Interactive Demonstration of SQLCheck

Arthita Ghosh* Deven Bansod Arpit Narechania
Georgia Institute of Technology Facebook, Inc. Georgia Institute of Technology
Atlanta Menlo Park, CA Atlanta
aghosh80@gatech.edu dbansod@gatech.edu arpitnarechania@gatech.edu
Prashanth Dintyala® Su Timurturkan Joy Arulraj
NVIDIA Corporation Georgia Institute of Technology Georgia Institute of Technology
vdintyala3@gatech.edu Atlanta Atlanta
gtimurturkan3@gatech.edu arulraj@gatech.edu
ABSTRACT CHALLENGE: Designing applications is, however, non-trivial since

We will demonstrate a prototype of SQLCHECK, a holistic toolchain
for automatically finding and fixing anti-patterns in database appli-
cations. The advent of modern database-as-a-service platforms has
made it easy for developers to quickly create scalable applications.
However, it is still challenging for developers to design performant,
maintainable, and accurate applications. This is because develop-
ers may unknowingly introduce anti-patterns in the application’s
SQL statements. These anti-patterns are design decisions that are
intended to solve a problem, but often lead to other problems by
violating fundamental design principles.

SQLCHECK leverages techniques for automatically: (1) detecting
anti-patterns with high accuracy, (2) ranking them based on their
impact on performance, maintainability, and accuracy of applica-
tions, and (3) suggesting alternative queries and changes to the
database design to fix these anti-patterns. We will demonstrate that
SQLCHECK enables developers to create more performant, maintain-
able, and accurate applications. We will show the prevalence of
these anti-patterns in a large collection of queries and databases
collected from open-source repositories.

PVLDB Reference Format:

Arthita Ghosh, Deven Bansod, Arpit Narechania, Prashanth Dintyala, Su
Timurturkan, and Joy Arulraj. Interactive Demonstration of SQLCheck.
PVLDB, 14(12): 2779-2782, 2021.

doi:10.14778/3476311.3476343

1 INTRODUCTION

Modern database applications produce qualitatively better insights
in many domains, such as science, governance, and industry [4].
Two trends have simplified the design and deployment of such data-
intensive applications. The first trend is the spread of data science
skills to a larger community of developers [9, 18]. The second trend
is the proliferation of database-as-a-service (DBaaS) platforms in
the cloud [3, 12].

“These authors contributed equally to this work.

This work was done when author(s) were at Georgia Institute Of Technology

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 12 ISSN 2150-8097.
doi:10.14778/3476311.3476343

2779

applications may suffer from anti-patterns [11]. An anti-pattern
(AP) is a design decision that is intended to solve a problem, but
that often leads to other problems. APs lead to convoluted logical
and physical database designs, thereby affecting the performance,
maintainability, and accuracy of the application. The spread of data
science skills to a larger community of developers places increased
demand for a toolchain that facilitates application design without
APs. Furthermore, the proliferation of DBaaS platforms obviates the
need for in-house DBAs who used to assist application developers
with finding and fixing these APs.

OUuR APPROACH: To address this challenge, in our prior work [5],
we presented a toolchain, called sQLCHECK, that assists application
developers by: (1) detecting APs with high accuracy, (2) ranking
the detected APs based on their impact, and (3) suggesting fixes for
high-impact APs. The main thrust of our approach is to augment
code analysis with data analysis (i.e., examine both queries and
data sets of the application) to detect APs with high precision and
recall. We study the impact of frequently occurring APs on the key
metrics of the application. We then use this information to rank
the APs based on their estimated impact. By targeting frequently
occurring APs, we take advantage of our ranking model trained on
data collected from previous deployments without needing to share
sensitive data (e.g., data sets). Lastly, SQLCHECK suggests fixes for
high-impact APs using rule-based query refactoring techniques.

This demonstration will showcase how sQLCHECK suggests fixes
for high-impact APs using rule-based query refactoring techniques.
Our demo will illustrate that SQLCHECK enables developers to create
more performant, maintainable, and accurate applications. We will
also show the prevalence of these anti-patterns in a large collec-
tion of queries and databases collected from open-source reposi-
tories. Users will be able to interact with sQLCHECK by submitting
new queries and analysing the detected APs. The demonstration of
SQLCHECK is available at [6].

