
We propose a general framewo k for visualiz-

framework is based on so-called anchor direc-
tions in an embedding space. We show how to

anchor directions relate to raw clinical features
and to survival time distributions. We then show

built on looking at angles between vectors in an
embedding space, where there could be “infor-

Data and Code Availabil ity     We use the publicly

the Study to Und rstand Prognoses, Prefe ences, Out-
comes, and Risks of Treatment (SUP PORT)  (Knaus

(Foekens et al., 2000), and the German B  east Can-

The SUPPORT dataset is on severely ill hospitalized

also use the MNIST handwritten digits dataset (Le-
Cun et al., 2010) modified by Pölsterl (2019) to be

(links to the datasets we use are in our code):
https://github.com/georgehc/anchor- vis/

plications in reasoning about how much time will

without examining what these models have learned

instance the mod l by Zhong et al. (2022) uses a

wants to easily reason about are captured by a linear

ables are modeled by a neural network. Meanwhile,
Chap uwa et al. (2020), Nagpal et a . (2021), Man-

we can summarize each cluster’s patient characteris-

as a combination of “topics”, where each top c corre-
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1. Introduction

ing any intermediate embedding
r
representation               

Survival analysis models regularly arise in health ap-

used by any neural survival analysis model. Our               
elapse before a critical event happens, such as death,
disease relapse, and hospital readmission.     Across

esti mate these anchor di recti ons usi ng cl usteri ng many health-related datasets, state-of-the-art survival
or, alternatively, using user-supplied “concepts” analysis models commonly use neural networks (e.g.,
defined by collections of raw inputs (e.g., feature Ranganath et al. 2016; Chapfuwa et al. 2018; Katz-
vectors all from female patients could encode man et al. 2018; Lee et al. 2018; Kvamme et al. 2019;
the concept “female”). For tabular data, we Nagpal et al. 2021; Chen 2020, 2022; L i  et al. 2020;
present visualization strategies that reveal how Zhong et al. 2021, 2022; Manduchi et al. 2022). How-

ever, most neural survival analysis models have been

how these visualization ideas extend to handling
developed with a focus on prediction accuracy, often

raw inputs that are images. Our framework is
internally. In more detail, these models typically rep-
resent individual patients in terms of “embedding

mati on l oss”  by i gnori ng magni tude i nf ormati on. vectors”. How do these embedding vectors relate to
We show how this loss results in a “clumping” patient characteristics? How do they relate to survival
artifact that appears in our visualizations, and               (or time-to-event) outcomes?
how to reduce this information loss in practice.                    Some existing neural survival analysis models have

been designed to have interpretable components. For

available datasets
e
on predicting time until

r
death from     partially

,
linear Cox

e
model: variables that the modeler

et al., 1995), the Rotterdam tumor bank (Rotterdam) 
component of the model whereas the rest of the vari-

cer Study Group ( G B S G )  (Schumacher et
r
al., 1994). duchi

f
et al. (2022), and Chen (2022)

l
all represent a

patients with various diseases whereas the Rotterdam     
data point (i.e., a patient) in terms of clusters, where

and G B S G  datasets are both on breast cancer. We     tics and survival distributions. Along similar lines,
Li  et al. (2020) introduced a neural topic model with

for survival analysis. Our code is publicly available     
survival supervision, which represents each

i
patient

sponds to specific patient characteristics being more
probable and to either higher or lower survival times.

Institutional Review Board ( I R B )      Our research
does not require I R B  approval as we are conduct-
ing secondary analyses of existing publicly available
datasets that do not have access restrictions.

In this paper, rather than developing a new sur-
vival analysis model that aims to be in some sense
interpretable, our main contribution is instead to pro-
pose a general framework for visualizing intermediate

©  2023 G .  H .  Chen.
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To  showcase our framework, we first focus on
a tabular dataset on predicting time until death

ment (SUP PORT )  (Knaus et al., 1995). We then

embedding space captures this known structure. We
provide a second tabular data example on survival
times of breast cancer patients in Appendix C,  using

Study Group ( G B S G )  (Schumacher et al., 1994).
The only baseline visualization strategy we are

to the modeler and could even scale with the number

time distribution is not straightforward.

2. Background

model (Katzman et al., 2018). We emphasize that

use DeepSurv throughout the paper.

2.1. Surv iva l  Analysis

i = 1
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representations of any neural survival analysis model. can provide some rough intuition of the geometry of
Crucially, our framework is based on analyzing angu- the embedding space, it does not—on its own—do
lar information. Specifically, our framework uses what     clustering or provide quantitative metrics relating the
we refer to as anchor directions in an intermediate     embedding space to raw features or to predicted sur-
representation space. We specifically show:                       vival time distributions. Our framework could be used
• how to estimate anchor directions based on clus- in addition to this baseline visualization strategy and

tering or, alternatively, based on a “concept” that     does relate the embedding space to raw features and
the user provides, where the concept is represented     to survival time distributions, with the help of anchor as
a collection of data points (e.g., a set of fea- directions based on clustering or on concepts.
ture vectors all for female patients could represent         Separately, even though many visualization tools
the concept “female”; this is the same definition of     have been developed for neural network models for
“concepts” as used by Kim et al. (2018));                       classification or for predicting a single scalar output

• how to visualize raw features vs anchor directions, (e.g., Selvaraju et al. 2016; Zhou et al. 2016; Dabkowski
and survival time distributions vs anchor directions; and Gal 2017; Lundberg and Lee 2017; Shrikumar et al.

• how to tell if our visualizations are “losing too much     2017; Smilkov et al. 2017; Sundararajan et al. 2017;
information” by focusing on angular information     Kim et al. 2018), these existing visualization tools do
(and ignoring magnitude information), and how to     not easily extend to the survival analysis setting. A
reduce this information loss. key reason is that these tools aim to quantify how

Our framework could be thought of as a suite of     important different input features are in affecting
visualization tools with accompanying statistical tests     a single output neuron’s scalar value. However, in
that can help quantify the strength of associations     general, the prediction target in survival analysis for
related to the embedding space under examination. a single test data point is not a single scalar value and

is instead a probability distribution over time, where
time could either be continuous or discrete. When the

of patients from the Study to Understand Prog- time is discrete, the number of time steps used is up
noses, Preferences, Outcomes, and Risks of Treat- 

of training data points. Quantifying the importance
show how our visualization ideas extend to working     of different input features in predicting such a survival
with images, where we use the semi-synthetic Sur-
vival MNIST dataset (LeCun et al., 2010; Pölsterl,
2019) with known ground truth structure. Our visu-
alizations help us see to how well a neural network’s     

We review the standard survival analysis setup in Sec-
tion 2.1, and then we provide an example of a neural
survival analysis model in Section 2.2. For the lat-

data from the Rotterdam tumor bank (Rotterdam) ter, we specifically review the now-standard DeepSurv
(Foekens et al., 2000) and the German Breast Cancer     

our visualization framework is not limited to only
working with DeepSurv and works with any neural

aware of that works with any intermediate represen- survival analysis model. For ease of exposition, we

tation of any neural survival analysis model is to
apply a dimensionality reduction method (such as
P C A  (Pearson, 1901) or t-SNE (Van der Maaten and
Hinton, 2008)) to transform the intermediate represen- We assume that we have n training patients with data
tation of interest (which could be high-dimensional) points {(x i , y i , δ i ) }n       , where the i-th training patient
into a 1D, 2D, or 3D representation that is displayed     has raw input x i  � X  (e.g., tabular data, images), in a
scatter plot. Points in the scatter plot could be     observed time yi � [0,∞), and event indicator δ i  � colored
based on, for instance, their median survival     {0, 1}; if δ i  =  1, then this means that the critical times as
predicted by the neural survival analysis     event of interest (e.g., death) happened for the i-th model. We
provide examples of such scatter plots in     training patient so yi is the time until the critical event Appendix H.
While this baseline visualization strategy     happened (also called the “survival time”), whereas if
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δ i  =  0, then this means that the critical event did not To  train a DeepSurv model, we first learn the neural
happen, so yi is the time until we stopped collecting     network parameters θ by minimizing the loss
information on the i-th patient (commonly called the
“c 

To  model
i
how

)
training points are sampled, we first

L (θ )  � − δ i  f (x i ; θ )  −  log exp(f (xj ; θ )) .

introduce some notation. We denote the random vari-                                                             s.t. y j ≥ y i

able for a generic raw input as X ,  whi

c

h has marginal     
After learning θ, we then estimate h0 using a standard

the survival time as T , which depends on raw input X ;  approach such as Breslow’s method (Breslow, 1972).
in particular, there is a conditional distribution P . Specifically, let θ denote the learned neural network
We also denote the random variable for the censor- parameters, let t(1) <  t(2) <  · · · <  t(τ )  denote the i ng
ti me as C ,  whi ch depends on raw i nput X  vi a a     sorted unique times when the critical event happened
condi ti onal  di stri buti on P . Note that T and C in the training data (so that the total number of these are
assumed to be conditionally independent given X .  unique times is τ ), and let d(ℓ) denote the number Then
each training point (x  , y , δ )  is assumed to be     of times the critical event happened at time t(ℓ) for generated
i.i.d. as follows:                                                        ℓ =  1, . . . , τ . Then Breslow’s method estimates a

1. Sample raw input x i
 from PX . discretized version of h0 at time t(ℓ) using

2. Sample survival time ti from P T | X = x  .
3. Sample censoring time c from P .
4. If ti  ≤  ci  (the critical event happens before censor- j = 1 , . . . , n  s.t. y j ≥ t exp(f (xj ; θ  ))

ing): set y =  t and δ =  1. Otherwise, set y =  c
and δ =  0. The conditional survival function S(t|x) can then be

For a patient with raw input x  � X ,  a survival analysis     estimated by
model estimates a distribution over survival times
for x. Specifically, this survival time distribution is         S (t|x) � exp      −  exp(f (x; θ ))                   h0(t(ℓ) ) .
specified in terms of the conditional survival function ℓ=1, . . . ,τ

s.t. t ( ℓ ) ≤ t
S (t|x) � P(T >  t | X  =  x )      for t ≥  0,

or a transformed version of this function, such as the     
Note that

l
here, the conditional survival function is es-

integrating, and exponentiating, one can show that     
time poi

n
ts, where τ could scale with the 

n
umber of

S(t|x) =  exp(− h(τ|x)dτ ), i.e., having an estimate
for h(·|x) yields an estimate for S(·|x)).

3. Visualization Framework
2.2. Neural  Surv i va l  Analysis: De e p S u r v We now present our visualization framework based
The DeepSurv model (Katzman et al., 2018) estimates     on anchor directions. Our framework can work with the
hazard function h(t|x) under the standard propor- any neural survival analysis model with a base neural tional
hazards assumption (Cox, 1972): network f  and an estimate S(t|x) of the conditional

survival function S(t|x). For the rest of the paper, we
0 treat the neural survival analysis model that we aim

where h0 is called the baseline hazard function (which     to provide visualizations for as fixed, meaning that
takes as input a nonnegative time t ≥  0 and outputs     it has already been learned using the training data a
nonnegative value), and f (·; θ) is a user-specified     {(x i , y i , δ i ) }n and its learned parameters θ will not
neural network with parameters θ (specifically, f (·; θ) be modified. Thus, for notational convenience, we
maps a raw input from X  to a single real number that     now write “f (x)”  instead of “f (x; θ )”.
could be thought of as a “risk score”, where higher         At a high level, our framework works as follows.
values correspond to the critical event of interest likely     First, we need to decide what intermediate “embed-
happening earlier for feature vector x). For example, ding space” of the base neural network f  to visualize
when working with tabular data, f  could be a multi- (Section 3.1). Next, we estimate anchor directions in
layer perceptron, and when working with images, f      the chosen embedding space (Section 3.2). Our visu-
could be a convolutional neural network.                            alizations will then be based on how well embedding
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loss and how to mitigate it (Section 3.6).

