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Abstract

We propose a general framework for visualiz-
ing any intermediate embedding representation
used by any neural survival analysis model. Our
framework is based on so-called anchor direc-
tions in an embedding space. We show how to
esti mate these anchor di recti ons usi ng c usteri ng
or, alternatively, using user-supplied “concepts”
defined by collections of raw inputs (e.g., feature
vectors all from female patients could encode
the concept “female”). For tabular data, we
present visualization strategies that reveal how
anchor directions relate to raw clinical features
and to survival time distributions. We then show
how these visualization ideas extend to handling
raw inputs that are images. Our framework is
built on looking at angles between vectors in an
embedding space, where there could be “infor-
mation | 0ss” by i gnori ng magni tude i nf ormati on.
We show how this loss results in a “clumping”
artifact that appears in our visualizations, and
how to reduce this information loss in practice.

Data and Code Availability We use the publicly
available datasets on predicting time until death from
the Study to Understand Prognoses, Preferences, Out-
comes, and Risks of Treatment (SUPPORT) (Knaus
et al., 1995), the Rotterdam tumor bank (Rotterdam)
(Foekens et al., 2000), and the German B east Can-

cer Study Group (GBSG) (Schumacher et al., 1994).

The SUPPORT dataset is on severely ill hospitalized
patients with various diseases whereas the Rotterdam

and GBSG datasets are both on breast cancer. We
also use the MNIST handwritten digits dataset (Le-

Cun et al., 2010) modified by Polsterl (2019) to be
for survival analysis. Our code is publicly available

(links to the datasets we use are in our code):
https://github.com/georgehc/anchor-vis/
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1. Introduction

Survival analysis models regularly arise in health ap-
plications in reasoning about how much time will
elapse before a critical event happens, such as death,
disease relapse, and hospital readmission. Across
many health-related datasets, state-of-the-art survival
analysis models commonly use neural networks (e.g.,
Ranganath et al. 2016; Chapfuwa et al. 2018; Katz-
man et al. 2018; Lee et al. 2018; Kvamme et al. 2019;
Nagpal et al. 2021; Chen 2020, 2022; Li et al. 2020;
Zhong et al. 2021, 2022; Manduchi et al. 2022). How-
ever, most neural survival analysis models have been
developed with a focus on prediction accuracy, often
without examining what these models have learned
internally. In more detail, these models typically rep-
resent individual patients in terms of “embedding
vectors”. How do these embedding vectors relate to
patient characteristics? How do they relate to survival
(or time-to-event) outcomes?

Some existing neural survival analysis models have
been designed to have interpretable components. For
instance, the moce | by Zhong et al. (2022) uses a
partially linear Cox model: variables that the modeler
wants to easily reason about are captured by a linear
component of the model whereas the rest of the vari-
ables are modeled by a neural network. Meanwhile,
Chap fuwa et al. (2020), Nagpal et al (2021), Man-
duchi et al. (2022), and Chen (2022) all represent a
data point (i.e., a patient) in terms of clusters, where
we can summarize each cluster’s patient characteris-
tics and survival distributions. Along similar lines,
Li et al. (2020) introduced a neural topic model with
survival supervision, which represents each patient
as a combination of “topics”, where each topic corre-
sponds to specific patient characteristics being more
probable and to either higher or lower survival times.

In this paper, rather than developing a new sur-
vival analysis model that aims to be in some sense
interpretable, our main contribution is instead to pro-
pose a general framework for visualizing intermediate
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representations of any neural survival analysis model.

Crucially, our framework is based on analyzing angu-

lar information. Specifically, our framework uses what

we refer to as anchor directions in an intermediate

representation space. We specifically show:

e how to estimate anchor directions based on clus-
tering or, alternatively, based on a “concept” that

can provide some rough intuition of the geometry of
the embedding space, it does not—on its own—do
clustering or provide quantitative metrics relating the
embedding space to raw features or to predicted sur-
vival time distributions. Our framework could be used
in addition to this baseline visualization strategy and
does relate the embedding space to raw features and

the user provides, where the concept is represented to survival time distributions, with the help of anchor as

a collection of data points (e.g., a set of fea-
ture vectors all for female patients could represent
the concept “female”; this is the same definition of
“concepts” as used by Kim et al. (2018));
¢ how to visualize raw features vs anchor directions,
and survival time distributions vs anchor directions;
e how to tell if our visualizations are “losing too much
information” by focusing on angular information
(and ignoring magnitude information), and how to
reduce this information loss.
Our framework could be thought of as a suite of
visualization tools with accompanying statistical tests
that can help 9uatify the strength of associations
related to the embedding space under examination.
To showcase our framework, we first focus on
a tabular dataset on predicting time until death
of patients from the Study to Understand Prog-
noses, Preferences, Outcomes, and Risks of Treat-
ment (SUPPORT) (Knaus et al., 1995). We then
show how our visualization ideas extend to working
with images, where we use the semi-synthetic Sur-
vival MNIST dataset (LeCun et al., 2010; Polsterl,
2019) with known ground truth structure. Our visu-
alizations help us see to how well a neural network’s
embedding space captures this known structure. We
provide a second tabular data example on survival
times of breast cancer patients in Appendix C, using
data from the Rotterdam tumor bank (Rotterdam)
(Foekens et al., 2000) and the German Breast Cancer
Study Group (GBSG) (Schumacher et al., 1994).
The only baseline visualization strategy we are
aware of that works with any intermediate represen-
tation of any neural survival analysis model is to
apply a dimensionality reduction method (such as
PCA (Pearson, 1901) or t-SNE (Van der Maaten and
Hinton, 2008)) to transform the intermediate represen-
tation of interest (which could be high-dimensional)

directions based on clustering or on concepts.

Separately, even though many visualization tools

have been developed for neural network models for
classification or for predicting a single scalar output
(e.g., Selvaraju et al. 2016; Zhou et al. 2016; Dabkowski
and Gal 2017; Lundberg and Lee 2017; Shrikumar et al.
2017; Smilkov et al. 2017; Sundararajan et al. 2017;
Kim et al. 2018), these existing visualization tools do
not easily extend to the survival analysis setting. A
key reason is that these tools aim to quantify how
important different input features are in affecting
a single output neuron’s scalar value. Howe,er, in
general, the prediction target in survival analysis for
a single test data point is not a single scalar value and
is instead a probability distribution over time, where
time could either be continuous or discrete. When the
time is discrete, the number of time steps used is up
to the modeler and could even scale with the number
of training data points. Quantifying the importance
of different input features in predicting such a survival
time distribution is not straightforward.

2. Background

We review the standard survival analysis setup in Sec-
tion 2.1, and then we provide an example of a neural
survival analysis model in Section 2.2. For the lat-
ter, we specifically review the now-standard DeepSurv
model (Katzman et al., 2018). We emphasize that
our visualization framework is not limited to only
working with DeepSurv and works with any neural
survival analysis model. For ease of exposition, we
use DeepSurv throughout the paper.

2.1. Survival Analysis

We assume that we have n training patients with data
points {(xi, yi, 6i)}}., , where the i-th training patient

into a 1D, 2D, or 3D representation that is displayed has raw input x; @ X (e.g., tabular data, images), in a

scatter plot. Points in the scatter plot could be
based on, for instance, their median survival
predicted by the neural survival analysis
provide examples of such scatter plots in

{0,1};

observed time y; @ [0, =), and event indicator §; @ colored

if 6 = 1, then this means that the critical times as

event of interest (e.g., death) happened for the i-th model. We
training patient so y; is the time until the critical event Appendix H.

While this baseline visualization strategy happened (also called the “survival time”), whereas if
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6i = 0, then this means that the critical event did not
happen, so y; is the time until we stopped collecting
information on the i-th patient (commonly called the
“censoring time”).

To model how training points are sampled, we first
introduce some notation. We denote the random vari-
able for a generic raw input as X, whi h has marginal
distribution Px . We denote the randgm variable for

the survival time as T, which depends on raw input X ;
in particular, there is a conditional distribution Prix:

To train a DeepSurv model, we first learn the neural
network parameters 8 by minimizing the loss

L(B) B- i

i=1

6; f(xi;0) - log X exp(f(x;;0)) .

j=1,...,n
Sty
After learning 6, we then estimate ho using a standard

approach such as Breslow’s method (Breslow, 1972).
Specifically, let B denote the learned neural network

We also denote the random variable for the censor- Parameters, let t;;) < t;) < --- < t(;) denote thej .
time as C, whi®h depends on r®w input X via a sorted unique times when the critical event happened
conditional distributi oncRy . Note that T and Cin the training data (so that the total number of these are
assumed to be conditionally independent given X . unique times is t), and let d(g) denote the pumber Then
each training point (x ,y, 8 ), is assumed to be ©of times the critical eve, t happened at time t, for generated

i.i.d. as follows: = 1,...,t. ThenBreslow’smethod estimates a

1. Sample raw input x from PX. discretized version of ho at time t(g) using

2. Sample survival time t; from P jx-x .

3. Sample censorin'g'time ¢ from P y_y, - ho(t(e)) p die)

4. If t; < c; (the critical event happens before censor- =10 sty 2t g, exp(f(x;; ®))

ing): sety, = t; and §; = 1. Otherwise, set y; = c;
and 6 = 0.
For a patient with raw input x & X, a survival analysis
model estimates a distribution over survival times
for x. Specifically, this survival time distribution is
specified in terms of the conditional survival function

S(t|x)BP(T > t|X =x) fort= 0,

or a transformed version of this function, such as the
hazard function h(t|x) - 2 logS(t|x) (by negating,
integrating, ang $xponentiating, one can show that

S(t|x) = exp(- ° h(t|x)dt), i.e., having an estimate
for h(-|x) yields an estimate for S(-|x)).

2.2. Neural Survival Analysis: DeepSurv

The conditional survival function S(t|x) can then be
estimated bY

Ht|x)Bexp - exp(f(x;6H) Hy(t(e))

s.t. t(e)st

(2)

Note that here, the conditional survival function is es-
timated along a time grid with a total of T discretized

time poi ts, where T could scale with the umber of
training points. n

3. Visualization Framework

We now present our visualization framework based

The DeepSurv model (Katzman et al., 2018) estimates on anchor directions. Our framework can work with the
hazard function h(t|x) under the standard propor- any neural survival analysis model with a base neural tional

hazards assumption (Cox, 1972):

h(t[x) = ho(t) exp(f(x; 6)), (1)

where hg is called the baseline hazard function (which
takes as input a nonnegative time t > 0 and outputs

neural network with parameters 6 (specifically, f(-; 0)

network f and an estimate b(tlx) of the conditional
survival function S(t|x). For the rest of the paper, we
treat the neural survival analysis model that we aim
to provide visualizations for as fixed, meaning that

it has already been learned using the training data a
nonnegative value), and f(-; 8) is a user-specified {(xi, yi, 6i)}"

(=1 and its learned parameters @will not

be modified. Thus, for notational convenience, we

maps a raw input from X to a single real number that now write “f(x)” instead of “f(x; 6 )8.

could be thought of as a “risk score”, where higher
values correspond to the critical event of interest likely
happening earlier for feature vector x). For example,

At a high level, our framework works as follows.
First, we need to decide what intermediate “embed-
ding space” of the base neural network f to visualize

when working with tabular data, f could be a multi- (Section 3.1). Next, we estimate anchor directions in

layer perceptron, and when working with images, f
could be a convolutional neural network.

the chosen embedding space (Section 3.2). Our visu-
alizations will then be based on how well embedding
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vectors align with anchor directions in terms of cosine
similarity (Section 3.3). We explain our visualization
strategies via real data examples, first with tabular
data (Section 3.4) and then with images (Section 3.5).
Our visualization strategy focuses on using angular
and not magnitude information within the embedding
space, which could result in “information loss” in our
visualizations. We provide details on this information
loss and how to mitigate it (Section 3.6).

Statistical assumptions and sample splitting.
Our exposition will be clear about statistical assump-

tions, which ensure that the different steps of our
visualization framework are theoretically sound (and
we will be clear when a step is a heuristic and lacks

theoretical justification). For example, we occasion-
ally use statistical tests, which commonly require
that the input data to the tests are i.i.d. With
such considerations i, mind, ,ye assume that e
h,yve access to additional data separate from the
training data {(x;, y;, 6;)} ', : specifically, we assume
that we also have “anchor direction estimation” data
{(xAy 8601} i“:l sampled i.i.d. in the same manner as

the training data, and also “visualization raw inputs”
P inz"l sampled i.i.d. from Py that are separate
from both training and anchor direction estimation
data.’ The basic workflow is as follows: we learn
the neural survival analysis model using training data.
Afterward, we estimate anchor directions using anchor
direction estimation data. Finally, we produce visu-
alizations based on the estimated anchor directions
with th, help of visualization ryw inputs.

