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Abstract

We propose a general approach for
training survival analysis models that
minimizes a worst-case error across all
subpopulations that are large enough
(occurring with at least a user-specified
minimum probability). This approach
uses a training loss function that does
not know any demographic informa-
tion to treat as sensitive. Despite this,
we demonstrate that our proposed ap-
proach often scores better on recently
established fairness metrics (without a
significant drop in prediction accuracy)
compared to various baselines, includ-
ing ones which directly use sensitive de-
mographic information in their training
loss. Our code is available at: https:
//github.com/discovershu/DRO_COX
Keywords: survival analysis, fairness,
distributionally robust optimization

1. Introduction

One of the recent advances for encouraging
fairness in machine learning models is to min-
imize a worst-case error over all subpopula-
tions that are large enough (e.g., Hashimoto
et al. 2018; Duchi and Namkoong 2021; Li
et al. 2021; Duchi et al. 2022; Hu et al.
2022a). In particular, a modeler specifies a
probability threshold a of a minority sub-
population occurring. The goal is to ensure
that all subpopulations with at least occur-
rence probability a have low error whereas
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we make no promises for subpopulations oc-
curring with probability less than «. The
modeler need not provide a list of subpop-
This problem is
tractable to solve in practice and is called
distributionally robust optimization (DRO).
We emphasize that curating a list of all
subpopulations to account for can be chal-
lenging in practice for numerous reasons. For
example, one major challenge is intersection-
ality: subpopulations that a machine learn-
ing model yields the worst accuracy scores
for can be defined by complex intersections
of sensitive attributes (e.g., age, race, gen-
der) (Buolamwini and Gebru, 2018). Some of
these attributes might require discretization
(e.g., dividing age into bins), for which choos-
ing the “best” discretization strategy might
not be straightforward. Moreover, if there
is a large number of features and we sus-
pect that the sensitive attributes (encoded
by specific features) could possibly be corre-
lated with other features (not flagged as sen-
sitive), there is a question of whether these
other features should also be accounted for
in a listing of what the sensitive attributes
are. DRO provides a theoretically sound al-
ternative to having to specify such sensitive
attributes in a training loss function.

ulations to account for.

Our main contribution in this paper is to
show how to apply DRO to survival analysis.
The key technical challenge is that existing
DRO theory assumes that the overall train-
ing loss can be separated across individuals
so that any individual’s loss term does not
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depend on other individuals. This assump-
tion does not hold for many survival analysis
loss functions, including that of the popular
Cox proportional hazards model (Cox, 1972),
due to pairwise comparisons from ranking or
similarity score evaluations (e.g., Steck et al.
2007; Lee et al. 2018; Chen 2020; Wu et al.
2021). We use a sample splitting approach to
address this technical challenge. We specif-
ically show how to use DRO with the Cox
model and its deep neural network variant
(Faraggi and Simon, 1995; Katzman et al.,
2018). On three standard survival analysis
datasets that have been previously used for
research on fairness, our approach often out-
performs various baseline methods in terms
of existing fairness metrics that focus on
user-specified sensitive attributes, including
baselines with training loss functions that di-
rectly use these sensitive attributes (whereas
ours does not). As with other fairness meth-
ods recently developed for survival analysis
(e.g., Keya et al. (2021); Rahman and Pu-
rushotham (2022)), our approach also results
in a drop in accuracy (compared to using a
loss that does not encourage fairness). This
tradeoff in accuracy vs fairness can be tuned
by the user. For ease of presentation, we
apply DRO only to classical and deep Cox
models, but the ideas we use readily extend
to other survival models as well.

2. Background

We review the standard survival analysis
setup in Section 2.1, classical and neural net-
work variants of the Cox proportional haz-
ards model in Section 2.2, and existing work
on fair survival analysis in Section 2.3. We
defer explaining the basics of DRO to Sec-
tion 3 when we simultaneously explain how
we apply DRO to survival analysis.

2.1. Survival Analysis Setup

Survival analysis aims to model the amount
of time that will elapse before a critical event
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of interest happens. Classically, this criti-
cal event is death (i.e., we model time until
different individuals are deceased), but the
critical event need not be death and could in-
stead be, for example, discharge from a hos-
pital, or awakening from a coma.

We assume that we have training data
{(Xi,Y:,6;) 1, where the i-th training pa-
tient has feature vector X; € X, observed du-
ration Y; > 0, and event indicator ¢; € {0,1}.
If 9 = 1 (i.e., the critical event of interest
happened for the i-th patient), then Y; is the
time until the event happens. Otherwise, if
0; = 0, then Y; is the time until censoring
for the i-th patient, i.e., the true time until
event is unknown but we know that it is at
least Y;. In more detail, each training data
point (X;,Y;,0;) is assumed to be generated
from the following procedure:

1. Sample feature vector X; from a feature
vector distribution Px.
. Sample nonnegative time duration T;
(this is the true time until the critical
event happens) from a conditional distri-
bution Prx—x;-
Sample nonnegative time duration Cj
(this is the true time until the data point
is censored) from a conditional distribu-
tion Pojx=x;-
If T; < C; (the critical event happens
before censoring), then set Y; = T; and
0; = 1. Otherwise, set Y; = C; and §; = 0.
Distributions Py, Py x, and P¢|x are shared
across data points and are unknown. We as-
sume that the random variables T; and C; are
independent given X;. We denote the CDF
of distribution Pp x_, as F(-|z).

A standard prediction task is to estimate
the probability that a patient with feature
vector x survives beyond time ¢. Formally,
this is defined as the survival function

S(tlz) =P(T > t|X =x) =1— F(t|z).

We explain how to estimate S(-|x) using vari-
ants of the Cox model next.
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2.2. Classical and Deep Cox Models

The Cox proportional hazards model (Cox,
1972) estimates a transformed version of the
survival function S(-|x) called the hazard
function, given by h(t|z) = —%log S(t|x);
from negating both sides of this equation, in-
tegrating over time, and exponentiating, we
get S(tlz) = exp(— [} h(u|z)du). Thus, if
we have an estimate of h(-|x), then we can
readily estimate the survival function S(-|z).

The Cox model assumes that the hazard
function has the factorization

h(t|lz) = ho(t) exp(f(;0)), (1)
where hg is called the baseline hazard func-
tion (hg maps a nonnegative time ¢ > 0 to
a nonnegative number), and f(-;0) is the
so-called log partial hazard function (f(z;6)
could be thought of as assigning a real-valued
“risk score” to feature vector x: when f(x;6)
is higher, then x has a higher risk of the crit-
ical event happening); note that 6 refers to
the parameters of f.

The original Cox model (Cox, 1972) de-
fines f to be a dot product: f(z;0) = 07,
where 6 and x are in the same FEuclidean
vector space. More recently, researchers re-
placed f with a neural network (Faraggi and
Simon, 1995; Katzman et al., 2018), result-
ing in a method called DeepSurv. In either
case, the standard approach for learning a
Cox model is to first learn f(-;60) (i.e., learn
the parameters ) by minimizing the nega-
tive log partial likelihood:

0= 1(0)
=1

where the i-th patient’s loss is

(2)

ﬁaverage

£ (0)
= =0 | f(X5:0) —log Y exp(f(X;;0))|.

If the i-th patient is censored (d; = 0), then
¢;(8) = 0. Thus, the loss Laverage(f) weights
uncensored training patients equally. After
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learning f(-;0), we then estimate hg; as this
step is not essential to our exposition, we ex-
plain it in Appendix A, along with details on
constructing the final estimate of S(-|x).

2.3. Fair Survival Analysis

Despite many advances in survival analysis
methodology in recent years (e.g., see the
survey by Wang et al. (2019)), very few of
these advances focus on fairness (Keya et al.,
2021; Zhang and Weiss, 2022; Sonabend
et al., 2022; Rahman and Purushotham,
2022). From a practical standpoint, asking
for a survival analysis model to be fair is not
different from asking for any other machine
learning model to be fair in that if the model
is used to assist high-stakes decision making
(e.g., helping clinicians decide on personal-
ized treatments, improving how hospitals al-
locate resources for different patients), then
accounting for some notion of fairness could
be an important design consideration.

To this end, Keya et al. (2021) adapted ex-
isting fairness definitions to the survival anal-
ysis setting and showed how to encourage
different notions of fairness by adding fair-
ness regularization terms to the conventional
loss function stated in equation (2). Specif-
ically, Keya et al. (2021) came up with in-
dividual (Dwork et al., 2012), group (Dwork
et al., 2012), and intersectional (Foulds et al.,
2020) fairness definitions specialized to Cox
models. Keya et al. define individual fairness
in terms of model predictions being similar
for similar individuals, and group fairness in
terms of different user-specified groups hav-
ing similar average predicted outcomes. In-
tersectional fairness further considers sub-
groups defined by intersections of protected
groups (e.g., individuals of a specific race and
simultaneously a specific gender) with the
idea that intersections of protected groups
could be vulnerable to additional harms.

However, a major limitation of the notions
of fairness defined by Keya et al. (2021) for
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survival analysis is that they focus on pre-
dicted model outputs and do not actually use
any of the label information (the observed
time Y; and event indicator d; variables). For
example, if one uses age as a sensitive at-
tribute and suppose we discretize age into
two groups, then the notion of group fairness
by Keya et al. (2021) would be asking for
the predicted outcomes of the two different
age groups to be similar, which for health-
care problems often does not make sense
(since age is often highly predictive of dif-
ferent health outcomes). Instead, in such a
scenario, a more desirable notion of fairness
is that the model’s accuracy for the different
age groups be similar.

To account for model accuracy, Zhang
and Weiss (2022) introduced a fairness met-
ric called concordance imparity that com-
putes a quantity similar to the standard
survival analysis accuracy metric of concor-
dance index (Harrell et al., 1982) for dif-
ferent groups and then looks at the worst-
case difference between any two groups’ ac-
curacy scores. Meanwhile, Rahman and Pu-
rushotham (2022) directly modified the fair-
ness definitions of Keya et al. (2021) to ac-
count for observed times and censoring infor-
mation, and also generalized these definitions
to survival models beyond Cox models.

Separately, Sonabend et al. (2022) em-
pirically explored how well existing sur-
vival analysis accuracy and calibration met-
rics measure bias by synthetically modifying
datasets (e.g., undersampling disadvantaged
groups). However, they do not propose any
new fairness metric or survival model that
encourages fairness.

The papers mentioned above that pro-
pose new methods for learning fair survival
models all either require user-specified de-
mographic information to treat as sensitive
(possibly as a list of subpopulations/groups
to account for) or are simply adding a loss
term that encourages smoothness in the

model outputs (the individual fairness met-
rics by Keya et al. (2021) and Rahman and
Purushotham (2022) are simply encouraging
the predicted model output to be Lipschitz
continuous; for details, see Appendix B). In
contrast, our proposed approach does not re-
quire the user to specify any sensitive de-
mographic attributes in the training loss
function, and is not simply encouraging the
model output to be Lipschitz continuous.

3. DRO for Survival Analysis

We now present our proposed method that
applies distributionally robust optimization
(DRO) to survival analysis. DRO uses a
worst-case average error over “large enough”
subpopulations. Note that there are now a
number of DRO variants (e.g., Hashimoto
et al. 2018; Sagawa et al. 2020; Duchi and
Namkoong 2021; Duchi et al. 2022). We use
the one by Hashimoto et al. (2018).

Problem setup. Let P denote the
joint distribution over each data point
(X;,Y;,0;). This joint distribution corre-
sponds to the generative procedure described
in Section 2.1. We assume that there are K
groups that comprise P. In particular, P is a
mixture of K distributions PP := Zszl TP,
where the k-th group occurs with probabil-
ity m;, € (0,1) and has associated distribu-
tion P,. Moreover, Zszl 7 = 1. We assume
that we do not know { (g, Px) }< |, nor do we
know K. This setting, for instance, handles
the case where we do not exhaustively know
all subpopulations to consider. The small-
est minority group corresponds to whichever
group has the smallest 7 value.
We would like to minimize the risk

Rmax(e) =1 aXK E(X,Y,é)N]P’k [Z(ea XY, 6)]7

where £ is a loss function that depends only
on the parameters 6 (for a survival analysis
model that we aim to learn) and on a single
data point (X,Y,0). However, minimizing
Rmax(0) is not possible as we do not know
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any of the latent groups nor how many such
groups there are. However, it turns out that
there is an optimization problem that we
can tractably solve that minimizes an empir-
ical version of an upper bound on Ryax(6).
We explain what the upper bound is in Sec-
tion 3.1, how to empirically minimize the up-
per bound in Section 3.2, and finally how to
choose the loss £ in Section 3.3. Note that the
material in Sections 3.1 and 3.2 is not novel;
these sections translate the DRO formulation
by Hashimoto et al. (2018) to survival anal-
ysis. On the other hand, Section 3.3 is novel
and focuses on a technical complication in
applying DRO to survival analysis.

3.1. Upper Bound on the Risk
Rmax(0) Using DRO

For a set of distributions B, (P) to be defined
shortly, we consider minimizing the following
alternative risk instead:

Rpro(0;7) == sup E(xys~qll(0; X,Y,0)].
QeB, (P)
(4)

This is the worst-case expected loss when we
sample from any distribution in B, (P).

The definition for B, (P) is somewhat tech-
nical; we first give its precise definition
and then state how to choose r so that
Rpro(f;7) is an upper bound on Rpax ().
Importantly, we will be able to efficiently
minimize an empirical version of Rpro(6;r).

Definition 1 The set B,(P) consists of all
distributions Q that have the same (or
smaller) support as P and have x?-divergence
is at most v from distribution P. Formally,

B.(P) := {dist. Q| Q < P, D,2(Q||P) < r},

where the notation “Q < P” roughly means
that Q has the same (or smaller) support as

P.! Meanwhile, D,»(Q||P) := [(42 — 1)2dP.

Working with B, (P) turns out to be straight-
forward so long as we have a lower bound on

1. The measure-theoretic definition of “Q <« P” is
that Q is absolutely continuous with respect to P.
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the smallest group’s probability (i.e., a lower
bound on ming—; i k).

Proposition 2 (Directly  follows  from
Proposition 2 of Hashimoto et al. (2018))
Suppose that we have a lower bound
a > 0 on the K latent groups’ probabilities
of occurring (i.e., o < ming—; g 7).
Then Rpro(6;rmax) > Rmax(0), where
L _1)2,

Tmax ‘= (a

In other words, if we have a guess for a €
(0, ming—1, g 7x), then it suffices to choose
r for By(P) to be rmax = (£ — 1)% Fur-
thermore, the risk Rpro(#; rmax) is an upper
bound on Ruyax(f). In practice, a € (0,1) is
a user-specified hyperparameter since we do
not know 7y, ..., mx nor K. Choosing « to
be smaller means that we want to ensure that
groups with smaller probabilities of occur-
ring also have low expected loss. For exam-
ple, setting a = 0.1 means that the “rarest”
group that we want to ensure low expected
loss for occurs with probability least 0.1.

3.2. Empirical DRO Risk

The next issue is how to minimize the risk
RprO(0; "max). This risk appears challeng-
ing to evaluate since it involves a supremum
over all distributions in B, (P). However, a
fundamental theoretical result from DRO lit-
erature is that Rpro(6; max) can be written
in a form that is amenable to computation.

Proposition 3 (Lemma 1 in Duchi and
Namkoong (2021)) Suppose £(0; X,Y,0) is
upper semi-continuous with respect to 6. Let
[-]+ denote the ReLU function (i.e., [a]4+ =

max{a,0} for any a € R), and C
\/2(2 —=1)2+1. Then

RDRO(G; Tmax) -
{C\/E(X,Y,5)~P [[0(0; X, Y,0) — ]3] + n}.