n
i = 1

i
A
i

A
i

A n A

i = 1

V
i

n V

i = 1

1

3.1. W h i ch  “Emb edding  Space”  to Visualize?

f ( x )  =  g(ϕ(x)), (3)

to some intermediate Euclidean space R  , and the
function g maps from R  to R.  For the rest of the

d

U

U

U

As stated previously, we estimate anchor direc-
tions using the anchor direction estimation data

i i i i = 1{ ( x  , y , δ ) } .     We denote the embedding vec-
i itors of these points by u � ϕ(x ). Note that ϕ

i = 1

1 n A
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vectors align with anchor directions in terms of cosine     paper, we refer to ϕ as the encoder, which converts a
similarity (Section 3.3). We explain our visualization     raw input into an embedding vector.2

strategies via real data examples, first with tabular An embedding vector by itself is not very infor-
data (Section 3.4) and then with images (Section 3.5). mative. Instead, our visualizations depend on the
Our visualization strategy focuses on using angular     distribution of these embedding vectors. Recall from
and not magnitude information within the embedding     Section 2.1 that the distribution of raw inputs is given
space, which could result in “information loss” in our     by PX .  We define the embedding space as follows.
visualizations. We provide details on this information     Definit ion 1 Let P X  denote the distribution of raw

input data. Suppose that we sample X  � P X .  Then
Statistical assumptions and sample spl i tt ing.  we set U =  ϕ (X ) ,  where ϕ is the encoder. Then we
Our exposition will be clear about statistical assump- define the embedding space as the distribution of U ,

tions, which ensure that the different steps of our denoted as PU . This distribution is over R  .
visualization framework are theoretically sound (and     Crucially, we define the embedding space as a distri-
we will be clear when a step is a heuristic and lacks     bution over Rd—not just Rd  without a distribution.
theoretical justification). For example, we occasion- T o  visualize the embedding space P , our frame-
ally use statistical tests, which commonly require     work involves first choosing “interesting” anchor di-
that the input data to the tests are i.i.d. With rections in the embedding space to look at, which we
such considerations in mind, we assume that we     discuss in detail in the next section. Importantly, we
have access to additional data separate from the     argue that in practice, the d axis-aligned directions of
training data {(x i , y i , δ i ) } : specifically, we assume     Rd  are not necessarily the “interesting” directions for
that we also have “anchor direction estimation” data     the application at hand. F or example, if P     is well-
{(x , y , δ ) } sampled i.i.d. in the same manner as     approximated by a clustering model with k clusters,
the training data, and also “visualization raw inputs” then the “meaningful” directions to consider could be {x
} sampled i.i.d. from P X  that are separate     the directions that point toward the k different cluster
from both training and anchor direction estimation     centers. These directions need not be axis-aligned.
data.      The basic workflow is as follows: we learn Moreover, the embedding dimension d is often a
the neural survival analysis model using training data. hyperparameter to be tuned (as part of the neural
Afterward, we estimate anchor directions using anchor     net architecture of f) .      If the problem of interest
direction estimation data. Finally, we produce visu- has an underlying ground truth distribution that is
alizations based on the estimated anchor directions     based on k clusters, then a “good” choice of neural
with the help of visualization raw inputs. survival analysis model would be one where for a wide

range of values for hyperparameter d (where d ≥  k),
after learning the neural survival analysis model, the
resulting learned embedding space P     should consist

First, we need to specify which space we will try to     of k s uf i ci entl y s eparated cl us ters  w i thi n R d .
visualize. To  go with the DeepSurv example from ear-
lier, the neural network f  used with DeepSurv could     3.2. Choos ing A n ch o r  Directions
be a multilayer perceptron. In this case, we could
visualize the representation at one of the intermediate
layers such as the representation right before the last A A        A       n A

fully-connected layer (this last layer outputs a single A A

number corresponding to the risk score). Specifically, is estimated as part of learning the neural survival
analysis model using training data {(x i , y i , δ i ) }n       .
Conditioned on the original training data and on the
encoder ϕ, the embedding vectors uA, . . . , uA      appear

where the function ϕ maps from the raw input space X
d 2 Note that for equation (3), our framework does not require

d                                                                                 the function g to output a single real number. This  happens
to be the case for DeepSurv. For example, DeepHit (Lee et al.,
2018) has a base neural network f  that outputs a Euclidean vec-

1 Our framework works even if the training data were sam-     tor instead. Our visualization framework trivially also supports
pled differently from the rest of the data; see Appendix C . these other base neural network functions.
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Ainput is true and 0 otherwise. The second term u     is

Aare measured treating u     as the “origin” of the new

first centered (Abdi and Williams, 2010).

A        A       n A

ters k so that for each k, we have a differen set of

we see the distribution of Ψ(k) as a “violin”). We
can choose k to be a value before the p-values in Ψ(k)
become “too large”. For example, in Figure 1, the

clusters, so we could choose k =  5.
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as i.i.d. draws from the embedding space PU (this
i.i.d. property would fail to hold if the anchor direc-
tion estimation data were the same as the training
data; see Appendix A.1 for details). We now provide
two approaches for estimating anchor directions.

3.2.1. C l us t e r i n g  Approach
We first estimate anchor directions using clustering.
This approach is agnostic to the choice of cluster-
ing algorithm but assumes that the clustering algo-
rithm chosen only has access to the embedding vectors
uA, . . . , uA

A . In particular, we ignore the survival in-
formation { (y A , δ A ) } n A       

for the moment. Note that
many clustering algorithms, such as the Expectation-
Maximization algorithm for Gaussian mixture models
(Bishop, 2006, Section 9.2), are derived under
the assumption that the data points to be clustered
are i.i.d. Again, this assumption holds since
uA, . . . , uA

A appear as i.i.d. samples from PU after we
condition on the original training data and ϕ.

Once we have learned the clustering model of our
choice, we obtain a cluster assignment for each em-
bedding vector. In particular, we denote the clus-
ter assignment of the i-th embedding vector uA  by
z A  � {1, 2, . . . , k}, where k is the number of clusters.
Then we define the j -th cluster’s anchor direction as

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

2 4 6 8 10
Number of clusters

Figure 1: A  violin plot to help select the number of
clusters k to use. Here, the encoder is from a
DeepSurv model trained on the SUPPORT
dataset, and the clustering model is a mix-
ture of von Mises-Fisher distributions. We
plot the set Ψ(k) (consisting of log-rank test
p-values; see equation (5)) vs k. Details on
the dataset, encoder, and clustering model
are in Section 3.4.

Suppose that we have grouped the data into k
clusters. For any two clusters j , j ′  � {1, . . . , k} with j
=  j ′ ,  we can run the log-rank test (Mantel, 1966) to
quantify how different these two clusters’ survival
outcomes are (running this test requires using the y A

and δ A  variables of the points in clusters j  and j ′ ).  We
denote the test’s resulting p-value as ψ j , j ′  (k). Then
the set of p-values across all pairs of clusters found is

P n A      
u A 1 { z A  =  j } 1 n A Ψ(k) � ψ j , j ′  (k) for all j  � {1, . . . , k},

cluster j          

|      i = 1  1{z i      =  j }  
}         | 

A  

{z1       }                                                             
and j ′  � { j  +  1, . . . , k} .      (5)

mean direction of         mean direction across            We can re-run the clustering algorithm to get clus-
the j - th  cluster � u A ter assignments that have different numbers of clus-

where 1 { · }  is the indicator function that is 1 when its     p-values Ψ(k). We plot the entire set Ψ(k) asta func-

the “center of mass” of the embedding vectors.

 

Thus, 
tion of k in Figure 1 using a violin plot (i.e., for each k, by

subtracting uA , we focus on how the clusters differ
from the center of mass. This is essentially changing
the center of the coordinate system so that directions “violins” in the violin plot get much taller (so the p-

coordinate system. A  similar idea i

s

 commonly used     
values in Ψ(k) are overall getting much larger) after 5 in

principal component analysis, in which data are This procedure for choosing k is a heuristic: we have
found it work well in practice but we currently lack

Choosing the number of clusters based on sur- theory to justify when it recovers the “correct” number
vival  information. Clustering algorithms often have of clusters. We comment on when the log-rank test
a hyperparameter (or multiple) that affects the num- is theoretically sound to apply (so that the p-values
ber of clusters k. For example, a Gaussian mixture     are valid) in Appendix A.2. We further discuss a
model has a hyperparameter for the number of mix- heuristic for choosing which clusters to focus on when
ture components, which could be thought of as clus- the number of clusters is large in Appendix G; this
ters. We now propose a heuristic for choosing k using     heuristic is based on estimating a survival time for
survival information {(y i  , δi ) } i = 1 . each anchor direction, ranking anchor directions based
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1
† †

n †
†input data C � { x  , . . . , x     } ,  where all n of these

is the same notion of concepts as used by K im et al.
(2018). We assume that the set C is collected in a

V } n V

i       i = 1raw inputs { x are collected (th s assumption will

use the anchor direction

|C|
†µ � ϕ(x )  − Au , (6)

µ
⟨ϕ(x) − Au , µ⟩

proj (x)  � , (7)

A

µ

V  n V

µi i

the D  features is assumed to be “easy to interpret”
(e.g., age, gender, cancer status). We show how to

a scatter plot (Section 3.4 1). Next, we show how to

raw feature using a heatmap (Section 3.4.2). The

Lastly, we show how to relate projection values to

• Fully-connected layer (mapping R  to R  )
• Nonlinear activation: ReLU
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on these survival time estimates, and focusing only on
anchor directions with particular ranks (e.g., anchor
directions with the highest and lowest survival times).

3.2.2. User-supplied “Concepts”

direction µ. Our 2D visualizations commonly have
the x-axis correspond to these projection values while
the y-axis will track quantities related to either raw
input feature values or time-to-event outcomes.

Next, we consider a scenario where the user provides     3.4. Visualization Strategies for Tabular  Data a
“concept” in terms of a collection of example raw     We begin by considering tabular data, where the raw

examples exhibit the concept (e.g., to convey a concept     
inputs are feature vectors from X  =  R D  and each of

corresponding to “female”, the user can set C to be a
collection of raw inputs from female patients). This     relate projection values along an anchor direction to,

at first, a single continuous feature (such as age) via

manner that is independent of how
i
the visualization     relate projection values to

.
any continuous or discrete

be needed later for statistical tests). Specifically, we     heatmap from Section 3.4.2 re
v

eals that some r
a

w
features might be more “important” for an anchor

1 X direction than others. We discuss statistical tests that
concept C can identify or help rank variables that are “impor-

x†�C tant” for a specific anchor direction (Section 3.4.3).

where the center of mass uA  is defined in equation (4). 
the neural survival analysis model’s predicted survival

3.3. K e y  Visualization Quantity:  Pro jections time distributions (Section 3.4.4).
onto A n ch o r  Directions Data and setup. As we progress through our visu-

In this section, we use µ � Rd  to denote any specific     alization strategies, we apply them to the SUPPORT
anchor direction that we aim to analyze, such as the     dataset (Knaus et al., 1995). This dataset has 8,873
ones from equations (4) or (6). Our visualization     data points (patients) and 14 features and is on pre-
framework focuses on angular information in the em- dicting time until death for severely ill hospitalized
bedding space. Specifically, for any raw input x  � X ,  patients with various diseases. We use a 70%/30%
we define the following projection onto µ: train/test split. We train a DeepSurv model, where

the base neural network f  is a multilayer perceptron
consisting of the following sequence of layers:

�ϕ(x) −  uA��µ� • Fully-connected layer (mapping R D  to Rd )

where ⟨·, ·⟩ denotes the Euclidean dot product, � · �     • Nonlinear activation: ReLU
d d

denotes taking the Euclidean norm, and u     is defined
in equation (4). This projection is precisely the cosine
similarity between vectors (ϕ(x) −  uA )  and µ, which .
looks at how well-aligned these two vectors are, dis- • Fully-connected layer (mapping Rd  to Rd )
regarding their magnitudes (since we divide by their     • Nonlinear activation: Divide each vector by its
norms in equation (7)). We discuss implications of Euclidean norm
ignoring magnitude information and how to reduce     • Fully-connected layer (mapping Rd  to R )

the amount of “information loss” in Section 3.6. Since     The second-to-last bullet point does not use ReLU the
cosine similarity of two vectors is always between     activation and instead normalizes vectors to have −1

(the two vectors point in exactly opposite direc- Euclidean norm 1. We design the architecture in
tions) and 1 (the two vectors poin in exactly the same     this manner since we shall set the embedding space
direction), we are guaranteed that proj (x)  � [−1, 1]. that we visualize to be the representation immediately
T o  create visualizations, we plug in the visualization     after this second-to-last bullet point’s layer, i.e., the

raw inputs {xi  } i = 1  into the projection operator projµ. encoder ϕ consists of all layers except for the last For
notation, we write p V  � proj ( x V )  to be the     fully-connected layer. Thus, the output of ϕ has in-projection
of the i-th visualization input along anchor     formation stored purely in terms of angles and not
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ullet point uses ReLU activation instead.
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magnitudes (since �ϕ(x)� =  1 for all x  � X ).  This     also explain why our framework remains valid when
helps reduce information loss in our visualizations     training and test data are independent of each other
(more details are in Section 3.6). We also show visu-     and come from different distributions.
alizations in Appendix B.3 where this second-to-last
b 

When training DeepSurv, we hold out 20% of the     
3.4.1. V isual i z ing  an A n c h o r  D i r e c t i o n  with

training set to treat as validation data for hyperpa-
rameter tuning. The hyperparameter grid used (e.g., Let µ be one of the anchor directions estimated,
number of fully-connected layers, embedding space     and let j  � {1, 2, . . . , D} be the raw feature that
dimension d, optimizer learning rate and batch size) we want to visualize, where we assume that this
is stated in Appendix B.1. After training DeepSurv     feature is continuous-valued.     Using the visualiza-
(including hyperparameter tuning), the learned model     tion raw inputs { x V } n V  , we compute the projec-
achieves a test set concordance index (Harrell et al., tions p V  � proj (x V ) ,  . . . , p V

V      � proj ( x V
V  ), and

1982) of 0.617. We provide this accuracy metric for     we write ( x V )      to mean the j -th coordinate of
reference; our visualization framework can be used     vector x V .      Then we can make a scatter plot of
regardless of the accuracy of the model (ideally, an (p V , (x V )  ), (pV , (xV )  ), . . . , (pV , (x V  )  ). As  a con-

accurate model should have an embedding space that     crete example of this, for the DeepSurv model trained
“captures” application-specific structure).                           on the SUPPORT dataset, using the anchor direction