2 DEMO SYSTEM
2.1 Workflow

Figure 1 illustrates the architecture of sQLcHECK. We envision that
an user will use SQLCHECK in the following manner. A developer will
deploy sQLCHECK on their local machine and connect it to the target
application (i.e., queries and database). @ The first component of

ap-detect

SsQL Query
Queries Parser

ap-rank
Query Analysis Ranking Model
Semanuc Synlactlc APS'{Srp:C‘ 5
Rules Rules 3
3
User
comex‘ -fi {,
Bunder Comext ap-fix 8 Interfaces
Repair Engine S
P g =
Data Analysls Query
Transformer
Slahstlcs
D it
ache

Figure 1: Architecture of SQLCHECK: It takes in a SQL query and a con-
nection to a DBMS (optional), and produces a ranked list of APs and associ-
ated fixes. Internally, SQLCHECK leverages query and data analysis to detect
the APs. It then uses a ranking model and a query repair engine to generate
the desired fixes.

SQLCHECK, ap - detect, performs static analysis of the queries to de-
tect APs. To increase precision and recall, ap-detect also profiles
the application’s data and meta-data. @ Next, ap- rank examines
the APs detected by ap-detect in the target application and ranks
them based on their estimated impact. ® The third tool, ap- fix,
suggests fixes for the high-impact APs identified by ap - rank using
rule-based query transformations. @ Lastly, SQLCHECK optionally
uploads the APs detected in the application to an online AP repos-
itory with the permission of the developer. As new performance
data is collected over time, we will retrain the ranking model of
ap-rank to improve the quality of its decisions.

2.2 Interfaces

Our demo is implemented in Python [14] and exports three inter-
faces: (1) Interactive Shell, (2) REST, and (3) GUL These interfaces
are shown in Figure 2. Application developers and SQL IDE devel-
opers may leverage these interfaces to either directly interact with
SQLCHECK or to integrate it with their own IDEs. We describe these
interfaces below:

o Interactive Shell: An SQL application developer can import
the SQLCHECK package from a package repository (e.g., PyPI[15])
and directly use the interactive shell interface to execute SQL
queries or leverage these sub-modules in other tools.

Import the SQLCheck module
sqlcheck.finder find_anti_patterns

query = “INSERT INTO Users VALUES (1, 'foo')"
results = find_anti_patterns(query)

o REST Interface: This interface allows developers to leverage
SQLCHECK in applications developed in other programming
languages by using web requests via HTTP. We implement
this using the Flask web framework [13].

HTTP POST /api/check
Body: {"query":"INSERT INTO Users VALUES (1,'foo')"}

Output of SQLCheck
{
"query_analysis": [

{

2780

HTTP-Interface REST-Interface Command Line

User User User
Browser REST-API Terminal
Database

Figure 2: sSQLCHECK Interfaces — SQLCHECK exports three interfaces: (1)
command-line, (2) REST, and (3) HTTP.

"query": "INSERT INTO users VALUES (1,'foo', 'bar',25)

"query_type": "DML",
"anti_patterns": [

{
"impact": 0.9, # Performance Impact
"fix": "Specify column names to avoid mismatch
during insertion.
For eg. 'INSERT INTO users (uid, fname, lname,

age) VALUES (1, 'foo','bar',25)'",
"name": "Implicit Column Names"
}
1
}
1,
"data_analysis": {}

}

o GUI Interface: Lastly, this interface is geared towards a wider
range of users who are not familiar with application program-
ming. This interface enables users to easily get feedback on
their queries by copying them into the input field and is de-
veloped using React]S [8]. Internally, this invokes the REST
interface that subsequently passes the queries to the SQLCHECK
binary which processes them and returns the list of detected
APs and their associated fixes. This response is presented to
the user through a ReactJS GUI [8].

EXTENSIBILITY: SQLCHECK is extensible by design. A developer
may add a new AP rule that implements the generic rule interface
(name, type, detection rule, ranking metrics, and repair rule) and
register it in the SQLCHECK rule registry. A developer may also
extend the context builder to augment the application’s context
for supporting complex rules. Lastly, a developer may replace the
non-validating parser with a DBMS-specific parser to increase the
utility of the parse tree.