3.1. Which “Embedding Space” to Visualize?

First, we need to specify which space we will try to
visualize. To go with the DeepSurv example from ear-
lier, the neural network f used with DeepSurv could
be a multilayer perceptron. In this case, we could
visualize the representation at one of the intermediate
layers such as the representation right before the last
fully-connected layer (this last layer outputs a single
number corresponding to the risk score). Specifically,

f(x) = gle(x)), (3)

where the function @ maps from the raw input space X

to some intermediate Euclidean space Rd, and the
function g maps from R to R. For the rest of the

10ur framework works even if the training data were sam-
pled differently from the rest of the data; see Appendix C.

then the “meaningfu

paper, we refer to ¢ as the encoder, which converts a
raw input into an embedding vector.?

An embedding vector by itself is not very infor-
mative. Instead, our visualizations depend on the
distribution of these embedding vectors. Recall from
Section 2.1 that the distribution of raw inputs is given
by Py. We define the embedding space as follows.

Definition 1 Let Pyx denote the distribution of raw

input data. Suppose that we sample X B Px. Then
we set U = @(X), whe e ¢ is the encoder. Then we

define the embedding space as the distribution of U,
denoted as P. This distribution is over R ¢
Crucially, we define the embedding space as a distri-

bution over R9—not just RY without a distribution.
To visualize the eMpedding space Py, our frame-

work involves first choosing “interesting” anchor di-

rections in the embedding space to look at, which we
discuss in detail in the next section. Importantly, we
argue that in practice, the d axis-aligned directions of
RY are not necessarily the “interesting” directions for

the application at hand. For example, if P Js well-

approximated by a clustering model with k clusters,
I” directions to consider could be
the directions that point toward the k different cluster
centers. These directions need not be axis-aligned.
Moreover,the embedding dimension d is often a
hyPerparameter to be tuned (as part of the neural
net arChitecture of §. If the problem of iNtereSt
has an underlying ground truth distribution that 's
based on k cluSterS, then a “good” Choice of neural
survival analysis model would be one where for a wide

range of values for hyperparameter d (where d > k),
after learning the neural survival analysis model, the
resulting learned embedding space P should consist

of k Suficiently Separated cluSters Within Rd,

3.2. Choosing Anchor Directions

As stated previously, we estimate anchor direc-
tions using the anchor direction estimation data
{(xf\,yﬁ,(sf\)}?:l. We denote the embedding vec-
tors of these points by uiA @(x iA). Note that ¢
is estimated as part of learning the neural survival
analysis model using training data {(xi, yi, 8i)}_,.
Conditioned on the original training data and on the
encoder ¢, the embedding vectors u’;, ...,u® appear

nA

ZNote that for equation (3), our framework does not require
the function g to output a single real number. This happens
to be the case for DeepSurv. For example, DeepHit (Lee et al.,
2018) has a base neural network f that outputs a Euclidean vec-
tor instead. Our visualization framework trivially also supports
these other base neural network functions.
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as i.i.d. draws from the embedding space Py (this
i.i.d. property would fail to hold if the anchor direc-
tion estimation data were the same as the training
data; see Appendix A.1 for details). We now provide
two approaches for estimating anchor directions.

3.2.1. Clustering Approach

We first estimate anchor directions using clustering.
This approach is agnostic to the choice of cluster-
ing algorithm but assumes that the clustering algo-
rithm chosen only has access to the embedding vectors
uf, ..., unAA. In particular, we ignore the survival in-
formation {(y#, (Si’*)}i”:1 for the moment. Note that
many clustering algorithms, such as the Expectation-
Maximization algorithm for Gaussian mixture models
(Bishop, 2006, Section 9.2), are derived under
the assumption that the data points to be clustered
arei.i.d. Again, this assumption holds since

uA, ..., uMappear as i.i.d. samples from Py after we
condition on the original training data and .

Once we have learned the clustering model of our
choice, we obtain a cluster assignment for each em-
bedding vector. In particular, we denote the clus-
ter assignment of the i-th embedding vector uiA by
ziA {1, 2,...,k}, where k is the number of clusters.
Then we define the j-th cluster’s anchor direction as

P url{zA = j}

i=1 i i
154 —
i, Hzy = j}
{7
mean dfrection of
embedding vectors in
the j-th cluster

A
n
1 X
-,
ip. 1
I S v Al
mean direction across
embedding vectors

u?
where 1{-} is the indicator function that is 1 when its

,'cﬂgqlcésn{fgy%far%%s%,% the embedding vectors.Thus,
subtracting u®,-we focus on how the clusters differ
from the center of mass. This is essentially changing
the center of the coordinate system so that directions
are measured treating " as the “qrigin” of the new

v clusterj

(4)
I

coordinate system. A similar idea i commonly used

RFR iBaterBPRB8, LA W ifarhs, ") data are

Choosing the number of clusters based on sur-
vival information. Clustering algorithms often have
a hyperparameter (or multiple) that affects the num-
ber of clusters k. For example, a Gaussian mixture
model has a hyperparameter for the number of mix-
ture components, which could be thought of as clus-
ters. We now propose a heuristic for choosing k using
survival information {(yA, 62)}n% .

Log-rank test p-value
OCOCO0O0000000=
O=_2NWhOON®OO

| —— |-
2 4 6 8 10
Number of clusters k

Figure 1: A violin plot to help select the number of
clusters k to use. Here, the encoder is from a
DeepSurv model trained on the SUPPORT
dataset, and the clustering model is a mix-
ture of von Mises-Fisher distributions. We
plot the set W(k) (consisting of log-rank test
p-values; see equation (5)) vs k. Details on
the dataset, encoder, and clustering model
are in Section 3.4.

Suppose that we have grouped the data into k
clusters. For any two clusters j,j @{1,..., k} withj
= j’, we can run the log-rank test (Mantel, 1966) to
quantify how different these two clusters’ survival
outcomes are (running this test requires using the YA
and éiA variables of the points in clusters j and j'). We
denote the test’s resulting p-value as yj,; (k). Then
the set of p-values across all pairs of clusters found is

W(k) @ g, (k) forall j B{1,..., K},

andj B{j+1,...,k} . (5)

We can re-run the clustering algorithm to get clus-
ter assignments that have different numbers of clus-

pevalliesouthat far gsteh heventipveecd d!i(ﬁqrgatasmrﬁf

erwise. The second term T is tion of k in Figure 1 using a violin plot (i.e., for each k, by

we see the distribution of W(k) as a “violin”). We
can choose k to be a value before the p-values in W(k)

become “too large”. Far example, in Figure 1, the
“violins” in the vglolin plot get r?much tallegr (so the p-

veltsteld, RHhareRyarallgriting much larger) after 5 n

This procedure for choosing k is a heuristic: we have

found it work well in practice but we currently lack
theory to justify when it recovers the “correct” number
of clusters. We comment on when the log-rank test
is theoretically sound to apply (so that the p-values
are valid) in Appendix A.2. We further discuss a
heuristic for choosing which clusters to focus on when
the number of clusters is large in Appendix G; this
heuristic is based on estimating a survival time for
each anchor direction, ranking anchor directions based
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on these survival time estimates, and focusing only on
anchor directions with particular ranks (e.g., anchor
directions with the highest and lowest survival times).

3.2.2. User-supplied “Concepts”

Next, we consider a scenario where the user provides
“concept” in terms of a cQIIection of example raw
input data C B {x 4...,x +}, where all n' of these
examples exhibit the concept (e.g., to convey a concept
corresponding to “female”, the user can set C to be a
collection of raw inputs from female patients). This
is the same notion of concepts as used by Kim et al.
(2018). We assume that the set C is collected in a
manner that is independent of how the visualization
raw inputs {x’ }{‘:1 are collected (th k assumption will
be needed later for statistical tests). Specifically, we
use the anchor direction

1 X

Mconcept C —

1‘) _ =A
|C| x'@c

o(x7) - u?, (6)

where the center of mass T” is defined in equation (4).

3.3. Key Visualization Quantity: Projections
onpto Anchor Directions

In this section, we use pu @ RY to denote any specific
anChor direction that we @M to analyze, such as the
ones from equations (4) or (6). Our visualization
framework focuses on angular information in the em-
bedding space. Specifically, for any raw input x B X,

we define the following projection oNto u:

(p(x) - T, )

roj, (x _
proj, (x) Ae(x) - UAE @R

(7)
where (-, ) denotes the Euclidean dot product, & -
denotes taking the Euclidean norm, and u™ is defined
in equation (4). This projection is precisely the cosine
similarity between vectors (¢(x) - U*) and p, which
looks at how well-aligned these two vectors are, dis-
regarding their magnitudes (since we divide by their
norms in equation (7)). We discuss implications of
ignoring magnitude information and how to reduce

the amount of “information loss” in Section 3.6. Since

cosine similarity of two vectors is always between
(the two vectors point in exactly opposite direc-

direction pu. Our 2D visualizations commonly have
the x-axis correspond to these projection values while
the y-axis will track quantities related to either raw
input feature values or time-to-event outcomes.

3.4. Visualization Strategies for Tabular Data @

We begin by considering tabular data, where the raw

inputs are feature vectors from X = RP and each of
the D features is assumed to be “easy to interpret”

(e.g., age, gender, cancer status). We show how to
relate projection values along an anchor direction to,
at first, a single continuous feature (such as age) via
a scatter plot (Section 3.4.1). Next, we show how to
relate projection values to any continuous or discrete
raw feature using a heatmap (Section 3.4.2). Tge

heatmap from Section 3.4.2 re eals that some r w

features might be more “important” for an anchor
direction than others. We discuss statistical tests that
can identify or help rank variables that are “impor-
tant” for a specific anchor direction (Section 3.4.3).
Lastly, we show how to relate projection values to
the neural survival analysis model’s predicted survival
time distributions (Sectign 3.4.4).

Data and setup. As we progress through our visu-
alization strategies, we apply them to the SUPPORT

dataset (Knaus et al., 1995). This dataset has 8,873
data points (patients) and 14 features and is on pre-
dicting time until death for severely ill hospitalized

patients with various diseases. We use a 70%/30%

train/test split. We train a DeepSurv model, where
the base neural network f is a multilayer perceptron
consisting of the following sequence of layers:

e Fully-connected layer (mapping R? to RY)

¢ Nonlinear activation: ReLU

¢ Fully-connected layer (mapping RYtoR d)

¢ Nonlinear activation: ReLU

e rully-connected layer (mapping R to R9Y)

¢ Nonlinear activation: Divide each vector by its
Euclidean norm

e rully-connected layer (mapping RY to R)
Thesecond-to-laStbulletpoi"tdoeSnotuseReLU the

activation and instead normalizes vectors to have -1

Euclidean norm 1. We deSign the arChitecture in

tions) and 1 (the two vectors poin in exactly the same  this manner since we shall set the eMbedding space
direction), we are guaranteed that proj (x) B [-1,1]. that we visualize to be the representation immediately

TO create visualvizations, we plug in the visualization  after this second-to-last bullet point’s layer, i.e., the
raW inputs g ¥i-1 into the projection operator proj, encoder ¢ consists of all layers except for the last For

notation, we write p¥ B proj (xV) to be the fully-connected layer. Thus, the output of ¢ has in-projection
of the i-th visualization input along anchor formation stored purely in terms of angles and not
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magnitudes (since Bo(x)& = 1 for all x @ X). This
helps reduce information loss in our visualizations

(more details are in Section 3.6). We also show visu-

alizations in Appendix B.3 where this second-to-last
bullet point uses ReLU activation instead.

When training DeepSurv, we hold out 20% of the
training set to treat as validation data for hyperpa-

rameter tuning. The hyperparameter grid used (e.g.,

number of fully-connected layers, embedding space
dimension d, optimizer learning rate and batch size)
is stated in Appendix B.1. After training DeepSurv
(including hyperparameter tuning), the learned model
achieves a test set concordance index (Harrell et al.,
1982) of 0.617. We provide this accuracy metric for

reference; our visualization framework can be used

regardless of the accuracy of the model(ideally,an
accurate model should h,ve an e bedding space that
“captures” application-specific structury).

As stated above, we take the encoder ¢ to be all the
layers of f prior to the last fully-connected layer. We
split the test set so that 25% of it is used as the anchor
direction estimation data {x ,%y; ,/5; Wi.1: the rest
used to obtain visualization raw inputs {x"}in i=\'/1

Anchor directions are estimated via clustering as
described in Section 3.2.1. Since we have designed

the neural network architecture so that all outputs
of encoder ¢ have Euclidean norm 1, clustering can
be done using a mixture of von Mises-Fisher distribu-
tions (von Mises, 1918), which is the analogue of the
Gaussian mixture model for Euclidean vectors with
norm 1. We specifically fit this mixture model using
the Expectation-Maximization algorithm implementa-
tion by Kim (2021) and choose the number of clusters
k based on the heuristic we presented in Section 3.2.1.
In fact, Figure 1 is precisely the plot we get. Through-
out this section, we set the number of clusters to be
k = 5 and, for illustrative purposes, we only show vi-
sualizations for the first cluster found. Visualizations
for all 5 clusters and interpretations of these visual-
izations are in Appendix B.2, where we also discuss
results when using other numbers of clusters and a
different clustering algorithm altogether.