As stated above, we take the encoder ϕ to be all the     corresponding to the first cluster found, and using
layers of f  prior to the last fully-connected layer. We “age” as the raw continuous feature to be visualized,
split the test set so that 25% of it is used as the anchor     we obtain the plot in Figure 2. We see that as the pro-
direction estimation data {(xi  , yi , δi ) } i = 1 ;  the rest     jection value increases (where a value of 1 maximally is
used to obtain visualization raw inputs { x V } n      

 . aligns with the anchor direction), the age distribution
Anchor directions are estimated via clustering as     tends to shift upward, suggesting that this anchor

described in Section 3.2.1. Since we have designed     direction is associated with older patients.
the neural network architecture so that all outputs
of encoder ϕ have Euclidean norm 1, clustering can
be done using a mixture of von Mises-Fisher distribu-
tions (von Mises, 1918), which is the analogue of the
Gaussian mixture model for Euclidean vectors with     We can modify the above visualization idea to handle
norm 1. We specifically fit this mixture model using     a discrete feature by having the y-axis of the plot
the Expectation-Maximization algorithm implementa- correspond to specific discrete values that the feature
tion by Kim (2021) and choose the number of clusters     can take on, and separately discretizing the x-axis into
k based on the heuristic we presented in Section 3.2.1. a user-specified number of bins (e.g., evenly spaced
In fact, Figure 1 is precisely the plot we get. Through- bins from the minimum to maximum observed projec-
out this section, we set the number of clusters to be     tion values). In doing so, we replace the scatter plot
k =  5 and, for illustrative purposes, we only show vi- with what we call a raw feature probability heatmap,
sualizations for the first cluster found. Visualizations     where the intensity at the i-th row and j -th column
for all 5 clusters and interpretations of these visual- is the fraction of visualization data patients in the
izations are in Appendix B.2, where we also discuss     j -th projection value bin who have the i-th row’s fea-
results when using other numbers of clusters and a     ture value. Even for a continuous feature, we can
different clustering algorithm altogether.                            discretize it based on a user-specified discretization

We separately also apply our visualization frame- strategy (e.g., based on quartiles) so that all features
work to tabular data on survival times of breast cancer (continuous or discrete) can be visualized together as
patients. Specifically, we visualize an embedding space     a large heatmap. Using the same anchor direction as of a
DeepSurv model trained using the Rotterdam     in Figure 2, we get the resulting heatmap in Figure 3, dataset
(Foekens et al., 2000). We treat the G B S G      where the different underlying features are separated dataset
(Schumacher et al., 1994) as the test data     by black horizontal lines in the heatmap.
(that we split into anchor estimation and visualization         Along the x-axis of the heatmap, the projection bins
data). Due to space contraints, we defer the visualiza- in this case are 7 evenly spaced bins between the mini-
tion results for this setup to Appendix C,  where we     mum and maximum observed projection values −0.99
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Projection onto anchor direction for cluster 1

Figure 2: Scatter plot of a single continuous raw fea-
ture (age) vs projection values along clus-
ter 1’s anchor direction. Plots for all clus-
ters are in Appendix B.2 (Figure B.1).

age bin#1(-inf,50.40)

age bin#2[50.40,61.78)

age bin#3[61.78,68.77)

age bin#4[68.77,76.24)

age bin#5[76.24,inf)

number of comorbidities bin#1(-inf,1.00)

number of comorbidities bin#2[1.00,2.00)

number of comorbidities bin#3[2.00,3.00)

number of comorbidities bin#4[3.00,inf)

mean arterial blood pressure bin#1(-inf,61.00)

mean arterial blood pressure bin#2[61.00,71.00)

and 0.99 respectively. The first (leftmost) bin corre-
sponds to the interval P  =  [−0.99, −0.71) with mid-
point value −0.85 =  1 (−0.99 −  0.71), the second bin
corresponds to the interval P2  =  [−0.71, −0.43) with
midpoint value −0.57, and so forth. The last (right-
most) bin corresponds to the interval P7  =  [0.71, 0.99]
with midpoint value 0.85; only this last bin’s interval
includes the right endpoint.

We can readily see some trends in Figure 3. As
already revealed in Figure 2, age tends to increase as
the projection value increases for cluster 1’s anchor
direction. However, we also see other trends as the
projection value increases, such as the number of
comorbidities tending to be at least 1 or cancer status
tending to be “metastatic”. In particular, this cluster
seems to correspond to patients who are more ill.
Indeed, these patients tend to have shorter predicted
survival times, as we show later in Section 3.4.4.

mean arterial blood pressure bin#3[71.00,93.00)

mean arterial blood pressure bin#4[93.00,112.00)

mean arterial blood pressure bin#5[112.00,inf)

heart rate bin#1(-inf,69.00)

heart rate bin#2[69.00,82.00)

heart rate bin#3[82.00,110.00)

0.8 3.4.3. S tat i s t i c a l  Tests  t o  Find “ I m p o rta n t ”
Va r i a b l es  f o r  an A n c h o r  D i r e c t i o n

heart rate bin#4[110.00,125.00)                                                                                                            In Figure 3, some features have noticeable trends
respiration rate bin#2[14.00,20.00)                                                                                                            as the projection value increases whereas others do
respiration rate bin#4[24.00,30.00)                                                                                                            not. We may want to focus on features that are the

respiration rate bin#5[30.00,inf)                                                                                                          “most important” as they relate to anchor direction µ
temperature bin#2[36.09,36.50)                                                                                                           (especially for datasets with a large number of features,
temperature bin#4[37.59,38.40) displaying all features would be impractical). We now

white blood

r 

count bin#1(-inf,6.10)                                                                                                            show how to rank raw features using statistical tests
white blood count bin#3[8.90,12.00)                                                                                                            of association between two variables, for which one

white blood count bin#4[12.00,16.50)                                                                                              0.4         of the variables we take to be the projection value
serum sodium 

i 
bin#2[133.00,136.00)                                                                                                            along µ (or a discretized version of this projection

serum sodium bin#3[136.00,139.00)                                                                                                            value), and the other variable will be one of the D
serum creatinine bin#1(-inf,0.80)

raw features (or a discretized version of it).
serum creatinine bin#2[0.80,1.00)                                                                                                                    The first test we could use to rank features is based
serum creatinine bin#4[1.40,2.20)                                                                                              

0.2         on the heatmap visualization from Figure 3: consider
female                                                                                                            a single raw feature (such as “white blood count”) and

dementia note that the heatmap restricted to that raw feature
race cat#1(unspecified)                                                                                                           

(i.e., the heatmap that only looks at the discretized
race cat#4(hispanic)                                                                                                            white blood count vs discretized projections) is a

race cat#5(other) contingency table, for which we can run Pearson’s chi-
cancer cat#2(yes)                                                                                              

0.0 squared test to assess whether white blood count and
cancer cat#3(metastatic)                                                                                                            the projection value are independent. We could repeat

Projection onto anchor direction for cluster 1                           this for all the different raw features (note that for
Figure 3: Raw feature probability heatmap: the in- raw features that are indicator random variables, we

tensity of the i-row, j -th column indicates     would have to add a row corresponding to one minus
the fraction of visualization data in the j -th     the indicator before running the statistical test) and
projection bin that have the i-th row’s fea- rank the raw features based on the p-values obtained.
ture value. Heatmaps for all clusters are in     Doing so, we obtain the ranking shown in Table 1.
Appendix B.2 (Figure B.2). Again, this ranking could be used in constructing raw
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Table 1: Ranking of raw features based on the p-value
of Pearson’s chi-squared test (for cluster 1,
the same cluster visualized in Figures 2
and 3); rankings for all clusters are provided
in Appendix B.2 (Table B.1).

ferent raw features. We mention two methods that
could help determine interactions in Appendix D.

3.4.4. V isual i z ing  an A n c h o r  D i r e c t i o n  with
T i m e- t o - E v ent  Outcomes

Rank      Feature

1      cancer
2      age
3      number of comorbidities
4      mean arterial blood pressure
5      diabetes
6      dementia
7      temperature
8      heart rate
9      female

10      serum creatinine
11      race
12      white blood count
13      respiration rate
14      serum sodium

p-value

2.86 ×  10−2 2 5

1.04 ×  10−4 5

1.91 ×  10−2 4

9.25 ×  10−1 9

2.46 ×  10−1 4

4.15 ×  10−1 1

1.58 ×  10−1 0

3.34 ×  10−9

1.07 ×  10−6

1.21 ×  10−6

3.42 ×  10−5

7.02 ×  10−5

4.54 ×  10−4

6.14 ×  10−2

To  relate an anchor direction to time-to-event out-
comes, we again use a heatmap. We set the x-axis
to be the same as in Figure 3. As stated in Sec-
tion 3.4.2, the x-axis (corresponding to projection
values along the anchor direction for cluster 1) has
been discretized into projection value bins that are in-
tervals. We specifically had P1  =  [−0.99, −0.71), P2 =
[−0.71, −0.43), . . . , P7 =  [0.71, 0.99]. Then note that
the j -th projection interval P j  corresponds to the
following visualization data points:

feature probability heatmaps, where we choose to only I j  � { i  � {1, 2, . . . , nV } s.t. proj ( x V )  � P j } .      (8)
visualize a few top-ranked features.

A  limitation of this chi-squared approach is that     Then letting S(t|x) denote the neural survival anal-
it requires projection values and raw features to be     ysis model’s prediction of the conditional survival
discretized. If the raw features are all continuous or     function for raw input x  (e.g., for DeepSurv, we use
ordinal, then one could use a different statistical test     equation (2)), we can compute the following average
to compare projection values (without discretization) predicted survival function for the j -th projection bin:
to each raw feature (also without discretization), such
as using Kendall’s tau test (Kendall, 1938) (which S  (t) � S(t|xV ). (9)
checks for a monotonic relationship between a pair                                                   j      i �I j

of variables). If the raw features are all categorical,
then instead the Kruskal-Wallis test by ranks could     We plot the function S j  as the j -th column of the
be used (Kruskal and Wallis, 1952).                                     heatmap, where the y-axis uses a discretized time grid

Importantly, when using any of these statistical (e.g., evenly spaced time points between the minimum
tests mentioned above, we suggest that the modeler     and maximum observed times in the training data).
check the assumptions of the test to see whether the     The resulting heatmap (which we call a survival prob-
test is appropriate for the particular dataset under ex- ability heatmap) is in Figure 4. For high projection
amination. One of the common assumptions the tests     values (e.g., looking at the rightmost column), the
have are that the input data points given to the tests     survival probability decays quickly as time increases
are independent, which we have taken care to achieve (starting from the bottom and going upward in the
by having the visualization data be separate from the     heatmap), suggesting that the patients whose embed-
training and anchor direction estimation data.                 ding vectors align the most with this anchor direction

Separately, note that we have not stated how to     tend to have short survival times.
pick a threshold for how small a p-value should be to
flag a raw feature as “important”. From a visualiza-
tion standpoint, we think that providing a ranking is     We now turn to working with images as raw inputs,
suficient; the modeler can arbitrarily decide on how     where we intentionally examine a dataset that has
many top features to focus on or to visualize, which is     known ground truth structure for what the embed-
equivalent to choosing an arbitrary p-value threshold. ding space should capture. This helps us see to what
We discuss how to choose a threshold that controls     extent the learned embedding space we examine re-
for a desired false discovery rate in Appendix A.3.         covers this ground truth structure. Specifically, we

Lastly, an important limitation of the general strat- use the Survival MNIST dataset, which is the MNIST
egy we have stated for ranking raw features is that     handwritten digit dataset (LeCun et al., 2010) mod-
each statistical test is applied in a manner where we     ified by Pölsterl (2019) to have survival labels, i.e.,
do not account for possible interactions between dif- observed times and event indicators. How Pölsterl
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Digit 9 Digit 0
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-0.85 -0.57 -0.28 0.00 0.28 0.57 0.85                                               Figure 5: Survival MNIST dataset: each digit has a
Projection onto anchor direction for cluster 1                                                               different ground truth mean survival time.

