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Abstract

The task of dynamic scene graph generation (SGG) from
videos is complicated and challenging due to the inherent
dynamics of a scene, temporal fluctuation of model predictions,
and the long-tailed distribution of the visual relationships in
addition to the already existing challenges in image-based SGG.
Existing methods for dynamic SGG have primarily focused on
capturing spatio-temporal context using complex architectures
without addressing the challenges mentioned above, especially
the long-tailed distribution of relationships. This often leads
to the generation of biased scene graphs. To address these
challenges, we introduce a new framework called TEMPURA:
TEmporal consistency and Memory Prototype guided UnceR-
tainty Attenuation for unbiased dynamic SGG. TEMPURA
employs object-level temporal consistencies via transformer-
based sequence modeling, learns to synthesize unbiased
relationship representations using memory-guided training, and
attenuates the predictive uncertainty of visual relations using
a Gaussian Mixture Model (GMM). Extensive experiments
demonstrate that our method achieves significant (up to 10% in
some cases) performance gain over existing methods highlight-
ing its superiority in generating more unbiased scene graphs.
Code: https://github.com/sayaknag/unbiasedSGG.git

1. Introduction

Scene graphs provide a holistic scene understanding that can

bridge the gap between vision and language [25,31]. This has

made image scene graphs very popular for high-level reasoning

tasks such as captioning [14, 37], image retrieval [49, 60],

human-object interaction (HOI) [40], and visual question

answering (VQA) [23]. Although significant strides have

been made in scene graph generation (SGG) from static

images [12,31,33,37,39,42,56,62–64], research on dynamic

SGG is still in its nascent stage.

Dynamic SGG involves grounding visual relationships

jointly in space and time. It is aimed at obtaining a structured

representation of a scene in each video frame along with

learning the temporal evolution of the relationships between

each pair of objects. Such a detailed and structured form of

video understanding is akin to how humans perceive real-world

(a) (b)

Figure 1. (a) Long-tailed distribution of the predicate classes in Ac-

tion Genome [25]. (b) Visual relationship or predicate classification

performance of two state-of-the-art dynamic SGG methods, namely

STTran [10] and TRACE [57], falls off significantly for the tail classes.

activities [4,25,43] and with the exponential growth of video

data, it is necessary to make similar strides in dynamic SGG.

In recent years, a handful of works have attempted to

address dynamic SGG [10, 16, 24, 38, 57], with a majority of

them leveraging the superior sequence processing capability

of transformers [1,5,19,26,44,53,58]. These methods simply

focused on designing more complex models to aggregate

spatio-temporal contextual information in a video but fail

to address the data imbalance of the relationship/predicate

classes, and although their performance is encouraging under

the Recall@k metric, this metric is biased toward the highly

populated classes. An alternative metric was proposed in [7,56]

called mean-Recall@k which quantifies how SGG models

perform over all the classes and not just the high-frequent ones.

Fig 1a shows the long-tailed distribution of predicate classes

in the benchmark Action Genome [25] dataset and Fig 1b

highlights the failure of some existing state-of-the-art methods

is classifying the relationships/predicates in the tail of the

distribution. The high recall values in prior works suggest that

they may have a tendency to overfit on popular predicate classes

(e.g. in front of / not looking at), without considering how the

performances on rare classes (e.g. eating/wiping) are getting

impacted [12]. Predicates lying in the tails often provide more

informative depictions of underlying actions and activities in

the video. Thus, it is important to be able to measure a model’s

long-term performance not only on the frequently occurring

relationships but also on the infrequently occurring ones.

Data imbalance is, however, not the only challenge in

dynamic SGG. As shown in Fig. 2 and Fig. 3, several other

factors, including noisy annotations, motion blur, temporal

fluctuations of predictions, and a need to focus on only
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(a) Incomplete annotations and

multiple correct predicates.

(b) Triplet variability (multiple

possible object pairs for the

same relationship)

Figure 2. Noisy scene graph annotations in Action Genome [25]

increase the uncertainty of predicted scene graphs.

active objects that are involved in an action contribute to the

bias in training dynamic SGG models [3]. As a result, the

visual relationship predictions have high uncertainty, thereby

increasing the challenge of dynamic SGG manyfold.