We separately also apply our visualization frame-
work to tabular data on survival times of breast cancer

Neural Survival Analysis Models

also explain why our framework remains valid when
training and test data are independent of each other
and come from different distributions.

3.4.1. Visualizing an Anchor Direction with
a Single Continuous Raw Feature

Let n be one of the anchor directions estimated,
and let j {1,2,...,D} be the raw feature that
we want to visualize, where we assume that this
feature is continuous-valued. Using the visualiza-
tion raw inputs {x‘i’}’i‘zvl, we compute the projec-
tions pY @ proj JXV), e anv proj glx"vn), and
we write (xY); to mean the j-th coordinate of
vector xY. Then w& can make a scatter plot of
(pvll (XV]_) J')I (pVZ' (XVZ) j)l R (p\/nv’ (Xvnv) J) As a con-
crete example of this, for the DeepSurv model trained
on the SUPPORT dataset, using the anchor direction
corresponding to the first cluster found, and using
“age” as the raw continuous feature to be visualized,
we obtain the plot in Figure 2. We see that as the pro-
jection value increases (where a value of 1 maximally is
aligns with the anchor direction), the age distribution
tends to shift upward, suggesting that this anchor
direction js associated with older patients.

3.4.2. Visualizing an Anchor Direction with
Discrete or Continuous Raw Features

We can modify the above visualization idea to handle
a discrete feature by having the y-axis of the plot
correspond to specific discrete values that the feature
can take on, and separately discretizing the x-axis into
a user-specified number of bins (e.g., evenly spaced
bins from the minimum to maximum observed projec-
tion values). In doing so, we replace the scatter plot
with what we call a raw feature probability heatmap,
where the intensity at the i-th row and j-th column
is the fraction of visualization data patients in the
j-th projection value bin who have the i-th row’s fea-
ture value. Even for a continuous feature, we can
discretize it based on a user-specified discretization
strategy (e.g., based on quartiles) so that all features
(continuous or discrete) can be visualized together as

patients. Specifically, we visualize an embedding space a large heatmap. Using the same anchor direction as of a

DeepSurv model trained using the Rotterdam
(Foekens et al., 2000). We treat the GBSG
(Schumacher et al., 1994) as the test data
(that we split into anchor estimation and visualization
data). Due to space contraints, we defer the visualiza-
tion results for this setup to Appendix C, where we

where

in Figure 2, we get the resulting heatmap in Figure 3, dataset

the different underlying features are separated dataset

by black horizontal lines in the heatmap.

Along the x-axis of the heatmap, the projection bins
in this case are 7 evenly spaced bins between the mini-
mum and maximum observed projection values —0.99
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Figure 2: Scatter plot of a single continuous raw fea-
ture (age) vs projection values along clus-
ter 1’s anchor direction. Plots for all clus-
ters are in Appendix B.2 (Figure B.1).
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Figure 3: Raw feature probability heatmap: the in-
tensity of the i-row, j-th column indicates
the fraction of visualization data in the j-th
projection bin that have the i-th row’s fea-
ture value. Heatmaps for all clusters are in
Appendix B.2 (Figure B.2).

and 0.99 respectively. The first (leftmost) bin corre-
sponds to the interval P, = [-0.99,-0.71) with mid-
point value -0.85 = 1(-0.99 - 0.71), the second bin
corresponds to the interval P, = [-0.71, -0.43) with
midpoint value -0.57, and so forth. The last (right-
most) bin corresponds to the interval Py = [0.71,0.99]
with midpoint value 0.85; only this last bin’s interval
includes the right endpoint.

We can readily see some trends in Figure 3. As
already revealed in Figure 2, age tends to increase as
the projection value increases for cluster 1’s anchor
direction. However, we also see other trends as the
projection value increases, such as the number of
comorbidities tending to be at least 1 or cancer status
tending to be “metastatic”. In particular, this cluster
seems to correspond to patients who are more ill.
Indeed, these patients tend to have shorter predicted
survival times, as we show later in Section 3.4.4.

3.4.3. Statistical Tests to Find “Important”
Variables for an Anchor Direction

In Figure 3, some features have noticeable trends
as the projection value increases whereas others do
not. We may want to focus on features that are the
“most important” as they relate to anchor direction p
(especially for datasets with a large number of features,
displaying all features would be impractical). We now
show how to rank raw features using statistical tests
of association between two variables, for which one
of the variables we take to be the projection value
along u (or a discretized version of this projection
value), and the other variable will be one of the D
raw features (or a discretized version of it).

The first test we could use to rank features is based
on the heatmap visualization from Figure 3: consider
a single raw feature (such as “white blood count”) and
note that the heatmap restricted to that raw feature
(i.e., the heatmap that only looks at the discretized
white blood count vs discretized projections) is a
contingency table, for which we can run Pearson’s chi-
squared test to assess whether white blood count and
the projection value are independent. We could repeat
this for all the different raw features (note that for
raw features that are indicator random variables, we
would have to add a row corresponding to one minus
the indicator before running the statistical test) and
rank the raw features based on the p-values obtained.
Doing so, we obtain the ranking shown in Table 1.
Again, this ranking could be used in constructing raw
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Table 1: Ranking of raw features based on the p-value
of Pearson’s chi-squared test (for cluster 1,
the same cluster visualized in Figures 2
and 3); rankings for all clusters are provided
in Appendix B.2 (Table B.1).

Rank

Feature p-value
1 cancer 2.86x 107225
2 age 1.04x 10745
3 number of comorbidities 1.91x 107
4 mean arterial blood pressure  9.25x 107%°
5 diabetes 2.46x 10714
6 dementia 4.15x 10711
7 temperature 1.58x 1070
8 heart rate 3.34x 107°
9 female 1.07x 10°°
10 serum creatinine 1.21x 10°°
11 race 3.42x 107°
12 white blood count 7.02x 10:i
13 respiration rate 4.54x 10
6.14x 1072

serum sodium

feature probability heatmaps, where we choose to only
visualize a few top-ranked features.

A limitation of this chi-squared approach is that
it requires projection values and raw features to be
discretized. If the raw features are all continuous or
ordinal, then one could use a different statistical test
to compare projection values (without discretization)
to each raw feature (also without discretization), such
as using Kendall’s tau test (Kendall, 1938) (which
checks for a monotonic relationship between a pair
of variables). If the raw features are all categorical,
then instead the Kruskal-Wallis test by ranks could
be used (Kruskal and Wallis, 1952).

Importantly, when using any of these statistical
tests mentioned above, we suggest that the modeler
check the assumptions of the test to see whether the
test is appropriate for the particular dataset under ex-
amination. One of the common assumptions the tests
have are that the input data points given to the tests
are independent, which we have taken care to achieve
by having the visualization data be separate from the
training and anchor direction estimation data.

Separately, note that we have not stated how to
pick a threshold for how small a p-value should be to
flag a raw feature as “important”. From a visualiza-
tion standpoint, we think that providing a ranking is
suficient; the modeler can arbitrarily decide on how
many top features to focus on or to visualize, which is
equivalent to choosing an arbitrary p-value threshold.
We discuss how to choose a threshold that controls
for a desired false discovery rate in Appendix A.3.

Lastly, an important limitation of the general strat-
egy we have stated for ranking raw features is that
each statistical test is applied in a manner where we
do not account for possible interactions between dif-

ferent raw features. We mention two methods that
could help determine interactions in Appendix D.

3.4.4. Visualizing an Anchor Direction with
Time-to-Event Outcomes

To relate an anchor direction to time-to-event out-
comes, we again use a heatmap. We set the x-axis
to be the same as in Figure 3. As stated in Sec-
tion 3.4.2, the x-axis (corresponding to projection
values along the anchor direction for cluster 1) has
been discretized into projection value bins that are in-
tervals. We specifically had P; = [-0.99,-0.71), P, =
[-0.71,-0.43),...,P7 = [0.71,0.99]. Then note that
the j-th projection interval P; corresponds to the
following visualization data points:

I B{iB{1,2,...,n"} s.t. proj (x") BP;}. (8)
Then letting H{t|x) denote the neural survival anal-
ysis model’s prediction of the conditional survival
function for raw input x (e.g., for DeepSurv, we use
equation (2)), we can compute the following average
predicted survival function for the j-th projection bin:

omE L7 ot]x"). (9)

) limii

We plot the function ®; as the j-th column of the
heatmap, where the y-axis uses a discretized time grid
(e.g., evenly spaced time points between the minimum
and maximum observed times in the training data).
The resulting heatmap (which we call a survival prob-
ability heatmap) is in Figure 4. For high projection
values (e.g., looking at the rightmost column), the
survival probability decays quickly as time increases
(starting from the bottom and going upward in the
heatmap), suggesting that the patients whose embed-
ding vectors align the most with this anchor direction
tend to have short suryival times.

3.5. Handling Images as Raw Inputs

We now turn to working with images as raw inputs,
where we intentionally examine a dataset that has
known ground truth structure for what the embed-
ding space should capture. This helps us see to what
extent the learned embedding space we examine re-
covers this ground truth structure. Specifically, we
use the Survival MNIST dataset, which is the MNIST
handwritten digit dataset (LeCun et al., 2010) mod-
ified by Polsterl (2019) to have survival labels, i.e.,
observed times and event indicators. How Polsterl
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Figure 4: Survival probability heatmap: using the
same anchor direction as in Figure 3, we
show how projection values along this an-
chor direction relate to predicted survival
probabilities over time; the intensity at the
i-th row and j-th column is the survival
probability for the j-th projection bin at
the i-th discretized time. Heatmaps for all
clusters are in Appendix B.2 (Figure B.3).

generates these labels depends on some distributional
settings, for which we use the same settings as Gold-
stein et al. (2020). In particular, each of the 10 digits
has a mean survival time shown in Figure 5. Each
image’s true survival time is sampled based on the
digit of the image (e.g., all images of digit 0 have
true survival times sampled i.i.d. from a Gamma dis-
tribution with mean 11.25 and variance 10-3). The
censoring times are sampled from a uniform distribu-
tion so that the overall censoring rate is roughly 50%.
Also, all images of digit 0 have observed times that are
censored. More dataset details are in Appendix E.1.
Using the training set (60,000 data points: each
consists of an image, observed time, and event indi-
cator), we learn a DeepSurv model where the base
neural network is a convolutional neural network (ar-
chitecture and training details are in Appendix E.2).
Importantly, the digit labels (which digit each image
corresponds to) are not available during training. We
split the test set (10,000 data points), using 25% of
it as anchor direction estimation data and the rest as
visualization data. For test data, we assume that we
have access to their digit labels, which helps us assess
whether the embedding space learns what digits are.
First, we use anchor directions defined by concepts
of digits. For example, anchor direction estimation
data corresponding to digit 0 represents the concept

“digit 0”. For digit 0’s anchor direction (computed
are using equation (6)), we can discretize the projection

Digit 8~ ¢Digit1 9> Digit 5 Digi{? Di%ito
Digit6)  Digit4’ ‘Digit 2 Digit 77
Figure 5: Survival MNIST dataset: each digit has a

different ground truth mean survival time.
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Figure 6: Survival MNIST random input vs projec-
tion plot: we display 10 random visualiza-
tion raw inputs per projection bin.

equation (8)). For projection bin P;, we can randomly
sample, for instance, 10 raw input images correspond-
ing to points in 1; and display these images along the
y-axis. The resulting random input vs projection plot
is shown in Figure 6.3 We see that as the projection
values get large, the images that get sampled tend to
be of digits 0, 7, and 9. These digits have the highest
ground truth mean survival times (see Figure 5).
Due to space constraints, we defer additional Sur-
vival MNIST visualizations to Appendix E.3. The
key findings are as follows. First, note that the digits
have mean survival times ranked as 8, 6, 1, 4, 3, 2,
5,9, 7, 0 (see Figure 5). We refer to two digits as
“adjacent” if they are ranked next to each other (e.g.,
digits 1 and 4 are adjacent). We find that the learned
embedding space tends to have the j-th digit’s anchor
direction align well with embedding vectors of the
j-th digit’s images as well as those of other adjacent
digits (e.g., digit 1 images tend to have high projec-
tion values for digit 4’s anchor direction). Because
the embedding space is not learned in a manner that
knows what the different digits are, the 10 digits do
not get “disentangled” in the embedding space. Treat-
ing data that are censored as a “concept”, we find
that the embedding space recognizes which digits
more censored than others. Meanwhile, we also

show values of visualization raw inputs into projection-bi

Pi,...,Pm where m is the number of bins, just as
we did with tabular data.

corresponds to a subset | of visualization data (seé
i

3When the encoder uses a convolutional layer, it is
sible to make a variant of Figure 6 where instead of displaying

Each projection binl® pos-

random raw inputs per projection bin, we display a convolution
filter’s outputs of these random raw inputs instead.
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that if we estimate anchor directions using clustering,
the violin plot we use to help select the number of
clusters sharply increases in p-values after 9 clusters,
as expected (digit 0 is the only one that is always
censored making it dificult to learn).

