Check for
Updates

Research Data Management Track Paper

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

Sia: Optimizing Queries using Learned Predicates

Qi Zhou
qzhou80@gatech.edu
Georgia Institute of Technology
Atlanta, USA

William Harris
wrharris@galois.com

Galois Inc
Portland, USA

Abstract

Predicate-centric rules for rewriting queries is a key technique in
optimizing queries. These include pushing down the predicate be-
low the join and aggregation operators, or optimizing the order
of evaluating predicates. However, many of these rules are only
applicable when the predicate uses a certain set of columns. For ex-
ample, to move the predicate below the join operator, the predicate
must only use columns from one of the joined tables. By generating
a predicate that satisfies these column constraints and preserves
the semantics of the original query, the optimizer may leverage
additional predicate-centric rules that were not applicable before.

Researchers have proposed syntax-driven rewrite rules and ma-
chine learning algorithms for inferring such predicates. However,
these techniques suffer from two limitations. First, they do not let
the optimizer constrain the set of columns that may be used in
the learned predicate. Second, machine learning algorithms do not
guarantee that the learned predicate preserves semantics.

In this paper, we present SIA, a system for learning predicates
while being guided by counter-examples and a verification tech-
nique, that addresses these limitations. The key idea is to leverage
satisfiability modulo theories to generate counter-examples and use
them to iteratively learn a valid, optimal predicate. We formalize
this problem by proving the key properties of synthesized predi-
cates. We implement our approach in SIA and evaluate its efficacy
and efficiency. We demonstrate that it synthesizes a larger set of
valid predicates compared to prior approaches. On a collection of
200 queries derived from the TPC-H benchmark, SIA successfully
rewrites 114 queries with learned predicates. 66 of these rewritten
queries exhibit more than 2X speed up.

ACM Reference Format:

Qi Zhou, Joy Arulraj, Shamkant Navathe, William Harris, and Jinpeng Wu.
2021. Sia: Optimizing Queries using Learned Predicates. In Proceedings of
the 2021 International Conference on Management of Data (SIGMOD °21),
June 20-25, 2021, Virtual Event, China. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3448016.3457262

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGMOD 21, June 20-25, 2021, Virtual Event, China

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8343-1/21/06...$15.00
https://doi.org/10.1145/3448016.3457262

Joy Arulraj
arulraj@gatech.edu
Georgia Institute of Technology
Atlanta, USA

2169

Shamkant Navathe
navathe@yahoo.com
Georgia Institute of Technology
Atlanta, USA

Jinpeng Wu
jinpeng.wjp@alibaba-inc.com
Alibaba Group
HangZhou, CHINA

1 Introduction

Query optimization using predicate-centric rules is a widely-studied
topic in database management systems (DBMSs) [19, 28, 37, 44, 45,
48]. Researchers have proposed several rules for moving predicates
across query blocks to improve performance (e.g., moving predicate
below join operator [45], moving predicate below aggregation oper-
ator [28]). However, these rules may only be applied if the predicate
depends on a given set of columns. Consider the following query:

Ql: SELECT * FROM A, B WHERE A.id = B.id
AND A.val + 10 > B.val + 20 AND B.val + 10 > 20

The optimizer may only move the third predicate (B.val + 10 > 20)
below the join operator. It cannot push down the second predicate
(A.val + 10 > B.val + 20) below the join operator since it depends
on columns from both tables A and B. The optimizer may apply this
rule only if the predicate uses columns from only one table. Other
predicate-centric optimization rules have similar restrictions related
to the set of columns that the predicate depends on. For example, the
optimizer may push the predicate below the aggregation operator
only if the predicate uses columns from the GROUP BY set.
Opportunity: To facilitate the application of many predicate-centric
optimization rules, we seek to synthesize predicates that only use
a given set of columns. However, we must ensure that the seman-
tics of the query is preserved while rewriting the query. We may
transform Q1 to Q2:

02: SELECT % FROM A, B WHERE A.id = B.id

AND A.val + 10 > B.val + 20 AND B.val + 10 > 20
AND A.val > 20

The newly synthesized fourth predicate (A.val > 20) can be in-
ferred from the original predicates and is weaker than the original
predicates (i.e., it accepts all the tuples that the original predicates
accept). Since this predicate does not alter the semantics of the
query, it is a valid predicate. Furthermore, as it only uses columns
from table A, the optimizer may push it below the join operator to
filter tuples in A. The rewritten query Q2 is, thus, faster than the
original query Q1. This example illustrates how rewriting queries
by introducing a valid predicate using columns from only one table
allows the optimizer to push the predicate below the join operator
that it could not previously do. Thus, synthesizing valid predicates
over a given set of columns enables the optimizer to apply many
predicate-centric rules that it could not previously leverage. We
illustrate the importance of this problem in practice using a case
study based on the Alibaba MaxCompute platform in §6.2.

https://doi.org/10.1145/3448016.3457262
https://doi.org/10.1145/3448016.3457262
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3448016.3457262&domain=pdf&date_stamp=2021-06-18

Research Data Management Track Paper

It is important to ensure that the newly synthesized predicate
is as strong as possible (i.e., less selective) to improve performance.
For example, the newly synthesized predicate could be A.val > 10
(instead of A.val > 20), but the resulting query execution plan is not
optimal. We refer to a valid predicate as optimal if there exists no
tuple that another valid predicate rejects but this predicate accepts.
Prior Work: In prior work, researchers have proposed syntax-
driven rules for tackling this problem (e.g., constant propagation [13]
and transitive closure [24]). However, due to the complexity of pred-
icates in real-world queries (e.g., arithmetic operations, inequality
relation, and logic combination), these syntax-driven rules have
limited efficacy. These techniques also do not allow the optimizer to
control the subset of columns in the original predicate that the syn-
thesized predicate may use. Instead, the columns in the synthesized
predicate depend on the syntax of the original predicate.