In this paper, we address these sources of bias in dynamic

SGG and propose methods to compensate for them. We

identify missing annotations, multi-label mapping, and triplet

(<subject−predicate−object>) variability (Fig 2) as label-

ing noise, which coupled with the inherent temporal fluctuations

in a video can be attributed as data noise that can be modeled

as the aleatoric uncertainty [11]. Another form of uncertainty

called the epistemic uncertainty, relates to misleading model

predictions due to a lack of sufficient observations [28] and is

more prevalent for long-tailed data [22]. To address the bias

in training SGG models [3] and generate more unbiased scene

graphs, it is necessary to model and attenuate the predictive

uncertainty of an SGG model. While multi-model deep

ensembles [13,32] can be effective, they are computationally

expensive for large-scale video understanding. Therefore, we

employ the concepts of single model uncertainty based on

Mixture Density Networks (MDN) [9, 28, 54] and design the

predicate classification head as a Gaussian Mixture Model

(GMM) [8, 9]. The GMM-based predicate classification loss

penalizes the model if the predictive uncertainty of a sample is

high, thereby, attenuating the effects of noisy SGG annotations.

Due to the long-tailed bias of SGG datasets, the predicate

embeddings learned by existing dynamic SGG frameworks

significantly underfit to the data-poor classes. Since each

object pair can have multiple correct predicates (Fig 2),

many relationship classes share similar visual characteristics.

Exploiting this factor, we propose a memory-guided training

strategy to debias the predicate embeddings by facilitating

knowledge transfer from the data-rich to the data-poor classes

sharing similar characteristics. This approach is inspired by

recent advances in meta-learning and memory-guided training

for low-shot, and long-tail image recognition [17,45,48,51,65],

whereby a memory bank, composed of a set of prototypical

abstractions [51] each compressing information about a

predicate class, is designed. We propose a progressive memory

computation approach and an attention-based information diffu-

sion strategy [58]. Backpropagating while using this approach,

teaches the model to learn how to generate more balanced

predicate representations generalizable to all the classes.

Figure 3. Occlusion and motion blur caused by moving objects in

videos renders off-the-self object detectors such as FasterRCNN [47]

ineffective in producing consistent object classification.

Finally, to ensure the correctness of a generated graph,

accurate classification of both nodes (objects) and edges (pred-

icates) is crucial. While existing dynamic SGG methods focus

on innovative visual relation classification [10,24,38], object

classification is typically based on proposals from off-the-shelf

object detectors [47]. These detectors may fail to compensate

for dynamic nuances in videos such as motion blur, abrupt

background changes, occlusion, etc. leading to inconsistent

object classification. While some works use bulky tracking

algorithms to address this issue [57], we propose a simpler yet

highly effective learning-based approach combining the superior

sequence processing capability of transformers [58], with the

discriminative power of contrastive learning [18] to ensure more

temporally consistent object classification. Therefore, com-

bining the principles of temporally consistent object detection,

uncertainty-aware learning, and memory-guided training, we

design our framework called TEMPURA: TEmporal consis-

tency and Memory Prototype guided UnceRtainty Atentuation

for unbiased dynamic SGG. To the best of our knowledge,

2. Related Work
Image Scene Graph Generation. SGG from images aims to

obtain a graph-structured summarization of a scene where the

nodes are objects, and the edges describe their interaction or

relationships (formally called predicates). Since the introduc-

tion of the image SGG benchmark Visual Genome (VG) [31],

research on SGG from single images has evolved significantly,

with earlier works addressing image SGG utilizing several ways

to aggregate spatial context [37,39,42,62,64] and latest ones

[12,33–36,55,56,61] addressing fundamental problems such as

preventing biased scene graphs caused by long-tailed predicate

distribution and noisy annotations in image SGG dataset [31].

Dynamic Scene Graph Generation. Dynamic Scene Graph

Generation aims at learning the spatio-temporal dependencies
of visual relationships between different object pairs over all

the frames in a video [25]. Similar to SGG from images, long-

tailed bias and noisy annotations pose a significant challenge

to dynamic SGG, further compounded by the temporal fluc-

tuations of predictions. In recent years, a handful of works

have attempted to address dynamic SGG [10,24,29,38,57,59]

and benchmarked their methods on Action Genome (AG) [25]

dataset. While methods like TRACE [57] introduced temporal

context from pretrained 3D models [6], the majority resorted
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to using the superior sequence processing ability of transform-

ers [1,44,53,58] for spatio-temporal reasoning of visual relations.

However, despite their success, the performance gains of these

methods are mostly realized for the high-frequency relationships

and they fail to address the long-tail bias – the focus of this paper.

Mixture Density Networks. Mixture density networks have

been successful in modeling predictive uncertainty and attenua-

tion of noise in many deep-learning tasks. They have been used

in many tasks that involve noisy data such as reinforcement learn-

ing [9], active learning [8], semantic segmentation [28] and even

in compensating for data imbalance in image recognition, [22].

This work is the first to apply such concepts to dynamic SGG.