(5)
The right-hand side of equation (5) could be
interpreted as follows. Suppose that we have

inf
neR
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achieved the optimal value n*. Then the loss
from a patient will be ignored if it is less
than n* (due to the ReLU function). Thus,
only the patients with losses above n* are
considered for learning the survival model.

Note that as we vary the model parame-
ters 6, the different patients’ losses change.
Thus, as a function of 6, the DRO risk
Rpro(0; "max) dynamically adjusts which
patients to focus on, always prioritizing the
patients with the highest loss values (again,
we only consider the patients with a loss
greater than the optimal value of 7).

We can readily minimize an empirical ver-
sion of Rpro(#; ™max). Specifically, we re-
place the expectation on the right-hand side
of equation (5) with an empirical average to
arrive at the following optimization problem:

(6)

where © denotes the feasible set of the model
parameters, and we define the empirical loss

£DR0(97 77)

in L 0
pomin pro(#,7),

1 - )
=C ni_zl[é(evaYvhél) _77]++77' (7)
Numerical optimization. The optimiza-
tion problem in equation (6) can be solved
with an iterative gradient descent approach
(Hu et al., 2020, 2021, 2022b). Specifically,
we first initialize the model parameters 6.
Then, following Hashimoto et al. (2018), we
alternate between two steps:

e We fix 6 and update i by finding the value
of n that minimizes Lpro(#,n). To do
this, we use binary search to find the global
optimum of 7 since Lpro(f,7n) is a convex
function with respect to 7.

We fix n and update 6 by minimizing
Lpro(8,7n) (e.g., using gradient descent).

We stop iterating after user-specified stop-
ping criteria are reached (e.g., maximum
number of iterations reached, early stopping
due to no improvement in a validation metric
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after a pre-specified number of epochs). The
pseudocode can be found in Appendix C.

3.3. Choosing the Individual Loss ‘

The technical difficulty in applying DRO to
the Cox model is somewhat subtle. In our
description of DRO so far, the loss ¢ that is
mentioned depends only on model parame-
ters 6 and a single data point (X,Y,d). In
contrast, for the Cox model, the i-th pa-
tient’s loss ¢;(6) as described in equation (3)
can actually depend on multiple training pa-
tients. The reason is that inside the log
term of equation (3), there is a sum over
all training patients j = 1,...,n whose ob-
served time Y is at least Y;. Thus, replacing
0(0; X;,Y;,6;) in equation (7) with the Cox
individual loss ¢;(#) actually invalidates the
theory we have covered thus far. However,
our experiments later will reveal that this re-
placement works very well in practice. We
call this method DRO-COX.

A theoretically sound DRO method for
Cox models. We show how to define the
individual loss ¢ so that it complies with ex-
isting DRO theory. To achieve this, we use
sample splitting and an approximation of the
Cox individual loss. We divide the training
patients into two sets D; C {1,...,n} and
Dy :={1,...,n}\ Dy of sizes n; := |D;| and
ng := |Dg| = n — ny. The high-level idea is
that we only compute an approximation of
the Cox individual loss ¢;(0) for i € Dy (so
that the empirical average in the DRO loss
Lpro(#,7n) is modified to only be over the
training patients in D;). Meanwhile, each
4;(0) for i € D; is modified so that the sum
inside the log term only depends on the i-th
patient and patients in Ds.

In more detail, we approximate ¢;(6) for
1 € Dy with the new individual loss

Zsplit(9; XY, 64, Do)
(8)
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where
<I>(9a Xl'a )/tia D2)
= exp(f(X;;0)) + Z exp(f(X;;0)).

JE€D s.t. Y;2>Y;

This loss is no longer equal to the Cox in-
dividual loss ¢;(f) because the log term is
computed only using the i-th training pa-
tient and patients in Dy. Importantly, treat-
ing the training patients in D; as fixed, then
the individual loss gyt (6; X, Y5, 0i, Do) only
depends on 6 and the data point (X;,Y;, d;).
Note that our sample splitting strategy is
somewhat inspired by the “case control”
strategy by Kvamme et al. (2019), where in-
stead of using the full Cox loss, they approxi-
mate each individual data point’s loss (which
could depend on many other data points) to
only depend on a single other data point.

We next modify the empirical DRO loss
Lpro(f,n) given in equation (7) so that the
empirical average (inside the square root) is
only computed using training patients in Dy,
and we set £ equal to fgp);¢. In particular, we
replace Lpro(#,n) with the loss

Lpro-split (0,1, D1, D2) :=

1 ~
C 7Z[fsplit(9;Xz',YiﬁMDQ)*UﬁJH?-
|D1| i€Dq (9)

Although minimizing Lpro-spiit (0, 17, D1, D2)
is compliant with DRO theory, it uses data
less effectively since at most mi patients
(rather than n) are used to compute the em-
pirical average (note that only uncensored
patients have nonzero loss), and for these pa-
tients, at most na+1 points are used to com-
pute the sum inside each of their log terms.

A simple way to more effectively use the
data is to change optimization problem (6) to
instead minimize the sum of two losses: the
first is Lpro-spiit(¢,7, D1, D2), and the sec-
ond is Lpro-split(#, ', D2, D1), i.e., the latter
loss swaps the roles of D; and Dy and also 7
is replaced with a different 7’ (the two losses
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do not share the same n). The iterative opti-
mization procedure in Section 3.2 can still be
applied except where each iteration now con-
sists of three steps: updating n, 7', and 6. We
refer to this method as DRO-COX (SPLIT); we
provide pseudocode for it in Appendix C.

4. Experiments

We compare DRO-COX and DRO-COX (SPLIT)
against various baselines using a similar ex-
perimental setup as Keya et al. (2021).

Datasets. We use three standard, publicly
available survival analysis datasets that have
been used in fair survival analysis research:

e The FLC dataset (Dispenzieri et al., 2012)
is from a study on the relationship between
serum free light chain (FLC) and mortal-
ity of Olmsted County residents aged 50
or higher. We regard binary encoded age
(age<65 and age>65) and gender (women
and men) as sensitive attributes.

The SUPPORT dataset (Knaus et al.,
1995) is from a study at Vanderbilt Uni-
versity on understanding prognoses, pref-
erences, outcomes, and risks of treatment
by analyzing survival times of severely
ill hospitalized patients. We regard bi-
nary encoded age (age<65 and age>65),
race (white and non-white), and gender
(women and men) as sensitive attributes.

The SEER dataset (Teng, 2019) of breast
cancer patients is obtained from the 2017
November update of the Sureillance, Epi-
demiology, and End Results (SEER) pro-
gram of the National Cancer Institute.
The dataset is on female patients with
breast cancer diagnosed in 2006-2010. We
regard binary encoded age (age<65 and
age>65) and race (white and non-white)
as sensitive attributes.

Basic characteristics of these datasets are re-
ported in Table 1. For all datasets, we first
use a random 80%/20% train/test split to
hold out a test set that will be the same
across experimental repeats. Then we repeat
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Table 1: Basic dataset characteristics.

FLC SUPPORT SEER
# samples 7,874 9,105 4,024
# features 6 (9%) 14 (19%) 13
Censoring rate 0.725 0.319 0.847
Sensitive
attributes 8% gender age, race, gender age, race

* indicates the number before preprocessing

(preprocessing removes some features)

the following basic experiment 10 times: (1)
We hold out 20% of the training data to treat
as a validation set, which is used to tune hy-
perparameters. (2) We then compute evalu-
ation metrics across the same test set. We
describe the evaluation metrics and how hy-
perparameter tuning works shortly. When
we report our experimental results, we pro-
vide the mean and standard deviation of each
metric across the 10 experimental repeats.

Evaluation metrics. We use accuracy and,
separately, fairness metrics. The accuracy
metrics we use are (a) concordance index
(abbreviated as “c-index”, higher is better)
(Harrell et al., 1982), (b) time-dependent
AUC (AUC, higher is better) (Chambless
and Diao, 2006), (c) log partial likelihood
(LPL, higher is better), and (d) integrated
IPCW Brier Score (IBS, lower is better)
(Graf et al., 1999). Note that the negative
LPL averaged across data points is precisely
given by equation (2) (all methods we con-
sider are variants of Cox models).

As our experimental setup is largely based
on that of Keya et al. (2021), we use the
fairness metrics that they had defined: in-
dividual fairness (Fj), group fairness (F¢g),
and intersectional fairness (Fn). We also
include a summary fairness metric Fa
(Fr+Fg+Fn)/3. As we pointed out in Sec-
tion 2.3, the fairness metrics by Keya et al.
(2021) do not actually account for accuracy.
We thus also include the concordance impar-
ity (CI) fairness metric by Zhang and Weiss
(2022) that is based on accuracy. For all fair-
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ness metrics, lower is better. Definitions of
these fairness metrics are in Appendix B.
Note that the fairness metrics Fg and CI
require us to specify groups. For the FLC
dataset, we separately use (binary encoded)
age and gender (i.e., we first run experiments
using only age in evaluating Fg and CI; we
then re-run experiments using gender instead
of age). For the SUPPORT dataset, we sep-
arately use gender, age, and race. For the
SEER dataset, we separately use race and
age. Note that since F 4 depends on Fg, the
F 4 metric also changes when we switch the
sensitive attribute used for F ¢ and CI. Mean-
while, the intersectional fairness metric Fy is
meant for when multiple sensitive attributes
are specified. Per dataset, we use all sensitive
attributes specified in Table 1 to evaluate Fn.

Methods evaluated. For simplicity, all
models evaluated are Cox models, either as-
suming the linear setting (the log partial
hazard function is f(x;6) = 67 x) or the non-
linear setting in which f is a multilayer per-
ceptron (MLP). When DRO-COX or DRO-COX
(sPLIT) are used in the latter case, we add
the prefix “Deep” in tables for clarity.

For baselines, the unregularized linear Cox
model (Cox, 1972) is denoted as “Cox” in
our tables, whereas the unregularized nonlin-
ear Cox model (Katzman et al., 2018) is de-
noted as “DeepSurv”. The rest of our base-
lines are all regularized versions of either the
standard Cox or DeepSurv models, using dif-
ferent fairness regularization terms. When
we use individual, group, or intersectional
regularization terms by Keya et al. (2021),
then we add the suffix “;(Keya et al.)”,
“c(Keya et al.)”, or “~(Keya et al.)”
spectively to a model name; for example,
“DeepSurvg(Keya et al.)” corresponds to
DeepSurv with group fairness regularization
by Keya et al. (2021). When we use the indi-
vidual or group fairness regularization terms
that account for observed times and censor-
ing information (Rahman and Purushotham,

re-
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2022), we instead use the suffix “;(R&P)”
or “g(R&P)”.? Note that group fairness reg-
ularization (suffixes “g(Keya et al.)” and
“c(R&P)”) uses the same groups that test
set Fg and CI fairness metrics use.
Hyperparameter grids for all methods (in-
cluding our DRO-COX variants) are in Ap-
pendix D, where we also provide information
on the compute environment that we used.
In terms of hyperparameter tuning, we use
the strategy by Keya et al. (2021): the fi-
nal hyperparameter setting used per dataset
and per method is determined based on a
preset rule in practice that allows up to a
5% degradation in the validation set c-index
from the classical Cox model (for the linear
setting) or DeepSurv (for the nonlinear set-
ting) while minimizing the validation set CI
fairness metric (Keya et al. used their own
fairness metrics though instead of CI).

Experimental results. We report the test
set evaluation metrics for FLC (using age to
evaluate Fg and CI) in Table 2, SUPPORT
(gender) in Table 3, and SEER (race) in Ta-
ble 4. Experimental results using other sen-
sitive attributes for the datasets have similar
trends and are in Appendix E. From these
tables, we have the following observations:

Among linear methods, DRO-COX con-
sistently outperforms baselines in terms
of the CI fairness metric (and often on
the other fairness metrics too) while still
achieving reasonably high accuracy scores.
A similar trend holds among nonlinear
methods for the deep DRO-COX variant.

The performance difference (in terms of
both accuracy and fairness) between DRO-
COX and DRO-COX (SPLIT) is not clear cut;

2. Rahman and Purushotham (2022) did not pro-
pose an intersectional fairness regularizer and
technically did not try regularized versions of Cox
models using their fairness definitions. However,
it is straightforward to adapt their individual and
group fairness definitions as regularization terms
for a Cox model, especially as their work is di-
rectly modifying definitions by Keya et al. (2021).
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sometimes one performs better than the
other and vice versa. This holds for their
linear variants as well as, separately, their
nonlinear (deep) variants.

As expected, the unregularized Cox and
DeepSurv models often have (among) the
highest accuracy scores but tend to have
poor performance on fairness metrics.
The baselines that are regularized variants
of Cox and DeepSurv typically do not si-
multaneously achieve low scores across all
fairness metrics. Even though some of
these can work well with some of the met-
rics by Keya et al. (2021), they clearly do
not work as well as our DRO-COX variants
when it comes to the CI fairness metric
that actually accounts for accuracy.

Effect of a. To show how « trades off be-
tween fairness and accuracy, we show results
for DRO-COX in the linear setting across all
datasets (using age for evaluating F and CI)
in Figure 1, where we use c-index as the ac-
curacy metric. It is clear that accuracy tends
to increase when « increases from 0.1 to 0.3
on FLC and SEER, and from 0.3 to 0.5 on
SUPPORT. However, the increase in « re-
sults in worse scores across fairness metrics.

Additional experiments. Across all
methods, instead of minimizing the valida-
tion set CI fairness metric during hyperpa-
rameter tuning (tolerating a small degra-
dation in validation set c-index), we also
tried instead minimizing the validation set
F 4 metric and found similar results: our
DRO-COX variants end up consistently out-
performing all the baselines on F, (and
also often achieves competitive CI metric
scores) without a large accuracy drop. We
also show that our DRO-COX (SPLIT) pro-
cedure is somewhat robust to the choice of
ny and ng, and if DRO-COX (SPLIT) did not
use both losses Lpro-spiit(#, 1, D1, D2) and
»CDRO—split(e,n,pD%Dl) (i.e., if it only used
one of these), then it performs worse. For de-
tails on these experiments, see Appendix E.
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Table 2: Test set accuracy and fairness metrics on the FLC (age) dataset. We report mean and

standard deviation (in parentheses) across 10 experimental repeats (each repeat holds out
a different 20% of the training data as a validation set for hyperparameter tuning; the
test set is the same across experimental repeats). Higher is better for metrics with “1”,
while lower is better for metrics with “]”. The best results are shown in bold for linear
and, separately, nonlinear models. When one of our methods outperforms all baselines (in
linear and, separately, nonlinear models), we highlight the corresponding cell in green.