Figure 4: Survival probability heatmap: using the
same anchor direction as in Figure 3, we 1.0

show how projection values along this an- 0.8

chor direction relate to predicted survival 0.6

probabilities over time; the intensity at the 0.4

i-th row and j-th column is the survival
probability for the j -th projection bin at

-0.87 -0.70 -0.52 -0.34 -0.16 0.02 0.19 0.37 0.55 0.73 0.91

clusters are in Appendix B.2 (Figure B.3). Projection onto anchor direction defined by concept "digit 0"

Figure 6: Survival MNIST random input vs projec-

generates these labels depends on some distributional
tion plot: we display 10 random visualiza-

settings, for which we use the same settings as Gold-
stein et al. (2020). In particular, each of the 10 digits
has a mean survival time shown in Figure 5. Each     equation (8)). For projection bin P j ,  we can randomly
image’s true survival time is sampled based on the     sample, for instance, 10 raw input images correspond-
digit of the image (e.g., all images of digit 0 have     ing to points in I j  and display these images along the
true survival times sampled i.i.d. from a Gamma dis- y-axis. The resulting random input vs projection plot
tribution with mean 11.25 and variance 10−3 ). The     is shown in Figure 6.3 We see that as the projection
censoring times are sampled from a uniform distribu- values get large, the images that get sampled tend to
tion so that the overall censoring rate is roughly 50%. be of digits 0, 7, and 9. These digits have the highest
Also, all images of digit 0 have observed times that are ground truth mean survival times (see Figure 5).
censored. More dataset details are in Appendix E.1.          Due to space constraints, we defer additional Sur-

Using the training set (60,000 data points: each     vival MNIST visualizations to Appendix E.3. The
consists of an image, observed time, and event indi- key findings are as follows. First, note that the digits
cator), we learn a DeepSurv model where the base     have mean survival times ranked as 8, 6, 1, 4, 3, 2,
neural network is a convolutional neural network (ar- 5, 9, 7, 0 (see Figure 5). We refer to two digits as
chitecture and training details are in Appendix E.2). “adjacent” if they are ranked next to each other (e.g.,
Importantly, the digit labels (which digit each image     digits 1 and 4 are adjacent). We find that the learned
corresponds to) are not available during training. We     embedding space tends to have the j -th digit’s anchor
split the test set (10,000 data points), using 25% of     direction align well with embedding vectors of the
it as anchor direction estimation data and the rest as     j -th digit’s images as well as those of other adjacent
visualization data. For test data, we assume that we digits (e.g., digit 1 images tend to have high projec-
have access to their digit labels, which helps us assess     tion values for digit 4’s anchor direction). Because
whether the embedding space learns what digits are. the embedding space is not learned in a manner that

First, we use anchor directions defined by concepts     knows what the different digits are, the 10 digits do
of digits. F or example, anchor direction estimation     not get “disentangled” in the embedding space. Treat-
data corresponding to digit 0 represents the concept     ing data that are censored as a “concept”, we find

“digit 0”. F or digit 0’s anchor direction (computed     that the embedding space recognizes which digits
are using equation (6)), we can discretize the projection     more censored than others. Meanwhile, we also
show values of visualization raw inputs into projection bins           

3When the encoder uses a convolutional layer, it is

also pos-
sible to make a variant of Figure 6 where instead of displaying

j random raw inputs per projection bin, we display a convolution
j filter’s outputs of these random raw inputs instead.
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that if we estimate anchor directions using clustering, cal insight when working with a “norm 1” constraint
the violin plot we use to help select the number of (technically referred to as working with vectors on
clusters sharply increases in p-values after 9 clusters, a hypersphere) is to add regularization that encour-
as expected (digit 0 is the only one that is always     ages the embedding vectors to have angles that are

censored making it dificult to learn).                                 “diverse” (closer to uniformly distributed in all direc-
We point out that survival probability heatmaps     tions). Adding this regularization improves prediction

like the one in Figure 4 are not specific to tabular     accuracy for a variety of neural network architectures
data as they do not depend on raw features; they (Wang and Isola, 2020; L iu et al., 2021). This diver-
can be created the same manner when raw inputs are     sity would, in our visualization context, lead to to
images. Furthermore, if raw images are converted into     having the projections onto anchor directions be more
a tabular format (e.g., by running object detectors and     dispersed across the interval [−1, 1] instead of being

representing each image as a feature vector specifying “clumped up” around specific points within [−1, 1].
how often each object appears), then our tabular data
visualization strategies could of course be used. 4. Discussion
3.6. Loss of Magnitude Information
Our visualization framework is based on angular in-
formation: projection values are cosine similarities,
which measure angles between vectors, disregarding
their norms (or magnitudes). In the extreme case
where the “information content” of the embedding
vectors are all in magnitudes and not angles, the only
possible projection values are −1  and 1; projection
values within the open interval (−1, 1) are not possible.
Thus, all our visualizations where the x-axis is based
on projection values would only need two projection
bins for −1  and 1. We formally state this theoretical
result and provide its proof in Appendix F.

When working with real data, the information in
the embedding space will typically not be entirely in
angles or entirely in magnitudes. As more informa-
tion is stored in magnitudes, our visualizations based
on projection values will start exhibiting this phe-
nomenon where the projection values “clump up” at
−1  and 1. An example of this visualization artifact for
DeepSurv trained on the SUPPORT dataset (without
the nonlinear activation that normalizes the embed-
ding vectors to have norm 1) is in Appendix B.3.
R e d u c i n g  information loss. Since the modeler
can often choose the encoder ϕ when designing the
neural network architecture of f ,  the encoder ϕ could
be chosen as to avoid storing information in magni-
tudes, which would reduce the information lost by
using our framework. We had precisely done this in
Section 3.4 when we constrained the output of ϕ to
have Euclidean norm 1. This “norm 1” constraint
alone could still sometimes not lead to enough angular
information stored (e.g., if the embedding space PU is
highly concentrated so that nearly all embedding
vectors randomly sampled from it point in almost
the same direction). A  recent theoretical and empiri-

We have presented a visualization framework that is
meant to help developers of neural survival analysis
models better understand what their models have
learned. Importantly, the visualizations we have pro-
posed only reveal possible associations related to an
embedding space. No causal claims are made. In
focusing on examining one embedding space at a time,
our framework is not designed to explain how the
overall neural survival analysis model actually makes
predictions. We believe that our visualization strate-
gies would be helpful in assessing whether a model
has internally learned associations that agree with ex-
isting clinical literature, or to see if the model surfaces
new associations that warrant further investigation.

While we have developed our framework for survival
analysis, it can be modified to support other predic-
tion tasks. For example, to support classification, it
sufices to make two changes. First, the clustering
approach for estimating anchor directions would be un-
necessary since we could take the anchor directions to
be the average embedding vector for each class, minus
the center of mass across embedding vectors. Second,
to relate an embedding space to predicted class dis-
tributions instead of survival time distributions, we
could estimate and visualize the probability of dif-
ferent classes per projection bin instead of using our
proposed survival probability heatmaps. Although
our framework can easily be adapted to classifica-
tion, whether it offers any advantages over the many
existing visualization tools for classification (e.g., Sel-
varaju et al. 2016; Zhou et al. 2016; Dabkowski and
Gal 2017; Shrikumar et al. 2017; Smilkov et al. 2017;
Kim et al. 2018) is unclear. Better understanding the
advantages and disadvantages of our framework in
prediction tasks beyond survival analysis would be an
interesting direction for future research.
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Appendix A .  Statistical
Considerations

Cthe marginal censoring time distribution P ;

an extreme example where two clusters truly     ave
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each i  =  1, . . . , n. This means that uA, . . . , uA
A would

no longer be guaranteed to be independent since they
each depend on ϕ which in turn depends on all of the
training data (and thus all of the anchor direction
estimation data).

A.2.  Comments on the Log-rank  Test
The log-rank test, like other statistical hypothesis
tests, is designed under certain assumptions, where
checking these assumptions is important if one wants
the resulting p-values computed to be statistically
valid. One case these assumptions hold is if in addition

Laurens V an der Maaten and Geoffrey Hinton. Visual- to the survival analysis setup stated in Section 2.1,
izing data using t-sne. Journal of Machine Learning     we further assume that:

Research, 9(11), 2008.                                                             (i) the conditional censoring time distribution PC | X

Richard von Mises. Uber die “Ganzzahligkeit” der             is independent of raw inputs and is thus equal to

Atomgewicht und verwandte Fragen. Physikal. Z., 
(ii) the true underlying hazard function h(t|x) satis-

fies the proportional hazards assumption (1).
Tongzhou Wang and Phillip Isola. Understanding con- To  provide some intuition, condition (i) ensures that

trastive representation learning through alignment     when comparing any two clusters using the log-rank
and uniformity on the hypersphere. In International     test, the censoring patterns for the two clusters “look
Conference on Machine Learning, 2020.                          the same”. To  see why this is important, consider

Qixian Zhong, Jonas W. Mueller, and Jane-Ling Wang. the same underlying survival time distribution
h

but
their censoring patterns are so different that one of
the clusters always has all its observations censored
whereas the other has no observations censored. In
this case, we would not be able to tell that these two
clusters have the same survival time distribution.

The justification for condition (ii) is more technical.
One observation is that the log-rank test for compar-

Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude     ing two clusters can be shown to be equivalent to a
Oliva, and Antonio Torralba. Learning deep features     statistical test for the Cox proportional hazards model
for discriminative localization. In Proceedings of the (specifically the so-called “score test”) that checks for
I E E E  Conference on Computer Vision and Pattern association between the survival time and an
indica-Recognition, pages 2921–2929, 2016. tor variable stating which of the two clusters a data

point is in (Harrell, 2015, Section 20.4). For more
theoretical justification, see the books by Fleming
and Harrington (1991, Chapter 7) and Andersen et al.
(1993, Chapter V).

A.1.  W h a t  Happens if A n ch o r  Direct ion
Estimation Data were the Same as the A.3.  P-value Thresholding to Control  for a
Tra i n i n g  Data                                                                           Desired False Discovery Rate

Suppose that the anchor direction estimation data
{(x A , y A , δ A ) } n A       

were actually the same as the train-
ing data {(x i , y i , δ i ) }n       , so that nA  =  n and x A  =  x i

for i  =  1, . . . , n. Since the training data were used to
learn ϕ, then ϕ itself depends on all the training data.
Thus, the embedding vectors of the anchor direction
estimation data would be uA  =  ϕ (x A )  =  ϕ(x i )  for

For a specific anchor direction µ, we rank raw features
by computing p-values of a statistical test (such as
the chi-squared test of independence) that quantifies
the strength of the association between each raw fea-
ture and projections along µ. These tests are not
independent of each other because all tests use the
same projection values along the same direction µ. To
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determine a p-value threshold that appropriately con-
trols for false discovery rate across multiple statistical
tests with arbitrary dependence between them, one
could use, for instance, the method by Benjamini and
Yekutieli (2001).

Appendix B .  S U P P O R T  Dataset
Experiment

B.1.  Hyp erparameter G r i d  and Optimization
Details

We train the neural network using minibatch gradient
descent with at most 100 epochs and early stopping
(no improvement in the validation concordance index
after 10 epochs). We specifically use the Adam op-
timizer (Kingma and Ba, 2014). We sweep over the
following hyperparameters:
• Batch size: 64, 128
• Learning rate: 0.01, 0.001
• Number of fully-connected layers in encoder ϕ: 1,

2, 3, 4
• Embedding dimension d: 5, 6, 7, 8, 9, 10
Our code is written using PyTorch (Paszke et al.,
2019).

Compute instance. We ran our code on a Ubuntu
22.04.1 LT S  machine with an Intel Core i9-10900K
CPU (3.7GHz, 10 cores, 20 threads) with 64GB RAM
and a Quadro R T X  4000 GPU (with 8GB GPU RAM).

B.2.  Addit ional  Visualizations Us ing  an
Enco der  W i t h  the Eucl idean Norm 1
Constraint

In the main paper, we only showed visualizations for
the first cluster found out of the 5 clusters used in
the 5-component mixture of von Mises-Fisher distri-
butions. We include scatter plots of age vs anchor
projections for all 5 clusters in Figure B.1, raw feature
probability heatmaps for all 5 clusters in Figure B.2,
raw feature rankings for all 5 clusters in Table B.1,
and survival probability heatmaps for all 5 clusters in
Figure B.3.

Interpreting the visualizations. From the visual-
izations, we can see some patterns, where for simplicity
we mention only a few per cluster (e.g., looking at
the top few features per cluster in Table B.1 already
provides insight); we list these clusters in order of how
fast their survival probability heatmap’s rightmost col-
umn decays (starting from the fastest decay, indicative
of survival times that tend to be the shortest):
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Figure B.1: S U P P O RT  dataset: scatter plots of age
vs projection values for a DeepSurv model
where the encoder has a Euclidean norm 1
constraint.     The projection values are
along each cluster’s anchor direction (for
all 5 clusters in a 5-component mixture
of von Mises-Fisher distributions). The
plot only for cluster 1 is in Figure 2.
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• (Fastest survival probability decay) Cluster 1 is, as     mixture model instead. Again, we defer the resulting
already stated in Sections 3.4.2 and 3.4.4, associ- visualizations to our code repository except for the
ated with patients being more elderly and having     violin plot, which we show in Figure B.4. Qualita-
metastatic cancer and at least one comorbidity. tively, the clusters found for the same choice of k was

• Cluster 5 is associated with patients who are elderly, somewhat similar to what we get using a mixture of
have low or normal temperatures, and often have     von Mises-Fisher distributions, although of course the
cancer (non-metastatic or metatstatic). Similar to     clusters are not entirely the same. The violin plot
cluster 1, cluster 5 is largely also associated with     ends up looking a bit different: we see in Figure B.4
patients having at least one comorbidity. that the p-values tend to be very small for k =  2 and

• Cluster 2 is associated with patients having high     k =  3, and then they increase a bit at k =  4, and even
temperatures (indicative of a fever), high sodium     more at k =  5 (the highest point in the violin plot
levels, and lower ages. significantly increases from k =  4 to k =  5 and then it

• Cluster 3 is associated with patients without cancer, stays very high for all values of k >  5 that we tried). with
low or normal temperatures, and ages that are Ultimately, we have left the choice of which cluster-
neither low nor high.                                                             ing algorithm to use up to the user. We suspect that

• (Slowest survival probability decay) Cluster 4 is     a “good” choice of clustering algorithm would be able
associated with patients who are young, do not     to find a larger number of clusters while keeping the have
cancer, and (compared to patients with high     p-values low in the violin plot. For instance, using a
projection values for the other clusters) often do     mixture of von Mises-Fisher distributions, the violin not
have any comorbidities. plot has very low p-values for up to k =  5 in Figure 1.