Memory guided low shot and long-tailed learning. Memory-

guided training strategies [48, 52] have become successful

in addressing learning with data scarcity such as few-shot

learning [15, 27, 51] and long tail recognition [45, 65]. They

enable the learning of generalizable representations by

transferring knowledge from data-rich to data-poor classes. We

exploit these principles in this paper for learning more unbiased

representations of visual relationships in videos.

3. Method
3.1. Problem Statement

The goal of dynamic SGG is to describe a structured rep-

resentation Gt = {St,Rt,Ot} of each frame It in a video

V = {I1, I2, ..., IT}. Here St = {st1, st2, ..., stN(t)} and

Ot = {ot1,ot2,...,otN(t)} map to the same set of N(t) detected

objects in the tth frame. They are combinatorially arranged as

subject-object pairs (stj,r
t
k,o

t
i)withRt={rt1,rt2,...,rtK(t)} being

the set of K(t) predicates describing the visual relationships

between all subject-object pairs in the tth frame. Formally each

<subject−predicate−object> or (stj,r
t
k,o

t
i) is called a triplet.

The set of object and predicate classes are referred to as Yo=
{yo1,yo2,...,yoCo} and Yr={yr1,yr2,...,yrCr} respectively.

3.2. Overview

To generate more unbiased scene graphs from videos, it

is necessary to address the challenges highlighted in Fig 1,

2 and 3. To this end, we propose TEMPURA for unbiased

dynamic SGG. As shown in Fig 4, TEMPURA works with

a predicate embedding generator (PEG) that can be obtained

from any existing dynamic SGG model [10, 57]. Since

transformer-based models have shown to be better learners

of spatio-temporal dynamics, we model our PEG as the

spatio-temporal transformer of [10] which is built on top of the

vanilla transformer architecture of [58]. The object sequence

processing unit (OSPU) facilitates temporally consistent object

classification. The memory diffusion unit (MDU) and the

Gaussian Mixture Model (GMM) head address the long-tail

bias and overall noise in video SGG data, respectively. In the

subsequent sections, we describe these units in more detail,

along with the training and testing mechanism of TEMPURA.

3.3. Object Detection and Temporal Consistency

We first describe how we enforce more consistent object

classification across the entire video. Using an off-the-self ob-

ject detector, we obtain the set of objects Ot={oti}
N(t)
i=1 in each

frame, where oti={bti,vt
i ,c

t
oi} with bti∈R

4 being the bounding

box, vt
i∈R

2048 the RoIAligned [20] proposal feature of oti and

ctoi is its predicted class. Existing methods [10,24,38,59] either

directly use ctoi as the object classification or pass vt
i through

a single/multi-layered feed-forward network (FFN) to classify

oi. However, object detectors trained on static images fail to

compensate for dynamic nuances and temporal fluctuations

in videos, making them prone to misclassify the same object

in different frames. Some works address this by incorporating

object tracking algorithms [57], but we incorporate a simple

but effective learning-based strategy.

We introduce an Object Sequence Processing Unit (OSPU)

which utilizes a transformer encoder [58] referred to as sequence

encoder or SeqEnc (Fig 4), to process a set of sequences, TV ,

which is constructed as follows,

TV={T 1
t1k1 ,T

2
t2k2 ,...,T

Ĉo
tĈokĈo

}; T j
tjkj

={vt
i ,v

t+1
i ,...,vt+k

i }, (1)

where each entry of T j
tjkj

has the same detected class coj ,

1≤tj,kj≤T and Ĉo≤Co refers to all detected object classes in

the video V. Zero-padding is used to turn TV into a functioning

tensor. SeqEnc utilizes the multi-head self-attention to learn

the long-term temporal dependencies in each T j
tjkj

. For any

input X, a single attention head, A, is defined as follows:

A(Q,K,V )=Softmax(
QKT

√
Dk

)V , (2)

where Dk is the dimension of K, and Q,K,V are the query,

key and value vectors which for self-attention is Q=K=V =
X. The multi-head attention, MA, is shown below,

MA(X)=Concat(a1,a2,..aH)WH,

ai=A(XWQi
,XWKi

,XWVi
),

(3)

where WQi ∈R
D×DQi , WKi ∈R

D×DKi , WVi ∈R
D×DVi and

WH∈R
HDv×D are learnable weight matrices. As shown in Fig

4, we follow the classical design of [58] for SeqEnc, whereby

a residual connection is used to add V with MA(X) followed

by normalization [2], and subsequent passing through an FFN.