Methods Accuracy Metrics Fairness Metrics
c-index?  AUCT LPLT TBS] Frl Fal Frl Fal CI(%)1
Con 0.8032 08176  -6.3724 _ 0.1739 T.8787 3.0282 2.8355 2.5808 0.5350
(0.0002)  (0.0005) (0.0011) (0.0004) | (0.0304)  (0.0469)  (0.0297)  (0.0332)  (0.0413)
Coxy (Keya ct al.) 0.7937 0.8179  -6.6044  0.1414 0.4493 0.7623 1.2045 0.8054 0.5400
(0.0068)  (0.0067)  (0.0721)  (0.0073) | (0.1217)  (0.1995) (0.2701)  (0.1966)  (0.3270)
Coxy (R&P) 0.8034  0.8188  -6.4111 0.1636 1.0920 1.7990 2.1828 1.6913 0.4330
. (0.0007)  (0.0008)  (0.0203)  (0.0030) | (0.1391)  (0.2242) (0.1620) (0.1747)  (0.1196)
g o K e ol 0.7974  0.8196  -6.6869  0.1492 1.0495 1.1802 1.7940 1.3412 0.3410
E oxg (Keya et al.) (0.0117)  (0.0063) (0.0693)  (0.0077) | (0.6647)  (0.6893)  (0.7234)  (0.6880) (0.3011)
S Coxg (R&P) 0.8027 0.8172  -6.3921 0.1676 1.3130 2.1601 2.3984 1.9571 0.4950
G (0.0005)  (0.0011)  (0.0095)  (0.0012) | (0.0801)  (0.1296)  (0.0903)  (0.0992)  (0.1517)
Coxr (Keya et al.) 0.7870 0.8148  -6.7272 __ 0.1400 0.2921 0.4156  0.6827 _ 0.4635 1.0790
> (0.0029)  (0.0017)  (0.0048) (0.0005) | (0.0056) (0.0220) (0.0291) (0.0180) (0.1098)
DRO-COX 0.7959 0.8149  -6.7630  0.1408 0.2793  0.4694 0.7880 0.5122  0.0510
(0.0036)  (0.0020)  (0.2113)  (0.0050) | (0.1818) (0.3016) (0.5011)  (0.3282) (0.0401)
: 0.8017 0.8221 -6.6593  0.1658 0.5611 0.8935 1.2734 0.9094 0.0840
DRO-COX (SPLIT) (0.0017)  (0.0014)  (0.2604)  (0.0098) | (0.3588)  (0.5652) (0.7880)  (0.5705)  (0.0594)
DeepSury 0.8070 0.8247  -6.3552  0.1767 2.9691 4.6647 2.8800 3.5046 0.2940
(0.0014)  (0.0026) (0.0052) (0.0018) | (1.2481)  (1.9185) (0.0531)  (1.0506) (0.2147)
DeepSurvy (Keya et al) 07554 08134  -6.6416  0.1441 0.1510 0.2425 T.1281 0.5072 0.3700
(0.0070)  (0.0109)  (0.1399)  (0.0130) | (0.1062)  (0.1675) (0.5625) (0.1335)  (0.2523)
DeopSury (R&P) 0.8071 0.8254  -6.3824  0.1729 0.0713 0.1167 2.5089 0.8990 0.1870
(0.0041)  (0.0049)  (0.0743)  (0.0093) | (0.1204) (0.1785)  (0.4270)  (0.0643)  (0.1117)
5 Deens K ¢ al 0.7990 0.8189  -6.4954  0.4190 0.1604 0.1600 1.0645 0.4617 0.2490
g eep urvg (Keya et al.) (0.0120)  (0.0108)  (0.1924)  (0.2487) | (0.3575) (0.3249) (0.6657) (0.4381) (0.1646)
= DeepSurve (R&P) 0.8073  0.8255  -6.3786  0.1731 0.2376 0.3749 2.6416 1.0847 0.2290
S G (0.0036) (0.0049)  (0.0687)  (0.0087) | (0.2349)  (0.3587) (0.4063) (0.1954)  (0.1344)
“ DeopSurvn (Keya et al.) 07751 0.7893  -6.8458  0.1357 0.1688 0.2412  0.4633  0.2911 0.4300
7 (0.0018) (0.0022)  (0.0031) (0.0002) | (0.0035)  (0.0051) (0.0106) (0.0062 (0.1091)
Deep DRO-COX 0.8068  0.8259  -6.4698  0.1595 1.3709 2.1481 1.8712 1.7967  0.0730
(0.0024)  (0.0081) (0.1069)  (0.0135) | (1.1919)  (1.8343) (0.6223) (1.1697) (0.0822)
oy 0.7650 0.7744  -6.8071 0.1703 0.4480 0.5327 0.7762 0.5856 2.8000
Deep DRO-COX (SPLIT) ' '0924)  (0.0022)  (0.0091)  (0.0002) | (0.1050)  (0.0706) (0.0992)  (0.0914)  (0.1450)
Table 3: Test set scores on the SUPPORT (gender) dataset, in the same format as Table 2.
Methods Accuracy Metrics Fairness Metrics
c-index?  AUCT LPLT TBS] Fril Fal Fal Fal CI(%)1
Cox 0.6025 0.6163  -6.8761  0.2304 0.2113 0.0439 0.4490 0.2347 1.4300
(0.0005)  (0.0010) (0.0010) (0.0015) | (0.0093)  (0.0052) (0.0322)  (0.0127)  (0.0654)
Cox (Keya et al.) 0.5881 0.5998  -6.9387  0.2157 0.0382 0.0076 0.0938 0.0465 0.9650
(0.0114)  (0.0142)  (0.0202) (0.0060) | (0.0320) (0.0057)  (0.0700)  (0.0353)  (0.6126)
Coxy (R&P) 0.6019 0.6159  -6.8798  0.2282 0.1814 0.0383 0.3841 0.2013 1.4190
. (0.0019)  (0.0029)  (0.0029)  (0.0013) | (0.0127) (0.0139)  (0.0240)  (0.0126)  (0.1002)
g o K ¢ al 0.6030  0.6177  -6.8772 _ 0.2297 0.2016 0.0032 0.4012 0.2020 1.4190
E oxg (Keya et al.) (0.0007) (0.0011) (0.0017) (0.0018) | (0.0117) (0.0016) (0.0163)  (0.0071)  (0.0632)
= Coxg (R&P) 0.6018 0.6156  -6.8779  0.2295 0.1993 0.0430 0.4239 0.2221 1.4340
< (0.0017)  (0.0027)  (0.0023)  (0.0009) | (0.0048) (0.0157) (0.0281) (0.0128)  (0.1039)
Coxn (Keya et al.) 0.5715 0.5718  -6.9078  0.2275 0.1334 0.0092 0.0743 0.0723 1.1270
(0.0062)  (0.0081)  (0.0062) (0.0016) | (0.0129)  (0.0037)  (0.0108)  (0.0077)  (0.2457)
DRO-COX 0.5734 0.6083  -6.9388  0.2210 0.0378  0.0022  0.0731 0.0377 0.4350
(0.0019)  (0.0023)  (0.0007)  (0.0010) | (0.0013) (0.0015) (0.0094) (0.0033) (0.0674)
0.5725 0.6056  -6.9410  0.4264 0.0285  0.0041  0.0594  0.0307  0.3410
DRO-COX (SPLIT) (0.0075)  (0.0092)  (0.0057) (0.1667) | (0.0188) (0.0028) (0.0366) (0.0190) (0.1781)
DeepSury 0.6108  0.6827  -6.8754  0.2417 0.4072 0.0570 0.4244 0.2962 1.6220
(0.0029)  (0.0045) (0.0040) (0.0016) | (0.0369) (0.0180) (0.0573)  (0.0283)  (0.3303)
DeepSurvy (Keya ot al) 05984 0.6164  -6.9130  0.2376 0.0179  0.0059 0.5688 0.1975 1.3280
(0.0124)  (0.0150)  (0.0220)  (0.0182) | (0.0249) (0.0076)  (0.3030)  (0.0930)  (0.7670)
DeepSury (R&P) 0.6104 0.63156  -6.8761 0.2379 0.0544 0.0132 0.4997 0.1891 1.6490
(0.0076)  (0.0115)  (0.0132)  (0.0079) | (0.0468) (0.0141) (0.1722)  (0.0435)  (0.2368)
5 DeonS K ¢l 0.5982 0.6176  -6.9121 0.2436 0.1131 _ 0.0047  0.3972 0.1717 1.6540
g eep urvg (Keya et al.) (0.0109)  (0.0144)  (0.0278)  (0.0121) | (0.0718) (0.0036) (0.1017) (0.0375)  (0.3892)
= DoopSurve (R&P) 0.6110  0.6325 _ -6.8766 __ 0.2406 0.0452 0.0113 0.5246 0.1937 1.6250
S (0.0057) (0.0089)  (0.0117)  (0.0068) | (0.0476)  (0.0144  (0.1217)  (0.0320)  (0.1931)
“ DeepSurve (Keya et al) 00015 0.6190  -6.8794  0.2378 0.2465 0.0053  0.0745  0.1088 T.4110
7 (0.0069)  (0.0100)  (0.0055)  (0.0053) | (0.0424)  (0.0032) (0.0263) (0.0213)  (0.2129)
Deop DRO-COX 0.5829 0.6237  -6.9253 _ 0.2240 0.1109 0.0058 0.0816  0.0661  1.2600
(0.0067)  (0.0111)  (0.0025) (0.0010) | (0.0377) (0.0021)  (0.0095) (0.0141) (0.4412)
. . 0.5448 0.5625  -6.9555  0.6390 0.1605 0.0071 0.1754 0.1143 2.1690
Deep DRO-COX (SPLIT) ()'5015)  (0.0021)  (0.0012)  (0.0005) | (0.0030)  (0.0024)  (0.0062) (0.0031)  (0.0727)
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Table 4: Test set scores on the SEER (race) dataset, in the same format as Table 2.

Methods Accuracy Metrics Fairness Metrics
c-indext  AUCT LPLT IBS] Frl Fal Fral Fal CI(%)1
Con 0.7409  0.7624  -5.9427  0.0964 0.6105 0.1183 0.6750 0.4679 1.1880
(0.0016) (0.0017) (0.0034) (0.0008) | (0.0307) (0.0645) (0.0630) (0.0437)  (0.1742)
Coxy (Keya ot al.) 0.7143 0.7367 -6.1602 0.0894 0.1968 0.0944 0.3768 0.2227 1.5500
(0.0300)  (0.0303)  (0.0728)  (0.0014) | (0.0831) (0.0770) (0.1736)  (0.0951) (1.5117)
Cox (R&P) 0.7353 0.7559 -6.0046 0.0919 0.3655 0.0707 0.4031 0.2798 1.5390
. (0.0195)  (0.0220)  (0.0616)  (0.0012) | (0.0720) (0.0567) (0.0698)  (0.0396) (0.5256)
g c K o al 0.7308 0.7508 -5.9867 0.0951 0.5345 0.3053 0.8003 0.5467 1.4360
E oxg (Keya et al.) (0.0227)  (0.0259)  (0.0813)  (0.0024) | (0.1282) (0.1003)  (0.2040)  (0.1429)  (0.3377)
= Coxs (R&P) 0.7339 0.7548 -5.9960 0.0925 0.3985 0.1022 0.4374 0.3127 1.7580
G (0.0196)  (0.0222)  (0.0616)  (0.0012) | (0.0679)  (0.0835) (0.0565)  (0.0272)  (0.5936)
Coxn (Keya ot al.) 0.7280 0.7516 -6.0043 0.0951 0.5183 0.2781 0.6519 0.4828 0.9240
(0.0237)  (0.0260)  (0.0884)  (0.0016) | (0.0941) (0.0799) (0.2615)  (0.1433)  (0.4045)
DRO.COX 0.7283 0.7494 -6.2140  0.0880 | 0.0791  0.0113  0.1317  0.0740  0.2300
(0.0054)  (0.0054)  (0.0653) (0.0005) | (0.0514) (0.0162) (0.0523) (0.0370) (0.2219)
0.7202 0.7404 -6.1406 0.1020 0.2150 0.0392 0.3115 0.1885 0.1840
DRO-COX (SPLIT) (0.0137)  (0.0120)  (0.1324)  (0.0315) | (0.1876) (0.0491) (0.2198) (0.1484) (0.1930)
DeepSury 0.7488  0.7729 -5.9582  0.0966 0.3686 0.1178 0.4734 0.3199 0.4270
(0.0103) (0.0105) (0.0538) (0.0047) | (0.0959) (0.0771) (0.1203) (0.0776)  (0.4259)
DeepSury (Keya et al) 07100 0.7340 -6.1830 0.0995 0.0564  0.0238 1.0618 0.3807 3.0400
P 1{ney ) (0.0236) (0.0237) (0.1620)  (0.0085) | (0.0515) (0.0198) (0.7650) (0.2370)  (1.2074)
DeepSuryy (R&P) 0.7353 0.7579 -6.0247 0.0944 0.1146 0.0297 0.6595 0.2679 0.5220
(0.0104)  (0.0103)  (0.0938)  (0.0057) | (0.0559)  (0.0250) (0.4998)  (0.1465)  (0.2891)
5 Doens K ¢ al 0.7299 0.7540 -6.0622 0.0972 0.2667 0.0898 0.6532 0.3366 0.7070
g eep urvg (Keya et al.) (0.0224)  (0.0210)  (0.1643)  (0.0081) | (0.1408)  (0.0325)  (0.4237)  (0.1456)  (0.8405)
3 DeepSurvg (REP) 0.7368 0.7594 -6.0146 0.0942 0.1283 0.0324 0.6080 0.2562 0.5600
o (0.0114)  (0.0109)  (0.0916)  (0.0052) | (0.0593) (0.0281) (0.3616)  (0.0999)  (0.4160)
z DecpSurvn (Keya et al) 07344 0.7613 -6.0001 0.0958 0.4034 0.1209 0.4576 0.3273 0.4920
) (0.0112)  (0.0098)  (0.0791)  (0.0047) | (0.1813) (0.0566) (0.1760)  (0.1143)  (0.4089)
Deep DRO-COX 0.7305 0.7521 -6.0667 _ 0.0913 0.2206 0.0498 0.3004  0.1903  0.0910
’ (0.0216)  (0.0271)  (0.1196) (0.0041) | (0.1239) (0.0556) (0.1191) (0.0932) (0.0461)
. . 0.6980 0.7264 -6.1182 0.1023 0.3781 0.1945 0.4135 0.3287 0.3480
Deep DRO-COX (SPLIT) ()'5024)  (0.0027  (0.0221)  (0.0003) | (0.0565) (0.0386)  (0.0405)  (0.0419)  (0.2794)
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(a) FLC (age)
Figure 1: Effect of « on test set accuracy (c-index; higher is better) and fairness metrics (Fy, Fg,
Fn, Fa, and CI; lower is better for all fairness metrics) of DRO-COX on three datasets.

5. Discussion

We have shown how to apply DRO to Cox
models in a manner that is compliant with
existing DRO theory (DRO-COX (SPLIT)) and
in a manner that is heuristic (DRO-COX).
Importantly, how we applied DRO to Cox
models works with other survival models as
The key idea is to write the overall
loss in terms of individual losses, which in
turn could be used in a DRO framework.
An open question is whether we could de-
rive a theoretically sound DRO-COX variant
that does not require sample splitting. This
same technical challenge would arise in work-

well.

(b) SUPPORT (age)
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(¢) SEER (age)

ing with other survival models that use pair-
wise comparisons between patients. When a
parametric survival model is used in which
each patient’s loss does not depend on other
patients, we point out that existing DRO ma-
chinery directly works; a strategy such as
sample splitting would be unnecessary. We
defer a thorough evaluation of DRO applied
to more survival models to future work.
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Appendix A. Estimating the
Baseline Hazard and
Survival Function

After learning the log partial hazard func-
tion f(+;0) (or, equivalently, learning the pa-
rameters 6), a standard approach to esti-
mating the baseline hazard function hg is to
use the so-called Breslow method (Breslow,
1972). In what follows, we use 0 to denote
the learned estimate of 6.