We point out that survival probability heatmaps
like the one in Figure 4 are not specific to tabular
data as they do not depend on raw features; they
can be created the same manner when raw inputs are
images. Furthermore, if raw images are converted into
a tabular format (e.g., by running object detectors and
representing each image as a feature vector specifying
how often each object appears), then our tabular data
visualization strategies could of course be used.

3.6. Loss of Magnitude Information

Our visualization framework is based on angular in-
formation: projection values are cosine similarities,
which measure angles between vectors, disregarding
their norms (or magnitudes). In the extreme case

where the “information content” of the embedding
vectors are all in magnitudes and not angles, the only
possible projection values are -1 and 1; projection

values within the open interval (-1, 1) are not possible.
Thus, all our visualizations where the x-axis is based
on projection values would only need two projection

bins for -1 and 1. We formally state this theoretical

result and provide its proof in Appendix F.

When working with real data, the information in
the embedding space will typically not be entirely in
angles or entirely in magnitudes. As more informa-
tion is stored in magnitudes, our visualizations based
on projection values will start exhibiting this phe-
nomenon where the projection values “clump up” at
-1 and 1. An example of this visualization artifact for
DeepSurv trained on the SUPPORT dataset (without
the nonlinear activation that normalizes the embed-
ding vectors to have norm 1) is in Appendix B.3.

Reducing information loss. Since the modeler
can often choose the encoder @ when designing the
neural network architecture of f, the encoder ¢ could
be chosen as to avoid storing information in magni-
tudes, which would reduce the information lost by
using our framework. We had precisely done thisin
Section 3.4 when we constrained the output of ¢ to
have Euclidean norm 1. This “norm 1” constraint
alone could still sometimes not lead to enough angular
information stored (e.g., if the embedding space Py is
highly concentrated so that nearly all embedding
vectors randomly sampled from it point in almost
the same direction). A recent theoretical and empiri-

cal insight when working with a “norm 1” constraint
(technically referred to as working with vectors on
a hypersphere) is to add regularization that encour-
ages the embedding vectors to have angles that are
“diverse” (closer to uniformly distributed in all direc-
tions). Adding this regularization improves prediction
accuracy for a variety of neural network architectures
(Wang and Isola, 2020; Liu et al., 2021). This diver-
sity would, in our visualization context, lead to to
having the projections onto anchor directions be more
dispersed across the interval [-1, 1] instead of being
“clumped up” around specific points within [-1, 1].

4. Discussion

We have presented a visualization framework that is
meant to help developers of neural survival analysis
models better understand what their models have
learned. Importantly, the visualizations we have pro-
posed only reveal possible associations related to an
embedding space. No causal claims are made. In
focusing on examining one embedding space at a time,
our framework is not designed to explain how the
overall neural survival analysis model actually makes
predictions. We believe that our visualization strate-
gies would be helpful in assessing whether a model
has internally learned associations that agree with ex-
isting clinical literature, or to see if the model surfaces
new associations that warrant further investigation.

While we have developed our framework for survival
analysis, it can be modified to support other predic-
tion tasks. For example, to support classification, it
sufices to make two changes. First, the clustering
approach for estimating anchor directions would be un-
necessary since we could take the anchor directions to
be the average embedding vector for each class, minus
the center of mass across embedding vectors. Second,
to relate an embedding space to predicted class dis-
tributions instead of survival time distributions, we
could estimate and visualize the probability of dif-
ferent classes per projection bin instead of using our
proposed survival probability heatmaps. Although
our framework can easily be adapted to classifica-
tion, whether it offers any advantages over the many
existing visualization tools for classification (e.g., Sel-
varaju et al. 2016; Zhou et al. 2016; Dabkowski and
Gal 2017; Shrikumar et al. 2017; Smilkov et al. 2017;
Kim et al. 2018) is unclear. Better understanding the
advantages and disadvantages of our framework in
prediction tasks beyond survival analysis would be an
interesting direction for future research.
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Appendix A. Statistical
Considerations

A.1. What Happens if Anchor Direction
Estimation Data were the Same as the
Training Data

Suppose that the anchor direction estimation data

{(x}, y*, §A)}I’;A1 were actually the same as the train-

ing data {(xi, yi, 8i)}7, , so that n® = n and x* = x;

fori = 1,...,n. Since the training data were used to

learn @, then @ itself depends on all the training data.

Thus, the embedding vectors of the anchor direction

estimation data would be u* = @(x*) = @(xi) for

eachi = 1,...,n. This means that u/*, ..., lg‘AA would
no longer be guaranteed to be independent since they
each depend on ¢ which in turn depends on all of the
training data (and thus all of the anchor direction
estimation data).

A.2. Comments on the Log-rank Test

The log-rank test, like other statistical hypothesis
tests, is designed under certain assumptions, where
checking these assumptions is important if one wants
the resulting p-values computed to be statistically
valid. One case these assumptions hold is if in addition
to the survival analysis setup stated in Section 2.1,
We further assume that:

(i) the conditional censoring time distribution P¢x
is independent of raw inputs and is thus equal to
the marginal censoring time distribution P¢;

(ii) the true underlying hazard function h(t|x) satis-
fies the proportional hazards assumption (1).

To provide some intuition, condition (i) ensures that
when comparing any two clusters using the log-rank
test, the censoring patterns for the two clusters “look
the same”. To see why this is important, consider
an extreme example where two clusters truly have
the same underlying survival time distribution but
their censoring patterns are so different that one of
the clusters always has all its observations censored
whereas the other has no observations censored. In
this case, we would not be able to tell that these two
clusters have the same survival time distribution.

The justification for condition (ii) is more technical.
One observation is that the log-rank test for compar-
ing two clusters can be shown to be equivalent to a
statistical test for the Cox proportional hazards model
(specifically the so-called “score test”) that checks for
association between the survival time and an
tor variable stating which of the two clusters a data
point is in (Harrell, 2015, Section 20.4). For more
theoretical justification, see the books by Fleming

and Harrington (1991, Chapter 7) and Andersen et al.
(1993, Chapter V).

A.3. P-value Thresholding to Control for a
Desired False Discovery Rate

For a specific anchor direction p, we rank raw features
by computing p-values of a statistical test (such as
the chi-squared test of independence) that quantifies
the strength of the association between each raw fea-
ture and projections along u. These tests are not
independent of each other because all tests use the
same projection values along the same direction p. To
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determine a p-value threshold that appropriately con-
trols for false discovery rate across multiple statistical
tests with arbitrary dependence between them, one
could use, for instance, the method by Benjamini and
Yekutieli (2001).

Appendix B. SUPPORT Dataset
Experiment

B.1. Hyperparameter Grid and Optimization
Details

We train the neural network using minibatch gradient

descent with at most 100 epochs and early stopping

(no improvement in the validation concordance index

after 10 epochs). We specifically use the Adam op-

timizer (Kingma and Ba, 2014). We sweep over the

following hyperparameters:

e Batch size: 64, 128

e Learning rate: 0.01, 0.001

¢ Number of fully-connected layers in encoder ¢: 1,
2,3,4

e Embedding dimension d: 5, 6, 7, 8, 9, 10

Our code is written using PyTorch (Paszke et al.,

2019).

Compute instance. We ran our code on a Ubuntu
22.04.1 LTS machine with an Intel Core i9-10900K
CPU (3.7GHz, 10 cores, 20 threads) with 64GB RAM
and a Quadro RT X 4000 GPU (with 8GB GPU RAM).

B.2. Additional Visualizations Using an
Encoder With the Euclidean Norm 1
Constraint

In the main paper, we only showed visualizations for
the first cluster found out of the 5 clusters used in
the 5-component mixture of von Mises-Fisher distri-
butions. We include scatter plots of age vs anchor
projections for all 5 clusters in Figure B.1, raw feature
probability heatmaps for all 5 clusters in Figure B.2,
raw feature rankings for all 5 clusters in Table B.1,
and survival probability heatmaps for all 5 clusters in
Figure B.3.

Interpreting the visualizations. From the visual-
izations, we can see some patterns, where for simplicity
we mention only a few per cluster (e.g., looking at
the top few features per cluster in Table B.1 already
provides insight); we list these clusters in order of how
fast their survival probability heatmap’s rightmost col-
umn decays (starting from the fastest decay, indicative
of survival times that tend to be the shortest):
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Figure B.1: SUPPORT dataset: scatter plots of age
vs projection values for a DeepSurv model
where the encoder has a Euclidean norm 1
constraint. The projection values are
along each cluster’s anchor direction (for
all 5 clusters in a 5-component mixture
of von Mises-Fisher distributions). The
plot only for cluster 1 is in Figure 2.
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¢ (Fastest survival probability decay) Cluster 1 is, as
already stated in Sections 3.4.2 and 3.4.4, associ-
ated with patients being more elderly and having
metastatic cancer and at least one comorbidity.

e Cluster 5 is associated with patients who are elderly,
have low or normal temperatures, and often have
cancer (non-metastatic or metatstatic). Similar to
cluster 1, cluster 5 is largely also associated with
patients having at least one comorbidity.

e Cluster 2 is associated with patients having high
temperatures (indicative of a fever), high sodium
levels, and lower ages.

mixture model instead. Again, we defer the resulting
visualizations to our code repository except for the
violin plot, which we show in Figure B.4. Qualita-
tively, the clusters found for the same choice of k was
somewhat similar to what we get using a mixture of
von Mises-Fisher distributions, although of course the
clusters are not entirely the same. The violin plot
ends up looking a bit different: we see in Figure B.4
that the p-values tend to be very small for k = 2 and
k = 3, and then they increase a bit at k = 4, and even
more at k = 5 (the highest point in the violin plot
significantly increases from k = 4 to k = 5 and then it

e Cluster 3 is associated with patients without cancer, stays very high for all values of k > 5 that we tried). with

low or normal temperatures, and ages that are
neither low nor high.
* (Slowest survival probability decay) Cluster 4 is

Ultimately, we have left the choice of which cluster-
ing algorithm to use up to the user. We suspect that
a “good” choice of clustering algorithm would be able

associated with patients who are young, do not to find a larger number of clusters while keeping the have

cancer, and (compared to patients with high

p-values low in the violin plot. For instance, using a

projection values for the other clusters) often do mixture of von Mises-Fisher distributions, the violin not

have any comorbidities.

These interpretations are not surprising in that be-
ing elderly, having cancer, and having at least one
comorbidity intuitively should be associated with a
patient being more ill and tending to have shorter
survival times. Similar findings for the same dataset
but using a different neural survival analysis model
have been reported previously by Chen (2022). Note
that the above ranking of clusters was determined
gualitatively by looking at the survival probability
heatmaps. In fact, an approach we suggest for ranking
clusters/anchor directions by median survival time
estimates in Appendix G yields the same ranking.

Using different numbers of clusters and a dif-
ferent clustering algorithm. We have also sepa-
rately tried using different numbers of clusters (aside
from k = 5) with the mixture of von Mises-Fisher
distributions. As the resulting visualizations do not
convey much more insight than what we have already
presented, we defer these to our code repository. Qual-
itatively, we found the following: using k < 5 results
in “coarser-grain” clusters, each of which look like
a combination of the clusters we found with k = 5,
and using k > 5 results in “finer-grain” clusters al-
though some of these finer-grain clusters have raw
feature probability (and, separately, survival proba-
bility heatmaps) that look very similar (so that some
of these clusters should probably be merged into a
single cluster as they correspond to similar raw feature
patterns and survival time distributions).

We also repeated this exercise of trying different
numbers of clusters where we cluster using a Gaussian

plot has very low p-values for up to k = 5 in Figure 1.
In contrast, the violin plot we get using a Gaussian
mixture model for the sameembedding vectors has
low p-values only up to k = 3 as shown in Figure B.4.
This suggests that the clusters found for the Gaussian
mixture model do not distinguish the embedding vec-
tors as well in terms of surviyal outcomes compared
to the mixture of von Mises-Fisher distributions.

B.3. Visuarations ysing an Encoder Without
the Euclidean Norm 1 Constraint

We now present results using the exact same setup

as described in Section 3.4 and detailed in Appen-
dices B.1 and B.2, where the only differences are that:

(i) the final nonlinear activation layer in the encoder ¢
is ReLU instead of dividing the intermediate represen-
tation by its Euclidean norm, and (ii) the clustering
model used in the embedding space is a Gaussian

mixture model. For reference, this model achieves a

test set concordance index of 0.615, which is close to

what was achieved with the model that includes the

Euclidean norm 1 constraint.

The violin plot for selecting the number of clusters
is shown in Figure B.5, where we choose the number
of clusters to be k = 3. For this 3-component Gaus-
sian mixture model, we find the anchor directions
corresponding to its 3 clusters and then show scatter
plots of age vs anchor projections of all 3 clusters
in Figure B.6, raw feature probability heatmaps for
all 3 clusters in Figure B.7, raw feature rankings in
Table B.2, and survival probability heatmaps for all 3
clusters in Figure B.8.
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Figure B.2: SUPPORT dataset: raw feature probability heatmaps for a DeepSurv model where the encoder
has a Euclidean norm 1 constraint. These heatmaps are for all 5 clusters’ anchor directions
(clusters are from a 5-component mixture of von Mises-Fisher distributions). The heatmap
only for cluster 1 is also shown in Figure 3.
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Table B.1: SUPPORT dataset: rankings of raw features based on the p-value of Pearson’s chi-squared test
for a DeepSurv model where the encocder has a Euclidean norm 1 constraint. These tables are
for all 5 clusters in a 5-component mixture of von Mises-Fisher distributions. The ranking table

only for cluster 1 is also in Table 1.