The output of an n layered sequence encoder is as follows,

X
(n)
out=SeqEnc(X

(n−1)
out ); X

(0)
out= T̂V , (4)

where T̂V=TV+ET
o with ET

o being fixed positional encod-

ings [58] for injecting each object’s temporal position. The final

object logits, Ŷo = {ŷoi}Co
i=1, are obtained by passing X

(n)
out

through a 2-layer FFN. The corresponding object classification

loss, Lo, is modeled as the cross-entropy between Ŷo and Yo.

To enhance the SeqEnc’s capability of enforcing temporal

consistency, we add a supervised contrastive loss [18] over its

output embeddings, as shown below,
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Figure 4. Framework of TEMPURA. The object detector generates initial object proposals for each RGB frame in a video. The proposals are then

passed to the OSPU, where they are first linked into sequences based on the object detector’s confidence scores. These sequences are processed

with a transformer encoder to generate temporally consistent object embeddings for improved object classification. The proposals and semantic

information of each subject-object pair are passed to the PEG to generate a spatio-temporal representation of their relationships. Modeled as a

spatio-temporal transformer [10], the PEG’s encoder learns the spatial context of the relationships and its decoder learns their temporal dependencies.

Due to the long-tail nature of the relationship/predicate classes, a Memory Bank in conjunction with the MDU is used during training to debias the

PEG, enabling the production of more generalizable predicate embeddings. Finally, a K-component GMM head classifies the PEG embeddings and

models the uncertainty associated with each predicate class for a given subject-object pair.

Lintra=
∑
i

∑
j

||x̂oi−x̂+
oj ||22+

∑
k

max(0,1−||x̂oi−x̂−
ok
||22), (5)

where x̂oi ∈X
(n)
out. Lintra enforces intra-video temporal

consistency by pulling closer the embeddings of positive pairs

sharing the same ground-truth class and pushing apart the

embeddings of negative pairs with different ground-truth class.

3.4. Predicate Embedding Generator

A predicate embedding generator (PEG) assimilates the in-

formation of each subject-object pair to generate an embedding

that summarizes the relationship(s) between them. For dynamic

SGG, the PEG must learn the temporal as well as the spatial con-

text of the relationship between each pair. In our setup, we model

the PEG as the Spatio-Temporal transformer of [10]. For each

pair (i,j), we construct the input to the PEG as shown below,

rt
k=Concat(fv(v

t
i),fv(v

t
j),fu(u

t
ij+fbox(b

t
i,b

t
j)),s

t
i,s

t
j), (6)

where vt
i and vt

j are the subject and object proposal features,

ut
ij∈R

256×7×7 is the feature map of the union box computed

by RoIAlign [20], sti,s
t
j∈R

200 are the semantic glove embed-

dings [46] of the subject and object class determined from Ŷo,

fv and fu are FFN based non-linear projections, fbox is the

bounding box to feature map projection of [62]. The set of tth

frame input representations are Rt = {rjt}
K(t)
j=1 ∈R

K(t)×1936.

As shown in Fig 4 the PEG consists of a spatial encoder,

SpaEnc, and a temporal decoder, TempDec, where the

former learns the spatial context of the visual relations and the

latter learns their temporal dependencies. Therefore for an n
layered spatial encoder, its output Rt

spa is computed as follows,

Z
(n)
spa,t=SpaEnc(Z

(n−1)
spa,t );Z

(0)
spa,t=Rt , (7)

where Rt
spa=Z

(n)
spa,t. The formulation of SpaEnc is the same

as SeqEnc (Eq 4). To learn the temporal dependencies of the

relationships, the decoder input is constructed as a sequence

over a non-overlapping sliding window whereby,

Ztem={Rt
spa,...,R

t+η−1
spa }, t∈ [1,T−η+1], (8)

where η ≤ T is the sliding window and T is the length of

the video. As shown in Fig 4, the inputs to TempDec’s
MA are, Q = K = Ztem + Eη

r and V = Ztem where

Eη
r = {e1r,e2r, ...,eηr} are learnable temporal encodings [10]

injecting the temporal position of each predicate. The final

output Rtem of an n layered temporal decoder is,

Z
(n)
tem=TempDec(Z

(n−1)
tem );Z

(0)
tem=Ztem , (9)

Therefore, the final set of predicate embeddings gener-

ated by the PEG is Rtem = Z
(n)
tem = {Rt

tem}T−η+1
t=1 with

Rt
tem={rjtem}K(t)

j=1 ∈R
K(t)×1936.
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Figure 5. Illustration of the Memory Diffusion Unit (MDU). ⊗ and

⊕ are matrix multiplication and element-wise addition respectively.