2.3 Types of Anti-Patterns

We compiled a catalog of APs based on several resources that dis-
cuss best practices for schema design and querying DBMSs [7, 10,
11, 19]. Table 1 lists a subset of APs that sQLCHECK targets. These
APs fall under four categories:

® LogicaL DESIGN APs: This category of APs arises from violat-
ing logical design principles that suggest the best way to organize
data and the relationships that exist between them [17].

The adjacency list AP falls under this category. It refers to refer-
ences between two attributes within the same table. Such a logical
design is used to model hierarchical structures (e.g., employee-
manager relationship). With this representation, however, it is not

SQLCheck®®

Enter SQL Statements \':: Format | [& Save Detected Anti-Patterns Filters @ Reset |
seLcr
setect + enrErm e e ||,
FRoM
novies select * [auer } v ® Hign o
WHERE
name like $ A %; create table persons = v Medium o
INSERT INTO
movies ® Low -
— insert into movies values [impticit Cotumns J Query v
1, "James Bond");
seLecT
. Implicit Columns Query Anti-Pattern
}
movies; Explicitly specify the columns in the DML Statement
CREATE TABLE Persons INSERT statement TOGGLE TO VIEW
PersonID int, APs FOR SELECTED
LastName varchar(255), SEVERITY LEVEL(S)
FirstName varchar(255), i Learn more @ Provide Feedback
Address varchar (255),
city varchar (255
LIST OF APs
LIST OF QUERIES

Figure 3: GUI Interface - Interface exported to the user.

Category Anti-Pattern Name Description P M DA DI
Multi-Valued Attribute Storing list of values in a delimiter-separated list violating 1-NF. v v ovv oo
No Primary Key Lack of data integrity constraints. v v v

)) No Foreign Key Lack of referential integrity constraints. v v - v -

Logical Design APs Generic Primary Key Creating a generic primary key column (e.g., id) for each table. - V- - -
Adjacency List Foreign key constraint referring to an attribute in the same table. VA - - -
Rounding Errors Storing fractional data using a type with finite precision (e.g., FLOAT). - - - - v
Enumerated Types Using enum to constrain the domain of a column. v v o ovho -

Physical Design APs External Data Storage Storing file paths instead of actual file content in database. - v - v v
Clone Table Multiple tables matching the pattern <TableName>_N v v - v v
Column Wildcard Usage Selecting all attributes from a table using wildcards to reduce typing. v - - - v
Concatenate Nulls Concatenating columns that might contain NULL values using | |. - - - - v
Ordering by RAND Using RAND function for random sampling or shuffling. VAR - - -

Query APs Pattern Matching Using regular expressions for pattern matching complex strings. VAR - - -
Implicit Columns Not explicitly specifying column names in data modification operations. - -
Missing Timezone Date-time fields stored without timezone. - - - - v
Incorrect Data Type Actual data does not conform to expected data type. VA v

Data APs Denormalized Table Duplication of values. v - VAN -
Information Duplication ~ Derived columns (e.g., age from date of birth). - v - v v

Table 1: List of Anti-Patterns: A catalog of APs based on best practices for database application design [7, 10, 11, 19]. They fall under four categories: (1)
logical design APs, (2) physical design APs, (3) query APs, and (4) data APs. For each AP we illustrate its impact on five metrics: (1) Performance (P), (2)
Maintainability (M), (3) Data Amplification (DA), (4) Data Integrity (DI), and (5) Accuracy (A). v’ represents that the given AP affects that metric. T and | refer
to increase and decrease in data amplification, respectively, when that AP is fixed.

trivial to handle common tasks such as retrieving the employees of
a manager up to a certain depth and maintaining the integrity of
the relationships when a manager is removed.

@ PuysicaL DESIGN APs: The next category of APs is associated
with efficiently implementing the logical design using the features
of a DBMS. This includes rounding errors and enumerated types
APs. The rounding errors AP arises when a scientist uses a type
with finite precision, such as FLOAT to store fractional data. This
may introduce accuracy problems in queries that calculate aggre-
gates. The enumerated types AP occurs when a scientist restricts
a column’s values by specifying the fixed set of values it can take
while defining the table. However, this AP makes it challenging
to add, remove, or modify permitted values later and reduces the
application’s portability.