Another promising line of recent research focuses on using a

machine learning algorithm to train a binary classifier to acceler-
ate inference [29]. In this case, a predicate is treated as a binary
classifier that separates the desired tuples (TRUE samples) from the
rest of the dataset (FALSE samples). However, this approach suffers
from two limitations. First, there is no guarantee that the trained
classifier is weaker than the original predicate. In other words, the
rewritten query with newly learned predicate may not be semanti-
cally equivalent to the original query. While this is acceptable in a
machine learning pipeline, it is not sufficient for canonical queries
with strict accuracy constraints. Second, this approach is not capa-
ble of allowing the optimizer choose the set of columns that the
synthesized predicate uses. Constraining the set of columns in the
synthesized predicate could result in mis-labeling training samples
with respect to the labels emitted by the original predicate.
Our Approach: We address these limitations in SIA, a system for
synthesizing valid predicates. To address the first limitation, SIA
leverages satisfiability modulo theories (SMT) [15, 16, 18, 32] to
verify that the learned predicate is weaker than the original pred-
icate. Thus, the rewritten query is guaranteed to be semantically
equivalent to the original query.

To address the second limitation, we prove the properties of
tuples that should be selected or rejected by an optimal, valid pred-
icate over the given set of columns. We encode these properties as
an SMT formula and leverage the SMT solver to generate TRUE and
FALSE samples for training the binary classifier. We prove that each
TRUE sample must be accepted by a valid predicate, and that each
FALSE sample must be rejected by an optimal, valid predicate. To
improve the efficacy of the learning algorithm, we propose a novel
learning process guided by counter-examples. In each iteration of
the learning loop, if the learned predicate is not valid, then we
generate TRUE samples that a valid predicate should select, but the
current learned predicate rejects. If the learned predicate is valid
but not optimal, then we generate FALSE samples that the optimal
predicate should reject, but the current learned predicate selects.

We implemented our counter-example guided learning technique
that is augmented with a verification scheme in SIA. We evaluate
SIA on 200 queries derived from the TPC-H benchmark [43]. We
demonstrate that SIA effectively and efficiently synthesizes valid
predicates, compared to syntax-driven rules and a non-iterative
learning algorithm. Among the 114 queries that SIA rewrites, 66
queries exhibit more than 2X speed up on average. These results

2170

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

|_shipdate - o_orderdate < 20 AND

?-‘ ‘ |_commitdate - |_shipdate < I-shipdate - o_orderdate + 10
/l><1 | o_orderkey = |_orderkey

o | o_orderdate < '1993-06-01"

|

orders lineitem
(a) Logical Plan for Q1
o ‘ |_shipdate - o_orderdate < 20 AND
| |_commitdate - |_shipdate < I-shipdate - o_orderdate + 10

M | o_orderkey = |_orderkey

(‘5\ K |_shipdate < '1993-06-20' AND

"‘~‘

o |_commitdate < ‘1993-07-18" AND
orders lineitem

|_commitdate - |_shipdate < 29
' | o_orderdate < '1993-06-01"
(b) Logical Plan for Q2

Figure 1: Logical Query Execution Plans — Queries Q1 and Q2 are
semantically-equivalent. However, the optimizer computes a better query
execution plan for Q2.

show that SIA accelerates query execution by allowing the opti-
mizer to apply more predicate-related optimization rules that it
could not apply in the original query. In summary, we make the
following contributions:

e We motivate the need for synthesizing valid predicates on a
given set of columns using an example in §2.

We formalize the problem and prove the key properties of
synthesized predicates in §4.

We present a novel technique for learning strictly-valid predi-
cates while being guided by counter-examples in §3 and §5.

We implement our approach in SIA and evaluate its efficacy
and efficiency. We demonstrate that it synthesizes a larger
set of valid predicates compared to syntax-driven rules and a
non-iterative learning algorithm in §6.

We demonstrate that SIA speeds up 66 queries derived from
TPC-H benchmark exhibit by more than 2X in §6.

2 Motivation

We now motivate the need for automatically synthesizing predicates
using an example. Consider the following query derived from the
TPC-H benchmark [43].
Ql: SELECT x FROM lineitem, orders WHERE o_orderkey = l_orderkey
AND 1_shipdate - o_orderdate < 20 AND o_orderdate < '1993-06-01"'
AND 1_commitdate - l_shipdate < l_shipdate - o_orderdate + 10;
This query is joining the lineitem and orders tables and apply-
ing a set of predicates. It is representative of analytical queries
in on-line analytical processing (OLAP) and hybrid transaction-
analytical processing (HTAP) applications [33, 40]. The tables are
joined based on the order key. The other predicates in the query
apply the following conditions:

o The ship date (I_shipdate) is no later than 20 days from the
order date (o_orderdate).

o The gap between the commit (I_commitdate) and ship dates
is 10 days shorter than that between the ship and order date.

o The order date is earlier than 1993-06-01.