The Breslow method estimates a dis-
cretized version of hg. Specifically, let 1 <
to < --- < t,, denote the unique times when
critical event happened in the training data.
Let d; denote the number of critical events
that occurred at time ¢;, where j = 1,...,m.
Then we compute the following estimate of
ho at the j-th time step:

~ dj
> i1 HY5 =t} exp(f(2i0))
After estimating the baseline hazard func-
tion, estimating the survival function is
straightforward. ~ Recall that S(t|z)

exp < - fg h(u|x)du) Then combining this

hO’J . —
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equation with the factorization (1), we get

Stfe) = exp (- [ holw) exp(f(z36))du)
— exp ([ —/Ot hg(u)du] exp(f (z: 9))).

S
abbreviate as Ho(t)
(A.1)
We can estimate Hy(t) via a summation in

place of an integration:
m

ﬁ[o(t) = Z 1{tj S t}ﬁo,j.
j=1
Thus, by plugging in E[Q in place of Hy and
0 in place of 0 in equation (A.1), we ob-
tain the survival function estimate S(t|x) :=

~

exp(—Ho (t) exp(f(z;0))).

Appendix B. Fairness Metrics

In this paper, we use the individual, group,
and intersectional fairness metrics defined by
Keya et al. (2021) and also the concordance
imparity (CI) metric by Zhang and Weiss
(2022). In what follows, since we are focus-
ing on Cox proportional hazards models, we
can take the predicted outcome for a feature
vector x to be the so-called partial hazard
h(z) := exp(f(z;0)); this is the same as
the hazard function given in equation (1)
except where we exclude the baseline hazard
factor ho(t). Note that once we exclude
ho(t), then h no longer depends on time ¢.
We state the fairness metrics in terms of a
collection of Niet test patients with data
(X, it ) (X Vi o)
Note that the fairness metrics by Keya et al.
(2021) only use the test feature vectors
X7, .., X and ignores the test pa-
tients’ observed times and event indicators.
Also, at the end of this section, we point
out that the individual and group fairness
metrics by Keya et al. (2021) are sensitive
to the scale of the log partial hazard f(-;8).

Individual fairness. Roughly, Keya et al.
(2021) consider a model to be fair across indi-
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viduals (patients) if similar individuals have
similar predicted outcomes. To operational-
ize this notion of fairness in the context of
Cox models, Keya et al. define the individ-

ual fairness metric
Ntest Ntest

Prim Y > [ — R
=1 j=it+l test test
— Y[ X = X H]+7

where «y is a predefined scale factor (0.01 in
our experiments). As a reminder, []; is the
ReLU function (so that [a]; = max{0,a} for
any a € R).

Note that this individual fairness metric is
actually just penalizing h for not being Lip-
schitz continuous (as empirically evaluated
over the test data). Specifically, h is defined
to be y-Lipschitz continuous if

\h(z) —h(z")| < ~llz —2'| for all z,2" € X.
Meanwhile, when Fj is equal to 0, then it
means that

RO = BOXE] < X0~ X1t
for all Z,] S {]., PN 7Ntest}-

As a technical remark, in the definition of Fy
and also v-Lipschitz continuity, the metric
used to measure distances between feature
vectors does not have to be Euclidean. For
example, we can replace || X" — X7|| with
p(X[, XY, where p 1 X x X — [0,00) is
a user-specified metric.

Group fairness. Next, Keya et al. (2021)
consider a model is fair across a user-
specified set of groups if these different
groups have similar predicted outcomes.
Keya et al. define the group fairness met-
ric Fg to look at the maximum deviation of
a group’s average predicted outcome to the
overall population’s average predicted out-
come. Specifically, let G be the user-specified
set of groups to consider (for example, there
could be two groups: everyone with age at
most 65 years, and everyone older than 65
years), where each group g € G is a subset
of the test set indices {1,..., Niest} (so that
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using this notation, group ¢ has size |g|); the
different groups should form a partition of
the test set (so that the groups are disjoint
and their union is the entire test set). Then

Fo :=

Ntcst
1 ~ 1 ~
max 7§ h(Xfest ——E h(Xesty |
9€g |g| icg ( ’ ) Niest i1 ( ‘ )

J/

average predicted

average predicted L
outcome of population

outcome of group g

Intersectional fairness. Keya et al.
(2021) consider a notion of intersectional
fairness that accounts for multiple sensitive
attributes. For example, in the FLC dataset,
we have 2 different sensitive attributes, age
and gender. For each of these sensitive at-
tributes, we can partition the test set into
groups. Specifically, let G; be a partition of
the test set into different age groups (for ex-
ample, two groups: at most 65 years old and
over 65 years old), and let Go be a partition
of the test set into different gender groups
(for example, two groups: female and male).
Then intersectional fairness looks at every
intersection of age/gender groups (continu-
ing from the previous examples, we would
have four intersectional subgroups: at most
65 years old and female, at most 65 years and
male, over 65 years old and female, over 65
years old and male).

The notation here is a bit more involved.
The set of all intersectional subgroups of G;
and Gy is given by the Cartesian product
G1 X Gs. Note that s € Gy xGy means that s =
(s1,82), where s; € G; and sy € Go. More
generally, if there are J sensitive attributes,
corresponding to groupings Gi,Gs,...,Gy,
then the set of all intersectional subgroups
would be S :=G; x Gy x---Gy. Nows € S
is a list consisting of J different subsets of
test patients (i.e., s = (s1,82,...,57), where
s1 € G, ..., g € Gy). The intersection of
these J subsets (i.e., ﬂjzlsj C{1,..., Niest})
is precisely the set of test patients that inter-
sectional subgroup s corresponds to. Then
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the average predicted outcome for intersec-
tional subgroup s is

- 1
h(s) i= ————
&) =10 ]

> h(xieh),

ieﬂlesj
Then the intersection fairness metric Fn by
Keya et al. (2021) is the worst-case log ratio
of expected predicted outcomes between two
intersectional subgroups:
h(s)
h(s')!
Concordance imparity. We now describe
an alternative metric for group fairness called
concordance imparity (CI) that asks that a
survival analysis model achieves similar pre-
diction accuracy for different groups. For
ease of exposition, we only state the CI met-
ric by Zhang and Weiss (2022) in terms of
a single sensitive attribute that has already
been discretized (e.g., the attribute is al-
ready discrete or we have a pre-specified dis-
cretization rule); this special case is suffi-
cient for our experiments. We denote the
set of possible discretized values of this sen-
sitive attribute as A. For example, A could
correspond to age and we could have A =
{“age<65”, “age> 65"}, i.e., A consists of
the different groups to consider. We refer
the reader to the Zhang and Weiss’s origi-
nal paper for their more general definition of
CI that can handle a continuous sensitive at-
tribute via an automatic discretization strat-
egy that they propose.

Assuming that the sensitive attribute has
already been discretized into the set A, the
CI metric looks at a variant of the stan-
dard survival analysis accuracy metric of
concordance index (Harrell et al., 1982) that
Zhang and Weiss call the concordance frac-
tion (CF), which is specific to each sensi-
tive attribute value a € A. The CI met-
ric is then defined to be the worst-case dif-
ference between the CF scores of any two
a,a’ € A where a # a’. The pseudocode
can be found in Algorithm B.1; note that

Fr := max
s,s'eS

‘ log

7

to keep the notation from getting clunky, we
drop the superscript “test” from the test fea-
ture vectors, observed times, and event in-
dicators in the pseudocode but we still use
Niest to denote the number of test patients.
Also, in the pseudocode, we let A; € A de-
note the sensitive attribute value for the i-th
test patient, where we assume that A; can
directly be computed based on the i-th test
patient’s feature vector. For example, when
age (which is not discretized) is one of the
features and A consists of the two age groups
previously stated (< 65 or > 65), then since
we know the discretization rule used, we can
readily determine which age group in A that
any test patient is in.

Scale Issues with F; and Fg

We point out that the F; and Fg fair-
ness metrics are sensitive to the scale of the
log partial hazard function f(-;0), and thus
also the scale of the partial hazard h(z) =
exp(f(x;#0)). For instance, consider a stan-
dard linear Cox model with f(x;0) = 67z,
where the parameters 6 have already been
learned. Then one way to make the model
appear fairer according to the F; and Fg
metrics is to just scale all values in 6 by any
positive constant smaller than 1; doing so,
the standard accuracy metric of concordance
index (Harrell et al., 1982) would actually
remain unchanged for the model as it only
depends on the ranking of the different in-
dividuals’ (log) partial hazard values. How-
ever, an accuracy score that considers each
individual’s survival function estimate (e.g.,
integrated TPCW Brier Score (Graf et al.,
1999)) would be affected.

Appendix C. Pseudocode for Our
Proposed Methods

We provide pseudocode for DRO-COX and
DRO-COX (SPLIT) in Algorithm C.1 and Al-
gorithm C.2, respectively.
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Algorithm B.1 Concordance Imparity (CI)
with a discrete sensitive attribute

Input: Test dataset {(Xi,iﬁ,éi)}i\;tf“, risk score f(-;0)
(from an already trained model), set of sensitive
attribute values A (so that each a € A corre-

sponds to a different group), A1,..., AN, € A
says which sensitive attribute value each test pa-
tient has

Output: CI score

for a € A do

Initialize the numerator count N(a) < 0 and denom-
inator count D(a) < 0.
end
fori=1,..., Ntest do
for j=1,..., Niest s.t. j #i do
if (Y; <Yjandd; ==0) or (Y; <Y; and 6; ==
0) or (Y; ==Y; and §; == 0 and §; == 0)
then
| continue
else
| Set D(A;) < D(A4;)+ 1.
end
if Y; <Y} then
if f(XZ,H) > f(X;;6) then
| Set N(A;) « N(A4;
else if f(X;;0) == f(X;
| Set N(A;) + N(A
end
else if Y; > Y; then
if f(X;;0) < f(X;;0) then
|  Set N(A;) + N(A;)+ 1.
else if f(X;;0) == f(X;;6) then
‘ Set N(A;) «+ N(A;) +0.5.
end
else if Y; ==Y} then
if §; ==1 and §; == 1 then
if f(X;;0)==Ff(X;;0) then
|  Set N(A;) «+ N(A;) + 1.
else
‘ Set N(AZ) — N(AZ) + 0.5.
end
else if §;==0 and §;==1 and f(X;;0) <
f(X;;6) then
| Set N(A;) « N(A4;) + 1.
else if §;==1 and 6;==0 and f(X;;0) >
f(X;;6) then
|  Set N(A;) «+ N(A;)+ 1.
else
| Set N(A;) + N(A
end

3

) then
.+ 0.5,

i) +0.5.

end

end
end
for a € A do

Set the concordance fraction of a: CF(a) < N(a)

D(a) "

end

return CI <— max, o/c 4 s.t. ata’ |CF(a) — CF(a')]
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Algorithm C.1 DRO-COX

Input: A training dataset {(X;,Y:,6;)}_,, minimum
subpopulation probability hyperparameter «,
learning rate §, max-iterations

Output: Survival model parameters 0

Obtain initial survival model parameters 90 (e.g., using

default PyTorch parameter initialization).
for [ = 0 to max_iterations do
for i =1 ton do
‘ Set u; < ¥4; ((9\1) using equation (3).

end

Set 77 to_be the value of n € R that minimizes
ﬁDRO(eh 1) as given in equation (7), where in the
empirical average, the i-th individual’s loss is set to
be the variable u; computed above. This minimiza-
tion is solved using binary search.

Set 0111 < 0, — & -VoLpro(01,7).

end

return 6 < emax,iterations+l

Algorithm C.2 DRO-COX (SPLIT)
Input: A training dataset {(X;,Y;,d;)}"

»_1, minimum
subpopulation probability hyperparameter o, ny,
learning rate §, max_iterations

Output: Survival model parameters 6 N
Obtain initial survival model parameters 6y (e.g., using
default PyTorch parameter initialization).
Set D1 + {1,2,...,n1} and Dy + {n1 +1,...,n}.
for [ = 0 to max_iterations do
for i € Dy do
Set w;i <+ Lspiie(61; Xi, Y3, 0;, D2) with equa-
tion (8).
end
Set 77 to be the value of n € R that minimizes
LbRro-split(01,m, D1, D2) as given in equation (9),
where in the empirical average, the i-th individual’s
loss is set to be the variable u; computed above.
This minimization is solved using binary search.

for i € Dy do
Set v; <« Zsplit(é\l;Xi,Yi,éi,Dl) with equa-
tion (8).
end

Set 1’ to be the value of n’ € R that minimizes
EDRO—split(9l7n,7D27D1) as given in equation (9),
where in the empirical average, the i-th individual’s
loss is set to be the variable v; computed above.
This minimization is solved using binary search.

Set B4 « 6 N ¢ - (VoLpro- spht(917777D1,D2) +
Vo Lpro-split (01,7, D2, D1)).

end

return 0 < Omax_iterations+1
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Appendix D. Hyperparameter
Tuning and Compute
Environment Details

Hyperparameters. For nonlinear Cox
models, we always use a two-layer MLP with
ReLU as the activation function and 24 as
the number of hidden units. All models (lin-
ear and nonlinear) are trained using Adam
(Kingma and Ba, 2014) in PyTorch 1.7.1 in
a batch setting for 500 iterations, only using
a CPU and no GPU. We tune on the follow-
ing hyperparameter grid:
e learning rate: 0.01, 0.001, 0.0001
e )\ (only used for baselines; a hyperparam-
eter that controls the tradeoff between the
original Cox loss and fairness regulariza-
tion term): 1, 0.7, 0.4
e « (for DRO-COX/DRO-COX (SPLIT) vari-
ants): 0.1, 0.15, 0.2, 0.3, 0.4, 0.5
In addition, for DRO-COX (SPLIT), we choose
ny = ng = n/2 (rounding as needed when n
is odd, so that n; might not equal ng).
Following Keya et al. (2021), the final hy-
perparameter setting per dataset and per
method is determined based on a preset rule
that allows up to a 5% degradation in the
validation set c-index from the classical Cox
model (for the linear setting) or DeepSurv
(for the nonlinear setting) while minimizing
the validation set CI fairness metric.

Compute environment. All models are
implemented with Python 3.8.3, and they are
trained and tested on identical compute in-
stances, each with an Intel Core i9-10900K
CPU (3.70GHz with 64 GB RAM). As a re-
minder, we did not train using a GPU.

Appendix E. Additional
Experiments

Using other sensitive attributes in eval-
uating Fo and CI. In the main paper, we
only showed test set performance metrics for
FLC, SUPPORT, and SEER using age, gen-
der, and race respectively in evaluating Fg

79

and CI. We now provide results using gender
for FLC (Table E.1), age and separately race
for SUPPORT (Tables E.2 and E.3), and age
for SEER (Table E.4). Our main findings
still hold for these additional results.

Hyperparameter tuning based on F g4
instead of CI. The previous experimental
results are based on hyperparameters chosen
by minimizing the validation set CI fairness
metric (while tolerating a small degradation
in c-index). If instead of focusing on the CI
fairness metric, we used F 4 instead, then we
get the results in Tables E.5, E.6, E.7, E.§,
E.9, E.10, and E.11. In particular, our ex-
perimental findings from before remain the
same except now our DRO-COX and DRO-COX
(SPLIT) variants consistently achieve the best
F4 scores (while often also scoring well on
other fairness metrics) without too large of a
drop in accuracy.