® QUERY APs: Query APs arise from violating practices that sug-
gest the best way to retrieve and manipulate data using SQL. This

2781

includes NULL usage and column wildcard usage APs. Developers
are often caught off-guard by the behavior of NULL in SQL. Un-
like in most programming languages, SQL treats NULL as a special
value, different from zero, false, or an empty string. This results in
counter-intuitive query results and introduces accuracy problems.
The latter AP arises when a developer uses wildcards (SELECT *)
to retrieve all the columns in a table with less typing. This AP,
however breaks applications on refactoring.

@ DAaTA APs: Data APs are a subset of APs that sQLCHECK detects
by analysing the data (as opposed to queries). This includes the
incorrect data type and information duplication APs. The former AP
arises due to data type mismatches (e.g.,, storing a numerical field
in a TEXT column). This negatively impacts performance and leads
to data amplification. The latter AP occurs when a column contains
data derived from another column in the same table (e.g., storing
age based on date of birth). While this accelerates query pro-
cessing, it reduces maintainability and leads to data amplification.

Detected Anti-Patterns

select * Column Wildcard Usage v

Column Wildcard Usage Query Anti-Pattern

Fetch only those columns that are required from the DML Statement
table. Column wildcard (SELECT *) hurts performance

and reduces the application’s maintainability.

i Loarnmore 0 Provide Feedback

Column Wildcard Usage

Description

Developers tend to use use column wildcard (SELECT *) to retrieve all the columns in a table with less typing
SELECT * FROM Tracks WHERE TrackId = 1

Why s it bad?

However, the application breaks when the underlying table changes (when a column is added or removed)

Fix

Explicitly list the columns being fetched from the table.
SELECT TrackName, TrackGenre FROM Tracks WHERE TrackId = 1

This results in faster queries since less data must be fetched from the database. It also improves the maintainability
of the application

Impact of Anti-Pattern

« Performance
« Accuracy

Figure 4: Fix Card - suggested fix for column wildcard usage AP.

3 DEMO SCENARIOS

The demonstration of SQLCHECK is available at [6]. The goals of this
demonstration are listed below:

o Detecting APs: As shown in Figure 3, we will illustrate how
SQLCHECK detects different types of APs listed in §2.3 using
query and data analysis. SQLCHECK also explains why a partic-
ular query suffers from an AP.

Ranking APs: Given a set of APS, SQLCHECK automatically
ranks them based on their impact on key metrics of the data-
base application and classifies them into three categories based
on their impact. The user may view a subset of the detected
APs by configuring the severity level in the demo. This allows
them to prioritize their attention on high-impact APs.

Fixing APs: Lastly, we will illustrate the fixes suggested by
SQLCHECK. For instance, the fix for the column wildcard usage
AP is shown in Figure 4.

4 RELATED WORK

TRANSFORMING DATABASE APPLICATIONS: While program anal-
ysis has been widely used in software engineering, it has not been
extensively utilized by the DBMS community. Recent efforts have
focused on transforming database-backed programs to improve per-
formance [2, 21]. DBridge presents a set of holistic optimizations
including query batching and binding, and automatic transforma-
tion of object-oriented code into synthesized queries [16]. Cheung
et al. describe techniques for batching queries to reduce the number
of round trips between the application and the database server [1].

OBJECT-RELATIONAL MAPPING: Researchers have studied the
impact of ORM on application design and performance [20]. Yang
et al. perform a comprehensive study of performance issues in
database applications using profiling [22]. sQLCHECK is the first
effort focused on exploring the problems of automatically ranking
and fixing APs in database applications.

5 CONCLUSION

We demonstrate SQLCHECK, a holistic toolchain for finding, rank-
ing, and fixing APs in database applications. SQLCHECK leverages a
novel AP detection algorithm that augments query analysis with
data analysis. It uses the overall context of the application to reduce
false positives and negatives. SQLCHECK relies on a ranking model
for characterizing the impact of detected APs and suggests fixes
for high-impact AP using rule-based query refactoring techniques.
Our empirical analysis shows that sQLCHECK enables developers
to create more performant, maintainable, and accurate applications.