We run this query in the Postgres DBMS (v12) [4]. The query
optimizer constructs the logical query execution plan P; shown
in Fig. 1a. With this plan, the query execution engine first filters the
tuples in orders using this predicate: o_orderdate < 1993 — 06 — 01.
It then applies an inner join of the filtered table and the lineitem

Research Data Management Track Paper

table using the join predicate (o_orderkey = I_orderkey). Lastly, it
applies another filter on the joined table with this complex predicate:
I_shipdate — o_orderdate < 20 && I_commitdate — I_shipdate <
I_shipdate — o_orderdate + 10 to obtain the final output table.

We may rewrite Q1 into the following query Q2:

Q2: SELECT % FROM lineitem, orders WHERE o_orderkey = l_orderkey

AND 1_shipdate - o_orderdate < 20 AND o_orderdate < '1993-06-01'

AND 1_commitdate - l_shipdate < l_shipdate - o_orderdate + 10

AND 1_shipdate < '1993-06-20' AND l_commitdate < '1993-07-18'

AND 1_commitdate - l_shipdate < 29;
When we run Q2 on Postgres, we obtain a 2X more performant
plan P, shown in Fig. 1b. Q1 and Q2 are semantically-equivalent
queries. Q2 differs from Q1 in that it has three additional predicates:
(1) I_shipdate < 1993 — 06 — 20; (2) [_commitdate < 1993 — 07 — 18
and; (3) the difference between I_commitdate and I_shipdate is less
than 29 days. All of these additional conditions may be inferred
from the original conditions in Q1.

For instance, Q1 requires o_orderdate to be less than 1993—-06—01
and the difference between I_shipdate and o_orderdate to be less
than 20 days. Thus, the I_shipdate must be less than 1993 — 06 — 20.
More importantly, all of these additional inferred predicates only
depend on columns present in the lineitem table.

Plan P, differs from P; in that it applies a filter on the lineitem
table before applying the inner join, thereby reducing the number
of tuples being joined. The cost of the join operation depends on
the number of tuples in each of the tables being joined. Although
P, contains an additional filter operation on lineitem, it is faster to
execute than P; (while returning the same output table). On the
TPC-H dataset (scale factor = 10), Q2 (50 s) is 2X faster than Q1
(94 s). We defer a detailed description of our empirical setup to §6.
Discussion: Postgres generates a more performant logical plan
for Q2 since it has three additional predicates that only depend on
columns in the lineitem table. This allows the optimizer to push
down the predicates below the join operator. In contrast, all the
conditions in Q1 refer to columns in the orders table. So, there is no
predicate that may be applied on the lineitem table before the join
operator. This example illustrates the benefits of automatically syn-
thesizing predicate that: (1) only depend on a given set of columns
(e.g., predicates that only depend on columns in the lineitem table),
and (2) preserve the semantics of the original query. Such synthe-
sized predicates will allow the optimizer to generate a faster query
execution plan. In particular, the optimizer may leverage additional
query rewrite rules that may not be feasible with the original query
(e.g., predicate push down for the lineitem table).

Prior Work: Syntax-driven rules such as constant propagation [13]
and transitive closure transformation [24] cannot be applied in this
case due to their dependence on syntax. For instance, constant
propagation is only applicable for equality relation:
x=5&&x+y=20—>x=5&&5+y =20

Similarly, transitive closure is only applicable for inequality relation
when the direction of the inequality is aligned and the expressions
syntactically match:

yl > x&& x> y2 — yl > y2

In our motivating example, these heuristics are not capable of infer-
ring the three additional conditions in Q2. This is because it requires
reasoning about inequality relation with arithmetic operators.

2171

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

Original Predicate: a1l - a2 <bland b1 + 5 < 10

al a2 bl satisfy? al a2 b1l satisfy?
17 any X 5 4 2 v
14 any X 7 5 3 v

(a) FALSE Samples (b) TRUE Samples

Figure 2: Types of Training Samples — (1) unsatisfaction tuples (i.e.,
FALSE samples), and (2) satisfaction (i.e., TRUE samples).

In general, syntax-driven rules cannot handle the complexity
of inequality relation, arithmetic operators and combination of
predicates using boolean logic. Furthermore, they do not allow the
optimizer to constrain the set of columns used in the synthesized
predicate. This limits the ability of the optimizer to apply predicate-
centric optimization rules. To tackle these challenges, we present
a novel technique for learning predicates using a set of counter-
examples while preserving the semantics of the query.

3 Overview

We first present an overview of our counter-example guided learn-
ing technique in §3.1. We then illustrate how this technique handles
the motivating example given in §2. In particular, we discuss how
SIA synthesizes weaker predicates that accept all the tuples that
original predicates accept.

3.1 Counter-Example Guided Learning

SIA decomposes the problem of synthesizing weaker predicates that
only use the given set of columns into two stages: (1) generation
of training data, and (2) learning predicates.

@ Generation of Training Samples: In the first stage, for a
given predicate p and a set of columns Cols, SIA leverages an SMT
solver to generate the training samples for the second stage [16] .

SIA uses the solver to obtain two types of tuples: (1) unsatisfac-
tion and (2) satisfaction tuples. While the former set of tuples must
not be accepted by the valid optimal synthesized predicate (i.e.,
FALSE samples), the latter set must be accepted (i.e., TRUE samples).
Given a predicate p and a set of columns Cols, an unsatisfaction
tuple is a tuple that takes concrete values for all of the columns in
Cols such that it cannot satisfy p, for all possible values for other
columns not in Cols. As shown in Fig. 2a, for the FALSE tuples
with concrete values for al and a2, there is no possible value for
b1 such that the entire tuple satisfies the original predicate p. In
contrast, a satisfaction tuple is a tuple that takes concrete values
for all of the columns in Cols such that it satisfies p, for at least one
set of appropriate values for other columns not in Cols. As shown
in Fig. 2b, for the TRUE tuples with concrete values for al and a2,
there is at least one value for b1 such that the entire tuple satisfies
p. We defer formal definitions to §4.2.