These interpretations are not surprising in that be- In contrast, the violin plot we get using a Gaussian
ing elderly, having cancer, and having at least one     mixture model for the same embedding vectors has
comorbidity intuitively should be associated with a     low p-values only up to k =  3 as shown in Figure B.4.
patient being more ill and tending to have shorter     This suggests that the clusters found for the Gaussian
survival times. Similar findings for the same dataset     mixture model do not distinguish the embedding vec-
but using a different neural survival analysis model     tors as well in terms of survival outcomes compared
have been reported previously by Chen (2022). Note     to the mixture of von Mises-Fisher distributions.
that the above ranking of clusters was determined
qualitatively by looking at the survival probability     B.3.  Visualizations Using an Encoder Without
heatmaps. In fact, an approach we suggest for ranking the Eucl idean Norm 1 Constrain t
clusters/anchor directions by median survival time     We now present results using the exact same setup

as described in Section 3.4 and detailed in Appen-
Using different numb ers of clusters and a dif- dices B.1 and B.2, where the only differences are that:
ferent clustering algorithm. We have also sepa- (i) the final nonlinear activation layer in the encoder ϕ
rately tried using different numbers of clusters (aside     is ReLU instead of dividing the intermediate represen-
from k =  5) with the mixture of von Mises-Fisher     tation by its Euclidean norm, and (ii) the clustering
distributions. As the resulting visualizations do not     model used in the embedding space is a Gaussian
convey much more insight than what we have already     mixture model. For reference, this model achieves a
presented, we defer these to our code repository. Qual- test set concordance index of 0.615, which is close to
itatively, we found the following: using k <  5 results     what was achieved with the model that includes the
in “coarser-grain” clusters, each of which look like     Euclidean norm 1 constraint.
a combination of the clusters we found with k =  5,         The violin plot for selecting the number of clusters
and using k >  5 results in “finer-grain” clusters al- is shown in Figure B.5, where we choose the number
though some of these finer-grain clusters have raw     of clusters to be k =  3. For this 3-component Gaus-
feature probability (and, separately, survival proba- sian mixture model, we find the anchor directions
bility heatmaps) that look very similar (so that some     corresponding to its 3 clusters and then show scatter
of these clusters should probably be merged into a     plots of age vs anchor projections of all 3 clusters
single cluster as they correspond to similar raw feature     in Figure B.6, raw feature probability heatmaps for
patterns and survival time distributions).                           all 3 clusters in Figure B.7, raw feature rankings in

We also repeated this exercise of trying different     Table B.2, and survival probability heatmaps for all 3
numbers of clusters where we cluster using a Gaussian     clusters in Figure B.8.
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respiration rate bin#3[20.00,24.00)

respiration rate bin#4[24.00,30.00) 0.8
respiration rate bin#5[30.00,inf)

temperature bin#1(-inf,36.09)

temperature bin#2[36.09,36.50)

temperature bin#3[36.50,37.59)

temperature bin#4[37.59,38.40) 0.6
temperature bin#5[38.40,inf)

white blood count bin#1(-inf,6.10)

white blood count bin#2[6.10,8.90)

white blood count bin#3[8.90,12.00)

white blood count bin#4[12.00,16.50) 0.4
white blood count bin#5[16.50,inf)
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Figure B.2: SUPPORT dataset: raw feature probability heatmaps for a DeepSurv model where the encoder
has a Euclidean norm 1 constraint. These heatmaps are for all 5 clusters’ anchor directions
(clusters are from a 5-component mixture of von Mises-Fisher distributions). The heatmap
only for cluster 1 is also shown in Figure 3.
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Table B.1: SU P P ORT  dataset: rankings of raw features based on the p-value of Pearson’s chi-squared test
for a DeepSurv model where the encocder has a Euclidean norm 1 constraint. These tables are
for all 5 clusters in a 5-component mixture of von Mises-Fisher distributions. The ranking table
only for cluster 1 is also in Table 1.

Cluster 1

Rank      Feature p-value

Cluster 2

Rank      Feature p-value

1      cancer
2      age
3      number of comorbidities
4      mean arterial blood pressure
5      diabetes
6      dementia
7      temperature
8      heart rate
9      female

10      serum creatinine
11      race
12      white blood count
13      respiration rate
14      serum sodium

2.86 ×
10−

225
 1.04

×  10−45 1.91
×  10−24 9.25
×  10−19 2.46
×  10−14 4.15
×  10−11 1.58
×  10−10 3.34
×  10−9 1.07 ×
10−6 1.21 ×
10−6 3.42 ×
10−5 7.02 ×
10−5 4.54 ×
10−4 6.14 ×
10−2

1      temperature
2      age
3      serum sodium
4      female
5      cancer
6      mean arterial blood pressure
7      respiration rate
8      number of comorbidities
9      heart rate

10      white blood count
11      serum creatinine
12      race
13      diabetes
14      dementia

6.73 ×
10−

181
 2.42

×  10−40 4.06
×  10−37 6.42
×  10−32 2.09
×  10−27 3.01
×  10−18 2.43
×  10−12 3.80
×  10−8 4.04 ×
10−8 2.87 ×
10−5 2.89 ×
10−3 1.78 ×
10−2 3.56 ×
10−2 6.41 ×
10−1

Cluster 3

Rank      Feature p-value

Cluster 4

Rank      Feature p-value

1      cancer
2      temperature
3      age
4      female
5      number of comorbidities
6      white blood count
7      heart rate
8      respiration rate
9      mean arterial blood pressure

10      serum sodium
11      serum creatinine
12      race
13      dementia
14      diabetes

6.26 ×
10−

183
 2.93

×  10−75 1.75
×  10−37 1.35
×  10−24 3.05
×  10−20 6.74
×  10−16 1.58
×  10−12 1.04
×  10−10 1.28
×  10−9 1.39 ×
10−9 1.19 ×
10−8 2.44 ×
10−7 6.06 ×
10−5 6.16 ×
10−3

1      cancer
2      age
3      number of comorbidities
4      mean arterial blood pressure
5      dementia
6      diabetes
7      temperature
8      serum sodium
9      serum creatinine

10      respiration rate
11      race
12      female
13      white blood count
14      heart rate

6.12 ×
10−

185
 1.48

×  10−99 1.09
×  10−18 4.24
×  10−15 1.29
×  10−13 1.71
×  10−8 1.85 ×
10−6 1.37 ×
10−4 1.65 ×
10−4 1.69 ×
10−4 4.96 ×
10−4 7.54 ×
10−4 4.61 ×
10−3 1.53 ×
10−2

Cluster 5

Rank      Feature

1      age
2      cancer
3      temperature
4      serum sodium
5      mean arterial blood pressure
6      number of comorbidities
7      dementia
8      race
9      heart rate

10      respiration rate
11      serum creatinine
12      diabetes
13      white blood count
14      female

p-value

4.47 ×
10−

130
 4.88

×  10−

114
1.09 ×  10−42

2.35 ×  10−17

6.81 ×  10−17

9.90 ×  10−14

1.66 ×  10−13

6.59 ×  10−4

2.06 ×  10−3

2.05 ×  10−2

7.25 ×  10−2

8.99 ×  10−2

2.60 ×  10−1

3.98 ×  10−1
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Appendix C .  R o t t e rdam / G B S G
Experiment

1 n
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1910.0
1698.1
1486.2
1274.3
1062.4

850.6
638.7
426.8
214.9

3.0

Projection onto
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Projection onto
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for cluster 2

Projection onto
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for cluster 3

Projection onto
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for cluster 4

1.00

0.75
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0.00

Projection onto
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Figure B.3: S U P P O RT  dataset: survival probability heatmaps for a DeepSurv model where the encoder
has a Euclidean norm 1 constraint. These heatmaps are for all 5 clusters’ anchor directions
(clusters are from a 5-component mixture of von Mises-Fisher distributions). The heatmap
only for cluster 1 is also in Figure 4.

1.0 These are the same main findings as for the version of
0.8 the model that used the Euclidean norm 1 constraint.
0.6 In fact, even if we used 2 clusters, we get the same
0.3 main findings.
0.2                                                                                                                                                          We point out that the major challenge when there
0.0                                                                                                                                                   is a lot of information loss due to magnitudes being

Number of clusters                                                              ignored is that our visualization heatmaps will end
Figure B.4: SU PPO RT dataset: a violin plot to help     up each consisting of essentially only two projection

select the number of clusters (and thus     bins along the x-axis (that have enough data in them:
the number of anchor directions) to use     one that contains projection values around −1  and
with a clustering model. Here, the en- the other that contains projection values around 1).
coder used is from a DeepSurv model     In this case, we could still of course find interesting
that has a Euclidean norm 1 constraint, relationships of how a raw feature changes with respect
and the clustering model is a Gaussian     to an anchor direction but we would only be seeing
mixture model. what this change looks like (if there is any) at two

x-axis values. We would only be able to check for
A key point we want to emphasize is that in the     monotonic trends between how a raw feature relates to

scatter plots (Figure B.6),  we can see the “clumping     two projection values along a specific anchor
direction.
up” artifact we mentioned in Section 3.6 that indicates
that there is likely a lot of magnitude information lost
(specifically, a lot of the points in the scatter plot
“clump up” around −1  an 1).

In this case, the top features across clusters are     As mentioned in this main paper, we also have visu-
largely the same (Table B.2). From looking at the     alizations where we train on the Rotterdam dataset
raw feature probability heatmaps (Figure B.7), focus- (using the exact same neural network architecture
ing on the largest projection bin per heatmap, we     as we used for SUP PORT,  including the Euclidean
find that clusters 1 and 2 actually appear quite simi- norm 1 constraint; we specifically use the same hyper-
lar: both appear to be associated with older patients     parameter grid and optimization strategy as detailed
who often have cancer and at least one comorbidity. in Appendix B.1). For reference, when we test
on In contrast, cluster 3 appears to be associated with     the G B S G  dataset, we get a concordance index
of younger patients without cancer. Meanwhile, the sur- 0.677. For the visualizations to follow, we
randomly vival probability heatmap (Figure B.8) indicates that     choose 25% of the G B S G  dataset to treat
as the an-indeed clusters 1 and 2 are associated with survival     chor direction estimation data, and we use
the feature functions that decay quickly (indicative of the sur- vectors from the rest of the data as the
visualization vival times tending to be shorter) whereas cluster 3 is raw inputs xV , . . . , xV

V  . Note
that technically how associated with a survival function that decays slowly. we have set up the DeepSurv
model here violates
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Number of clusters

Figure B.5: SUPPORT dataset: a violin plot to help
select the number of clusters (and thus
the number of anchor directions) to use
with a clustering model. Here, the en-
coder used is from a DeepSurv model
that does not have a Euclidean norm 1
constraint, and the clustering model is a
Gaussian mixture model.

100

80

60

Table B.2: S U P P O RT  dataset: rankings of raw fea-
tures based on the p-value of Pearson’s chi-
squared test for a DeepSurv model where
the encoder does not have a Euclidean
norm 1 constraint. These tables are for
all 3 clusters in a 3-component Gaussian
mixture model.

Cluster 1

Rank      Feature p-value

1      cancer 4.35 ×  10−176

2      age 2.90 ×  10−34

3      dementia 9.15 ×  10−15

4      number of comorbidities 4.76 ×  10−14

5      heart rate 6.93 ×  10−9

6      mean arterial blood pressure      2.48 ×  10−8

7      diabetes                                               3.43 ×  10−5

8      female                                                   4.77 ×  10−5

9      white blood count                           5.63 ×  10−4

10      temperature                                       5.94 ×  10−3

11      respiration rate                                 1.31 ×  10−1

12      serum creatinine                              3.13 ×  10−1

13      serum sodium                                    3.32 ×  10−1

14      race                                                       5.28 ×  10−1

Cluster 2
40

Rank      Feature p-value
20

−1.0 −0.5 0.0 0.5 1.0

Projection onto anchor direction for cluster 1

100

80

60

40

20

−1.0 −0.5 0.0 0.5 1.0

Projection onto anchor direction for cluster 2

100

1      cancer
2      age
3      dementia
4      number of comorbidities
5      heart rate
6      mean arterial blood pressure
7      diabetes
8      female
9      temperature

10      white blood count
11      serum sodium
12      race
13      serum creatinine
14      respiration rate

3.41 ×  10−175

8.46 ×  10−36

6.14 ×  10−15

1.38 ×  10−12

7.64 ×  10−10

1.98 ×  10−8

6.49 ×  10−5

9.97 ×  10−4

8.66 ×  10−3

1.71 ×  10−2

2.14 ×  10−2

2.45 ×  10−1

2.45 ×  10−1

4.42 ×  10−1

80 Cluster 3

60 Rank      Feature p-value

40

20

−1.0 −0.5 0.0 0.5 1.0

Projection onto anchor direction for cluster 3

Figure B.6: S U P P O RT  dataset: scatter plots of
age vs projection values for a DeepSurv
model where the encoder does not have
a Euclidean norm 1 constraint. The pro-
jection values are along each cluster’s an-
chor direction (for all 3 clusters in a 3-
component Gaussian mixture model).