Effect of changing n; (or ng) for
DRO-COX (SPLIT). In the above experi-
ments, we set nj na n/2 (round-
ing as needed). To evaluate the sensitiv-
ity of this setting, we test the model per-
formance using DRO-COX (SPLIT) under the
linear and nonlinear settings, where we set
ng = 0.1n,0.2n,0.3n,0.4n,0.5n (correspond-
ing to ny = 0.9n,0.8n,0.7n,0.6n,0.5n). We
report the test set performance metrics for
the FLC dataset (using age in evaluating Fg
and CI) in Table E.12. From the table, we
find that per metric, different settings for n;
and ng lead to results that, while slightly dif-
ferent, are not dramatically different, i.e., the
performance of DRO-COX (SPLIT) does not
appear very sensitive w.r.t. the choice of n;
and ns.

The effect of using two losses for
DRO-COX (SPLIT) rather than only one.
Recall that DRO-COX (SPLIT) minimizes the
sum of two losses Lpro-spiit(#,7, D1, Da2)
and Lpro-spiit(0, 7, D2, D1). Towards the
end of Section 3.3, we said that an ap-
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proach that only minimizes one of these
losses would not use the data as effec-
tively compared to minimizing the sum of
these losses. = We conducted an experi-
ment to verify this claim, where we refer
to the version of DRO-COX (SPLIT) that
only minimizes Lpro-split(0,n,P1,D2) as
DRO-COX (SPLIT, ONE SIDE).  Specifically,
we compare DRO-COX (SPLIT, ONE SIDE)
and DRO-COX (SPLIT) under linear and non-
linear settings on the FLC dataset using age
to evaluate F¢ and CI. We report the re-
sulting test set performance metrics in Ta-
ble E.13. From the table, we find that DRO-
COX (SPLIT) outperforms DRO-COX (SPLIT,
ONE SIDE) on most metrics. This experi-
mental finding supports our hypothesis that
DRO-COX (SPLIT, ONE SIDE) uses data less
effectively.
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Table E.1: Test set scores on the FLC (gender) dataset, in the same format as Table 2.

Accuracy Metrics

Fairness Metrics

Methods c-indext  AUCT LPLT IBS) Frl Fal Frd Fal CI(%) 1
Con 0.8032  0.8176 _ -6.3724 _ 0.1739 T.8787 0.5421 2.8355 T.7521 0.8610
(0.0002)  (0.0005) (0.0011) (0.0004) | (0.0304) (0.0299)  (0.0297)  (0.0266)  (0.0197)
Coxy (Keya et al.) 0.7932 0.8175  -6.6845  0.1368 0.3234 0.0273 0.9325 0.4277 1.6750
(0.0083)  (0.0078)  (0.0786)  (0.0052) | (0.1098)  (0.0214)  (0.2562)  (0.1249)  (0.7969)
Cox 1 (R&P) 0.8028 0.8192  -6.4480  0.1588 0.8721 0.1921 1.9009 0.9884 0.8050
. (0.0012)  (0.0008)  (0.0149)  (0.0029) | (0.1203)  (0.0250) (0.1098)  (0.0758  (0.0978)
3 o K ¢ a1 0.8011 0.8206  -6.4556 _ 0.1619 1.1257 0.2749 2.0284 1.1430 0.7020
E oxg (Keya et al.) (0.0015)  (0.0015) (0.0544)  (0.0077) | (0.4887) (0.2117) (0.5407) (0.4134)  (0.1081)
= Coxg (R&P) 0.8023 0.8185  -6.4152  0.1646 1.1454 0.2616 2.2027 1.2032 0.7850
G (0.0009)  (0.0006  (0.0186)  (0.0026) | (0.1371) (0.0716) (0.1604)  (0.1175)  (0.0826)
Cox (Keya et al.) 0.7868 0.8147  -6.7277 __ 0.1400 0.2922 _ 0.0206 __ 0.6836 0.3321 0.4830
) (0.0018)  (0.0009)  (0.0043)  (0.0005) | (0.0067) (0.0100) (0.0207)  (0.0093)  (0.1020)
DRO-COX 0.7605 0.7890  -6.9232 | 0.1850 | 0.1168  0.0324  0.3397 _ 0.1630 __ 0.3040
(0.0096)  (0.0065)  (0.0240) (0.0003) | (0.0151) (0.0064) (0.0477) (0.0209) (0.1569)
. \ 0.7592 0.7900  -6.9098  0.1700 0.1342 0.0386 0.3744 0.1824  0.1820
DRO-COX (SPLIT) (0.0076)  (0.0055)  (0.0138)  (0.0004) | (0.0113) (0.0067) (0.0303) (0.0145) (0.0795)
DeepSurv 0.8070  0.8247  -6.3552 _ 0.1767 2.9691 0.7721 2.8800 2.2070 1.0760
(0.0014) (0.0026) (0.0052) (0.0018) | (1.2481) (0.3225) (0.0531)  (0.5149)  (0.1702)
DeepSurv; (Keya et al) 07910 0.8175  -6.5516  0.1548 0.0839 0.0085 1.6023 0.5649 1.4610
(0.0121)  (0.0120)  (0.1650)  (0.0176) | (0.0980)  (0.0120)  (0.7389)  (0.2187)  (0.7342)
DoopSury ; (R&P) 0.8067  0.8252  -6.3848  0.1729 0.0866 0.0316 2.4328 0.8504 1.0640
(0.0041)  (0.0053) (0.0769)  (0.0093) | (0.1374)  (0.0563)  (0.4052)  (0.0977)  (0.1408)
5 Deens K ¢ al 0.7964 0.81156  -6.6574  0.1576 0.4691 0.1348 1.8107 0.8048 0.9420
g eep urvg (Keya et al.) (0.0117)  (0.0149)  (0.2021)  (0.0196) | (0.4532) (0.1476)  (1.0544) (0.4733)  (0.2229)
= DeepSurve (R&P) 0.8059 0.8242  -6.4062 __ 0.1699 0.1877 0.0700 2.4171 0.8916 1.0750
3 G (0.0045)  (0.0057)  (0.0944)  (0.0118) | (0.1998)  (0.0872) (0.5159)  (0.1079)  (0.1204)
“ DoopSurve (Keya et al) 0 7504 0.7965  -6.8087  0.1399 0.4481 0.1130 0.6093 0.3901 0.8440
(0.0119)  (0.0158)  (0.0769)  (0.0086) | (0.5628) (0.2517) (0.3812)  (0.3790)  (0.2581)
Deep DRO-COX 0.7699 0.7878  -6.9773 _ 0.1336 | 0.0661  0.0209  0.2362  0.1077 _ 0.4870
(0.0147)  (0.0163)  (0.0474) (0.0004) | (0.0271) (0.0105) (0.1005) (0.0454) (0.2540)
X 0.7650 0.7744  -6.8071 0.1703 0.4480 0.1991 0.7762 0.4744 0.5290
Deep DRO-COX (SPLIT) 0024y (0.0022)  (0.0091)  (0.0002) | (0.1050)  (0.0963)  (0.0992)  (0.1000)  (0.0908)
Table E.2: Test set scores on the SUPPORT (age) dataset, in the same format as Table 2.
Methods Accuracy Metrics Fairness Metrics
c-index] _AUCT LPLT TBS] il Fol Fal Fal CI(%)1
Cox 0.6025  0.6163  -6.8761  0.2304 0.2113 0.1528 0.4490 0.2710 2.2240
(0.0005) (0.0010) (0.0010) (0.0015) | (0.0093)  (0.0059)  (0.0322)  (0.0128)  (0.1078)
Coxy (Keya ct al.) 0.5820 0.5919  -6.9530  0.2153 0.0117 0.0117 0.0375 0.0203 1.3120
(0.0116)  (0.0160)  (0.0122) (0.0076) | (0.0229) (0.0189)  (0.0561)  (0.0326)  (0.7623)
Cox 1 (R&P) 0.6020  0.6163  -6.8792 _ 0.2285 0.1865 0.1321 0.3798 0.2329 2.1120
. (0.0010)  (0.0018) (0.0018)  (0.0014) | (0.0122) (0.0154) (0.0461)  (0.0233)  (0.2653)
g o K ¢ a1 0.5875 0.5963  -6.8870 __ 0.2315 0.1925 0.0100 0.1981 0.1335 2.2030
E oxg (Keya et al.) (0.0013)  (0.0020)  (0.0016)  (0.0014) | (0.0077) (0.0038)  (0.0243  (0.0080)  (0.0986)
= Coxg (R&P) 0.6018 0.6159  -6.8780  0.2296 0.2039 0.1577 0.4352 0.2656 2.1210
G (0.0008)  (0.0020)  (0.0014)  (0.0013) | (0.0089) (0.0136) (0.0385) (0.0186)  (0.2863)
Coxr (Keya ot al.) 0.5664 0.5663  -6.0132  0.2273 0.1291 0.0090 0.0688 0.0689 2.8030
: (0.0061)  (0.0078)  (0.0064)  (0.0016) | (0.0115) (0.0038)  (0.0144)  (0.0091)  (0.2551)
DRO-COX 0.5722 0.6068  -6.9399 _ 0.2210 0.0340 0.0191 0.0654 0.0394 1.8310
(0.0031)  (0.0041)  (0.0031)  (0.0010) | (0.0113)  (0.0060)  (0.0212)  (0.0126)  (0.2546)
DRO-COX (SPLIT) 0.5501 0.5765  -6.9496  0.2253 0.0002  0.0022  0.0075  0.0033  0.8520
(0.0104)  (0.0125)  (0.0002)  (0.0049) | (0.0002) (0.0010) (0.0016) (0.0008) (0.4874)
DeepSury 0.6108  0.6327  -6.8754  0.2417 0.4072 0.1897 0.4244 0.3404 2.1170
(0.0029) (0.0045) (0.0040) (0.0016) | (0.0369) (0.0235) (0.0573)  (0.0312)  (0.2107)
DeepSurv (Keya ot al) 05950 0.6111 -6.9160  0.2316 0.0234 _ 0.0186 0.4338 0.1586 1.6330
7 (0.0116) (0.0178)  (0.0195)  (0.0188) | (0.0279) (0.0203)  (0.2972)  (0.0887)  (0.5036)
DeopSury ; (R&P) 0.6036 0.6223  -6.8859  0.2323 0.0752 0.0559 0.4616 0.1975 2.1030
(0.0075)  (0.0116)  (0.0075)  (0.0083) | (0.0600)  (0.0429)  (0.2017)  (0.0424)  (0.2650)
5 Deens K ¢l 0.5869 0.6043  -6.9159  0.2372 0.0738  0.0052  0.2937 0.1243 1.6760
g Peep urvg(Keya et al)  g'0199)  (0.0155)  (0.0149)  (0.0131) | (0.0652) (0.0053) (0.2008)  (0.0521)  (0.4326)
= DeepSurve (R&P) 0.6039 0.6226  -6.8834  0.2322 0.0952 0.0738 0.4635 0.2108 2.1660
3 (0.0089)  (0.0136)  (0.0096)  (0.0075) | (0.0590) (0.0473) (0.1841)  (0.0451) (0.3318)
“ DeepSurve (Keya et al) 05979 0.6131  -6.8813 _ 0.2345 0.2182 0.0133 _ 0.0559 _ 0.0958 2.4300
7 (0.0063)  (0.0090)  (0.0057)  (0.0036) | (0.0307) (0.0038) (0.0150) (0.0135)  (0.2338)
Deep DRO-COX 0.5833 0.6251  -6.9270 _ 0.2231 0.0779 0.0278 0.0738  0.0598  0.7590
(0.0088)  (0.0137)  (0.0053) (0.0015) | (0.0153) (0.0042)  (0.0100) (0.0068) (0.3395)
.. 05448 0.5625  -6.0555  0.6390 0.1605 0.0442 0.1754 0.1267 _ 0.5710
Deep DRO-COX (SPLIT) 0015y (0.0021)  (0.0012)  (0.0005) | (0.0030) (0.0056)  (0.0062)  (0.0034) (0.1022)
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Table E.3: Test set scores on the SUPPORT (race) dataset, in the same format as Table 2.