SIA seeks to synthesize a predicate that preserves the semantics
of the original query. To accomplish this, the synthesized predicate
p; must imply the original predicate p. So, it must be a weaker
predicate than p (i.e, if a tuple is accepted by p, then it must also be
accepted by p;). Thus, a satisfaction tuple for Cols and p must be
accepted by p;. In contrast, if p; is the optimal predicate, an unsatis-
faction tuple for a set of columns Cols and p must be rejected by p;.
This is why SIA tries to construct unsatisfaction and satisfaction
tuples for Cols and p so that these training samples may be used

Research Data Management Track Paper

True Samples

v

False Samples

v

Learning
* Predicate:P1

Counter-Examples
as True Samples

Counter-Examples
as False Samples

v
Valid? —» Optimal?

v
Predicate:P1

Figure 3: Counter-Example Guided Learning — The iterative learning
process used in SIA.

to learn a valid and optimal p;. We formalize these properties of
unsatisfaction tuple in §4.1.

SIA leverages the SMT solver to generate the training samples.
For TRUE samples, it encodes that the predicate p over the columns
Cols is TRUE in a symbolic formula, and repeatedly feeds it to the
solver to obtain a model (i.e., a set of concrete values for the sym-
bolic variables that satisfies the constraints in the formula). In each
iteration, it adds additional constraints to ensure that the solver
generates a new model. In each model generated by the solver, SIA
extracts the concrete values for Cols and constructs a TRUE sample.
We discuss how SIA encodes p in §5.2. For FALSE samples, SIA takes
the similar approach but feeds a complementary SMT formula to
the solver. We defer a detailed discussion on how SIA generates
training samples to §5.3.

® Learning predicates: In the second stage, SIA iteratively
applies two steps to synthesize a valid optimal predicate: (1) learn-
ing step, and (2) verification and counter-example generation step.
Fig. 3 illustrates this process. In the first step, SIA takes the two
sets of training samples generated in the previous stage and learns
a binary classifier that separates these two sets. SIA uses linear sup-
port vector machines (SVM) for learning the classifier. The reasons
for this are twofold. First, SIA must map the binary classifier back
to an SQL predicate. By using a linear SVM, SIA quickly maps the
classifier to a predicate. Second, SIA must verify the given predicate
p implies synthesized predicate p;. With linear SVM, the synthe-
sized predicate is guaranteed to be linear (e.g.no multiplication of
columns), thus ensuring that the subsequent verification problem
is decidable. We describe the learning step in §5.4.

The second step consists of verification and generation of counter-
examples. Given a predicate p and a learned predicate p;, SIA uses
the SMT solver to verify that p implies p,. If p does not imply p,
then p, is not a valid predicate (since it does not preserve the seman-
tics of the original query). In this case, SIA uses the solver to gener-
ate additional TRUE samples. These samples satisfy p but do not sat-
isfy p;. So, these additional samples are counter-examples wherein
p; fails. We discuss how SIA generates such counter-examples in
§5.5. SIA then loops back to the learning step with these additional
true samples. If p; does imply p, then p; is valid. However, p; may
still not be the optimal synthesized predicate. This is because there
may be a valid synthesized predicate that rejects tuples that are
accepted by p;. We formalize the notion of an optimal synthesized
predicate in §4.1. In this case, SIA leverages the solver to generate
additional FALSE training samples (i.e., unsatisfaction tuples that
are accepted by p;). These additional samples are the ones that

2172

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

render p; to be sub-optimal. If the solver cannot generate addi-
tional FALSE samples, then p; is optimal. In this case, SIA exits
the learning loop and returns p;. Otherwise, it loops back to the
first step with these additional false samples. To bound the query
rewriting time, we configure the maximum number of iterations
that SIA may take over the learning loop.

We refer to this technique as learning guided by counter-examples.
This is because in each iteration of the learning loop, SIA either gen-
erates counter-examples that p; is supposed to accept but rejects,
or that it is supposed to reject but accepts.

3.2 Motivating Example

We next revisit the example in §2 to illustrate the learning tech-
nique. SIA first converts all the columns of DATE type to columns
of INTEGER type by treating a specific date as the origin (i.e., zero),
and by encoding other dates with the number of days between them
and the origin date. For example, in Q1, it treats 1993 — 06 — 01 as the
origin date. To simplify our presentation, we refer to [_commitdate
by al, I_shipdate by a2, and o_orderdate by b1. With this represen-
tation, the conditions in Q1 reduce to:
a2 - bl <20 AND al - a2 < a2 - bl + 10 AND bl < O

We now seek to synthesize a weaker predicate that only refers
to columns al and a2.
Generation of Training Samples: To generate the initial training
samples, SIA first encodes the conditions symbolically as a set of
formulae in first-order logic:

a2—-b1<20Aal—a2<a2-b1+10ADb1<0

al, a2, and b1 are symbolic variables in this formula that represent
an arbitrary tuple before the filtering operation. We defer a dis-
cussion on how SIA encodes conditions and why we choose this
encoding schema to §5.2.