Cluster 1 Cluster 2
Rank Feature p-value Rank Feature p-value
1 cancer 2.86 x 1 temperature 6.73 x
2 10 1.04 2 10 2.42
age e 225 ase . 181
3 number of comorbidities - 3 serum sodium N
x 107451.91 x 10740 4.06
4 mean arterial blood pressure 10-249.25 4 female x 10-376.42
5 diabetes x 10719 2:46 5 cancer x 10732 2:09
6 dementia x 10-144.15 6 mean arterial blood pressure 10-273.01
7 temperature x 10-11 1.58 7 respiration rate % 10_182'43
8 heart rate x 10-10 3'34 8 number of comorbidities x 10-12 3.80
9 female x 10-9 1.67 >< 9 heart rate x 10-8 4.64 "
10 serum creatinine 10-61.21 x 10 white blood count 10-82.87 x
11 race 10-63.42 x 11 serum creatinine 10-52.89 x
12 whitie bl.ood count 10-57.02 x 12 r.a.1ce 10-31.78 x
13 respiration rate 10-54.54 x 13 diabetes 10-23.56 x
14 serum sodium 10-46.14 x 14 dementia 10-26.41 x
102 101
Cluster 3 Cluster 4
Rank Feature p-value Rank Feature p-value
1 cancer 6.26 x 1 cancer 6.12 x
2 10 2.93 2 10 1.48
temperature 183 age . 185
3  age x 10-751.75 3 number of comorbidities x 10-991.09
4 female x 10-37 1'35 4 mean arterial blood pressure " 10_184'24
5 number of comorbidities o4 m 5 dementia 154
x 107243.05 x 107151.29
6 white blood count x 10-206.74 6 diabetes x 10-131.71
7 heart rate x 10-161.58 7 temperature x 10-81.85 x
8 respiration rate x 10-121.04 8 serum sodium 10-61.37 x
9 mean arterial blood pressure 10-10 1-28 9 serum creatinine 10-4 1.65 %
10 serum sodium x 10-9 139 < 10 respiration rate 10-4 1:69 «
11 serum creatinine 10-91.19 x 11 race 1074 4.96 x
12  race 10-82.44 x 12 female 10-47.54 x
13 dementia 10-7 6.06 x 13 white blood count 10-44.61 x
14 diabetes 10-56.16 x 14 heart rate 10—3 1.53 x
103 10-2
Cluster 5
Rank Feature p-value
1 age 4.47 x
10- 4.88
2 cancer 130
3 temperature x 10-
4 serum sodium 114
5 mean arterial blood pressure 1.09x 10-42
6 number of comorbidities 2.35x 10717
7 dementia 6.81x 10717
8 race 9.90x 10-14
9 heart rate 1.66x 10713
10 respiration rate 6.59x 1074
11 serum creatinine 2.06x 1073
12 diabetes 2.05x 1072
13 white blood count 7.25x 1072
14 female 8.99x 1072
2.60x 1071
3.98x 107!
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Figure B.3: SUPPORT dataset: survival probability heatmaps for a DeepSurv model where the encoder

has a Euclidean norm 1 constraint. These heatmaps are for all 5 clusters’ anchor directions
(clusters are from a 5-component mixture of von Mises-Fisher distributions). The heatmap

only for cluster 1 is also in Figure 4.
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Figure B.4: SUPPORT dataset: a violin plot to help
select the number of clusters (and thus
the number of anchor directions) to use
with a clustering model. Here, the en-
coder used is from a DeepSurv model
that has a Euclidean norm 1 constraint,
and the clustering model is a Gaussian
mixture model.

10

A key poi t we want to emphasize is that in the
scatter plots (Figure B.6) we can see the “clumping
direction.
up” artifact we mentioned in Section 3.6 that indicates
that there is likely a lot of magnitude information lost
(specifically, a lot of the points in the scatter plot
“clump up” around -1 an 1).

In this case, the top features across clusters are
largely the same (Table B.2). From looking at the
raw feature probability heatmaps (Figure B.7), focus-
ing on the largest projection bin per heatmap, we
find that clusters 1 and 2 actually appear quite simi-
lar: both appear to be associated with older patients

who often have cancer and at least one comorbidity.

These are the same main findings as for the version of
the model that used the Euclidean norm 1 constraint.
In fact, even if we used 2 clusters, we get the same
main findings.

We point out that the major challenge when there
is a lot of information loss due to magnitudes being
ignored is that our visualization heatmaps will end
up each consisting of essentially only two projection
bins along the x-axis (that have enough data in them:
one that contains projection values around -1 and
the other that contains projection values around 1).
In this case, we could still of course find interesting
relationships of how a raw feature changes with respect

to an anchor direction but we would only be seeing
what this change looks like (if there is any) at two
x-axis values. We would only be able to check for
monotonic trends between how a raw feature relates to
two projection values along a specific anchor

Appendix C. Rotterdam/GBSG
Experiment

As mentioned in this main paper, we also have visu-
alizations where we train on the Rotterdam dataset
(using the exact same neural network architecture
as we used for SUPPORT, including the Euclidean
norm 1 constraint; we specifically use the same hyper-
parameter grid and optimization strategy as detailed
in Appendix B.1). For reference, when we test

on In contrast, cluster 3 appears to be associated with the GBSG dataset, we get a concordance index

of younger patients without cancer. Meanwhile, the sur-
randomly vival probability heatmap (Figure B.8) indicates that
as the an-indeed clusters 1 and 2 are associated with survival

0.677. For the visualizations to follow, we
choose 25% of the GBSG dataset to treat
chor direction estimation data, and we use

the feature functions that decay quickly (indicative of the sur- vectors from the rest of the data as the

visualization vival times tending to be shorter) whereas cluster 3 is

raw inputs xV, ..., x%. Note

1

that technically how associated with a survival function that decays slowly. we have set up the DeepSurv

model here violates
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Figure B.6: SUPPORT dataset:
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20

-1.0 -0.5 0.0 0.5 1.0
Projection onto anchor direction for cluster 3

scatter plots of
age vs projection values for a DeepSurv
model where the encoder does not have
a Euclidean norm 1 constraint. The pro-
jection values are along each cluster’s an-
chor direction (for all 3 clusters in a 3-
component Gaussian mixture model).

Table B.2: SUPPORT dataset: rankings of raw fea-
tures based on the p-value of Pearson’s chi-
squared test for a DeepSurv model where
the encoder does not have a Euclidean
norm 1 constraint. These tables are for
all 3 clusters in a 3-component Gaussian
mixture model.

Cluster 1
Rank Feature p-value
1 cancer 4.35x 107176
2 age 2.90x 1034
3 dementia 9.15x 10715
4 number of comorbidities 4.76 x 10714
5 heart rate 6.93x 107°
6 mean arterial blood pressure 2.48x 1078
7 diabetes 3.43x 107°
8 female 4.77 x 107>
9 white blood count 5.63x 1074
10 temperature 5.94x 1073
11 respiration rate 1.31x 1071
12 serum creatinine 3.13x 1071
13 serum sodium 3.32x 1071
14  race 5.28x 1071
Cluster 2
Rank Feature p-value
1 cancer 3.41x 107175
2  age 8.46 x 10736
3 dementia 6.14x 1071°
4 number of comorbidities 1.38x 1072
5 heart rate 7.64x 10710
6 mean arterial blood pressure 1.98x 1078
7 diabetes 6.49x 1073
8 female 9.97x 107
9 temperature 8.66 x 10:2
10 white blood count 1.71x 10_2
11  serum sodium 2.14x 10
12 race 2.45x 107
-1
13 serum creatinine 245 1071
14 respiration rate 4.42x 10
Cluster 3
Rank Feature p-value
1 cancer 1.34x 107175
2 age 4.95x 10734
3 dementia 9.15x 107*®
4 number of comorbidities 3.29x 107!
5 heart rate 1.48x 1078
6 mean arterial blood pressure 8-29x 1078
7 diabetes 6.40x 107°
8 female 1.25x 107*
9 white blood count 1.49x 10:2
10 temperature 1.31x 1071
11 respiration rate 1.59x 1071
12 serum creatinine 1.60x 10
13 race 2.18x 1071
-1
14  serum sodium 3.04x 10
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Figure B.7: SUPPORT dataset: raw feature probability heatmaps for a DeepSurv model where the encoder
does not have a Euclidean norm 1 constraint. These heatmaps are for each cluster’s anchor
direction (for all 3 clusters in a 3-component Gaussian mixture model).
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Figure B.8: SUPPORT dataset: survival probability heatmaps for a DeepSurv model where the encoder does
not have a Euclidean norm 1 constraint. These heatmaps are for each cluster’s anchor direction
(for all 3 clusters in a 3-component Gaussian mixture model).

Table C.1: Rotterdam/GBSG datasets: rankings of raw features based on the p-value of Pearson’s chi-squared
test for a DeepSurv model where the encoder has a Euclidean norm 1 constraint. These tables are
for all 3 clusters from a 3-component mixture of von Mises-Fisher distributions.

Cluster 1 Cluster 2
Rank Feature p-value Rank Feature p-value
1 age 6.22x 107°9 1 number of positive nodes 1.58x 107°8
2 postmenopausal 1.36x 10740 2 hormonal therapy 432x 10714
3 number of positive nodes 3.51x 10727 3 tumor size 2.52x 107°
4  estrogen receptor 2.67 x 10714 4  progesterone receptor 6.66 x 107°
5 progesterone receptor 1.99x 1077 5 age 1.47x 107°
6 tumor size 411x 1075 6 estrogen receptor 5.02x 1074
7 hormonal therapy 8.39x 1073 7 postmenopausal 6.31x 1072
Cluster 3
Rank Feature p-value

1 age 1.07 x 1073°

2 postmenopausal 5.56x 10733

3 number of positive nodes 2.61x 1073°

4 hormonal therapy 2.47 x 10710

5 estrogen receptor 2.05x 1073

6 tumor size 2.61x 1071

7 progesterone receptor 2.62x 1071
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the i.i.d. assumption between training and anchor di-
rection estimation data, as well as the assumption
that the visualization raw inputs come from the same
distribution as the raw inputs of the training data.
However, our visualization framework still actually
works when the training data are sampled differently.
We discuss this in a bit more detail next before going
over the resulting visualizations.

A differeNt digtributign for trgining dgata.
have cancer Section 3, when we discussed statistical assumptions
well. This and sample splitting, we had, for simplicity, assumed
quite Sig-¢hat the tr aining data and anchol dif ection estimation
associated data Were sampled i.i.d. from the distribution (whi®h

probability
technically is a joint distribution Px,v,a defined for
raw input X with observed time Y and event indi-
cator A; here, X, Y, and A are random variables),
and that the visualization raw inputs are drawn from
the marginal raw input distribution Px. In fact, the
training data could be sampled differently so long as
the anchor direction estimation data and visualization
raw inputs arg samplged in a manner that is ind,pen-
dent of the training data, which ensures that we do
not encounter the issue stated in Appendix A.1.

To be more precise, our visualization framework

still holds if the an®hor direction estimation data are
sampled i.i.d. from Px,y, A and the visualization raw
inputs are sampled from Px, but now the training
data are sampled i.i.d. from some other distribution
Qx,v,s and the training data are independent from
the anchor direction estimation data and the visual-

ization raw inputs. After all, the statistical analyses
we conduct are all conditioned on the training data
and the encoder ¢; we just needed to ensure that
conditioning on the training data and ¢ did not result
in dependence between anchor direction estimation
data or the visualization raw inputs.

Visualization results and interpretations. We
show the violin plot for selecting the number of clus-
ters for a mixture of von Mises-Fisher distributions in
Figure C.1(a), where we choose the number of clusters
to be k = 3. For this 3-component mixture model, we
find the anchor directions corresponding to its 3 clus-
ters and then show raw feature probability heatmaps
for all 3 clusters in Figure C.1(b), raw feature rankings
in Table C.1, and survival probability heatmaps for
all 3 clusters in Figure C.1(c).

The main findings from our visualizations are as
follows: clusters 1 and 3 are both associated with
patients who tend to have very few lymph nodes that
contain cancer, which in turn is associated with longer
survival times (the survival probability functions in

the rightmost of the survival probability heatmaps
for clusters 1 and 3 decay slowly). Interestingly, clus-
ters 1 and 3 differ largely in that cluster 1 is for older
women (being postmenopausal is flagged as being very
probable for cluster 1 which is of course related to
age) and cluster 3 is for younger women (who have
not undergone menopause). Meanwhile, the anchor
direction for cluster 2 is associated with women who

have a large number of lymph nodes that
and the tumor sizes tend to be large as

of course means that cancer has advanced

I'n

nificantly and, unsurprisingly, cluster 2 is
with shorter survival times (its survival

heatmap’ s rig,,tmost column decays quickly).