3.5. Memory guided Debiasing

Due to the long-tailed bias in SGG datasets, the direct PEG

embeddings, Rtem, are biased against the rare predicate classes,

necessitating the need to debias them. We accomplish this

via a memory-guided training strategy, whereby for any given

relationship embedding, rjtem ∈ Rtem, a Memory Diffusion

Unit (MDU) first retrieves relevant information from a predicate

class centric memory bank ΩR and uses it to enrich rjtem which

results in a more balanced embedding r̂jtem. The memory bank

ΩR = {ωp}Cr
p=1 is composed of a set of memory prototypes

each of which is an abstraction of a predicate class and is

computed as a function of their corresponding PEG embeddings.

In our setup, the prototype is defined as a class-specific centroid,

whereby, ωp=
1

Nyrp

Nyrp∑
j=1

rjtem ∀ p∈Yr, with Nyrp
being the total

number of subject-object pairs mapped to the predicate class

yrp , in the entire training set.
Progressive Memory Computation. ΩR is computed in a

progressive manner whereby the model’s last state is used to

compute memory for the current state, i.e., the memory of

epoch α is computed using the model weights of epoch α−1.

This enables ΩR to become more refined with every epoch.

Since no memory is available for the first epoch, the MDU

remains inactive for this state, and r̂jtem=rjtem.

Memory Diffusion Unit. As shown in Fig 5 for a given query

the MDU uses the attention operator [58] to retrieve relevant

information from ΩR as a diffused memory feature rjmem i.e.,

rjmem=A(QWmem
Q ,KWmem

K ,VWmem
V ), (10)

where, Q = rjtem and K = V = Ωr and

Wmem
Q ,Wmem

K &Wmem
V ∈R

1936×1936 are learnable weight

matrices. Since each subject-object pair has multiple predicates

mapped to it, many visual relations share similar characteristics,

which means their corresponding memory prototypes ωp share

multiple predicate embeddings. Therefore the attention opera-

tion of Eq 10 facilitates knowledge transfer from data-rich to

data-poor classes utilizing the memory bank, whereby rjmem hal-

lucinates compensatory information about the data-poor classes

otherwise missing in rjtem. This information is diffused back to

rjtem to obtain the balanced embedding r̂jtem as shown below,

r̂jtem=λrjtem+(1−λ)rjmem , (11)

where 0<λ≤1. As shown in Fig 4, the MDU is used during

the training phase only since it does not function as a network

module to forward pass through but rather as a meta-learning

inspired [45, 51, 65] structural meta-regularizer. Since ΩR is

computed directly from the PEG embeddings, backpropagating

over the MDU refines the computed memory prototypes, in turn

enabling better information diffusion and inherently teaching

the PEG how to generate more balanced embeddings that do

not underfit to the data-poor relationships. λ over here acts

as a gradient scaling factor, which during backpropagation

asymmetrically scales the gradients associated with rjtem and

rjmem in the residual operation of Eq 11. Since the initial PEG

embeddings are heavily biased towards the data-rich classes,

if λ is too high, the compensating effect of the diffused memory

feature is drastically reduced. On the other hand, if λ is too low,

excessive knowledge gets transferred from the data-rich to the

data-poor classes resulting in poor performance on the former.

3.6. Uncertainty Attenuated Predicate Classification

To address the noisy annotations in SGG data, we model

the predicate classification head as a K component Gaussian

Mixture Model (GMM) [28]. Given a sample embedding zi
the mean, variance and mixture weights for the pth predicate

class are estimated as follows:

μk
i,p=fk

μ(zi),Σ
k
i,p=σ(fk

Σ(zi)), π
k
i,p=

ef
k
π(zi)

K∑
k=1

ef
k
π(zi)

, (12)

where fk
μ ,f

k
Σ,f

k
π are FFN based projection functions and σ

is the sigmoid non-linearity which ensures Σk
i,p ≥ 0. The

class-specific aleatoric and epistemic uncertainty, for the sample

zi are computed as follows:

Up
al(zi)=

K∑

k=1

πk
i,pΣ

k
i,p ; Up

ep(zi)=
K∑

k=1

πk
i,p||μk

i,p−
K∑

j=1
πj
i,pμ

j
i,p||22 , (13)

Therefore, by using a GMM head, we are modeling the

inherent uncertainty associated with the data from a Bayesian

perspective [8, 9, 28]. During training zi = r̂item and the

probability distribution for the pth predicate is given as,

ŷirp =

K∑

k=1

πk
i,pN (μk

i,p,Σ
k
i,p), (14)

where N is the Gaussian distribution. Since the sampling

N (μk
p,Σ

k
p) is non-differentiable we use the re-parameterization

trick of [30] to compute ŷirp as shown below:

ŷirp =

K∑
k=1

πk
i,pσ(ĉ

i
p,k); ĉip,k=μk

i,p+ε
√

Σk
i,p , (15)
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where ε∼N (0,1) and is of the same size as Σk
p. The overall

set of predicate logits is Ŷr = {ŷrp}Cr
p=1. The predicate

classification loss Lp is modeled as the GMM sigmoidal cross

entropy [8] as shown below,

Lp=−
Nr,p∑

i=1

Cr∑

p=1

yirplog

K∑

k=1

πk
pσ(ĉ

i
p,k), (16)

where yirp is the ground-truth predicate class mapped to zi.