To generate the initial TRUE samples, SIA repeatedly feeds the
symbolic formula to the solver. In each iteration, it generates a
model with concrete values for al, a2 and b1 that satisfy the original
predicate p. It then adds additional constraints so that the model
obtained in the next iteration is not the same as the one obtained in
prior iterations. Since SIA seeks to synthesize a weaker predicate
that only uses columns al and a2, it only retains the concrete values
for al and a2 from the models returned by the solver. For Q1, it
generates the following pairs of values as the initial TRUE samples.

True: (-5,1); (2,-6); (-27,-44); (-28,-46); (-7,-1)

To generate the initial FALSE samples, SIA repeatedly feeds the
negation of the symbolic formula to the solver with additional
constraints to force the solver to generate new values for al and
a2. This formula represents that values of columns not in the given
set do not satisfy the predicate. In each iteration, it generates a
model with concrete values for al and a2 such that there is no
possible values for b1 that satisfy the original predicate p. For Q1, it
generates the following pairs of values as the initial FALSE samples.

False: (-40,-2); (-56,-2); (-53,-2); (-48,-2)

Learning Guided by Counter-Examples: SIA iteratively applies
two steps to synthesize a weaker predicate p;. In the first iteration,
it begins with the learning step using the initial TRUE and FALSE
samples. SIA uses a linear SVM to learn a disjunction of linear
predicates on columns al and a2. It learns the following linear

Research Data Management Track Paper

20
10 10 i // 10
Al v Al >
0 *, O &% *, O b
-10 -10 17 -10
o 20 o -20 o~ 20
30 L ® 30
40 -40 40
50 4 2 50 (@) o -50 @ J
-60 60 -6

0
-60 -50 -40 -30-20-10 0 10 20 -60 -50 -40-30-20-10 0 10 20 -60 -50 -40 -30-20-10 0 10 20
a1 at a1

(a) Iteration 1 (b) Iteration 2 (c) Iteration 3

Figure 4: Learning Process — Three iterations of the learning loop in SIA
guided by counter-examples.

predicate from these samples:
2xal+a2+50>0

Fig. 4 illustrates the learning process. As shown in Fig. 4a, the
predicate is represented by the black line that separates all TRUE
samples (blue circles) from FALSE samples (red triangles). SIA then
uses the solver to verify that the newly learned predicate is weaker
than p. However, its verification algorithm determines that this
predicate is not weaker than p. So the learned predicate is not valid.

SIA then generates counter-examples, which are tuples that
satisfy p, but do not satisfy the learned predicate. The following
pairs of values are generated as counter-examples:

False: (-53,-47); (-54,-49); (-55,-48);

For example, with (-53, —47), if we set b1 to —5, then the tuple
satisfies p. But this pair of values is rejected by the current p;. We
represent these counter-examples using yellow diamonds on the
bottom left in Fig. 4a. These counter-examples are TRUE samples,
but they are wrongly classified by the learned predicate as FALSE.

In the next iteration, SIA adds these counter-examples to TRUE
samples, and applies the same learning algorithm. It learns the
following linear predicate with the new samples:

al—a2+32>0

As shown in Fig. 4b, the newly learned predicate (shifted black line)
correctly classifies the counter-examples generated in the previous
iteration as TRUE samples (now represented using blue circles).

SIA again uses the solver to verify that current p; is weaker than
p. Although the current p, is valid, it determines that a learned
predicate stronger than p; (and still weaker than p) exists. SIA then
generates counter-examples that are rejected by p, but accepted by
the current p;. The following pairs of values are new generated
counter-examples:

False: (-40,-9); (-48,-17);

For example, with (—40, —9), there is no possible value for b1 such
that the tuple satisfies p. This pair of values should be rejected by
the optimal predicate, but it satisfies the current p;. These counter-
examples are marked using yellow pentagons in Fig. 4b. These
counter-examples are FALSE samples, but they are wrongly classi-
fied by the learned predicate as TRUE.

In the next iteration, SIA adds these counter-examples to FALSE
samples, and applies the same learning algorithm. It learns the
following linear predicate with the new samples:

al—a2+29>0

2173

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

As shown in Fig. 4b, this learned predicate separates all the TRUE
samples from the FALSE samples including newly added counter-
examples (now marked using red triangles). Lastly, SIA verifies if the
learned predicate p; is valid. If it cannot generate additional counter-
examples, then p; is also optimal. In this manner, it synthesizes a
valid optimal predicate referring to only columns al and a2.

4 Problem Formulation

We now formalize the problem of learning a valid, optimal predicate.
We first define the syntax of predicates that SIA supports and our
problem formulation in §4.1. We then present the key conceptual
insights in §4.2.

4.1 Problem Definition
The syntax of the set of predicates supported by SIA is given by:
P:=ECPE|PLP|NotP; E:=Column |Const |EOPE
CP:: OP :=+|—| x|+ L:=AND|OR

><l=l=<1z

A predicate P is either: (1) a comparison of two arithmetic ex-
pressions, (2) a conjunction or disjunction of two predicates, or (3)
a negation of a predicate. An arithmetic expression E is either a
constant, a reference to a column, or a binary expression with four
basic arithmetic operators. Each column col is associated with a
data type that is denoted as 7.