Appendix D. Tabular Data: Finding
Interactions Between
Raw Features in
Predicting Projection
Values Along an Anchor

Direction

We mention two methods that can be used to probe

raw feature interactions in predicting projection values
along an anchor direction p.

Fitting a regression model that is “easy to in-

terpret” and accounts for feature interactions.
One way to find possible interactions is to fit any
regression model that is straightforward to interpret

and that can surface possible feature iNteractions,
using feature vectors xY, ..., x and target regres-
sion labels pY, ..., p¥v. For example, we could fit a

so-called optimal regression tree using mixed-integer
optimization (Dunn, 2018). An example of such a

tree is shown in Figure D.1. The reason why this tree

encodes feature interaction information is apparent
when we look at any leaf. For example, the leftmost

leaf with predictedprojection value -0.6306 corre-

sponds to the intersection of the constraints “cancer

= no”, “age < 68.44”, and “serum creatinine < 2.55”,
showing an interaction between the variables “cancer”,
“age”, and “serum creatinine” that depends on them

satisfying specific inequalities.

Note that this sort of approach should be used with
care. Specifically, by using different splits of data
(e.g., different train/validation splits) to train the tree,
it is possible that the resulting trees look different
and might suggest different raw features to matter,
and the raw features that interact might vary across
experimental repeats. Another issue is that such tree
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Figure C.1: Rotterdam/GBSG datasets: visualizations for a DeepSurv model where the encoder has a
Euclidean norm 1 constraint. Panel (a) shows a violin plot to help select the number of
clusters (and thus the number of anchor directions) for use with a mixture of von Mises-Fisher
distributions, where we choose k = 3 for the subsequent panels. Panel (b) shows raw feature
probability heatmaps for the three clusters’ estimated anchor directions. Panel (c) shows the
survival probability heatmaps for the same anchor directions as panel (b). Details on the dataset,
encoder, and clustering model are in Appendix C.
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<68.44

Serum creatinine

<255

Predict projection
value -0.1120

Predict projection
value -0.2025

Predict projection
value -0.6306

Cancer

Predict projection
value 0.3709

“yes” or “metastatic”

Cancer

“metastatic”

Predict projection
value 0.8038

Serum creatinine

=431

Predict projection
value -0.1099

Predict projection
value 0.6022

Projection values are along the anchor direction for cluster 1

Figure D.1: SUPPORT dataset: using a DeepSurv model where the encoder has a Euclidean norm 1 constraint,
we show an optimal regression tree trained using visualization raw inputs (feature vectors) to
predict projection values (regression target labels) along cluster 1’s anchor direction. Cluster 1 is
the same cluster that we provided visualizations for throughout Section 3.4 and in Appendix B.2.

learning algorithms have hyperparameter(s) for con-
trolling the tree complexity, such as the max tree
depth, and for different such hyperparameter choices,
the raw features that are found to be important or
that are shown to interact might vary.

Archipelogo. As an alternative approach to finding
possible feature interactions, we point out that one
could use the Archipelogo framework (Tsang et al.,
2020) that is designed to find feature interactions of
a black-box model (in this case, the encoder ¢) when
provided with specific raw inputs (e.g., xy, ..., XrYV)'

Appendix E. Survival MNIST
Experiment

E.1. Dataset

The Survival MNIST dataset builds off of the original

MNIST classification dataset (LeCun et al., 2010),
which consists of 60,000 training images and 10,000
test images. All images are 28-by-28 pixel grayscale

images of handwritten digits. Each image has a target

label corresponding to which of the 10 digits the image

corresponds to. Pélsterl (2019) modified the MNIST

dataset so that the labels for training and test images

are instead survival labels (observed times and event
indicators) that are synthetically generated. There is
some flexibility in this synthetic generation process.
We specifically use the same synthetic survival label
generation procedure as Goldstein et al. (2020), who
also use the Survival MNIST dataset. Specifically, for
each digit j @{0,1,...,9}, we let m; denote the true

mean survival time for digit j, where:

e mp= 11.25

® My = 2.25

e my = 5.25
e m3= 5.0

e mg= 4.75
®* M5 = 8.0

® Mg = 2.0

®* My = 11.0
e mg= 1.75
* mg = 10.75

These mean survival times are also shown in Figure 5.
The digits are ranked (in increasing order of mean
survival time) as: 8,6, 1, 4, 3, 2,5,9, 7, 0. Note that
the 10 digits are grouped into four ground truth risk
groups: {0,7,9},{1,6,8},{2, 3, 4}, {5}; within each
risk group, the digits in the group have very similar
ground truth mean survival times.

For each training image x; @ X with digit label
ni @{0,1,...,9}, we sample its true survival time t;
from a Gamma distribution with mean m, and vari-
ance 1073, After we generate survival times t1,..., 1t
for all training data, we then sample the censoring
times c1, ..., Cn i.i.d. from a uniform distribution be-
tween min{ti, ..., tn} and the 90th percentile value of
t1,...,tn. Finally, we set the training data’s observed
times and event indicators to be y; = min{t;, ¢i} and
8i = 1{ti £ ci} respectively. This results in a censor-
ing rate (1- | P &) of approximately 50%. The
test data are generated separately from the training
data but in the same manner.

As a reminder, when training a survival analysis
model with the Survival MNIST dataset, the train-
ing data are {(xi,yi,éi)}i”:l. The true digit labels
ni,...,Nn are not available to the training procedure.
For test data, we also have access to their digit labels.
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Figure E.1: Ground truth survival functions for the
different digits.

Some important remarks regarding this dataset are
in order:

e The proportional hazards assumption does not hold
for the underlying survival distributions of the dif-
ferent digits. One way to see this is that by plotting
the true survival functions of the different digits
(per digit, we can get the true survival function
by looking at 1 minus the CDF of the Gamma
dis-tribution associated with the digit), these
survival functions are not powers of one another;
we show these ground truth survival functions in
Figure E.1. (When the proportional hazards
assumption holds, all survival functions are powers
of an underlying

“baseline survival function”.) This means that if we
fit a model with a proportional hazards assumption,
such as the DeepSurv model, we should not expect
the predicted conditional survival functions to be
correct although these should be able to “correctly
order” the survival times of the different digits. Re-
call that the digits are ordered by true mean survival
time (in increasing order) as 8,6, 1,4, 3,2,5,9, 7, 0.
We would like the “average predicted survival
func-tion for digit 8” to be lower than that of
digit 6, which should be lower than that of digit
1, and so forth.

By how the censoring mechanism is set up, digits
with higher mean survival times have higher censor-
ing rates. This is because the uniform distribution
for censoring times has its maximum set to be the
90th percentile value of randomly generated sur-
vival times, so digits with high ground truth mean
survival times get censored more often. For exam-
ple, for the test data we generated, we have the
following censoring rates for the different digits (we
have ordered the digits in increasing order of ground
truth mean survival time):

— Digit 8: 1.23% —

Digit 6: 2.92% —

Digit 1: 5.64% —

Digit 4: 34.42%

— Digit 3: 35.25% —

Digit 2: 37.98% —

Digit 5: 71.19% —

Digit 9: 96.53% —

Digit 7: 99.22% —

Digit 0: 100.00%

Digits 0, 7, and 9 have censoring rates higher than
96%, with digit 0’s censoring rate at 100% (in the
training and test sets we generated, digit 0 is always
censored). This means that that their randomly
generated observed times and event indicators of-
ten look identical. Thus, when learning a neural
survival analysis model using the training data, the
learned embedding space (that we aim to visualize)
would likely have trouble distinguishing between
these three digits. Having part of the embedding
space correspond only to digit 0 and not 7 or 9
would be particularly dificult.

E.2. Neural Survival Analysis Model and
Encoder Setup

We set the base neural network f to be a convolutional

neural network (CNN) consisting of the following se-

quence of layers:

e Conv2D layer with 32 filters (each 3-by-3)

¢ Nonlinear activation: RelLU

e MaxPool2D layer (2-by-2)

e Conv2D layer with 16 filters (each 3-by-3)

¢ Nonlinear activation: ReLU

e MaxPool2D layer (2-by-2)

e Flatten

e Fully-connected layer (that maps to d outputs)

¢ Nonlinear activation: Divide each vector by its
Euclidean norm

¢ Fully-connected layer (map d inputs to 1 output)

We take the encoder ¢ to be everything excluding the
last fully-connected layer.

Note that the above choice of CNN is somewhat
arbitrary. The goal of our paper here is not to provide
visualizations for the very best CNN possible for Sur-
vival MNIST. Rather, we just aim to show that for a
choice of CNN that is straightforward to implement,
we can readily provide visualizations for one of its
intermediate representations.

Just as in the tabular data setup, we train the neural
network using minibatch gradient descent with at most
100 epochs and early stopping (no improvement in the
validation concordance index after 10 epochs). We use
Adam to optimize, and we sweep over the following
hyperparameters:
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Figure E.2: Predicted survival functions for the dif-
ferent digits (mean * standard deviation
at each time point).

e Batch size: 64, 128

e Learning rate: 0.01, 0.001

e Embedding dimension d: 10, 20, 30, 40, 50

We ran the experiments for this dataset on the same
compute instance mentioned in Appendix B.1. After
training the DeepSurv model, the model achieved a
test set concordance index of 0.953.

E.3. Additional Visualizations
E.3.1. Predicted Survival Functions

We begin with a visualization that is not actually
related to our anchor direction visualization frame-
work and instead just looks at how well the trained
DeepSurv model predicts survival functions. For thei-
th visualization raw input x‘f, we denote its true
digit label as r}V {0,1,...,9}. Then for digit j, we
can compute the mean predicted survival function

Pov

L, HnY = jisex))
aigitj (t) B —p - ' I Lo

i=1 1{ni =j}

We could also compute its standard deviation

?éﬁgtj(t)

v 2
FP o T, = 17 eI T - Spen (0

B 4 £\ Hik |
P I =07

We plot each mean predicted survival function
@digitj(t) with error bars given by detféitj (t) in Fig-
ure E.2. As expected, these survival functions do not
resemble the ground truth ones as the neural survival
analysis model fitted assumes a proportional hazards
model. However, the ranking of the digits is approxi-
mately correct: looking at the mean predicted survival
functions, the ranking of these (going from lower to
higher) is: 8,6, 1,4,3,2,5,7,9,0. The only error in
this ranking is that digits 7 and 9 are swapped. As a
reminder, digits 0, 7, and 9 are more dificult as they
have censoring rates over 96%.

Importantly, the survival functions $igit; are esti-
mated with the help of ground truth digit labels. The
DeepSurv model in this case never received ground
truth digit labels and, in particular, its embedding
space (the output space of encoder ¢) was not explic-
itly trained to be able to distinguish between digits.
That said, we can try to understand to what extent
this embedding space captures information regarding
the 10 digits. We proceed to do this next.

E.3.2. Treating Each Digit as a Concept for
Anchor Direction Estimation

We now show random input vs projection plots (like
the one in Figure 6) for all 10 digits in Figure E.3.
From these plots, we see that as the projection value
gets large for digit j @ {0, 1,...,9}, the raw inputs
that achieve these large projection values for digit j
tend to be of digit j itself or of other “adjacent”
digit(s), where by “adjacent”, we mean one(s) or-
dered next to digit j in terms of the ranking of ground
truth mean survival times.

Using these same anchor directions, we produce
the survival probability heatmaps (like the ones in
Figure 4 and Figure B.3) in Figure E.4. Note that
these heatmaps convey information similar to what
is shown in Figure E.2. For instance, when we look
at the rightmost column of the survival probability
heatmap for digit 0’s anchor direction, we see that the
survival function barely decays for all the observed
times, indicative of the survival time tending to be
large, as expected. This rightmost column’s survival
function resembles the predicted survival curve for
digit 0 in Figure E.2. A similar finding holds for the
other digits.

The embedding space does not appear to cap-
ture the ground truth risk groups. We previously
pointed out that the digits are grouped into four risk
groups (each risk group has ground truth mean sur-
vival times that are very close by to each other; see
Figure 5). It is not the case, however, that only the
digits within the same risk group end up with high
projection values for each other’s anchor directions
(see Figure 6). We do see this happen for the
risk group with the lowest mean survival times
(consisting of digits 1, 6, and 8) as well as the risk
group with the highest mean survival times
(consisting of 0, 7, and 9) but this does not entirely
hold for the other risk groups.