Methods Accuracy Metrics Fairness Metrics
c-indext __AUCT LPLT TBS] Fi L Fol Fal Fal CI(%)1
Con 0.6025 _ 0.6163 _ -6.8761  0.2304 0.2113 0.0297 0.4490 0.2300 1.4160
(0.0005)  (0.0010) (0.0010) (0.0015) | (0.0093) (0.0130)  (0.0322)  (0.0085)  (0.0696)
Cox; (Keya ot al.) 0.5905 0.6007 _ -6.9390  0.2161 0.0381 0.0148 0.0910 0.0479 1.1230
(0.0086)  (0.0108)  (0.0214) (0.0054) | (0.0383) (0.0197) (0.0846) (0.0459) (0.6621)
Cox 1 (R&P) 0.6024  0.6165  -6.8788  0.2287 0.1899 0.0273 0.3952 0.2042 1.3320
. (0.0010)  (0.0020) (0.0024)  (0.0015) | (0.0115)  (0.0139)  (0.0358)  (0.0154)  (0.1742)
3 Coxg (Keya et al.) 0.6013 0.6149  -6.8797  0.2282 0.1883  0.0051  0.4723 0.2219 1.3610
El G(Key : (0.0008)  (0.0011)  (0.0018)  (0.0017) | (0.0099) (0.0037) (0.0200)  (0.0080)  (0.0647)
A Coxg (R&P) 0.6024 0.6165  -6.8780 __ 0.2294 0.1981 0.0259 0.4163 0.2134 1.3350
G (0.0010)  (0.0022)  (0.0020)  (0.0013) | (0.0090)  (0.0149)  (0.0418) (0.0163)  (0.1889)
Cox (Keya et al.) 0.5681 05683  -6.0114  0.2271 0.1286 0.0167 0.0704 0.0719 1.4020
) (0.0079)  (0.0086)  (0.0086)  (0.0018) | (0.0135)  (0.0058) (0.0162)  (0.0109)  (0.1743)
DRO-COX 0.5735 0.6085  -6.9388  0.2210 | 0.0878 _ 0.0099  0.0730 _ 0.0402 _ 0.4640
(0.0018)  (0.0023)  (0.0007)  (0.0010) | (0.0013) (0.0026) (0.0094) (0.0041) (0.0790)
. ) 0.5762 0.6107  -6.9374 _ 0.5122 0.0412 0.0105 0.0809 0.0442 _ 0.3640
DRO-COX (SPLIT) (0.0032)  (0.0026)  (0.0010)  (0.1007) | (0.0023)  (0.0044) (0.0142) (0.0051) (0.1975)
DespSurv 0.6108  0.6327 -6.8754  0.2417 0.4072 0.0297 0.4244 0.2871 1.7440
(0.0029) (0.0045) (0.0040) (0.0016) | (0.0369) (0.0121) (0.0573)  (0.0251)  (0.2649)
DeepSurvy (Keya et al) 09927 0.6078  -6.9212  0.2316 | 0.0228  0.0071 0.4557 0.1619 1.0380
(0.0082)  (0.0104)  (0.0148)  (0.0166) | (0.0241) (0.0100)  (0.3385)  (0.1051)  (0.5996)
DeepSurvy (R&P) 0.6078 0.6283  -6.8805  0.2374 0.0528 0.0144 0.4615 0.1762 1.6470
(0.0067)  (0.0096)  (0.0106)  (0.0090) | (0.0530) (0.0186) (0.1031)  (0.0125)  (0.3917)
5 Deons K ¢ al 0.5941 0.6113 _ -6.9055 __ 0.2369 0.1048 _ 0.0037 __ 0.3912 0.1666 1.2780
g eep urvg (Keya et al.) (0.0145)  (0.0194)  (0.0219)  (0.0117) | (0.0782) (0.0022) (0.1044) (0.0395) (0.3894)
= DeepSurve (R&P) 0.6108 0.6327  -6.8776 __ 0.2396 0.0505 0.0119 0.4820 0.1815 1.5720
3 G (0.0076)  (0.0112)  (0.0131)  (0.0086) | (0.0537) (0.0193) (0.0799)  (0.0128)  (0.2968)
“ DeepSurve (Keya ct al) 09992 0.61561  -6.8805  0.2357 0.2316 0.0269  0.0687  0.1091 1.4230
7 (0.0072)  (0.0101)  (0.0066)  (0.0042) | (0.0459)  (0.0068) (0.0191) (0.0215)  (0.4286)
Deep DRO-COX 0.5798 0.6193  -6.9278 | 0.2234 | 0.0898 0.0047 0.0777 _ 0.0574 _ 0.7900
(0.0101)  (0.0166)  (0.0052) (0.0017) | (0.0349) (0.0034)  (0.0085) (0.0137) (0.4283)
X 0.5448 0.5625  -6.9555  0.6390 0.1605 0.0071 0.1754 0.1143 2.1690
Deep DRO-COX (SPLIT)  ()0015)  (0.0021)  (0.0012)  (0.0005) | (0.0030)  (0.0024)  (0.0062)  (0.0031)  (0.0727)
Table E.4: Test set scores on the SEER (age) dataset, in the same format as Table 2.
Methods Accuracy Metrics Fairness Metrics
c-indext __AUCT LPLT TBS] il Fol Fal Fal CI(%)1
Con 0.7409 0.7624  -5.9427 _ 0.0964 0.6105 0.9037 0.6750 0.7297 2.5640
(0.0016)  (0.0017) (0.0034) (0.0008) | (0.0307) (0.1308)  (0.0630)  (0.0656)  (0.3531)
Coxp (Keya ot al.) 0.7118 0.7345 _ -6.1539 __ 0.0896 0.2045 0.2900 0.3802 0.2916 1.4310
(0.0277)  (0.0287)  (0.0716)  (0.0014) | (0.0587) (0.1183) (0.1431)  (0.0994)  (1.2077)
Cox; (R&P) 0.7425  0.7644 50829  0.0920 0.3761 0.4582 0.4125 0.4156 2.6950
. (0.0037) (0.0037) (0.0188) (0.0010) | (0.0516) (0.1339)  (0.0930)  (0.0907)  (0.4455)
g Coxg (Keya et al.) 0.7263 0.7503 _ -5.9968 __ 0.0946 0.5094  0.0480  0.5041 0.3538 3.2960
= G (Rey : (0.0261)  (0.0284)  (0.0868)  (0.0021) | (0.1122) (0.0390) (0.1042)  (0.0662)  (1.0958)
A Coxg (R&P) 0.7401 0.7609  -5.9733 __ 0.0930 0.4278 0.7888 0.6221 0.6129 3.0080
G (0.0041)  (0.0041)  (0.0193)  (0.0010) | (0.0488)  (0.0564)  (0.0377  (0.0320)  (0.3603)
Coxn (Keya ot al.) 0.7323 0.7565  -5.0867  0.0954 0.5376 0.0599 0.7183 0.4386 3.0430
(0.0179)  (0.0199)  (0.0679)  (0.0014) | (0.0738)  (0.0709)  (0.2117)  (0.1044)  (0.9716)
DRO-COX 0.6975 0.7162  -6.2201 _ 0.0885 | 0.1127  0.1267 _ 0.2013 _ 0.1469 _ 0.3600
(0.0125)  (0.0165)  (0.0547) (0.0007) | (0.0681) (0.0718) (0.0873) (0.0752) (0.4190)
. . 0.7026 0.7210 _ -6.5385 __ 0.0955 $.8123  16.6719 _ 0.7007 8.7313 0.4560
DRO-COX (SPLIT) (0.0130)  (0.0167)  (0.7038)  (0.0051) | (18.6473) (33.4878) (0.9603) (17.1007) (0.3810)
DespSurv 0.7488  0.7729 -5.9582  0.0966 0.3686 0.3530 0.4734 0.3983 2.0450
(0.0103) (0.0105) (0.0538) (0.0047) | (0.0959)  (0.0898)  (0.1203)  (0.0900)  (0.8414)
DeepSurvy (Keya et al) 07120 0.7363  -6.17567 __ 0.0985 0.0688  0.0697 0.8667 0.3351 2.2580
(0.0224)  (0.0217)  (0.1692)  (0.0094) | (0.0378) (0.0431) (0.5610) (0.1711) (2.1372)
DeepSurv (R&P) 0.7375 0.7603  -6.0034 __ 0.0947 0.1074 0.1226 0.6459 0.2920 2.4260
(0.0114)  (0.0113)  (0.0947)  (0.0046) | (0.0535) (0.0618)  (0.4236)  (0.1150)  (1.9244)
5 Deons K ¢ al 0.7324 0.7587  -6.0709 __ 0.0991 0.2526  0.0210 __ 0.6425 0.3053 2.7790
g DeepSurvg(Keyaet al) (g 0934)  (0.0250) (0.2042)  (0.0066) | (0.1423) (0.0188) (0.2721)  (0.0755)  (2.0384)
= DeepSurve (R&P) 0.7382 0.7603  -5.9906 __ 0.0964 0.1149 0.1639 0.7670 0.3486 2.6600
s G (0.0107)  (0.0113)  (0.0850)  (0.0047) | (0.0678) (0.1067) (0.3615)  (0.0935)  (1.8288)
“ DeepSurve (Keya et al) 07303 0.7579  -6.0238 __ 0.0955 0.4060 0.0355 0.3632 0.2682 2.0270
7 (0.0134)  (0.0119)  (0.0795)  (0.0057) | (0.2202)  (0.0299)  (0.1883) (0.1138)  (1.8428)
Deop DRO-COX 0.7178 0.7390  -6.2029 _ 0.0878 0.0763 0.0996  0.1772 _ 0.1177  0.3040
(0.0157)  (0.0133)  (0.0365) (0.0004) | (0.0195) (0.0445) (0.0206) (0.0230) (0.2281)
0.6834 0.7105  -6.1861 0.1023 0.2288 0.0174 0.3279 0.1913 1.3880
Deep DRO-COX (SPLIT) ' ('0158)  (0.0132)  (0.0412)  (0.0004) | (0.0884)  (0.0209) (0.0517) (0.0514)  (0.6979)
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Table E.5: Test set scores on the FLC (age) dataset when hyperparameter tuning is based on F 4.

The format of this table is the same that of Table 2.

Accuracy Metrics

Fairness Metrics

Methods c-index]  AUCT LPLT TBSY Fri Fal Fal Fal CI(%)1
Con 0.8032  0.8176 _ -6.3724 _ 0.1739 1.8787 3.0282 2.8355 2.5808 0.5350
(0.0002) (0.0005) (0.0011)  (0.0004) | (0.0304) (0.0469)  (0.0297)  (0.0332)  (0.0413)
Coxy (Keya ot al.) 0.7852 0.8071  -6.7714 0.1333 0.2233 0.3809 0.7013 0.4352 0.6500
(0.0220)  (0.0240)  (0.0360)  (0.0034) | (0.0161) (0.0317)  (0.0406)  (0.0222)  (0.6830)
Cox; (R&P) 0.8009  0.8182  -6.4775 0.1564 0.7615 1.2662 1.7325 1.2534 0.1430
. (0.0004) (0.0005) (0.0041)  (0.0006) | (0.0223) (0.0342) (0.0318)  (0.0285)  (0.0372)
g Coxg (K ¢ al) 0.7862 0.8134 _ -6.7099 0.1413 0.3323 0.4855 0.9801 0.5993 0.5360
£ oxglfteya et at. (0.0133)  (0.0077)  (0.0883)  (0.0035) | (0.1033) (0.1858)  (0.2431) (0.1768)  (0.3888)
A Coxes (R&P) 0.8012 0.8181  -6.4299 0.1637 1.0730 1.7702 2.0727 1.6386 0.1420
G (0.0004)  (0.0005)  (0.0024)  (0.0006) | (0.0282) (0.0422)  (0.0299)  (0.0320) (0.0483)
Cox (Keya et al.) 0.7866 0.8147  -6.7276 0.1400 0.2923 0.4118 0.6794 0.4611 1.0670
(0.0014)  (0.0008)  (0.0043)  (0.0005) | (0.0067) (0.0168)  (0.0206) (0.0133)  (0.1285)
DRO.COX 0.7958 08169  -7.0859 0.1330 | 0.0015 _ 0.0086 _ 0.0227 _ 0.0110 0.1620
(0.0049)  (0.0035)  (0.0009)  (0.0002) | (0.0004) (0.0007) (0.0030) (0.0013) (0.1132)
\ 0.7963 0.8168  -7.0856 0.1390 0.0016 0.0089 0.0232 0.0113 0.2340
DRO-COX (SPLIT) (0.0045)  (0.0030)  (0.0009)  (0.0008) | (0.0004) (0.0008) (0.0031) (0.0013)  (0.1237)
DespSurv 0.8070  0.8247 -6.3552 _ 0.1767 2.9691 1.6647 2.8800 3.5046 0.2940
(0.0014) (0.0026) (0.0052) (0.0018) | (1.2481) (1.9185) (0.0531) (1.0506)  (0.2147)
DeepSurv; (Keya ot al) 0754 0.8090  -6.7225 0.1373 0.1533 0.2511 0.7680 0.3908 0.3990
(0.0104)  (0.0103)  (0.1247)  (0.0121) | (0.0530) (0.0884) (0.3014)  (0.0640)  (0.2614)
DeepSurvy (R&P) 0.8017 0.8197  -6.5098 0.1570 0.2705 0.3973 1.7136 0.7938 0.1670
(0.0063)  (0.0077)  (0.1202)  (0.0146) | (0.2162) (0.3113) (0.5151)  (0.0194)  (0.0804)
5 Deons K ¢ al 0.8019 0.8220  -6.4162 0.5376 0.0187  0.0226 _ 0.8407 0.2940  0.2480
g eep wrvg (Keya et al.) (0.0117)  (0.0099)  (0.1373)  (0.2037) | (0.0560) (0.0649) (0.1512) (0.0574) (0.1638)
= DeepSurve (R&P) 0.8025 0.8198  -6.4924 0.1586 0.3746 0.5386 1.0252 0.9462 0.2760
S (0.0055)  (0.0071)  (0.1125)  (0.0139) | (0.2788) (0.3891) (0.5881) (0.0461)  (0.0732)
DeepSurve (Keya et al) 07701 0.7893  -6.8458 0.1357 0.1688 0.2412 0.4633 0.2911 0.4300
. (0.0018)  (0.0022)  (0.0031)  (0.0002) | (0.0035) (0.0051) (0.0106)  (0.0062)  (0.1091)
Deep DRO-COX 0.7726 0.7917  -7.0406  0.1331 0.0269 0.0447  0.1031 _ 0.0582 2.3680
: (0.0137)  (0.0148)  (0.0118) (0.0002) | (0.0055) (0.0093) (0.0213) (0.0118) (0.5542)
) ) 0.7629 0.7719  -6.8131 0.1703 0.4347 0.5184 0.7508 0.5680 2.8490
Deep DRO-COX (SPLIT)  ()'5064)  (0.0076)  (0.0199)  (0.0002) | (0.1214)  (0.0922) (0.1417)  (0.1176)  (0.2435)

Table E.6: Test set scores on the FLC (gender) dataset when hyperparameter tuning is based on
F 4. The format of this table is the same that of Table 2.

Accuracy Metrics

Fairness Metrics

Methods c-indexf  AUCT LPLT IBS) Frl Fal Frd Fal CI(%) 1
Con 0.8032  0.8176  -6.3724 _ 0.1739 1.8787 0.5421 2.8355 17521 0.8610
(0.0002)  (0.0005) (0.0011) (0.0004) | (0.0304) (0.0299)  (0.0297)  (0.0266)  (0.0197)
Cox (Keya et al.) 0.7918 0.8158  6.7585  0.1335 0.2282 0.0190 0.6974 0.3149 1.6720
(0.0078)  (0.0068)  (0.0202)  (0.0035) | (0.0164) (0.0111) (0.0372)  (0.0194)  (0.8430)
Cox (R&P) 0.8009 0.8182  -6.4775 _ 0.1564 0.7615 0.1411 1.7325 0.8784 0.6950
. (0.0004)  (0.0005)  (0.0041)  (0.0006) | (0.0223) (0.0149)  (0.0318)  (0.0213)  (0.0246)
E Corgs (Keya ot al.) 0.8002  0.8215  -6.4914 _ 0.1568 0.8051 0.1358 1.6709 0.8706 0.6310
ki GRey : (0.0004) (0.0004) (0.0028)  (0.0004) | (0.0124) (0.0129)  (0.0194)  (0.0136)  (0.0070)
A Coxe (RAP) 0.8011 0.8185  -6.4437 _ 0.1613 0.9634 0.1845 1.9781 1.0420 0.7120
G (0.0004)  (0.0005)  (0.0029)  (0.0005) | (0.0248) (0.0211)  (0.0322)  (0.0235)  (0.0166)
Goxr (Keya et al.) 0.7880 0.8153  -6.7275 _ 0.1403 0.2925 0.0182 0.6967 0.3358  0.4340
(0.0017)  (0.0009)  (0.0039)  (0.0005) | (0.0054) (0.0083) (0.0178)  (0.0066) (0.0898)
DRO-COX 0.7958 0.8169  -7.0859 _ 0.1330 | 0.0015 _ 0.0034  0.0227  0.0092  1.0780
(0.0049)  (0.0035)  (0.0009) (0.0002) | (0.0004) (0.0010) (0.0030) (0.0014) (0.0739)
. \ 0.7963 0.8168  -7.0856  0.1390 0.0016 _ 0.0033  0.0232 0.0094 1.0250
DRO-COX (SPLIT) (0.0045)  (0.0030)  (0.0009)  (0.0008) | (0.0004) (0.0010) (0.0031) (0.0015) (0.1376)
DeepSury 0.8070  0.8247  -6.3552  0.1767 2.9691 0.7721 2.8800 2.2070 1.0760
(0.0014) (0.0026) (0.0052) (0.0018) | (1.2481) (0.3225) (0.0531)  (0.5149)  (0.1702)
DeepSurvy (Keya ct al) 07825 0.8066  -6.7680  0.1337 0.1653 0.0158 0.6577 0.2796 1.4790
(0.0068)  (0.0073)  (0.0093)  (0.0034) | (0.0049) (0.0119) (0.0266) (0.0136)  (0.7038)
DeepSurvy (R&P) 0.7965 0.8134  -6.6064  0.1453 0.4452 0.1675 1.2888 0.6338 1.0730
(0.0003)  (0.0004)  (0.0050)  (0.0002) | (0.0183) (0.0206) (0.0275)  (0.0217)  (0.0168)
5 Deoos K ¢ al 0.7844 0.7964  -6.7635 _ 0.1375 0.2658 0.0727 0.7370 0.3585 0.7450
g eep urvg (Keya et al.) (0.0008)  (0.0013)  (0.0015)  (0.0002) | (0.0112) (0.0146) (0.0258) (0.0172)  (0.0102)
E DeepSurve (R&P) 0.7974 0.8140  -6.5926  0.1468 0.5502 0.2312 1.4168 0.7328 1.0630
5 G (0.0003)  (0.0003)  (0.0067)  (0.0002) | (0.0252) (0.0291) (0.0338)  (0.0289)  (0.0179)
“ DeepSurve (Keya et al) 07791 0.7893  -6.8458  0.1357 0.1658 0.0252 0.4633 0.2191 0.7400
7 (0.0018)  (0.0022)  (0.0031)  (0.0002) | (0.0035) (0.0037)  (0.0106)  (0.0058)  (0.0671)
Deep DRO-COX 0.7747 0.7938  -7.0412 _ 0.1831 | 0.0267  0.0098  0.1028  0.0464  1.2430
(0.0128)  (0.0142)  (0.0114) (0.0002) | (0.0055) (0.0033) (0.0211) (0.0095) (0.9204)
. 0.7629 0.7719  -6.8131 _ 0.1703 0.4347 0.1877 0.7508 0.4577 | 0.5970
Deep DRO-COX (SPLIT) 0054y (0.0076)  (0.0199)  (0.0002) | (0.1214) (0.1098) (0.1417) (0.1231) (0.2383)
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Table E.7: Test set scores on the SUPPORT (age) dataset when hyperparameter tuning is based
on F4. The format of this table is the same that of Table 2.