SIA currently supports the following data types: INTEGER, DOUBLE,
DATE, and TIMESTAMP. It transforms the latter two data types to
an integral type while preserving the arithmetic and inequality
relations of the predicate. It currently does not support the TEXT
type. We next present formal definitions of predicates and tuples.
Definitions: Predicate p is a predicate over columns Cols if each
column that occurs in the predicate p is in Cols. The set of pred-
icates over Cols is denoted Predsc,ls. Note that each predicate
p € Predscys is a predicate over all sets of column Cols” such
that Cols” C Cols. A tuple over columns Cols is a map from each
column col € Cols to a value of corresponding column type 7).
The set of tuples over Cols is denoted Tuplesc;. Each predicate
p € Predscgis can be evaluated on each tuple t € Tuplesc,s to
produce a boolean output, denoted p(t). If we substitute t(col) for
each column col in p and it evaluates to True (i.e., p(¢) is True), then
we say that t satisfies p (alternately, that p accepts t). If p(t) is False,
then t does not satisfy p (alternately, p rejects t).

Predicate Implication: Predicate p implies predicate p’ if each
tuple that satisfies p also satisfies p’.

DEF 1. Predicate p € Predsc,|s over columns Cols implies pred-
icate p’ € Predsc,|s over Cols if for each tuple t € Tuplesc,s that
satisfies p (i.e., p(t) = True), t also satisfies p’ (i.e., p’(¢) = True).

The fact that p implies p’ is denoted p = p’.
Valid Predicates: A valid dimensionality reduction of a predicate p
is a predicate over a subset of the columns of p that is implied by p.

DEF 2. p’ € Predscys is a valid dimensionality reduction of
predicate p € Predsc,s with Cols” C Cols if p = p’.

Valid dimensionality reduction enables the application of opti-
mization rules related to predicates [28, 45]. For example, it may be
used to lower a predicate p on the result of a join operation over
columns Cols of multiple tables down to a predicate p” over columns

Research Data Management Track Paper

Cols’ of one input table, where Cols” C col. The requirement that a
dimensionality reduction over Cols’ is in Preds,o ensures that the
reduction is defined over the component table. The requirement
that a reduced predicate p’ over Cols’ is implied by p ensures that it
does not remove tuples that may need to be provided to the join (i.e.,
ensures soundness). Thus, dimensionality reduction enables the
potential application of a predicate push-down below join operator
rule that was not previously feasible.

However, not all valid dimensionality reductions are useful in
practice. For instance, any trivial predicate that is satisfied by all
tuples is technically valid. We will be primarily concerned with
synthesizing predicates that are as less selective as possible.

DEF 3. p; € Predsc,y, a valid reduction of p € Predsc,|s (Def 2)
is optimal if for each p, € Predscyy that is a valid dimensional
reduction of p to Cols’, it holds that p; = p,.

We prove that every predicate has an optimal dimensionality
reduction to each subset of its columns in §4.2. One of our key
contribution in SIA is an automatic procedure for synthesizing
a valid dimensionality reduction of p to Cols’, given a predicate
p € Predscyls and a set of columns Cols” C Cols.

4.2 Key Conceptual Insights

Given the problem definition in §4.1, we now discuss the key in-
sights for solving it. First, we show that an entire class of tuples (i.e.,
concrete values of the columns in the predicate) rejected by a given
predicate map to an individual tuple rejected by its valid reduced
predicate. Second, we show that the property of being an optimal
valid reduced predicate may be represented as an SMT formula.
Definitions: To elaborate on the first observation, we first define
the restriction and extension properties of tuples that determine the
set of columns that they may refer to. For a tuple t € Tuplesc,
and a set of columns Cols’ C Cols, restriction of t to columns in
Cols’ is denoted by t|c,s - In this case, ¢ extends f|c,s to Cols. An
unsatisfaction tuple of a predicate p is a tuple over Cols’ that may
only be extended to form tuples that do not satisfy p.

DEF 4. For a set of columns Cols’” C Cols and predicate p €
Predscgls, tuple t € Tuplesc,s is a feasible restriction for p if some
extension of t to Cols satisfies p.

If t € Predsc,y is not a feasible restriction for p € Predsc,ys,
then we say that ¢ is an unsatisfaction tuple of p.

Properties of Dimensionality Reduction: In order to prove the
key properties of dimensionality reduction, we will use the follow-
ing lemma which establishes that predicates over a restricted set of
columns treat tuples and their restrictions equivalently.

LEMMA 1. For columns Cols’” C Cols and predicate p € Predsc,s’,
p(t) = p(tlcors) for each tuple t € Tuplescys.

Dimensionality reduction is closed under conjunction.

LEMMA 2. If po,p1 € Predscyy are valid dimensionality reduc-
tions of predicate p € Predsces to Cols’, then py A p1 is a valid
dimensionality reduction of p to Cols’.

2174

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

Valid dimensionality reductions always accepts feasible restric-
tions. The operational consequence of this lemma is that our syn-
thesizer will label all feasible restrictions as TRUE as it iteratively
learns dimensionality reductions.

LEMMA 3. For a set of columns Cols” C Cols and predicates p €
Predscols and p’ € Predscs, p’ is a valid dimensionality reduction
of p to Cols” if and only if p” accepts every feasible restriction for p.

Optimal reduced predicate always rejects unsatisfaction tuples.
The operational consequence of this lemma is that our synthesizer
will label all unsatisfaction tuples as FALSE as it iteratively learns
dimensionality reductions.

LEMMA 4. For a set of columns Cols” C Cols and predicates p €
Predscols and p’ € Predscqy, p’ is optimal if and only if it rejects
each tuplet € Tuplesc,,s that is an unsatisfaction tuple of p.