By incorporating the modeled aleatoric uncertainty of zi (Σk
i,p)

in Lp, we essentially utilize it as an attenuation factor, which

penalizes the model if Σk
i,p is large. This principle is called

learned loss attenuation [9,28], and it discourages the model

from predicting high uncertainty thereby attenuating the effects

of uncertain samples due to inherent annotation noise in the data.

3.7. Training and Testing

Training. As explained in section 3.5, memory computation and

utilization of MDU is activated from the second epoch, and so

for the first epoch, r̂item=ritem. The OSPU and the GMM head

obviously start firing from the first epoch itself. The entire frame-

work is trained end-to-end by minimizing the following loss,

Ltotal=Lp+Lo+Lintra , (17)

Testing. The forward pass during testing is highlighted in Fig

4. After training, the MDU has served its purpose of teaching

the PEG to generate more unbiased embeddings, and therefore

during inference, ritem is directly passed to the GMM head

to obtain the predicate confidence scores, ŷirp , which during

testing are computed as follows,

ŷirp =

K∑

k=1

πk
i,pσ(μ

k
i,p), (18)

.

4. Experiments
4.1. Dataset and Implementation

Dataset. We perform experiments on the Action Genome

(AG) [25] dataset, which is the largest benchmark dataset for

video SGG. It is built on top of Charades [50] and has 234,253
annotated frames with 476,229 bounding boxes for 35 object

classes (without person), with a total of 1,715,568 annotated

predicate instances for 26 relationship classes.

Metrics and Evaluation Setup. We evaluate the performance

of TEMPURA with standard metrics Recall@K (R@K) and

mean-Recall@K (mR@K), for K=[10,20,50]. As discussed

before, R@K tends to be biased towards the most frequent

predicate classes [56] whereas mR@K is a more balanced

metric enabling evaluation of SGG performance on all the

relationship classes [56]. As per standard practice [10,25,31,57],

three SGG tasks are chosen, namely: (1) Predicate classification

(PREDCLS): Prediction of predicate labels of object pairs, given

ground truth labels and bounding boxes of objects; (2) Scene

graph classification (SGCLS): Joint classification of predicate

labels and the ground truth bounding boxes; (3) Scene graph

detection (SGDET): End-to-end detection of the objects and

predicate classification of object pairs. Evaluation is conducted

under two setups: With Constraint and No constraints. In

the former the generated graphs are restricted to at most one

edge, i.e., each subject-object pair is allowed only one predicate

and in the latter, the graphs can have multiple edges. We

note that mean Recall is averaged over all predicate classes,

thus reflective of an SGG model’s long-tailed performance as

opposed to Recall, which might be biased towards head classes.

Implementation details. Following prior work, [10, 38], we

choose FasterRCNN [47] with ResNet-101 [21] as the object

detector. For the predicate embedding generator, we choose the

Spatio-temporal transformer architecture of [10], with the same

number of encoder-decoder layers and attention heads. The gra-

dient scaling factorλ is set to 0.5 for PREDCLS and SGDET and

0.3 for SGCLS. The number of GMM components K is set to

4 for SGCLS and SGDET and 6 for PREDCLS. The framework

is trained end to end for 10 epochs using the AdamW optimizer

[41] and a batch size of 1. The initial learning rate is set to 10−5.

4.2. Comparison to state-of-the-art

We compare our method with existing dynamic SGG meth-

ods such as STTran [10], TRACE [57], STTran-TPI [59], APT

[38], ISGG [29]. We also compare with ReLDN [63] which is

a static SGG method. Table 1 shows the comparative results

for SGDET in terms of both mR@K and R@K. Tables 2 and 3

show the comparative results for PREDCLS + SGCLS in terms

of mR@K and R@K respectively. We utilized the official code

for several state-of-the-art dynamic SGG methods to obtain re-

spective mR@K values for all three SGG tasks under both With
Constraint and No Constraints setup. We also relied on email

communications with the authors of several papers on the mR

values where the source code are not publicly available. From

Tables 1 and 2, we observe that TEMPURA significantly outper-

forms the other methods in mean Recall. Specifically, in com-

parison to the best baseline, we observe improvements of 5.1%
on PREDCLS-mR@10, 5.7% on SGCLS-mR@10 and 1.9% on

