SCL, our novel task-specific ap-

plication of supervised contrastive learning that

learns improved example representations leading

to downstream gains. Our proposed GEN-SCL-

NAT method demonstrates state-of-the-art results,

both overall and for challenging implicit-sentiment

splits.
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Limitations

While effective on concise sentence-level tasks, we

have not yet explored ACOS structured generation

for document-level and/or sentiment-dense inputs.

Approaches such as ours and Zhang et al. (2021)

generate the prediction as a single output, and we

may encounter issues such as output structure va-

lidity when handling longer examples with higher

quadruple frequency. Our evaluation of GEN-SCL

is also confined to generative sequence prediction

models. While it may generalize to other formula-

tions, we have not yet explored this direction.
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A Implementation Details

We use Huggingface Transformers (Wolf et al.,

2019) for training our T5 models. We conduct our

experiments on the Nvidia A40 GPU with 48GB

VRAM.

Training We largely use the T5 parameters speci-

fied in Zhang et al. (2021), making the following ad-

justments after performing manual accuracy-based

hyperparameter tuning on the provided validation

sets: We train for 45 epochs using batch size of

32, and a learning rate of 9e-5 for all experiments.

For GEN-SCL, we tune α, the SCL loss weight-

ing factor, and the τ temperature parameter per

dataset, with these values reported in Table 5. We

use the standard dataset train/validation/test splits

provided by the authors of the REST and LAPTOP*

datasets. Training takes approximately 1 hour for

the RESTAURANT dataset, and 1.5 hours for the

LAPTOP* datasets.



α τ

REST 0.05 0.25

LAPTOP 0.05 0.25

LAPTOP-L1 0.005 0.25

Table 5: We report the parameters used in the GEN-

SCL supervised contrastive learning objective. α is the

loss weighting factor, and τ is the temperature value

that determines how severely to punish hard negative

examples.

Dataset Raw Category Label GEN-NAT Category Label

REST LOCATION#GENERAL the location

FOOD#PRICES the food prices

FOOD#QUALITY the food quality

LAPTOP OS#GENERAL the operating system overall

OS#DESIGN_FEATURES the operating system features

HARD_DISC#PRICE the hard drive price

LAPTOP-L1 OS the operating system

HARD_DISC the hard drive

Table 6: Examples of the aspect categories used for the

ACOS task. Our GEN-NAT technique better leverages

T5 pre-training by using human-readable descriptive

category labels.

Prediction We use beam search to decode the

ACOS output sequence; we set beam size to 5.

Prediction on the RESTAURANT and LAPTOP

test sets takes 5 minutes with an evaluation batch

size of 32.

B GEN-NAT Category Mappings

One component of our GEN-NAT approach con-

sists of replacing existing raw aspect category la-

bels with human-readable natural category descrip-

tions. Table 6 provides examples of these reformat-

ted GEN-NAT category labels.