Based on Lemma 4, given a valid synthesized predicate p; for
the original predicate p and a set of columns Cols’, if there is no
unsatisfaction tuple ¢ such that p,(¢) is TRUE, then p;, is an optimal
predicate. Thus, we can reduce the problem of deciding if a given
valid predicate p; is optimal to the problem of deciding if following
formula is satisfiable:

Fcoly € Cols’ s.t. p; A (Veolz ¢ Cols” s.t. =p)

This formula contains an alternating quantifier that supports linear
arithmetic over integer, real number, and bit vectors. So it is a
decidable problem [14, 17]. Thus, the problem of deciding if a given
valid synthesized predicate is optimal is also decidable.

5 Synthesizing Predicates

In this section, we first present the overall algorithm that SIA uses
to synthesize a valid, optimal predicate in §5.1. We then cover
the key sub-procedures in the following sub-sections. In §5.2, we
discuss how SIA encodes a predicate as an SMT formula. In §5.3,
we describe how SIA generates the initial learning samples. In §5.4,
we explain why SIA uses a linear SVM and discuss how it uses
this machine learning model to learn a predicate. Finally, in §5.5,
we present how SIA verifies if the learned predicate is valid, and
generates counter-examples accordingly.

5.1 Predicate Synthesis

Alg. 1 presents the procedure for synthesizing valid predicates. The
Synthesize procedure takes two inputs: (1) an original predicate
p, and (2) a set of columns Cols’, which is a subset of p’s depen-
dency columns Cols. It returns a valid synthesized predicate p;.
The Synthesize recursively uses the SynthesizeAux sub-procedure.
SynthesizeAux takes six inputs: (1) the original predicate p, (2) the
set of columns Cols, (3) a valid synthesized predicate p,, (4) true
training samples Ts, (5) false training samples Fs, and (6) the current
iteration number i. It returns a valid synthesized predicate that at
least as strong as the given valid synthesized predicate p;.

Within the SynthesizeAux procedure, SIA first compares the cur-
rent iteration number i against the maximum number of iterations
max that is pre-defined. If i is greater than max, then it simply
returns p;. If not, SynthesizeAux uses the Learn procedure (§5.4) to
learn a new predicate p, based on the given training samples. The
Learn procedure returns a predicate that is guaranteed to classify

Research Data Management Track Paper

Algorithm 1: Procedure for synthesizing a weaker predicate

Input :A predicate p, and a set of columns Cols’, where Cols’ is a
subset of p’s dependency columns Cols
Output: A valid synthesized predicate p,
1 Procedure Synthesize(p, Cols’)
2 Procedure SynthesizeAux(p, Cols’, p;, Ts, Fs, i)

3 if i > max then return p,;

4 p, < Learn(Ts, Fs)

5 isValid « Verify(p,, p)

6 if isValid then

7 P3 <~ P1 A P2

8 Fs; « CounterF(ps, p, Fs)
9 if Fs; = @ then return p,;

else return

SynthesizeAux(p, Cols’, p5, Ts, Fs U Fsy, i + 1);
else
Ts; < CounterT(p;, p, Ts)

return SynthesizeAux(p, Cols’, p;, Ts U Tsy, Fs, i + 1)
14 (Ts, Fs) « GenerateSamples(p, Cols)

15

return SynthesizeAux(p, Cols, True, Ts, Fs, 0)

all Ts samples as TRUE. The SynthesizeAux procedure then uses the
Verify procedure (§5.5) to verify if p, is valid.

If p, is valid, then the SynthesizeAux procedure computes the
conjunction of new learned predicate p, with the input valid synthe-
sized predicate p; to obtain a new predicate p;. The SynthesizeAux
procedure then uses the CounterF procedure (§5.4) to generate new
FALSE training samples. These samples are unsatisfaction tuples for
original predicate p and Cols, but are classified as TRUE by predicate
p3. These FALSE samples must be different from previous FALSE
samples. If CounterF cannot generate new FALSE samples, then
SIA returns p; (because it is optimal). Otherwise, SynthesizeAux
recursively calls itself with the same inputs, except for the new
valid synthesized predicate ps, a larger set of FALSE samples, and
an updated iteration number.

If p, is not valid, then the SynthesizeAux procedure uses the
CounterT procedure (§5.4) to generate additional TRUE samples.
These TRUE samples are classified as False by p,, and must be dif-
ferent from previous TRUE samples. The SynthesizeAux procedure
recursively calls itself with the same inputs, except for a larger set
of TRUE samples, and an updated iteration number.

Synthesize uses the GenerateSamples procedure (§5.3) to obtain
the initial training samples: Ts and Fs. It invokes the SynthesizeAux
procedure with these inputs: predicate p and Cols, initial valid
synthesized predicate TRUE, initial training samples, and initial iter-
ation count 0. TRUE is a trivial valid synthesized predicate because
conjunction of p with TRUE implies p.

Counter-Example Guided Synthesis (CEGIS): Modern SMT solvers

use CEGIS to solve the constrained horn clauses problem (CHC)
(e.g., duality in Z3 [8]). So, the problem of synthesizing a valid pred-
icate may be encoded as a CHC problem and solved using duality.
However, SIA not only tries to synthesize a valid predicate, but also
an highly selective predicate. If we directly encode the property that
original predicate p implies a valid synthesized predicate p; as a
CHC problem, the solver may always return the trivial predicate
TRUE. Even if we encoded the property that p; implies the negative
of FALSE samples generated by SIA, the solver may always return a

2175

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

predicate that is simply the conjunction of not equivalent to FALSE
samples. In both cases, the solver returned by the predicate is not
optimal and therefore does not reduce query execution time. This
is why SIA leverages an SVM-based CEGIS algorithm to generate
optimal predicates.