SGDET-mR@10 under the With Constraint setup. For the No
Constraints setup the improvements are even more significant

with 10.1% on PREDCLS-mR@10, 7.6% on SGCLS-mR@10

and 3.8% on SGDET-mR@10. This clearly shows that TEM-

PURA can generate more unbiased scene graphs by better detect-

ing both data-rich and data-poor classes. This is further verified

from Fig 6 where we compare mR@10 values for the HEAD,

BODY and TAIL classes of AG with that of STTran and TRACE.

TEMPURA significantly improves performance on the TAIL
classes without compromising performance on the HEAD and

BODY classes. Similar charts for the No Constraints setup are

provided in the supplementary. The comparative per-class per-

formance in Fig 7 further shows that TEMPURA outperforms
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Table 1. Comparative results for SGDET task, on AG [25], in terms of mean-Recall@K and Recall@K. Best results are shown in bold.

Method
With Constraint No Constraints

mR@10 mR@20 mR@50 R@10 R@20 R@50 mR@10 mR@20 mR@50 R@10 R@20 R@50

RelDN [64] 3.3 3.3 3.3 9.1 9.1 9.1 7.5 18.8 33.7 13.6 23.0 36.6

HCRD supervised [16] - 8.3 9.1 - 27.9 30.4 - - - - - -

TRACE [57] 8.2 8.2 8.2 13.9 14.5 14.5 22.8 31.3 41.8 26.5 35.6 45.3

ISGG [29] - 19.7 22.9 - 29.2 35.3 - - - - - -

STTran [10] 16.6 20.8 22.2 25.2 34.1 37.0 20.9 29.7 39.2 24.6 36.2 48.8

STTran-TPI [59] 15.6 20.2 21.8 26.2 34.6 37.4 - - - - - -

APT [38] - - - 26.3 36.1 38.3 - - - 25.7 37.9 50.1
TEMPURA 18.5 22.6 23.7 28.1 33.4 34.9 24.7 33.9 43.7 29.8 38.1 46.4

Table 2. Comparative results for SGG tasks: PREDCLS and SGCLS, on AG [25], in terms of mean-Recall@K. Best results are shown in bold.

With Constraint No Constraints

Method PredCLS SGCLS PredCLS SGCLS

mR@10 mR@20 mR@50 mR@10 mR@20 mR@50 mR@10 mR@20 mR@50 mR@10 mR@20 mR@50

RelDN [64] 6.2 6.2 6.2 3.4 3.4 3.4 31.2 63.1 75.5 18.6 36.9 42.6

TRACE [57] 15.2 15.2 15.2 8.9 8.9 8.9 50.9 73.6 82.7 31.9 42.7 46.3

STTran [10] 37.8 40.1 40.2 27.2 28.0 28.0 51.4 67.7 82.7 40.7 50.1 58.8

STTran-TPI [59] 37.3 40.6 40.6 28.3 29.3 29.3 - - - - - -

TEMPURA 42.9 46.3 46.3 34.0 35.2 35.2 61.5 85.1 98.0 48.3 61.1 66.4

Table 3. Comparative results for SGG tasks: PREDCLS and SGCLS, on AG [25], in terms of Recall@K. Best results are shown in bold.

With Constraint No Constraints

Method PredCLS SGCLS PredCLS SGCLS

R@10 R@20 R@50 R@10 R@20 R@50 R@10 R@20 R@50 R@10 R@20 R@50

RelDN [64] 20.3 20.3 20.3 11.0 11.0 11.0 44.2 75.4 89.2 25.0 41.9 47.9

TRACE [57] 27.5 27.5 27.5 14.8 14.8 14.8 72.6 91.6 96.4 37.1 46.7 50.5

STTran [10] 68.6 71.8 71.8 46.4 47.5 47.5 77.9 94.2 99.1 54.0 63.7 66.4

STTran-TPI [59] 69.7 72.6 72.6 47.2 48.3 48.3 - - - - - -

APT [38] 69.4 73.8 73.8 47.2 48.9 48.9 78.5 95.1 99.2 55.1 65.1 68.7
TEMPURA 68.8 71.5 71.5 47.2 48.3 48.3 80.4 94.2 99.4 56.3 64.7 67.9

(a) SGDET (b) SGCLS (c) PREDCLS

Figure 6. Comparison of mR@10 for the HEAD, BODY and TAIL classes in Action Genome [25] under the ”with constraint” setup.