To give a concrete example of how the embedding
space does not correctly “capture” a risk group, con-

466



Visualizing Embedding Spaces of Neural Survival Analysis Models

s b { 4 7 6 3 S 9 5 4 3 n 9 | Z 7 7 3 [ is /
8¢ - 84 4« 7 3 =3 3 9 1 O 83 ©¢ 2 8 © 9 © v 4 8 7/
o 3 é ! % t 3 3 5 S s 0 o 2 (4] c 0 12 T < > 8 14 !
E Ik 4 3 3 2 2 7 9 Es 9 0o ¢ 0 ¢ 1 £ & 4 |\
o b § q G 9 3 3 2> S g 7 w F 9 o O 4 1 o L4 4 & \
c 8 / 4 4 ¢ 3 3 a s 5 7 €3 4 o O v 1 o &+ 3 ¢ ¢
.8 ¥ © % 4 4 =) 3 g L3 9 (-] _8 S i (2] ? 1 7 L4 g L d 6 6
c b \ s ~¥ 8 3 > 21 9 9 c 2 O o 7 9 1 1 £ & Y /
€ 7/ 4 <4 > 3 =5 2 2 § 7 g2 s 9 9 o© 1 & v 4 & [/

{ { H 4 5 ¢ 2 2 2 # o a S 7 7 q 7 =& % & [1 é

-0.87 -0.70 -0.52 -0.34 -0.16 0.02 0.19 0.37 0.55 0.73 0.91 -0.90-0.72-0.54 -0.36 -0.18 0.00 0.19 0.37 0.55 0.73 0.91
Projection onto anchor direction defined by concept "digit 0" Projection onto anchor direction defined by concept "digit 1"

{ b ¢ © ¢ q 0 L © s 5 / [ZB] 3 3 © 9 o § 2z 2
8¢ 6 4 ¢ v o 9 © O I 0 8/ 4 9 ¢ 7 4 3 S S 3 2
s / ¢ Y 4 7 9 0 0 q 3 2 a | 4+ 4 & 0 9 0 0 7 5 2
E( b 4 4 & 9 % 1 o0 s 5 EIl 6 % 4 7 9 ¢ 9 & 5 3
o b 7 8 ] & q 9 9 Q 7 3 o | 4 + g o g 7 7 4 7 *
e 1 - S 8 7 g9 o 5 L] 9 2 e | G 2 q g 7 q 7 s g 2
g\ 3 4 4} & 0 9 Q 7 5 3 s 7/ ! 3 4 7 1 Q [} o 5 3
c / 4 4 I's 3 7 7 o Qq < =2 c | 1 4 '8 -4 ] o q 9 7 3
gVt b 4 ¢ ¢« 1 9 0 7 5 5 £/ 4 7 €& & 9 6 5 T 2 3

/ & H b 7 9 9 9 7 q S \ Z 1 7 g Z (] o s & 2

-0.89-0.71-0.53 -0.35-0.17 0.01 0.19 0.37 0.55 0.73 0.91 -0.89-0.71-0.53 -0.35-0.17 0.01 0.19 0.37 0.55 0.73 0.91
Projection onto anchor direction defined by concept "digit 2" Projection onto anchor direction defined by concept "digit 3"

3 5 q e N I's 6 1 / q | § ¥ ¢ 4 9 7 0 i 7 o
87 e t© 2 ¢ 4 6 b & / 4 86 & ¢ 4 7t 7 L a S 9 o0
a> 7z &5 0 7 v © ¢ 7 / 4 a2\ g Y 4 / 3 9 S a 3 1S
Ev 2 o0 5 & 9 6 9 a4 | & E¢ & 4 9 4 ¢ 9 7 35 7 4
n O 1 3 \y 7 [ q o ( s / o | g e ¥ 4 O 9 14 A g >
e ? 3 5 g ” 8 € [ IS | 4 e 0 / 4 " g q 7 7 o 3 s
g2 3 2 1 5§ B B 6 O | 4 S{ 6 4 4 7 71 1 3 7 3 2
c Z 3 o 1 9 <) g b4 ] 4 4 c 6 4 Y Y ? (4} 14 9 [2] 3 =i
£ 3 o 1 o0 ¢ 6 % I b g/ Y ¢ 4 & 7 o 0 3 9 2

7 z > 7 9 13 s K (2 { \ I kd q o 14 q (o] o (4 2 5

-0.89-0.71-0.53 -0.35-0.17 0.01 0.19 0.37 0.55 0.73 0.91 -0.91-0.72-0.54 -0.36 -0.18 0.00 0.18 0.36 0.54 0.73 0.91
Projection onto anchor direction defined by concept "digit 4" Projection onto anchor direction defined by concept "digit 5"

s 9 3 (] i 4 4 4 4 0 [} ¥ \ 4 4 Q 1 3 3 z 7 o
8 s = 3 ¢ O ¢ ¢ 4 & \ g v 4 4 g9 & 3 3 ¥ 1 0
a q N 3 kY 9 ] 4 ¢ b4 v} b a b { 9 9 (o] 5 3 3 2 5 [¢]
Eaq 7 3 971 ® 7 ° 4 4 g 6 E gz & y 3 A € 3 2 & 9 7
o # z 3 Q 4 1 4 ¥ 4 I's / o L ¢ q 4 1 7 e 2 z s 1
g 2 q X o v ¢ & 7 \ | e 8 l 4 4 q 4 3 2] 2 5 1
g 5 2 7 1 4 9 4 v 4 ¥ § S # 1 &€ 6 3 [4 J 3 L 0 0
c S ] 7 S 7 a Y 4 L 3 14 c & ] ¥ 4 = 7 Z 3 2 14 o
g* 2 3 1 2 4 9 4 4 8 ¢ & 1 4 2 4 > 3 3 3 5 7

0 q 3 q 7 7 4 4 ? g I'4 ' \ Y 4 [3 4 3 3 7 0 q

-0.90-0.72-0.54 -0.36 -0.18 0.00 0.19 0.37 0.55 0.73 0.91 -0.89-0.71-0.53 -0.35-0.17 0.01 0.19 0.37 0.55 0.73 0.91
Projection onto anchor direction defined by concept "digit 6" Projection onto anchor direction defined by concept "digit 7"
» 5 a 3 ¥ ¥ 4 “4 \ é g ® 4 & \ 4 2 3 2 2 1 3 0
o 7 7 2 2 3 4 4 / l 3 & o ? 6 4 ¢ ¢ 3 3 2 s 2 9
S o q X 3 3 4 ¢ ¢ [} [} é a8 b | / 4 3 3 S J J 9
g o 7 2 2 3 H 4y ¢ G ( B g 8 6 I} « 4 T 2 a4 5 s 9
n O s q 3 4 “ 4 s / I g o g o / L 4 k4 3 2 $ (0] q
c49 2 0 3 3 4 U vy A | 8 £ 8 & | 4 4 9 2z =2 ¢ 71
$a 7 © > 3 9 4 1 | g ¢ S & W 4 4 3 1 2 a 9 19
c O 7 Py 3 3 & ¥ { / ] é c 9 b / 4 b 3 3z A s 9 9
Eaq 5 2 3 3 4 4 4 | b = gg & L 4 4 3 3 2 5 5 7
2 ¥y O 3 2 ¢ ¢ Y / 8 6 8 b 3 4 y 3 2 z 2 s
-0.91-0.72-0.54 -0.36 -0.18 0.00 0.18 0.36 0.55 0.73 0.91 -0.89-0.71-0.53 -0.35-0.17 0.01 0.19 0.37 0.55 0.73 0.91
Projection onto anchor direction defined by concept "digit 8" Projection onto anchor direction defined by concept "digit 9"

Figure E.3: Survival MNIST: we treat each of the 10 digits as a concept that we compute an anchor direction for,
and then we produce random input vs projection plots for the 10 anchor directions. For each plot,
per projection bin, we sample 10 random visualization raw inputs.
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Figure E.4: Survival MNIST: we treat each of the 10 digits as a concept that we compute an anchor direction
for, and then we plot survival probability heatmaps for the 10 anchor directions.

sider digit 5. The ground truth has digit 5 in its own
risk group: no other digit’s mean survival time is very
close to that of digit 5. However, when we look at
digit 5’s random input vs projection plot in Figure E.3,
when we look at the rightmost two projection bins,
we see that many digits (that are not the digit 5) have
high projection values for digit 5.

We suspect that what is causing the problem is cen-
soring. We said that the digits in risk group {1, 6, 8}
tend to have high projection values for each other’s
anchor directions, and similarly for the digits in the
risk group {0, 7, 9}. Note that all digits in risk group
{1, 6, 8} have censoring rates below 6%. All digits in
risk group {0, 7, 9} have censoring rates over 96%. In
contrast, the digit 5 has a censoring rate of about 71%,
which is neither very low nor very high. The digits
with high projection values for digit 5 are ones that
all have censoring rates over 35%. Basically, although
the embedding space does not appear to be capturing
risk groups well, it seems to recognize what censoring
means. We examine this next.

E.3.3. Treating “Censored” as a Concept
for Anchor Direction Estimation

We treat anchor direction estimation data that are
censored (i.e., their event indicator variables are equal

Random samples
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HBOoWWIWEOND
DWW WP
PAINPUNIRY
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q
-0.90-0.72-0.54 -0.36 -0.18 0.00 0.18 0.36 0.54 0.72 0.91
Projection onto anchor direction defined by concept "censored"

Figure E.5: Survival MNIST: after computing an an-
chor direction for the concept “censored”,
we produce a random input vs projection
plot for this anchor direction.

to 0) as a concept, which we then compute the an-
chor direction for using equation (6). We produce a
random input vs projection plot for this “censored”
concept’s anchor direction in Figure E.5. From the
plot, as we progress from the most negative projec-
tion values to the most positive, the random samples
clearly correspond to digits going from the lowest to
the highest ground truth mean survival times, which
also corresponds to going from the lowest to the high-
est censoring rates.
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anchor directions to use).
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Figure E.7: Survival MNIST: average projection
heatmap for seeing how well a cluster-
ing assignment with 9 clusters (using a
mixture of von Mises-Fisher distributions)
aligns with the 10 ground truth digit la-
bels. The intensity at the i-th row and
j-th column corresponds to average pro-
jection value along the j-th cluster’s an-
chor direction across visualization data
with ground truth digit label i. Note that
the clusters with labels 1 and 1’ both
match best with digit 1.

E.3.4. Estimating Anchor Directions via
Clustering

Lastly, we consider estimating anchor directions via
clustering, where we use a mixture of von Mises-Fisher
distributions as the clustering model. We show the
violin plot for selecting the number of clusters in
Figure E.6. From this violin plot, we see that the
log-rank test p-values have a sharp increase after 9
clusters. We examine the clustering results using 9
clusters and, separately, also using 4 clusters and 10

clusters. The reason we look at the 4 clusters case is
because there are 4 underlying risk groups, and we
can check to what extent these can be recovered from a
clustering solution with 4 clusters. As for looking at
a model with 10 clusters, this is because we know that
in reality there are 10 digits, each with its own
ground truth survival function.

Results for a clustering model with 9 clusters.
We first use anchor directions from a 9-component
mixture of von Mises-Fisher distributions, where each
component is treated as a cluster. We check how well
the 9 clusters’ anchor directions align with the anchor
directions of the digit concepts. For visualization pur-
poses, we label each cluster with the digit that the clus-
ter matches best to, where we determine a match as
follows: for the j-th cluster, we find whichever digit’s
anchor direction (computed using equation (6); these
were the anchor directions used in Appendix E.3.2)
is most similar to the j-th cluster’s anchor direction
(computed using equation (4)) according to cosine
similarity. It is possible that multiple clusters match
best with the same digit. Then, we can create what
we call an average projection heatmap where the en-
try at the i-th row and j-th column corresponds to
the average projection value along the j-th cluster’s
anchor direction across visualization data that have
the ground truth digit label i. We show the resulting
heatmap in Figure E.7. From this heatmap, we see
that the cluster with label 0 has high projection values
for digits 0, 5, 7, and 9, which are the most censored
digits (digits 0, 7, and 9 in particular tend to have
the highest projection values for cluster 0); digit 5,
however, also has its own cluster that it is matched to
whereas digits 7 and 9 do not. Another observation is
that digits 1, 6, and 8 tend to have high projection
values for clusters with labels 1, 6, and 8 (although
the cluster with label 1 has highest projection values
for digit 1, and similarly for the clusters with labels 6
and 8).

We create a random input vs projection plot for each
of these 9 clusters’ anchor directions in Figure E.8,
where we see the same sort of phenomenon we had
pointed out in Appendix E.3.2: when we look at
an anchor direction roughly corresponding to digit j,
then images of digit j as well as images of digits that
have a true mean survival time adjacent to that of
digit j will often have high projection values. We
also plot survival probability heatmaps for these an-
chor directions in Figure E.9. Each cluster’s survival
probability heatmap is similar to the one for the digit
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Figure E.8: Survival MNIST: using anchor directions estimated from a clustering model with 9 clusters, we
produce random input vs projection plots for the resulting 9 anchor directions. The cluster labels
are the same as the ones along the x-axis of Figure E.7.
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Figure E.9: Survival MNIST: using anchor directions estimated from a clustering model with 9 clusters, we
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Figure E.10: Survival MNIST: average projection
heatmap for a clustering assignment
with 4 clusters (using a mixture of von
Mises-Fisher distributions). The inten-
sity at the i-th row and j-th column
corresponds to average projection value
along the j-th cluster’s anchor direction
across visualization data with ground
truth digit label i. Just as in Figure E.7,
we label each cluster based on the single
digit that it best matches to.
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Figure E.11: Survival MNIST: average projection
heatmap for a clustering assignment
with 10 clusters (using a mixture of von
Mises-Fisher distributions). The inten-
sity at the i-th row and j-th column
corresponds to average projection value
along the j-th cluster’s anchor direction
across visualization data with ground
truth digit label i. Just as in Figure E.7,
we label each cluster based on the single
digit that it best matches to.

that the cluster best matches to (see Figure E.4 for
comparison).