1      cancer
2      age
3      dementia
4      number of comorbidities
5      heart rate
6      mean arterial blood pressure
7      diabetes
8      female
9      white blood count

10      temperature
11      respiration rate
12      serum creatinine
13      race
14      serum sodium

1.34 ×  10−175

4.95 ×  10−34

9.15 ×  10−15

3.29 ×  10−14

1.48 ×  10−8

8.29 ×  10−8

6.40 ×  10−6

1.25 ×  10−4

1.49 ×  10−3

1.31 ×  10−2

1.59 ×  10−1

1.60 ×  10−1

2.18 ×  10−1

3.04 ×  10−1
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anchor direction                              anchor direction                              anchor direction

for cluster 1                                     for cluster 2                                     for cluster 3
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Figure B.7: SUPPORT dataset: raw feature probability heatmaps for a DeepSurv model where the encoder
does not have a Euclidean norm 1 constraint. These heatmaps are for each cluster’s anchor
direction (for all 3 clusters in a 3-component Gaussian mixture model).
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Figure B.8: SUPPORT dataset: survival probability heatmaps for a DeepSurv model where the encoder does
not have a Euclidean norm 1 constraint. These heatmaps are for each cluster’s anchor direction
(for all 3 clusters in a 3-component Gaussian mixture model).

Table C.1: Rotterdam/GBSG datasets: rankings of raw features based on the p-value of Pearson’s chi-squared
test for a DeepSurv model where the encoder has a Euclidean norm 1 constraint. These tables are
for all 3 clusters from a 3-component mixture of von Mises-Fisher distributions.

Cluster 1

Rank Feature p-value

Cluster 2

Rank Feature p-value

1 age
2 postmenopausal
3 number of positive nodes
4 estrogen receptor
5 progesterone receptor
6 tumor size
7 hormonal therapy

6.22 ×  10−50

1.36 ×  10−40

3.51 ×  10−27

2.67 ×  10−14

1.99 ×  10−7

4.11 ×  10−5

8.39 ×  10−3

1 number of positive nodes
2 hormonal therapy
3 tumor size
4 progesterone receptor
5 age
6 estrogen receptor
7 postmenopausal

1.58 ×  10−98

4.32 ×  10−14

2.52 ×  10−9

6.66 ×  10−6

1.47 ×  10−5

5.02 ×  10−4

6.31 ×  10−2

Cluster 3

Rank Feature

1 age
2 postmenopausal
3 number of positive nodes
4 hormonal therapy
5 estrogen receptor
6 tumor size
7 progesterone receptor

p-value

1.07 ×  10−35

5.56 ×  10−33

2.61 ×  10−30

2.47 ×  10−10

2.05 ×  10−3

2.61 ×  10−1

2.62 ×  10−1
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To  be more precise, our visualization framework

Appendix D .  Tabular Data: Finding
Interactions Between
Raw Features in

Direction

along an anchor direction µ.

1 n V

1 n V

Visual i z ing  Embedding Spaces o f  N e u r a l  S u rv i va l  Analys is  Models

the i.i.d. assumption between training and anchor di- the rightmost of the survival probability heatmaps
rection estimation data, as well as the assumption     for clusters 1 and 3 decay slowly). Interestingly, clus-
that the visualization raw inputs come from the same     ters 1 and 3 differ largely in that cluster 1 is for older
distribution as the raw inputs of the training data. women (being postmenopausal is flagged as being very
However, our visualization framework still actually     probable for cluster 1 which is of course related to
works when the training data are sampled differently. age) and cluster 3 is for younger women (who have
We discuss this in a bit more detail next before going     not undergone menopause). Meanwhile, the anchor
over the resulting visualizations.                                            direction for cluster 2 is associated with women who

A  d i ffer ent  d i st r i b u t i on  for  t r ai n i n g  d at a.  I n     have a large number of lymph nodes that
have cancer Section 3, when we discussed statistical assumptions     and the tumor sizes tend to be large as
well. This and sample splitting, we had, for simplicity, assumed     of course means that cancer has advanced
quite sig-that the tr aining data and anchor  dir ection estimation     nificantly and, unsurprisingly, cluster 2 is
associated data were sampled i.i.d. from the distribution ( which     with shorter survival times (its survival
probability
technically is a joint distribution P X , Y , ∆  defined for     heatmap’ s rightmost column decays quickly).
raw input X  with observed time Y and event indi-
cator ∆ ;  here, X ,  Y , and ∆  are random variables),
and that the visualization raw inputs are drawn from
the marginal raw input distribution PX .  In fact, the
training data could be sampled differently so long as
the anchor direction estimation data and visualization Predicting Pro jection
raw inputs are sampled in a manner that is indepen- Values Along an Anchor
dent of the training data, which ensures that we do
not encounter the issue stated in Appendix A.1.

We mention two methods that can be used to probe

still holds if the anchor direction estimation data are     raw feature interactions in predicting projection values
sampled i.i.d. from P X , Y , ∆  and the visualization raw
inputs are sampled from PX ,  but now the training     F i t t i n g  a regression model that is “easy to in-
data are sampled i.i.d. from some other distribution     terpret”  and accounts for feature interactions.
Q X , Y , ∆  and the training data are independent from     One way to find possible interactions is to fit any
the anchor direction estimation data and the visual- regression model that is straightforward to interpret
ization raw inputs. After all, the statistical analyses     and that can surface possible feature interactions,
we conduct are all conditioned on the training data using feature vectors xV , . . . , xV      and target regres-
and the encoder ϕ; we just needed to ensure that     sion labels pV, . . . , pV . For example, we could fit a
conditioning on the training data and ϕ did not result     so-called optimal regression tree using mixed-integer
in dependence between anchor direction estimation     optimization (Dunn, 2018). An example of such a
data or the visualization raw inputs. tree is shown in Figure D.1. The reason why this tree
Visual ization results and interpretations. We encodes feature interaction information is apparent
show the violin plot for selecting the number of clus- when we look at any leaf. F or example, the leftmost
ters for a mixture of von Mises-Fisher distributions in     leaf with predicted projection value −0.6306 corre-
Figure C.1(a ), where we choose the number of clusters     sponds to the intersection of the constraints “cancer
to be k =  3. F or this 3-component mixture model, we     =  no”, “age <  68.44”, and “serum creatinine <  2.55”,
find the anchor directions corresponding to its 3 clus- showing an interaction between the variables “cancer”,
ters and then show raw feature probability heatmaps “age”, and “serum creatinine” that depends on them
for all 3 clusters in Figure C.1(b ), raw feature rankings     satisfying specific inequalities.
in Table C.1, and survival probability heatmaps for         Note that this sort of approach should be used with
all 3 clusters in Figure C.1(c).                                                care. Specifically, by using different splits of data

The main findings from our visualizations are as (e.g., different train/validation splits) to train the tree,
follows: clusters 1 and 3 are both associated with     it is possible that the resulting trees look different
patients who tend to have very few lymph nodes that     and might suggest different raw features to matter,
contain cancer, which in turn is associated with longer     and the raw features that interact might vary across
survival times (the survival probability functions in     experimental repeats. Another issue is that such tree
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for cluster 1                                           for cluster 2                                           for cluster 3

(b )
83.1
74.0
64.9
55.8
46.7
37.6
28.5
19.4
10.3

1.2

1.00

0.75

0.50

0.25

0.00

Projection onto anchor direction     Projection onto anchor direction     Projection onto anchor direction
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(c )

Figure C.1: Rotterdam/GBSG datasets: visualizations for a DeepSurv model where the encoder has a
Euclidean norm 1 constraint. Panel (a) shows a violin plot to help select the number of
clusters (and thus the number of anchor directions) for use with a mixture of von Mises-Fisher
distributions, where we choose k =  3 for the subsequent panels. Panel (b) shows raw feature
probability heatmaps for the three clusters’ estimated anchor directions. Panel (c) shows the
survival probability heatmaps for the same anchor directions as panel (b). Details on the dataset,
encoder, and clustering model are in Appendix C.
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Cancer

“no” “yes” or “metastatic”

Age Cancer

< 68.44

Serum creatinine

≥ 68.44

Heart rate

“yes”

Serum creatinine

“metastatic”

Predict projection
value 0.8038

< 2.55

Predict projection
value -0.6306

≥ 2.55

Predict projection
value -0.1120

< 112.5

Predict projection
value -0.2025

≥ 112.5

Predict projection
value 0.3709

< 43.11

Predict projection
value -0.1099

≥ 43.11

Predict projection
value 0.6022

Projection values are along the anchor direction for cluster 1

Figure D.1: SUPPORT dataset: using a DeepSurv model where the encoder has a Euclidean norm 1 constraint,
we show an optimal regression tree trained using visualization raw inputs (feature vectors) to
predict projection values (regression target labels) along cluster 1’s anchor direction. Cluster 1 is
the same cluster that we provided visualizations for throughout Section 3.4 and in Appendix B.2.

learning algorithms have hyperparameter(s) for con-
trolling the tree complexity, such as the max tree
depth, and for different such hyperparameter choices,
the raw features that are found to be important or
that are shown to interact might vary.
Archipelogo. As an alternative approach to finding
possible feature interactions, we point out that one
could use the Archipelogo framework (Tsang et al.,
2020) that is designed to find feature interactions of
a black-box model (in this case, the encoder ϕ) when
provided with specific raw inputs (e.g., x1 , . . . , xV

V  ).

Appendix E .  Survival  M N I S T
Experiment

E.1.  Dataset
The Survival MNIST dataset builds off of the original
MNIST classification dataset (LeCun et al., 2010),
which consists of 60,000 training images and 10,000
test images. Al l  images are 28-by-28 pixel grayscale
images of handwritten digits. Each image has a target
label corresponding to which of the 10 digits the image
corresponds to. Pölsterl (2019) modified the MNIST
dataset so that the labels for training and test images
are instead survival labels (observed times and event
indicators) that are synthetically generated. There is
some flexibility in this synthetic generation process.
We specifically use the same synthetic survival label
generation procedure as Goldstein et al. (2020), who
also use the Survival MNIST dataset. Specifically, for
each digit j  � {0, 1, . . . , 9}, we let mj  denote the true
mean survival time for digit j ,  where:
• m0 =  11.25
• m1 =  2.25

• m2 =  5.25
• m3 =  5.0
• m4 =  4.75
• m5 =  8.0
• m6 =  2.0
• m7 =  11.0
• m8 =  1.75
• m9 =  10.75

These mean survival times are also shown in Figure 5.
The digits are ranked (in increasing order of mean
survival time) as: 8, 6, 1, 4, 3, 2, 5, 9, 7, 0. Note that
the 10 digits are grouped into four ground truth risk
groups: {0, 7, 9}, {1, 6, 8}, {2, 3, 4}, {5}; within each
risk group, the digits in the group have very similar
ground truth mean survival times.

For each training image x i  � X  with digit label
η i  � {0, 1, . . . , 9}, we sample its true survival time ti
from a Gamma distribution with mean mη     and vari-
ance 10−3 . After we generate survival times t1, . . . , tn
for all training data, we then sample the censoring
times c1, . . . , cn i.i.d. from a uniform distribution be-
tween min{t1, . . . , tn} and the 90th percentile value of
t1, . . . , tn. Finally, we set the training data’s observed
times and event indicators to be yi =  min{ti , ci } and
δ i  =  1{t i  ≤  c i }  respectively. This results in a censor-
ing rate (1 − δ i )  of approximately 50%. The
test data are generated separately from the training
data but in the same manner.

As a reminder, when training a survival analysis
model with the Survival MNIST dataset, the train-
ing data are {(x i , y i , δ i ) }n       . The true digit labels
η1, . . . , ηn are not available to the training procedure.
For test data, we also have access to their digit labels.
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Figure E.1: Ground truth survival functions for the
different digits.

Some important remarks regarding this dataset are
in order:

• The proportional hazards assumption does not hold
for the underlying survival distributions of the dif-
ferent digits. One way to see this is that by plotting
the true survival functions of the different digits
(per digit, we can get the true survival function
by looking at 1 minus the C D F  of the Gamma
dis-tribution associated with the digit), these
survival functions are not powers of one another;
we show these ground truth survival functions in
Figure E.1. (When the proportional hazards
assumption holds, all survival functions are powers
of an underlying
“baseline survival function”.) This means that if we
fit a model with a proportional hazards assumption,
such as the DeepSurv model, we should not expect
the predicted conditional survival functions to be
correct although these should be able to “correctly
order” the survival times of the different digits. Re-
call that the digits are ordered by true mean survival
time (in increasing order) as 8, 6, 1, 4, 3, 2, 5, 9, 7, 0.
We would like the “average predicted survival
func-tion for digit 8” to be lower than that of
digit 6, which should be lower than that of digit
1, and so forth.