ACKNOWLEDGMENTS

This work was supported in part by the U.S. National Science Foun-
dation (IIS-1908984, 11S-1850342), Alibaba, Cisco, Intel, and Adobe.
We thank Shamkant Navathe, Karthik Ramachandra, and the re-
viewers for their constructive feedback. We thank all of the con-
tributors to SQLCHECK.

REFERENCES

[1] Alvin Cheung, Owen Arden, Samuel Madden, Armando Solar-Lezama, and An-
drew C. Myers. 2013. StatusQuo: Making Familiar Abstractions Perform Using
Program Analysis. In Proc. of CIDR.

Alvin Cheung, Samuel Madden, Armando Solar-Lezama, Owen Arden, and An-
drew C Myers. 2014. Using Program Analysis to Improve Database Applications.
IEEE Data Eng. Bull. 37, 1 (2014), 48-59.

[3] Carlo Curino, Evan PC Jones, Raluca Ada Popa, Nirmesh Malviya, Eugene Wu,
Sam Madden, Hari Balakrishnan, and Nickolai Zeldovich. 2011. Relational cloud:
A database-as-a-service for the cloud. (2011).

[4] Thomas H Davenport and DJ Patil. 2012. Data scientist. Harvard business review
90, 5 (2012), 70-76.

[5] Prashanth Dintyala, Arpit Narechania, and Joy Arulraj. 2020. SQLCheck: Auto-
mated Detection and Diagnosis of SQL Anti-Patterns. In Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data. 2331-2345.

[6] Georgia Tech Database Group. 2021. SQLCheck Demo. http://db-apps.cc.gatech.
edu/sqlcheck/playground.

[7] Cunningham & Cunningham Inc. 2014.
?AntiPatternsCatalog.

[8] Facebook Inc. 2019. React]S. https://reactjs.org.

[9] StitchInc. 2018. The State of Data Science. https://www.stitchdata.com/resources/
the-state-of-data-science/.

[10] Stack Exchange Inc. 2010. StackOverflow Wiki. https://stackoverflow.com/
questions/346659/what-are-the-most-common-sql-anti- patterns.

[11] Bill Karwin. 2010. SQL antipatterns: avoiding the pitfalls of database programming.
Pragmatic Bookshelf.

[12] David Lomet, Alan Fekete, Gerhard Weikum, and Mike Zwilling. 2009. Un-

bundling transaction services in the cloud. arXiv preprint arXiv:0909.1768 (2009).

Pallets. 2019 . Python-Flask. http://flask.palletsprojects.com/en/1.1.x.

Python Software Foundation. 2019 . Python. https://www.python.org.

Python Software Foundation. 2019. PyPi. https://pypi.org.

Karthik Ramachandra, Mahendra Chavan, Ravindra Guravannavar, and S Su-

darshan. 2015. Program transformations for asynchronous and batched query

submission. In TKDE 27, 2 (2015), 531-544.

[17] Raghu Ramakrishnan and Johannes Gehrke. 2003. Database Management Systems
(3 ed.). McGraw-Hill, Inc., New York, NY, USA.

[18] Toby Segaran and Jeff Hammerbacher. 2009. Beautiful data: the stories behind

elegant data solutions. " O’Reilly Media, Inc.".

Tushar Sharma, Marios Fragkoulis, Stamatia Rizou, Magiel Bruntink, and Dio-

midis Spinellis. 2018. Smelly relations: measuring and understanding database

schema quality. In Proc. of ICSE. ACM, 55-64.

Alexandre Torres, Renata Galante, Marcelo S Pimenta, and Alexandre Jonatan B

Martins. 2017. Twenty years of object-relational mapping: A survey on patterns,

solutions, and their implications on application design. Information and Software

Technology 82 (2017), 1-18.

Cong Yan and Alvin Cheung. 2016. Leveraging lock contention to improve OLTP
application performance. In Proceedings of VLDB 9, 5 (2016), 444-455.

Junwen Yang, Cong Yan, Pranav Subramaniam, Shan Lu, and Alvin Cheung.
2018. How not to structure your database-backed web applications: a study of
performance bugs in the wild. In Proc. of ICSE. IEEE, 800-810.

[2

C2 Wiki. http://wiki.c2.com/

[19

[20

[21

~
&,

2782