Accuracy Metrics

Fairness Metrics

Methods c-indext  AUCT LPLT TBS] Frl Fol Fal Fal CI(%) 1
Cox 0.6025  0.6163  -6.8761  0.2304 0.2113 0.1528 0.4490 0.2710 2.2240
(0.0005)  (0.0010) (0.0010) (0.0015) | (0.0093)  (0.0059)  (0.0322) (0.0128)  (0.1078)
Coxy (Keya ct al.) 0.5831 0.5932  -6.9594  0.2147 0.0011 0.0038 0.0180 0.0076 1.4280
(0.0100)  (0.0143)  (0.0054) (0.0063) | (0.0001) (0.0010)  (0.0036)  (0.0015)  (0.8245)
Coxy (R&P) 0.6027  0.6173  -6.8797  0.2277 0.1754 0.1198 0.3553 0.2168 2.1240
. (0.0010) (0.0012) (0.0016)  (0.0011) | (0.0048)  (0.0075)  (0.0299)  (0.0118)  (0.2217)
g o K ¢ al 0.5863 0.5948  -6.8903  0.2292 0.1686 0.0096 0.1810 0.1197 2.2160
E oxg (Keya et al.) (0.0008)  (0.0014)  (0.0009)  (0.0010) | (0.0034) (0.0024) (0.0195) (0.0064)  (0.0981)
= Coxg (R&P) 0.6023 0.6167  -6.8777  0.2291 0.1976 0.1522 0.4260 0.2586 2.1330
G (0.0008)  (0.0014)  (0.0015)  (0.0011) | (0.0051)  (0.0095)  (0.0318)  (0.0130)  (0.2387)
Cox (Keya ot al.) 0.5631 0.5620  -6.9163  0.2264 0.1183 0.0092 0.0604 0.0627 2.8350
(0.0070)  (0.0084)  (0.0069)  (0.0017) | (0.0124)  (0.0039)  (0.0144)  (0.0096)  (0.2498)
DRO-COX 0.5438 05754  -6.9496  0.2213 0.0009 0.0026 0.0067 0.0034 1.6190
(0.0080)  (0.0080)  (0.0003)  (0.0010) | (0.0002)  (0.0005) (0.0010) (0.0004)  (0.3069)
DRO-COX (SPLIT) 0.5501 0.5765  -6.9496  0.2253 0.0002  0.0022 _ 0.0075 _ 0.0033 _ 0.8520
; (0.0104)  (0.0125)  (0.0002)  (0.0049) | (0.0002) (0.0010) (0.0016) (0.0008) (0.4874)
DeepSury 0.6108  0.6827  -6.8754  0.2417 0.4072 0.1897 0.4244 0.3404 2.1170
(0.0029)  (0.0045) (0.0040) (0.0016) | (0.0369) (0.0235)  (0.0573)  (0.0312)  (0.2107)
DeepSurvy (Keya ot al) 00527 05940  -6.9337  0.2177 0.0277 0.0212 0.2499 0.0996 1.3570
(0.0111)  (0.0114)  (0.0214) (0.0083) | (0.0138)  (0.0096)  (0.1275)  (0.0432)  (0.5989)
DeepSurvy (R&P) 0.6019 0.6197  -6.8865  0.2319 0.0791 0.0572 0.4050 0.1804 2.0060
(0.0055)  (0.0081)  (0.0085)  (0.0083) | (0.0534) (0.0379) (0.1156)  (0.0104)  (0.2204)
5 Deons K el 0.5825 0.5978  -6.9086  0.2293 0.1098  0.0050  0.1620 0.0923 1.6950
g eep urvg (Keya et al.) (0.0113)  (0.0129)  (0.0177)  (0.0080) | (0.0492) (0.0036) (0.0722)  (0.0244)  (0.3622)
= DoopSurve (R&P) 0.6127  0.6359  -6.8792  0.2438 0.0084  0.0073 0.5414 0.1857 2.0580
5 (0.0043)  (0.0064)  (0.0086)  (0.0041) | (0.0011) (0.0011)  (0.1291)  (0.0434)  (0.3551)
“ DeepSurve (Keya et al) 00912 0.6037  -6.8876 __ 0.2309 0.1867 0.0134 0.0903 0.0968 2.4750
7 (0.0012)  (0.0022)  (0.0015)  (0.0011) | (0.0071)  (0.0033)  (0.0079)  (0.0040)  (0.1695)
Deep DRO-COX 0.5833 0.6251  -6.9270  0.2231 0.0779 0.0278  0.0738 _ 0.0598  0.7590
(0.0088)  (0.0137)  (0.0053)  (0.0015) | (0.0153)  (0.0042) (0.0100) (0.0068) (0.3395)
0.5448 0.5625  -6.9555  0.6390 0.1605 0.0442 0.1754 0.1267 _ 0.5710
Deep DRO-COX (SPLIT)  (0915)  (0.0021)  (0.0012)  (0.0005) | (0.0030) (0.0056)  (0.0062)  (0.0034) (0.1022)

Table E.8: Test set scores on the SUPPORT (race) dataset when hyperparameter tuning is based
on F 4. The format of this table is the same that of Table 2.

Accuracy Metrics

Fairness Metrics

Methods c-indext  AUCT LPLT IBS] Frl Fal Fnl Fal CI(%) 1

Cox 0.6025 0.6163  -6.8761 _ 0.2304 0.2113 0.0297 0.4490 0.2300 1.4160

(0.0005)  (0.0010) (0.0010) (0.0015) | (0.0093) (0.0130)  (0.0322)  (0.0085)  (0.0696)

Cox (Keya et al) 0.5831 0.5932  6.9504  0.2147 | 0.0001 _ 0.0023 0.0080 0.0034 1.2580
(0.0100)  (0.0143)  (0.0054) (0.0063) | (0.0001) (0.0016) (0.0036)  (0.0017)  (0.5410)

Goxy (R&P) 0.6027  0.6173  -6.8797  0.2277 0.1754 0.0230 0.3553 0.1846 1.3150

. (0.0010) (0.0012) (0.0016) (0.0011) | (0.0048  (0.0109) (0.0299)  (0.0081)  (0.1813)
g Goxg (Keya ot al) 0.6011 0.6147  -6.8802  0.2279 0.1846 0.0046 0.4692 0.2195 1.3610
= G(Rey : (0.0006)  (0.0011)  (0.0009)  (0.0009) | (0.0030) (0.0032)  (0.0178)  (0.0054)  (0.0650)
A Coxs (R&P) 0.6026 0.6171  -6.8781  0.2286 0.1884 0.0221 0.3898 0.2001 1.3240
G (0.0009)  (0.0013)  (0.0016)  (0.0011) | (0.0048) (0.0123)  (0.0300)  (0.0084)  (0.1902)

Goxr (Keya et al.) 0.5631 0.5620  -6.9163  0.2264 0.1183 0.0154 0.0604 0.0647 1.3670

: (0.0070)  (0.0084)  (0.0069) (0.0017) | (0.0124) (0.0056) (0.0144)  (0.0101)  (0.1406)

DRO-COX 0.5438 0.5754  -6.9496  0.2213 0.0000  0.0011 _ 0.0067  0.0029 _ 0.2110

: (0.0080)  (0.0080)  (0.0003)  (0.0010) | (0.0002) (0.0004) (0.0010) (0.0004) (0.1652)

. . 0.5501 0.5765  -6.9496  0.2253 0.0002 0.0011 0.0075 0.0029 0.2530

DRO-COX (SPLIT) (0.0104)  (0.0125)  (0.0002)  (0.0049) | (0.0002) (0.0005) (0.0016)  (0.0005)  (0.2378)
Deeptury 0.6108  0.6327 -6.8754  0.2417 0.4072 0.0297 0.4244 0.2871 1.7440

(0.0029) (0.0045) (0.0040) (0.0016) | (0.0369) (0.0121) (0.0573) (0.0251)  (0.2649)

DeepSurvy (Keya ct al) 05527 0.5940  -6.9337  0.2177 | 0.0277 _ 0.0077 0.1299 0.0551  0.9270
pSurvy (Key ) (0.0111) (0.0114) (0.0214) (0.0083) | (0.0138) (0.0073) (0.1275)  (0.0429) (0.4994)
DeepSurvy (R&P) 0.6020 0.6195  -6.8546  0.2204 0.0979 0.0298 0.3598 0.1625 1.4500
(0.0065)  (0.0090)  (0.0109)  (0.0065) | (0.0390) (0.0184)  (0.0879) (0.0138)  (0.2005)

5 DeonSurves (K ¢ al 0.5798 0.5911  -6.9148  0.2260 0.0888  0.0021 _ 0.2776 0.1228 0.9990
g Deep urvg (Keya et al.)  g'0056)  (0.0113)  (0.0049)  (0.0075) | (0.0166) (0.0014) (0.0710)  (0.0212)  (0.2159)
E DeepSurve (R&P) 0.6055 0.6252  -6.8861  0.2366 0.0567 0.0194 0.4703 0.1821 1.5130
S G (0.0073)  (0.0114)  (0.0092)  (0.0097) | (0.0591) (0.0208) (0.1506)  (0.0382)  (0.3131)
“ DeepSurv (Keya ot al) 05912 0.6037  -6.8876  0.2309 0.1867 0.0223 0.0903 0.0998 1.1590
(0.0012)  (0.0022)  (0.0015)  (0.0011) | (0.0071) (0.0036)  (0.0079)  (0.0039)  (0.1338)

Deep DRO-COX 0.5833 0.6251  -6.9270  0.2231 0.0779 0.0054 _ 0.0738  0.0524 1.6590
(0.0088)  (0.0137)  (0.0053)  (0.0015) | (0.0153) (0.0025) (0.0100) (0.0052) (0.3733)

0.5448 0.5625  -6.9555  0.6390 0.1605 0.0071 0.1754 0.1143 2.1690

Deep DRO-COX (SPLIT)  (1015)  (0.0021)  (0.0012)  (0.0005) | (0.0030)  (0.0024)  (0.0062) (0.0031)  (0.0727)
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Table E.9: Test set scores on the SUPPORT (gender) dataset when hyperparameter tuning is based
on F4. The format of this table is the same that of Table 2.

Accuracy Metrics

Fairness Metrics

Methods c-indexT  AUCT LPLT 1BS] Frl Fol Fal Fal CI(%) 1

Cox 0.6025 0.6163  -6.8761  0.2304 0.2113 0.0439 0.4490 0.2347 1.4300

(0.0005)  (0.0010) (0.0010) (0.0015) | (0.0093)  (0.0052)  (0.0322) (0.0127)  (0.0654)

Cox s (Keya ot al.) 0.5831 0.5932  -6.9594  0.2147 | 0.0001 _ 0.0012 0.0081 0.0081 11110
(0.0100)  (0.0143)  (0.0054) (0.0063) | (0.0001) (0.0004)  (0.0036) (0.0013)  (0.7139)

Coxj (R&P) 0.6026  0.6173  -6.8800  0.2277 0.1759 0.0280 0.3591 0.1877 1.3800

. (0.0011) (0.0012) (0.0021) (0.0011) | (0.0047) (0.0132) (0.0282) (0.0117)  (0.1137)
g o K ¢l 0.6024 0.6171  -6.8791  0.2284 0.1890 0.0031 0.3927 0.1949 1.4360
£ oxg (Keya et al.) (0.0006)  (0.0010)  (0.0009)  (0.0010) | (0.0027) (0.0017) (0.0150) (0.0049)  (0.0674)
2 Coxg (R&P) 0.6025 0.6170  -6.8779 _ 0.2291 0.1953 0.0340 0.4029 0.2107 1.3960
G (0.0009)  (0.0014)  (0.0020)  (0.0011) | (0.0052)  (0.0148)  (0.0284) (0.0125)  (0.1148)

Cox (Keya ot aL.) 0.5631 0.5620  -6.9163  0.2264 0.1183 0.0076 0.0604 0.0621 0.8650
(0.0070)  (0.0084)  (0.0069)  (0.0017) | (0.0124)  (0.0023)  (0.0144)  (0.0089)  (0.2958)

DRO-COX 0.5438 05754  -6.9496  0.2213 0.0009  0.0011 _ 0.0067  0.0029 _ 0.2110

(0.0080)  (0.0080)  (0.0003)  (0.0010) | (0.0002) (0.0004) (0.0010) (0.0004) (0.1652)

. 0.5501 0.5765  -6.9496  0.2253 0.0002 0.0011 0.0075 0.0029 0.2530

DRO-COX (SPLIT) (0.0104)  (0.0125)  (0.0002)  (0.0049) | (0.0002) (0.0005) (0.0016) (0.0005)  (0.2378)
DeepSury 0.6108 0.6327  -6.8754  0.2417 0.4072 0.0570 0.4244 0.2062 1.6220

(0.0029)  (0.0045) (0.0040) (0.0016) | (0.0369) (0.0180)  (0.0573  (0.0283)  (0.3303)

DeepSurvy (Keya et al) 09527 0.5940  -6.9337 _ 0.2177 | 0.0277 __ 0.0089 0.1599 0.0655 1.3560
purvrsey (0.0111)  (0.0114)  (0.0214) (0.0083) | (0.0138) (0.0045) (0.1275)  (0.0427) (0.7501)
DeepSurvy (R&P) 0.5988 0.6152  -6.8900  0.2271 0.1097 0.0333 0.3396 0.1609 1.7860
(0.0037)  (0.0055)  (0.0051)  (0.0052) | (0.0359) (0.0111) (0.0843) (0.0130)  (0.1170)

5 Deons K .l 0.5850 05992 -6.0154  0.2287 0.0883  0.0026 __ 0.2509 0.1139 1.8730
g eep urvg (Keya et al.) (0.0089)  (0.0122)  (0.0022)  (0.0105) | (0.0145) (0.0022) (0.0918)  (0.0264)  (0.6485)
= DeepSurve (R&P) 0.6053 0.6251  -6.8834  0.2358 0.0653 0.0195 0.4398 0.1749 1.5780
k! (0.0074)  (0.0116)  (0.0095)  (0.0090) | (0.0590)  (0.0204)  (0.0799) (0.0124)  (0.2560)
DeepSurve (Keya et al) 00912 0.6037  -6.8876 __ 0.2309 0.1867 0.0029 0.0903 0.0933 1.5390

Y (0.0012)  (0.0022)  (0.0015)  (0.0011) | (0.0071) (0.0017)  (0.0079)  (0.0033)  (0.1303)

Deep DRO-COX 0.5833 0.6251  -6.9270 __ 0.2231 0.0779 0.00564  0.0738  0.0524 1.6590
(0.0088)  (0.0137)  (0.0053)  (0.0015) | (0.0153) (0.0025) (0.0100) (0.0052) (0.3733)

0.5448 0.5625  -6.9555  0.6390 0.1605 0.0071 0.1754 0.1143 2.1690

Deep DRO-COX (SPLIT)  (0015)  (0.0021)  (0.0012)  (0.0005) | (0.0030) (0.0024)  (0.0062) (0.0031)  (0.0727)

Table E.10: Test set scores on the SEER (age) dataset when hyperparameter tuning is based on
F 4. The format of this table is the same that of Table 2.