• By how the censoring mechanism is set up, digits
with higher mean survival times have higher censor-
ing rates. This is because the uniform distribution
for censoring times has its maximum set to be the
90th percentile value of randomly generated sur-
vival times, so digits with high ground truth mean
survival times get censored more often. For exam-
ple, for the test data we generated, we have the
following censoring rates for the different digits (we
have ordered the digits in increasing order of ground
truth mean survival time):
– Digit 8: 1.23% –
Digit 6: 2.92% –
Digit 1: 5.64% –
Digit 4: 34.42%

– Digit 3: 35.25% –
Digit 2: 37.98% –
Digit 5: 71.19% –
Digit 9: 96.53% –
Digit 7: 99.22% –
Digit 0: 100.00%
Digits 0, 7, and 9 have censoring rates higher than
96%, with digit 0’s censoring rate at 100% (in the
training and test sets we generated, digit 0 is always
censored). This means that that their randomly
generated observed times and event indicators of-
ten look identical. Thus, when learning a neural
survival analysis model using the training data, the
learned embedding space (that we aim to visualize)
would likely have trouble distinguishing between
these three digits. Having part of the embedding
space correspond only to digit 0 and not 7 or 9
would be particularly dificult.

E.2.  Neural  Surv iva l  Analysis Model and
Enco der  Setup

We set the base neural network f  to be a convolutional
neural network (CNN) consisting of the following se-
quence of layers:
• Conv2D layer with 32 filters (each 3-by-3)
• Nonlinear activation: ReLU
• MaxPool2D layer (2-by-2)
• Conv2D layer with 16 filters (each 3-by-3)
• Nonlinear activation: ReLU
• MaxPool2D layer (2-by-2)
• Flatten
• Fully-connected layer (that maps to d outputs)
• Nonlinear activation: Divide each vector by its

Euclidean norm
• Fully-connected layer (map d inputs to 1 output)
We take the encoder ϕ to be everything excluding the
last fully-connected layer.

Note that the above choice of CNN is somewhat
arbitrary. The goal of our paper here is not to provide
visualizations for the very best CNN possible for Sur-
vival MNIST. Rather, we just aim to show that for a
choice of CNN that is straightforward to implement,
we can readily provide visualizations for one of its
intermediate representations.

Just as in the tabular data setup, we train the neural
network using minibatch gradient descent with at most
100 epochs and early stopping (no improvement in the
validation concordance index after 10 epochs). We use
Adam to optimize, and we sweep over the following
hyperparameters:
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Figure E.2: Predicted survival functions for the dif-
ferent digits (mean ±  standard deviation
at each time point).

• Batch size: 64, 128
• Learning rate: 0.01, 0.001
• Embedding dimension d: 10, 20, 30, 40, 50
We ran the experiments for this dataset on the same
compute instance mentioned in Appendix B.1. After
training the DeepSurv model, the model achieved a
test set concordance index of 0.953.

E.3.  Addit ional  Visualizations
E.3.1. Predicted S u rv i va l  Functions

We begin with a visualization that is not actually
related to our anchor direction visualization frame-
work and instead just looks at how well the trained
DeepSurv model predicts survival functions. For the i-
th visualization raw input x V ,  we denote its true
digit label as η V  � {0, 1, . . . , 9}. Then for digit j ,  we
can compute the mean predicted survival function

P n V      

1 {η V  =  j }S (t|xV )
digit j

i = 1  1 {η V  =  j }

We could also compute its standard deviation

b
digit j (t)

t i = 1  1{η i      =  j }  S (t|xi )  −  Sdig it  j (t)  2

i = 1  1 {η V  =  j }

We plot each mean predicted survival function
Sdigit  j (t)  with error bars given by S std (t) in Fig-
ure E.2. As expected, these survival functions do not
resemble the ground truth ones as the neural survival
analysis model fitted assumes a proportional hazards
model. However, the ranking of the digits is approxi-
mately correct: looking at the mean predicted survival
functions, the ranking of these (going from lower to
higher) is: 8, 6, 1, 4, 3, 2, 5, 7, 9, 0. The only error in
this ranking is that digits 7 and 9 are swapped. As a
reminder, digits 0, 7, and 9 are more dificult as they
have censoring rates over 96%.

Importantly, the survival functions Sdig i t  j  are esti-
mated with the help of ground truth digit labels. The
DeepSurv model in this case never received ground
truth digit labels and, in particular, its embedding
space (the output space of encoder ϕ) was not explic-
itly trained to be able to distinguish between digits.
That said, we can try to understand to what extent
this embedding space captures information regarding
the 10 digits. We proceed to do this next.

E.3.2. T r e at i n g  E a c h  D i g i t  as a  Concept f o r
A n c h o r  D i r e c t i o n  Est i m at i on

We now show random input vs projection plots (like
the one in Figure 6) for all 10 digits in Figure E.3.
From these plots, we see that as the projection value
gets large for digit j  � {0, 1, . . . , 9}, the raw inputs
that achieve these large projection values for digit j
tend to be of digit j  itself or of other “adjacent”
digit(s), where by “adjacent”, we mean one(s) or-
dered next to digit j  in terms of the ranking of ground
truth mean survival times.

Using these same anchor directions, we produce
the survival probability heatmaps (like the ones in
Figure 4 and Figure B.3) in Figure E.4. Note that
these heatmaps convey information similar to what
is shown in Figure E.2. For instance, when we look
at the rightmost column of the survival probability
heatmap for digit 0’s anchor direction, we see that the
survival function barely decays for all the observed
times, indicative of the survival time tending to be
large, as expected. This rightmost column’s survival
function resembles the predicted survival curve for
digit 0 in Figure E.2. A  similar finding holds for the
other digits.

T h e  embedding space does not appear to cap-
ture the ground truth risk groups. We previously
pointed out that the digits are grouped into four risk
groups (each risk group has ground truth mean sur-
vival times that are very close by to each other; see
Figure 5). It is not the case, however, that only the
digits within the same risk group end up with high
projection values for each other’s anchor directions
(see Figure 6). We do see this happen for the
risk group with the lowest mean survival times
(consisting of digits 1, 6, and 8) as well as the risk
group with the highest mean survival times
(consisting of 0, 7, and 9) but this does not entirely
hold for the other risk groups.

To  give a concrete example of how the embedding
space does not correctly “capture” a risk group, con-
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Figure E.3: Survival MNIST: we treat each of the 10 digits as a concept that we compute an anchor direction for,
and then we produce random input vs projection plots for the 10 anchor directions. For each plot,
per projection bin, we sample 10 random visualization raw inputs.
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Figure E.4: Survival MNIST: we treat each of the 10 digits as a concept that we compute an anchor direction
for, and then we plot survival probability heatmaps for the 10 anchor directions.

sider digit 5. The ground truth has digit 5 in its own
risk group: no other digit’s mean survival time is very
close to that of digit 5. However, when we look at
digit 5’s random input vs projection plot in Figure E.3,
when we look at the rightmost two projection bins,
we see that many digits (that are not the digit 5) have
high projection values for digit 5.

We suspect that what is causing the problem is cen-
soring. We said that the digits in risk group {1, 6, 8}
tend to have high projection values for each other’s
anchor directions, and similarly for the digits in the
risk group {0, 7, 9}. Note that all digits in risk group
{1, 6, 8} have censoring rates below 6%. All  digits in
risk group {0, 7, 9} have censoring rates over 96%. In
contrast, the digit 5 has a censoring rate of about 71%,
which is neither very low nor very high. The digits
with high projection values for digit 5 are ones that
all have censoring rates over 35%. Basically, although
the embedding space does not appear to be capturing
risk groups well, it seems to recognize what censoring
means. We examine this next.

E.3.3. T r e at i n g  “Censored”  as a  Concept
f o r  A n c h o r  D i r e c t i o n  Est i m at i on

We treat anchor direction estimation data that are
censored (i.e., their event indicator variables are equal

1.0
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0.6

0.4

0.2

0.0 
-0.90 -0.72 -0.54 -0.36 -0.18 0.00 0.18 0.36 0.54 0.72 0.91

Projection onto anchor direction defined by concept "censored"

Figure E.5: Survival MNIST: after computing an an-
chor direction for the concept “censored”,
we produce a random input vs projection
plot for this anchor direction.

to 0) as a concept, which we then compute the an-
chor direction for using equation (6). We produce a
random input vs projection plot for this “censored”
concept’s anchor direction in Figure E.5. From the
plot, as we progress from the most negative projec-
tion values to the most positive, the random samples
clearly correspond to digits going from the lowest to
the highest ground truth mean survival times, which
also corresponds to going from the lowest to the high-
est censoring rates.
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Figure E.6: Survival MNIST: a violin plot to help se-
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Figure E.7: Survival MNIST: average projection
heatmap for seeing how well a cluster-
ing assignment with 9 clusters (using a
mixture of von Mises-Fisher distributions)
aligns with the 10 ground truth digit la-
bels. The intensity at the i-th row and
j-th column corresponds to average pro-
jection value along the j -th cluster’s an-
chor direction across visualization data
with ground truth digit label i. Note that
the clusters with labels 1 and 1’ both
match best with digit 1.

E.3.4. Es t i m at ing  A n c h o r  D i rec t i ons  v i a
C l us t e r i n g

Lastly, we consider estimating anchor directions via
clustering, where we use a mixture of von Mises-Fisher
distributions as the clustering model. We show the
violin plot for selecting the number of clusters in
Figure E.6. From this violin plot, we see that the
log-rank test p-values have a sharp increase after 9
clusters. We examine the clustering results using 9
clusters and, separately, also using 4 clusters and 10

clusters. The reason we look at the 4 clusters case is
because there are 4 underlying risk groups, and we
can check to what extent these can be recovered from a
clustering solution with 4 clusters. As for looking at
a model with 10 clusters, this is because we know that
in reality there are 10 digits, each with its own
ground truth survival function.

Results for a clustering model with 9 clusters.
We first use anchor directions from a 9-component
mixture of von Mises-Fisher distributions, where each
component is treated as a cluster. We check how well
the 9 clusters’ anchor directions align with the anchor
directions of the digit concepts. For visualization pur-
poses, we label each cluster with the digit that the clus-
ter matches best to, where we determine a match as
follows: for the j -th cluster, we find whichever digit’s
anchor direction (computed using equation (6); these
were the anchor directions used in Appendix E.3.2)
is most similar to the j -th cluster’s anchor direction
(computed using equation (4)) according to cosine
similarity. It is possible that multiple clusters match
best with the same digit. Then, we can create what
we call an average projection heatmap where the en-
try at the i-th row and j -th column corresponds to
the average projection value along the j -th cluster’s
anchor direction across visualization data that have
the ground truth digit label i. We show the resulting
heatmap in Figure E.7. From this heatmap, we see
that the cluster with label 0 has high projection values
for digits 0, 5, 7, and 9, which are the most censored
digits (digits 0, 7, and 9 in particular tend to have
the highest projection values for cluster 0); digit 5,
however, also has its own cluster that it is matched to
whereas digits 7 and 9 do not. Another observation is
that digits 1, 6, and 8 tend to have high projection
values for clusters with labels 1, 6, and 8 (although
the cluster with label 1 has highest projection values
for digit 1, and similarly for the clusters with labels 6
and 8).

We create a random input vs projection plot for each
of these 9 clusters’ anchor directions in Figure E.8,
where we see the same sort of phenomenon we had
pointed out in Appendix E.3.2: when we look at
an anchor direction roughly corresponding to digit j ,
then images of digit j  as well as images of digits that
have a true mean survival time adjacent to that of
digit j  will often have high projection values. We
also plot survival probability heatmaps for these an-
chor directions in Figure E.9. Each cluster’s survival
probability heatmap is similar to the one for the digit
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Figure E.8: Survival MNIST: using anchor directions estimated from a clustering model with 9 clusters, we
produce random input vs projection plots for the resulting 9 anchor directions. The cluster labels
are the same as the ones along the x-axis of Figure E.7.
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Figure E.9: Survival MNIST: using anchor directions estimated from a clustering model with 9 clusters, we
produce survival probability heatmaps for the resulting 9 anchor directions. The cluster labels
are the same as the ones along the x-axis of Figure E.7.
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Figure E.10: Survival MNIST: average projection
heatmap for a clustering assignment
with 4 clusters (using a mixture of von
Mises-Fisher distributions). The inten-
sity at the i-th row and j-th column
corresponds to average projection value
along the j -th cluster’s anchor direction
across visualization data with ground
truth digit label i. Just as in Figure E.7,
we label each cluster based on the single
digit that it best matches to.
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Figure E.11: Survival MNIST: average projection
heatmap for a clustering assignment
with 10 clusters (using a mixture of von
Mises-Fisher distributions). The inten-
sity at the i-th row and j-th column
corresponds to average projection value
along the j -th cluster’s anchor direction
across visualization data with ground
truth digit label i. Just as in Figure E.7,
we label each cluster based on the single
digit that it best matches to.

that the cluster best matches to (see Figure E.4 for
comparison).
Results for a clustering model with 4 clusters.
We next use anchor directions from a 4-component
mixture of von Mises-Fisher distributions, again treat-
ing each component as a cluster. We show an average
projection heatmap in Figure E.10. Note that al-
though we use the same way of labeling each cluster
as we did when we used 9 clusters, here we would actu-
ally like each cluster to correspond to the ground truth
risk groups (so that each cluster does not necessarily
only correspond to a single digit).