Results for a clustering model with 4 clusters.
We next use anchor directions from a 4-component
mixture of von Mises-Fisher distributions, again treat-
ing each component as a cluster. We show an average
projection heatmap in Figure E.10. Note that al-
though we use the same way of labeling each cluster
as we did when we used 9 clusters, here we would actu-
ally like each cluster to correspond to the ground truth
risk groups (so that each cluster does not necessarily
only correspond to a single digit).

From Figure E.10, we see that the cluster with la-
bel 0 is most like the ground truth risk group {0, 7, 9}
but also includes digit 5 (which also has a relatively
high censoring rate among the different digits). Mean-
while, the cluster with label 6 is most like the risk
group {1, 6, 8}. The clusters with labels 2 and 4 to-
gether correspond to the ground truth risk group
{2, 3, 4}. Overall, the ground truth risk groups are
not correctly recovered although the clusters found,
qualitatively, pick up on some of the ground truth
structure. We suspect that the dificulty in determin-
ing that digit 5 should be in its own cluster has to do
with how often it is censored (over 70%). The risk
group corresponding to digits 1, 6, and 8 should be
the easiest to recover as these three digits have the
lowest censoring rates (all below 6%).

We omit random input vs projection plots and sur-
vival probability heatmaps for the different clusters’
anchor directions since the findings from these visu-
alizations are qualitatively similar to the findings we
just pointed out from looking at Figures E.10 and E.9
(note that for each cluster in this 4-cluster model,
the digits that the cluster matches well with tend to
have very similar survival probability heat maps).
Results for a clustering model with 10 clus-
ters. When we use 10 clusters for the mixture of von
Mises-Fisher distributions, we obtain the average pro-
jection heatmap in Figure E.11. In this case, when we
match each cluster to a digit, the only digit that does
not get matched is digit 0, although digit 0 itself has
high projection values for the clusters with labels 7
and 9. Qualitatively, the clustering result here is not
too different from the one where we used 9 clusters.
The main difference now is that we can somewhat
distinguish better between the digits in the risk group
{0, 7, 9} consisting of digits with the highest censoring
rates. We omit the random input vs projection plots
and the survival probability heatmaps for the 10 differ-
ent clusters’ anchor directions as these visualizations
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do not provide additional insight at this point over
the other findings we have already reported.

Appendix F. Theoretical Result on
Projection Values When
Information Content in
Embedding Vectors is All
in Magnitudes

Proposition 2 (Extreme example where the embed-
ding space information is all in magnitudes) Suppose
that the embedding vectors (of anchor direction
esti-mation and visualization data) are i.i.d. of the
form (3,0,...,0) @ RY (i.e., all coordinates are 0
except the first), where = is a continuous random
variable with positive variance. In this setup, the only
direction in the embedding space that matters is
along the vectorp = (1,0,...,0) @ RY, which we
can take to be the anchor direction of interest.
Then the only possible projection values pY are -1
or 1; projection values in the open interval (-1, 1)
are not possible.

Proof Let u= (1,0,...,0); we treat this as the
anchor direction as it is the only direction in which
the embedding vectors even vary in this proposition’s
setup. Our visualizations involve plugging in the vi-
sualization raw inputs xY, ..., nVV into @. We denote
u¥ Be(xY), so that the projection value p" defined
in equation (7) is equal to
D u/ - ot E

SR

V) —
Au - ut@

p/ = proj,(x (10)

where we have used the fact that Eu@ = 1.
The key observation is that we can write each uiV

asu' = (2Y,0,...,0) and similarly each u? as uf =
(=4,0,...,0) where the {3V}, and {Z°}}"
are all i.i.d. continuous random variables with

positive variance. Therefore,

v A v 1 X A
us - um =y s
n i=1
% lx n
= = T T A,...,0,]
n .
z"' )
Iy

where @ is a sum of independent continuous random
variables with positive variance, so # itself is still a
continuous random variable with positive variance
(note that the variance of the sum of two independent

variables is the sum of their variances). This implies
that @ is 0 with probability 0, which in turn implies
that with probability 1, By’ - TU*E is nonzero, so

uV

is well-defined and, in particular, it is either p
or —u. Then by using equation (10), pY is either
equal to (i, p) = 1or (-p, p) = -1. ]

Appendix G. Handling a Large

Number of
Clusters/Anchor
Directions With the
Help of Ranking

When using our heuristic from Section 3.2.1 for choos-
ing the number of clusters to use, it is possible that
the number of clusters could be very large — so large
that examining visualizations for anchor directions
corresponding to all the clusters would be too tedious
for model debugging purposes. Of course, one could
simply choose to not set the number of clusters to
be so large. Put another way, when using our vi-
olin plot visualization to help select the number of
clusters, one could simply choose a smaller p-value
threshold, which would result in fewer clusters being
used. However, if for whatever reason, one wants to
use a number of clusters that is larger with the goal
of having clusters that are more “fine-grain”, we now
suggest an approach for handling this situation as to
reduce the amount of clusters to look at. Note that
this approach actually applies more generally to the
setting where there are many anchor directions that
are under consideration, where the anchor directions
need not be estimated from our clustering approach.
For example, the anchor directions could be computed
based on concepts as in Section 3.2.2, where there is
a very large number of concepts under consideration.

The basic idea is to rank the anchor directions.
If we have a ranking of the anchor directions, then
we could focus on, for instance, a few of the high-
est and a few of the lowest ranked anchor directions.
Alternatively, we could also, for instance, take an-
chor directions that are “diverse” across ranks: for
example, we could choose the Oth percentile-ranked
anchor direction (lowest ranked), the 25th percentile,
the 50th percentile (median), the 75th percentile, the
100th percentile (highest ranked). In this manner, we
can focus on visualizing only a subset of all the anchor
directions. We describe one approach to rank anchor
directions next.
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Ranking anchor directions based on predicted
median survival times. One heuristic approach is
to compute a median survival time estimate for each
anchor direction, and then rank anchor directions
based on this median survival time estimate.

Per anchor direction u, we first determine the vi-
sualization data that are in the top a fraction of the
projection values along p (e.g., if a = 0.1, then this
means that we consider data points with projection
values that are within the top 10%). Formally, this set
of visualization data points can be written as follows.
First, recall that the visualization data have projection
values in = proj (xiV), fori = 1,...,n". Suppose
that we sort these projection values and denote the
sorted projection values as Py < Py < -0 < pz’nv).

Then the top a projection value can be estimated by

v
[ p((l—u)nv )-

Then the visualization data with projection values in
the top a percentile of projection values along p are
the ones in the set

| P B {iB{L,2,...,n"} s.t. p", 2 gal.

Note that this equation is similar to that of equa-
tion (8). We then compute the survival curve for the
data points in | J"p“ using an equation analogous to
equation (9):

1 X v
~—Topa | $J(t|xi ).

$lore(t)
IIH liltu”“

By a standard result in survival analysis, the time t
where the survival curve ﬂ'—’:l"p“(t) crosses 1/2 corre-
sponds to a median survival time estimate (see, for
instance, Reid 1981). In particular, we denote this
median survival time estimate as

thed, " Binfit> 0s.t. SBPO(t) < 1/2).

In practice, to compute the infimum, commonly a
discrete time grid is used, such as using all the unique
observed times in the training data (i.e., the unique
Y; values), and if the survival curve never crosses 1/2
over this discrete time grid, then for simplicity we just
take the median survival time estimate to be a special
value specifying that it is greater than the maximum
observed time in the training data.

Note that what we stated above is for any anchor
direction p. Thus, if we have k anchor directions
denoted as p,, ..., 1, then we can rank these anchor

directions by rﬁ*edtopa rﬁedtopa.

TR Hi

SUPPORT dataset example. Consider the data
and setup from Section 3.4, which is the same setting
as the additional results in Appendix B.2. By using
the above approach for ranking clusters/anchor direc-
tions based on estimated median survival times and
setting a = 0.1, we get the following ranking of the
five clusters (in ascending order of estimated median
survival times):

. Cluster 1:
Cluster 5:
Cluster 2:
Cluster 3:
Cluster 4:

median survival time estimate 46 days
median survival time estimate 105 days
median survival time estimate 236 days
median survival time estimate 452 days
median survival time estimate 1895 days
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Appendix H. Baseline Visualization
Strategy: Use
Dimensionality
Reduction to Plot the
Embedding Space

We present PCA and t-SNE plots using the baseline
visualization strategy described at the end of Sec-
tion 1. We show plots for the DeepSurv embedding
space for the SUPPORT dataset (using the setup
in Section 3.4/Appendix B.2) in Figure H.1(a), the
Rotterdam/GBSG datasets (using the setup in Ap-
pendix C) in Figure H.1(b), and the Survival MNIST
dataset (using the setup in Section 3.5/Appendix E)
in Figure H.1(c). In particular, the embedding spaces
under examination all have a norm 1 constraint. Each
scatter plot is made using the visualization data (and
not the training data used to train the neural survival
analysis model nor the anchor direction estimation
data). For each visualization data point xVi, we com-
pute its median survival time estimate by looking at
the time t where H{t |xY) crosses 1/2 (similar to what
we had discussed in Appendix G), and we color scat-
ter plot points based on these median survival times.
From these scatter plots, we can get a rough sense of
the geometry of the embedding space. For instance,
whereas there are clear clusters of points that show
up for Survival MNIST (in fact, one could check that
these correspond to different groups of digits; again,
as we pointed out in Section 3.5/Appendix E, the
embedding space does not appear to disentangle all 10
digits neatly), we do not see this clustering behavior
for the SUPPORT and Rotterdam/GBSG DeepSurv
embedding spaces.

Importantly, as we already pointed out in Section 1,
these scatter plots from dimensionality reduction do
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2D PCA plot of a DeepSurv embedding space (SUPPORT dataset) 2D t-SNE plot of a DeepSurv embedding space (SUPPORT dataset)
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Figure H.1: 2D PCA and t-SNE plots of the visualization data’s embedding vectors from a DeepSurv model
(with a norm 1 constraint) for the (a) SUPPORT, (b) Rotterdam/GBSG, and (c) Survival MNIST
datasets. The colors indicate estimated median survival times.
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not tell us how the embedding space relates to raw
features. Even PCA, which is easier to interpret than
nonlinear dimensionality reduction methods (e.g., t-
SNE), does not relate the embedding space to raw
features in this setting since PCA here is directly ap-
plied to vectors from the embedding space (and not
vectors from the raw feature space). While the t-SNE
plot for Survival MNIST shows clustering behavior,
note that t-SNE itself does not actually estimate clus-
ter assignments for different data points, i.e., t-SNE is
inherently not a clustering algorithm.

Note that the PCA plots can actually give us
a sense of whether information in the embedding
space is stored more in magnitudes vs more in
angles. As a reminder, Euclidean vectors with
norm 1 reside on what is called the “unit hypersphere”
S9-1 @ {v @RY s.t. BVE = 1}. When we take data on
the unit hypersphere and plot their 2D PCA plot, the
resulting 2D P CA plot will always look like points that
are within a 2D circle (since PCA is a linear dimension-
ality reduction method, it retains the hyperspherical
structure but projects down to 2D, where points can
be projected inside the circle rather than only along th
shell of the circle). This plot could be helpful. We can
readily tell if the data appear uniformly distributed
over a hypersphere or not. For example, for the SUP-
PORT dataset’s 2D PCA plot in Figure H.1(a), the
points largely bunch up on one side of a circle, mean-
ing that in the embedding space (that in this case
is actually 10-dimensional), the points largely are
concentrated around a hyperspherical cap (i.e., the
embedding vectors are largely all pointed in a similar
direction). In contrast, the 2D PCA plots for the
Rotterdam/GBSG datasets (Figure H.1(b)) and the
Survival MNIST dataset (Figure H.1(c)) clearly show
more of a circle shape, indicating that the DeepSurv
embedding vectors are more uniformly distributed for
Rotterdam/GBSG and Survival MNIST (i.e., they
have information stored more in angles than in mag-
nitudes) than for SUPPORT.

We remark that it is possible to color the scatter plot
points using other quantitative values. For example,
we could use the mean (instead of the median) survival
time estimate, which corresponds to the area under a
data point’s predicted survival curve, we could use an
indicator value for whether the point is censored or
not (to get a sense of whether some parts of the
embedding space correspond to more censored points),
or we could use cluster labels as estimated using any of
the clustering approaches we had used to estimate
anchor directions.
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