Accuracy Metrics

Fairness Metrics

Methods c-indexf  AUCT LPLT IBS) Frl Fal Frd Fal CI(%) 1
Con 0.7409  0.7624  -5.9427 _ 0.0964 0.6105 0.9037 0.6750 0.7297 2.5640
(0.0016) (0.0017) (0.0034) (0.0008) | (0.0307) (0.1308) (0.0630)  (0.0656)  (0.3531)
Cox (Keya et al.) 0.7229 0.7473  -6.1913 _ 0.0885 0.1299 0.1312 0.1824 0.1479 1.4070
(0.0177)  (0.0207)  (0.0250)  (0.0009) | (0.0177) (0.0546)  (0.0765)  (0.0432)  (1.0039)
Cox (R&P) 0.7293 0.7496  -6.0515 _ 0.0902 0.2738 0.2978 0.3235 0.2984 2.3570
. (0.0279)  (0.0315)  (0.0681)  (0.0005) | (0.0303) (0.0528) (0.0510)  (0.0291)  (0.9789)
E Corgs (Keya ot al.) 0.7192 0.7429  -6.0105  0.0941 0.4794 0.0425 0.4876 0.3365 2.9950
ki GRey : (0.0293)  (0.0319)  (0.0962)  (0.0023) | (0.1267) (0.0339)  (0.1023)  (0.0685)  (1.3371)
A Coxe (RAP) 0.7124 0.7293  -6.0682 _ 0.0913 0.3188 0.5823 0.5447 0.4819 2.1690
G (0.0317)  (0.0355)  (0.0920)  (0.0012) | (0.0771) (0.2186)  (0.0853)  (0.1248)  (1.4271)
Goxr (Keya et al.) 0.7143 0.7365  -6.0508  0.0942 0.4658 0.0498 0.5179 0.3445 2.7750
(0.0288)  (0.0320)  (0.1053)  (0.0020) | (0.1188) (0.0434) (0.3066) (0.1445)  (0.9141)
DRO-COX 0.7058 0.7288  -6.2914 _ 0.0877 | 0.0207  0.0292  0.0871  0.0456  0.8650
(0.0165)  (0.0173)  (0.0391) (0.0004) | (0.0296) (0.0313) (0.0184) (0.0262) (0.4212)
. \ 0.7040 0.7274  -6.2806 _ 0.0889 0.0357 0.0356 0.1161 0.0625 1.2320
DRO-COX (SPLIT) (0.0181)  (0.0165)  (0.0723)  (0.0035) | (0.0746) (0.1103) (0.0990) (0.0946) (0.6788)
DeepSury 0.7488  0.7729 -5.9582  0.0966 0.3656 0.3530 0.4734 0.3983 2.0450
(0.0103) (0.0105) (0.0538) (0.0047) | (0.0959) (0.0898) (0.1203)  (0.0900)  (0.8414)
DeepSurvy (Keya ot al) 07003 0.7222  -6.1838 _ 0.0925 0.0807 0.0694 0.4122 0.1875 3.3150
(0.0272)  (0.0309)  (0.1060)  (0.0076) | (0.0267) (0.0345) (0.3883)  (0.1238)  (2.5298)
DeepSurvy (R&P) 0.7304 07535 -6.0678  0.0906 0.1236 0.1236 0.3603 0.2025 1.3020
(0.0104)  (0.0097)  (0.0928)  (0.0036) | (0.0122) (0.0229) (0.1503)  (0.0541)  (0.6967)
5 Deoos K ¢ al 0.7300 0.7571  -6.0645 _ 0.0899 0.2102 0.0142 0.3246 0.1830 1.3520
g eep urvg (Keya et al.) (0.0070)  (0.0069)  (0.0507) (0.0026) | (0.0568) (0.0085) (0.0881) (0.0501) (0.3187)
E DeepSurve (R&P) 0.7298 0.7528  -6.0705 _ 0.0014 0.1250 0.1376 0.4288 0.2305 1.5580
5 G (0.0110)  (0.0105)  (0.0817)  (0.0051) | (0.0341)  (0.0428) (0.2521)  (0.0743)  (1.0975)
“ DeepSurvn (Keya et al) 07151 0.7444  -6.1133 _ 0.0889 0.1630  0.0117 _ 0.2326 0.1358 _ 0.5870
7 (0.0040)  (0.0042)  (0.0086) (0.0004) | (0.0086) (0.0081) (0.0229) (0.0114) (0.2585)
Deep DRO-COX 0.6889 0.7020  -6.2345 _ 0.0878 | 0.0559  0.0511 _ 0.1303  0.0791  2.8040
(0.0277)  (0.0335)  (0.0602) (0.0007) | (0.0326) (0.0254) (0.0298) (0.0217) (1.0324)
. 0.6829 0.7099  -6.1870  0.1023 0.2276 0.0157 0.3261 0.1898 1.4970
Deep DRO-COX (SPLIT)  ()0140)  (0.0149)  (0.0426)  (0.0004) | (0.0901)  (0.0212)  (0.0554)  (0.0537)  (0.6481)
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Table E.11: Test set scores on the SEER (race) dataset when hyperparameter tuning is based on
F 4. The format of this table is the same that of Table 2.

Accuracy Metrics

Fairness Metrics

Methods c-indext  AUCT LPLT TBS] Frl Fol Fal Fal CI(%) 1
Cox 0.7409 0.7624 -5.9427 0.0964 0.6105 0.1183 0.6750 0.4679 1.1880
(0.0016) (0.0017) (0.0034) (0.0008) | (0.0307) (0.0645) (0.0630) (0.0437)  (0.1742)
Cox; (Keya et al.) 0.7224 0.7471 -6.1914 0.0885 0.1292 0.0318 0.1828 0.1146 2.1470
(0.0176)  (0.0208)  (0.0252)  (0.0009) | (0.0181)  (0.0280)  (0.0760)  (0.0309)  (1.6144)
Coxj (R&P) 0.7365 0.7580 -6.0328 0.0903 0.2833 0.0582 0.3279 0.2231 1.6720
. (0.0224)  (0.0252)  (0.0551)  (0.0005) | (0.0285) (0.0664) (0.0506) (0.0292)  (0.7682)
g Co (Keya et al.) 0.7065 0.7231 -6.0720 0.0933 0.4196 0.2148 0.6131 0.4158 1.2700
E *G(Rey : (0.0287)  (0.0328)  (0.1023)  (0.0030) | (0.1634) (0.1305) (0.2525) (0.1817)  (0.2641)
— Coxg (R&P) 0.7277 0.7484 -6.0357 0.0908 0.3139 0.1489 0.3735 0.2788 2.3540
G (0.0279)  (0.0315)  (0.0751)  (0.0006) | (0.0444) (0.0848)  (0.0483) (0.0281)  (0.8776)
Coxn (Keya et al.) 0.7191 0.7419 -6.0343 0.0944 0.4810 0.2417 0.5645 0.4291 0.8320
(0.0260)  (0.0290)  (0.0959)  (0.0019) | (0.1123)  (0.0834)  (0.2882)  (0.1591)  (0.4299)
DRO-COX 0.7055 0.7286 -6.2915 0.0877 0.0207 0.0085 0.0871 0.0387 0.7090
(0.0165)  (0.0173)  (0.0392) (0.0004) | (0.0296) (0.0050) (0.0184) (0.0162) (0.5854)
] 0.7037 0.7271 -6.2806 0.0889 0.0357 0.0181 0.1161 0.0566 0.6500
DRO-COX (SPLIT) (0.0180)  (0.0163)  (0.0723)  (0.0035) | (0.0746) (0.0237)  (0.0990) (0.0656) (0.6580)
DeepSurv 0.7488 0.7729 -5.9582 0.0966 0.3686 0.1178 0.4734 0.3199 0.4270
(0.0103) (0.0105) (0.0538) (0.0047) | (0.0959)  (0.0771)  (0.1203)  (0.0776)  (0.4259)
DeepSurvy (Keya et al.) 0.7003 0.7222 -6.1838 0.0925 0.0807 0.0205 0.4122 0.1711 2.7770
(0.0272)  (0.0309)  (0.1060)  (0.0076) | (0.0267) (0.0118) (0.3883) (0.1221) (1.3398)
DeepSurvy (R&P) 0.7304 0.7535 -6.0678 0.0906 0.1236 0.0407 0.3603 0.1749 0.6010
(0.0104)  (0.0097)  (0.0928)  (0.0036) | (0.0122) (0.0207) (0.1503)  (0.0422)  (0.2886)
5 D s K ¢ al 0.7249 0.7506 -6.0926 0.0913 0.1934 0.0742 0.3280 0.1985 0.5820
g eep urvg (Keya et al.) (0.0084)  (0.0071)  (0.0716)  (0.0059) | (0.0355)  (0.0074) (0.0664)  (0.0099)  (0.2068)
% DeepSurvg (R&P) 0.7300 0.7533 -6.0621 0.0907 0.1352 0.0491 0.3681 0.1841 0.6130
° (0.0106)  (0.0101)  (0.0918)  (0.0036) | (0.0068) (0.0219)  (0.1400)  (0.0401)  (0.2758)
z DeepSurvn (Keya et al.) 0.7151 0.7444 -6.1133 0.0889 0.1630 0.0579 0.2326 0.1512 0.2050
) (0.0040)  (0.0042)  (0.0086)  (0.0004) | (0.0086) (0.0069)  (0.0229) (0.0111) (0.0829)
S 0.6888 07014  -6.2531 _ 0.0876 | 0.0456  0.0094  0.1375 _ 0.0641  1.3000
(0.0206)  (0.0240)  (0.0305) (0.0004) | (0.0177) (0.0081) (0.0186) (0.0117) (0.9742)
0.6829 0.7099 -6.1870 0.1023 0.2276 0.1441 0.3261 0.2326 0.9190
Deep DRO-COX (SPLIT) 140y (0.0149)  (0.0426)  (0.0004) | (0.0901)  (0.0543)  (0.0554)  (0.0652)  (0.4446)
Table E.12: Test set scores for DRO-cOX (SPLIT) on the FLC (age) dataset using no =
0.1n,0.2n,0.3n,0.4n,0.5n (corresponding to n; = 0.9n,0.8n,0.7n,0.6n,0.5n). The
format of this table is similar to that of Table 2 although here we do not bold or
highlight any cells, as our main finding here is that the scores are not dramatically
different for the different choices for n; or ns.
n Accuracy Metrics Fairness Metrics
2 c-indexT AUCT LPLT 1BS] Fri Fal Fnl Fal CL(%) 1
0.1n 0.7813 0.8023 -7.0822 0.1415 0.0035 0.0118 0.0292 0.0148 0.5670
(0.0181) (0.0174) (0.0069) (0.0063) (0.0030) (0.0062) (0.0138) (0.0075) (0.3535)
0.2n 0.7955 0.8156 -7.0835 0.1403 0.0026 0.0105 0.0251 0.0127 0.3810
. (0.0053) (0.0036) (0.0044) (0.0031) (0.0020) (0.0032) (0.0107) (0.0053) (0.2621)
g 0.3n 0.7976 0.8181 -7.0844 0.1398 0.0021 0.0099 0.0254 0.0124 0.2150
£ : (0.0027) (0.0026)  (0.0033) (0.0025) (0.0015) (0.0025)  (0.0074)  (0.0038) (0.1907)
= 0.4n 0.7969 0.8174 -7.0852 0.1393 0.0018 0.0093 0.0240 0.0117 0.2910
: (0.0040) (0.0024) (0.0019) (0.0014) (0.0008) (0.0014) (0.0043) (0.0021) (0.1280)
0.5n 0.7963 0.8168 -7.0856 0.1390 0.0016 0.0089 0.0232 0.0113 0.2340
(0.0045) (0.0030) (0.0009) (0.0008) (0.0004) (0.0008) (0.0031) (0.0013) (0.1237)
0.1n 0.7619 0.7707 -6.8103 0.1703 0.3923 0.4897 0.6953 0.5258 2.8090
: (0.0068) (0.0079) (0.0186) (0.0002) (0.0514) (0.0509) (0.0889) (0.0624) (0.1807)
. 0.2n 0.7621 0.7710 -6.8114 0.1703 0.4167 0.5056 0.7299 0.5507 2.8030
5 : (0.0069) (0.0082) (0.0186) (0.0002) (0.0676) (0.0591) (0.1075) (0.0773) (0.2261)
'g 0.3n 0.7627 0.7719 -6.8115 0.1703 0.4321 0.5164 0.7525 0.5670 2.7770
= : (0.0067) (0.0080) (0.0182) (0.0002) (0.0755) (0.0645) (0.1159) (0.0849) (0.2414)
ZO 0.4n 0.7627 0.7719 -6.8123 0.1703 0.4414 0.5236 0.7578 0.5742 2.7930
: (0.0061) (0.0073) (0.0180) (0.0002) (0.1018) (0.0798) (0.1316) (0.1037) (0.2281)
0.5m 0.7629 0.7719 6.8131 0.1703 0.4347 0.5184 0.7508 0.5680 2.8490
: (0.0064) (0.0076) (0.0199) (0.0002) (0.1214) (0.0922) (0.1417) (0.1176) (0.2435)
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Table E.13: Test set scores of DRO-COX (SPLIT, ONE SIDE) vs DRO-COX (SPLIT) on the FLC (age)
dataset. The format of this table is the same that of Table 2 except without any cells

highlighted in green as we are not comparing against baselines by previous authors.

Methods Accuracy Metrics Fairness Metrics

c-indexf AUCT LPLT IBS] Frl Fal Frl Fal CL(%)4

0.7809  0.8031  -7.0862 0.1330 | 0.0017 _ 0.0090  0.0232  0.0113 _ 0.4420

g DRO-COX (SPLIT, ONE SIDE) (0.0092) (0.0101) (0.0029) (0.0002)| (0.0011) (0.0024) (0.0079) (0.0037) (0.3206)
£ DRO-COX (SPLIT) 0.7963 0.8168 -7.0856 0.1390 | 0.0016 0.0089 0.0232 0.0113 0.2340
3 - (0.0045) (0.0030) (0.0009) (0.0008) | (0.0004) (0.0008) (0.0031) (0.0013) (0.1237)
. & ) . 0.7625  0.7715 -6.8133 0.1371 | 0.4402  0.5232  0.7533  0.5722  2.8000
£ § Deep DRO-COX (SPLIT. ONESIDE) 5 0962) (0.0075) (0.0208) (0.0008)| (0.1369) (0.1039) (0.1514) (0.1298) (0.2671)
z £ , 0.7629 0.7719 -6.8131 0.1703 | 0.4347 0.5184 0.7508 0.5680  2.8490
Deep DRO-COX (SPLIT) (0.0064) (0.0076) (0.0199) (0.0002) |(0.1214) (0.0922) (0.1417) (0.1176) (0.2435)
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