Figure 7. Comparative per class performance for PREDCLS task.

Results are in terms of R@10 under “with constraint”.

both STTran and TRACE for most predicate classes. Tables 1

and 3 show that TEMPURA does not compromise Recall values

and achieves comparable or better performance than the existing

methods, which made deliberate efforts to achieve high Re-

call values without considering their long-tailed performances.

Qualitative visualizations are shown in Fig 8.

4.3. Ablation Studies

We conduct ablation experiments on SGCLS and SGDET
tasks to study the impact of the OSPU, MDU, and GMM head,

the combination of which enables TEMPURA to generate more

unbiased scene graphs. When all these components are removed,

TEMPURA essentially boils down to the baseline STTran archi-

tecture [10], where the object proposals and PEG embeddings

are mapped to a few layers of FFN for respective classification.

Uncertainty Attenuation and Memory guided Training.
We first study the impact of uncertainty-aware learning and

memory-guided debiasing. For the first case, we remove the

MDU during training and use only the GMM head. For the sec-

ond case, we substitute the GMM head with a simple FFN head

as the classifier, with the predicate loss Lp converted to a simple

multi-label binary cross entropy. The results of these respective
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Figure 8. Comparative qualitative results. From left to right: input video frames, ground truth scene graphs, scene graphs generated by TEMPURA,

and the scene graphs generated by the baseline STTran [10]. Incorrect object and predicate predictions are shown in green and pink, respectively.

Table 4. Importance of uncertainty attenuation, memory guided debiasing, and temporally consistent object classification for SGCLS and SGDET.

With Constraint No Constraints
Uncertainty

Attenuation

Memory guided

Debiasing

Temporal

Consistency SGCls SGDet SGCls SGDet

mR@10 mR@20 mR@10 mR@20 mR@10 mR@20 mR@10 mR@20

- - - 27.2 28.0 16.5 20.8 40.7 50.1 20.9 29.7

� - � 30.6 31.9 16.7 21.1 43.5 58.9 20.9 30.5

- � � 31.8 33.2 16.8 20.9 45.7 59.7 21.7 30.7

� � - 30.9 32.1 17.0 21.4 45.7 59.3 21.6 30.1

� � � 34.0 35.2 18.5 22.6 48.3 61.1 24.7 33.9

Table 5. Performance of TEMPURA for varying numbers of GMM

components, K. Results are in terms of mR@10 for the With Con-
straint setup, with the best results shown in bold.

Task

K
1 2 4 6 8

PREDCLS 40.1 40.8 42.6 42.9 42.1

SGCLS 31.0 33.1 34.0 32.7 32.6

SGDET 16.7 17.0 18.5 18.2 17.6

cases are shown in rows 1 & 2 of Table 4. It can be observed

that the resulting models improve mR@K performance over the

baseline. This indicates two things: 1) Modeling and attenuation

of the predictive uncertainty of an SGG model can effectively

address the noise associated with the TAIL classes, preventing

it from under-fitting to them [22]. 2) MDU-guided training

enables the PEG to generate embeddings that are more robust

and generalizable to all the predicate classes, which performs

slightly better than just using uncertainty-aware learning for all

three SGG tasks. Combining both these principles gives the

best performance, as seen in the final row of both tables.

Temporally Consistent Object Classification. By compar-

ing rows 3 and 4 of Table 4, we can see that without the

OSPU-based enforcement of temporal consistency on object

classification, the performance drops significantly, highlighting

the fact that object misclassification due to temporal nuances

in videos is also a major source of noise in existing SGG

frameworks. For the PREDCLS task the ground-truth bounding

boxes and labels are already provided, so the OSPU has no role,

and its weights are frozen during training.

Number of Gaussian components K. The performance of

TEMPURA for different values of K is shown in Table 5. Keep-

ing K b/w 4 and 6 gives the best performance, beyond which the

model incurs a heavy memory footprint with diminishing returns.

More ablation experiments are provided in the supplementary.

5. Conclusions

The difficulty in generating dynamic scene graphs from

videos can be attributed to several factors ranging from imbal-

anced predicate class distribution, video dynamics, temporal

fluctuation of predictions, etc. Existing methods on dynamic

SGG have mostly focused only on achieving high recall values,

which are known to be biased towards head classes. In this

work, we identify and address these sources of bias and propose

a method, namely TEMPURA: TEmporal consistency and

Memory Prototype guided UnceRtainty Attentuation for

dynamic SGG that can compensate for those biases. We show

that TEMPURA significantly outperforms existing methods in

terms of mean recall metric, showing its efficacy in long-term

unbiased visual relationship learning from videos.
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