From Figure E.10, we see that the cluster with la-
bel 0 is most like the ground truth risk group {0, 7, 9}
but also includes digit 5 (which also has a relatively
high censoring rate among the different digits). Mean-
while, the cluster with label 6 is most like the risk
group {1, 6, 8}. The clusters with labels 2 and 4 to-
gether correspond to the ground truth risk group
{2, 3, 4}. Overall, the ground truth risk groups are
not correctly recovered although the clusters found,
qualitatively, pick up on some of the ground truth
structure. We suspect that the dificulty in determin-
ing that digit 5 should be in its own cluster has to do
with how often it is censored (over 70%). The risk
group corresponding to digits 1, 6, and 8 should be
the easiest to recover as these three digits have the
lowest censoring rates (all below 6%).

We omit random input vs projection plots and sur-
vival probability heatmaps for the different clusters’
anchor directions since the findings from these visu-
alizations are qualitatively similar to the findings we
just pointed out from looking at Figures E.10 and E.9
(note that for each cluster in this 4-cluster model,
the digits that the cluster matches well with tend to
have very similar survival probability heat maps).
Results  for a clustering model with 10 clus-
ters. When we use 10 clusters for the mixture of von
Mises-Fisher distributions, we obtain the average pro-
jection heatmap in Figure E.11. In this case, when we
match each cluster to a digit, the only digit that does
not get matched is digit 0, although digit 0 itself has
high projection values for the clusters with labels 7
and 9. Qualitatively, the clustering result here is not
too different from the one where we used 9 clusters.
The main difference now is that we can somewhat
distinguish better between the digits in the risk group
{0, 7, 9} consisting of digits with the highest censoring
rates. We omit the random input vs projection plots
and the survival probability heatmaps for the 10 differ-
ent clusters’ anchor directions as these visualizations

472



i
        iu  − u

V
i

A

i

i

V
n

i i i

V
i

uV − uA

V
i

A

i

ii i i

i i ii = 1 i = 1

i i
1

n

X
i

i
1

n

n A

A

Visual i z ing  Embedding Spaces o f  N e u r a l  S u rv i va l  Analys is  Models

do not provide additional insight at this point over
the other findings we have already reported.

Appendix F .  Theoretical Result on
Pro jection Values When
Information Content in
Embedding Vectors is A l l
in Magnitudes

Proposition 2 ( Extreme example where the embed-
ding space information is all in magnitudes) Suppose
that the embedding vectors (of anchor direction
esti-mation and visualization data) are i.i.d. of the
form (Ξ, 0, . . . , 0) � Rd  (i.e., all coordinates are 0
except the first), where Ξ  is a continuous random
variable with positive variance. In this setup, the only
direction in the embedding space that matters is
along the vector µ =  (1, 0, . . . , 0) � Rd ,  which we
can take to be the anchor direction of interest.
Then the only possible projection values p V  are −1
or 1; projection values in the open interval (−1, 1)
are not possible.

Proof     Let µ =  (1, 0, . . . , 0); we treat this as the
anchor direction as it is the only direction in which
the embedding vectors even vary in this proposition’s
setup. Our visualizations involve plugging in the vi-
sualization raw inputs x1 , . . . , xV

V  into ϕ. We denote
uV  � ϕ(xV ),  so that the projection value p V  defined
in equation (7) is equal to

D E
pi     =  pro jµ (xV ) =

�u
i 

−
 

u
 

�
, µ , (10)

where we have used the fact that �µ� =  1.
The key observation is that we can write each uV

as uV  =  (ΞV, 0, . . . , 0) and similarly each uA  as uA  =
(ΞA, 0, . . . , 0) where the { Ξ V } n V          

and { Ξ A } n A

are all i.i.d. continuous random variables with
positive variance. Therefore,

n A

uV  −  uA  =  uV  −      A uA

i = 1

=  Ξ V  −      A  

X
Ξ i  , 0, . . . , 0, |

{z i = 1 }
♠

where ♠ is a sum of independent continuous random
variables with positive variance, so ♠ itself is still a
continuous random variable with positive variance
(note that the variance of the sum of two independent

variables is the sum of their variances). This implies
that ♠ is 0 with probability 0, which in turn implies
that with probability 1, �uV −  uA� is nonzero, so

�u

V

− u

A

� is well-defined and, in particular, it is either µ
or −µ. Then by using equation (10), p V  is either
equal to ⟨µ, µ⟩ =  1 or ⟨−µ, µ⟩ =  −1.

Appendix G .  Handling a Large
Number of
Clusters/Anchor
Directions With  the
Help of Ranking

When using our heuristic from Section 3.2.1 for choos-
ing the number of clusters to use, it is possible that
the number of clusters could be very large — so large
that examining visualizations for anchor directions
corresponding to all the clusters would be too tedious
for model debugging purposes. Of course, one could
simply choose to not set the number of clusters to
be so large. Put another way, when using our vi-
olin plot visualization to help select the number of
clusters, one could simply choose a smaller p-value
threshold, which would result in fewer clusters being
used. However, if for whatever reason, one wants to
use a number of clusters that is larger with the goal
of having clusters that are more “fine-grain”, we now
suggest an approach for handling this situation as to
reduce the amount of clusters to look at. Note that
this approach actually applies more generally to the
setting where there are many anchor directions that
are under consideration, where the anchor directions
need not be estimated from our clustering approach.
For example, the anchor directions could be computed
based on concepts as in Section 3.2.2, where there is
a very large number of concepts under consideration.

The basic idea is to rank the anchor directions.
If we have a ranking of the anchor directions, then
we could focus on, for instance, a few of the high-
est and a few of the lowest ranked anchor directions.
Alternatively, we could also, for instance, take an-
chor directions that are “diverse” across ranks: for
example, we could choose the 0th percentile-ranked
anchor direction (lowest ranked), the 25th percentile,
the 50th percentile (median), the 75th percentile, the
100th percentile (highest ranked). In this manner, we
can focus on visualizing only a subset of all the anchor
directions. We describe one approach to rank anchor
directions next.
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Ran k i n g  anchor directions based on predicted
median survival  times. One heuristic approach is
to compute a median survival time estimate for each
anchor direction, and then rank anchor directions
based on this median survival time estimate.

Per anchor direction µ, we first determine the vi-
sualization data that are in the top α fraction of the
projection values along µ (e.g., if α =  0.1, then this
means that we consider data points with projection
values that are within the top 10%). Formally, this set
of visualization data points can be written as follows.
First, recall that the visualization data have projection
values p V  =  proj (x V ) ,  for i  =  1, . . . , nV. Suppose
that we sort these projection values and denote the
sorted projection values as p(1) <  p(2) <  · · · <  p V  

V ) .
Then the top α projection value can be estimated by

qα  � p(�( 1−α ) n
V

�) .

Then the visualization data with projection values in
the top α percentile of projection values along µ are
the ones in the set

I  top α  � { i  � {1, 2, . . . , nV } s.t. p V  ≥  qα }.

Note that this equation is similar to that of equa-
tion (8). We then compute the survival curve for the
data points in I  top α  using an equation analogous to
equation (9):

S  top α (t) � top α       

X      
S (t|xi ).

i �I  t o p  α

By a standard result in survival analysis, the time t
where the survival curve S  top α (t) crosses 1/2 corre-
sponds to a median survival time estimate (see, for
instance, Reid 1981). In particular, we denote this
median survival time estimate as

med
top α  

� inf {t ≥  0 s.t. S  top α (t) ≤  1/2}.

In practice, to compute the infimum, commonly a
discrete time grid is used, such as using all the unique
observed times in the training data (i.e., the unique
Yi values), and if the survival curve never crosses 1/2
over this discrete time grid, then for simplicity we just
take the median survival time estimate to be a special
value specifying that it is greater than the maximum
observed time in the training data.

Note that what we stated above is for any anchor
direction µ. Thus, if we have k anchor directions
denoted as µ , . . . , µ , then we can rank these anchor

directions by med
top α

, . . . , med
top α

.

S U P P O R T  dataset example. Consider the data
and setup from Section 3.4, which is the same setting
as the additional results in Appendix B.2. By using
the above approach for ranking clusters/anchor direc-
tions based on estimated median survival times and
setting α =  0.1, we get the following ranking of the
five clusters (in ascending order of estimated median
survival times):
1. Cluster 1: median survival time estimate 46 days
2. Cluster 5: median survival time estimate 105 days
3. Cluster 2: median survival time estimate 236 days
4. Cluster 3: median survival time estimate 452 days
5. Cluster 4: median survival time estimate 1895 days

Appendix H .  Baseline Visualization
Strategy: Use
Dimensionality
Reduction to P lot  the
Embedding Space

We present P C A  and t-SNE plots using the baseline
visualization strategy described at the end of Sec-
tion 1. We show plots for the DeepSurv embedding
space for the S U P P O RT  dataset (using the setup
in Section 3.4/Appendix B.2) in Figure H.1(a ), the
Rotterdam/GBSG datasets (using the setup in Ap-
pendix C )  in Figure H.1(b), and the Survival MNIST
dataset (using the setup in Section 3.5/Appendix E )
in Figure H.1(c). In particular, the embedding spaces
under examination all have a norm 1 constraint. Each
scatter plot is made using the visualization data (and
not the training data used to train the neural survival
analysis model nor the anchor direction estimation
data). For each visualization data point x V ,  we com-
pute its median survival time estimate by looking at
the time t where S (t|xV ) crosses 1/2 (similar to what
we had discussed in Appendix G), and we color scat-
ter plot points based on these median survival times.
From these scatter plots, we can get a rough sense of
the geometry of the embedding space. For instance,
whereas there are clear clusters of points that show
up for Survival MNIST (in fact, one could check that
these correspond to different groups of digits; again,
as we pointed out in Section 3.5/Appendix E,  the
embedding space does not appear to disentangle all 10
digits neatly), we do not see this clustering behavior
for the SUP PORT  and Rotterdam/GBSG DeepSurv
embedding spaces.

Importantly, as we already pointed out in Section 1,
these scatter plots from dimensionality reduction do
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2D PCA plot of a DeepSurv embedding space (SUPPORT dataset) 2D t-SNE plot of a DeepSurv embedding space (SUPPORT dataset)
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2D PCA plot of a DeepSurv embedding space (Survival MNIST dataset) 2D t-SNE plot of a DeepSurv embedding space (Survival MNIST dataset)
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Figure H.1: 2D P C A  and t-SNE plots of the visualization data’s embedding vectors from a DeepSurv model
(with a norm 1 constraint) for the (a) SUPPORT, (b) Rotterdam/GBSG, and (c) Survival MNIST
datasets. The colors indicate estimated median survival times.
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not tell us how the embedding space relates to raw
features. Even P C A,  which is easier to interpret than
nonlinear dimensionality reduction methods (e.g., t-
SNE), does not relate the embedding space to raw
features in this setting since P C A  here is directly ap-
plied to vectors from the embedding space (and not
vectors from the raw feature space). While the t-SNE
plot for Survival MNIST shows clustering behavior,
note that t-SNE itself does not actually estimate clus-
ter assignments for different data points, i.e., t-SNE is
inherently not a clustering algorithm.

Note that the P C A  plots can actually give us
a sense of whether information in the embedding
space is stored more in magnitudes vs more in
angles. As a reminder, Euclidean vectors with
norm 1 reside on what is called the “unit hypersphere”
S d −1  � {v  � Rd  s.t. �v� =  1}. When we take data on
the unit hypersphere and plot their 2D P C A  plot, the
resulting 2D P C A  plot will always look like points that
are within a 2D circle (since P C A  is a linear dimension-
ality reduction method, it retains the hyperspherical
structure but projects down to 2D, where points can
be projected inside the circle rather than only along th
shell of the circle). This plot could be helpful. We can
readily tell if the data appear uniformly distributed
over a hypersphere or not. For example, for the SUP-
PORT dataset’s 2D P C A  plot in Figure H.1(a ), the
points largely bunch up on one side of a circle, mean-
ing that in the embedding space (that in this case
is actually 10-dimensional), the points largely are
concentrated around a hyperspherical cap (i.e., the
embedding vectors are largely all pointed in a similar
direction). In contrast, the 2D P C A  plots for the
Rotterdam/GBSG datasets (Figure H.1(b )) and the
Survival MNIST dataset (Figure H.1(c)) clearly show
more of a circle shape, indicating that the DeepSurv
embedding vectors are more uniformly distributed for
Rotterdam/GBSG and Survival MNIST (i.e., they
have information stored more in angles than in mag-
nitudes) than for SUPPORT.

We remark that it is possible to color the scatter plot
points using other quantitative values. For example,
we could use the mean (instead of the median) survival
time estimate, which corresponds to the area under a
data point’s predicted survival curve, we could use an
indicator value for whether the point is censored or
not (to get a sense of whether some parts of the
embedding space correspond to more censored points),
or we could use cluster labels as estimated using any of
the clustering approaches we had used to estimate
anchor directions.
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