5.2 Predicate Encoding

Since SIA leverages the solver in several procedures (e.g., CounterT),
we first discuss how it converts a predicate expressed in SQL to
a logical formula supported by the SMT solver. Since the solver
supports all the arithmetic operators, arithmetic comparators, and
the logical operators presented in §4.1, this is a straightforward
procedure except for these three problems.

Type Conversion: The solver only supports four primitive data
types: integer, real, boolean, and bit vector. SIA converts all the
supported data types (e.g., DATE) to these primitive data types while
preserving all arithmetic relations.

Three-Valued Logic: SIA supports three-valued logic in SQL. A
tuple may take a NULL value for a given column. A predicate may
evaluate to three possible values: True, False, or NULL. To support
the three-valued logic, SIA uses the encoding scheme in [49]. It rep-
resents a column with a pair of symbolic variables. The first variable
represents the value of the column. The second boolean variable
indicates if the value is NULL. SIA only uses this encoding scheme
in the Verify procedure. This scheme ensures that Verify correctly
validates the newly learned predicate using three-valued logic. In
other procedures associated with generating training samples, it
uses an alternate encoding scheme with only the first variable. This
is because these procedures generate non-NULL values to synthesize
a predicate with arithmetic comparator.

Non-Linear Arithmetic: The satisfaction problem of a SMT for-
mula with integer, non-linear arithmetic is undecidable [30]. So,
SIA cannot directly convert a predicate with multiplication or divi-
sion of two integer-valued columns. To partially circumvent this
problem, SIA treats multiplication and division of columns as a
single column while converting the predicate to a formula (if these
columns are not used in other parts of the predicate).

5.3 Generation of Initial Samples

The Synthesize procedure uses the GenerateSamples procedure to
generate the initial training samples. This procedure takes the orig-
inal predicate p and a set of columns Cols’ (subset of dependency
columns of p) as inputs. It returns two sets of training samples: Ts
and Fs. Each training sample is a list of values for each column in
Cols’. Based on the properties we proved in Lemmas 3 and 4, the
training samples in Ts and Fs are satisfaction and unsatisfaction
tuples, respectively. GenerateSamples leverages the SMT solver to
generate these samples.

Generating True Samples: Given the original predicate p, and a
set of columns Cols’, GenerateSamples iteratively feeds the follow-
ing formula into the solver to generate the TRUE samples:

p A NotOld

Here, p is a formula that represents the original predicate. NotOId
is another formula that SIA uses to force the solver to generate a
new model for Cols’. NotOld is a conjunction formula where each
term is a constraint that sets the variables representing columns in

Research Data Management Track Paper

Cols’ not to be equal to any of the values in already existing TRUE
samples. In each iteration, GenerateSamples updates this NotOId
formula by adding an additional term that constrains the columns
in Cols’ to not be equal to the sample generated in the last iteration.

If the solver decides that the given formula is satisfiable, then
GenerateSamples generates a new sample by extracting the values
in the satisfaction model for all columns in Cols’. The satisfaction
model gives concrete values for columns not in Cols’ along with
concrete values for columns in Cols’ that satisfy p. Given the defi-
nition of unsatisfaction tuple in Def 4, this sample is clearly not an
unsatisfaction tuple. So, it is a TRUE sample.

If the solver decides the given formula is unsatisfiable, then there
is no new satisfaction tuple for predicate p and the set of columns
Cols’. In this case, there are a finite number of tuples over columns
in Cols’ that satisfy the predicate, and all these tuples have been
found. SIA constructs the strongest valid synthesized predicate by
taking the disjunction of a set of constraints wherein each constraint
sets the columns in Cols to be equal to TRUE samples.
Generating False Samples: GenerateSamples iteratively feeds
the formula into the solver to generate FALSE samples:

Fcol; € Cols’ s.t.NotOIld A (Ycolz ¢ Cols’ s.t. =p)

Here, —p is the negation of the formula that represents the original
predicate. NotOld is the SMT formula that SIA uses to force the
solver to generate a new model for Cols. SIA updates NotOld in each
iteration in the same manner as when it generates TRUE samples.
If the solver decides that the given formula is satisfiable, then
GenerateSamples generates a new FALSE sample by extracting the
values in the satisfaction model. If the solver decides that the for-
mula is unsatisfiable, then there is no additional unsatisfaction tuple
for predicate p over Cols’. In this case, there are finite number of
tuples over Cols’ that do not satisfy the valid synthesized predicate,
and all these tuples have been found. SIA constructs the strongest
valid synthesized predicate by taking the negation of disjunction
of a set of constraints wherein each constraint sets the columns in
Cols to be equal to FALSE samples.
Additional Heuristics: We use additional heuristics for forcing
the solver to generate useful training samples depending on the
machine learning model. For example, SIA constrain that the values
must not be equal to zero.

5.4 Predicate Learning

Given two sets of training samples, the Learn procedure returns a
predicate that correctly classifies all the TRUE samples. Because SIA
needs to verify the learned predicate is valid, there are two criteria
that the underlying machine learning model must satisfy. First, the
trained model must be interpretable. This allows SIA to convert the
model to an SMT formula for verification. Second, the satisfaction
problem for the generated SMT formula must be decidable. This is
because the verification procedure must be decidable. Given these
two criteria, Learn uses a standard linear SVM [10, 34, 42] as the
underlying machine learning model. Since the trained SVM model
is a linear function over the input columns, it may be converted
to an SMT formula with numerical linear arithmetic. Furthermore,
the satisfaction problem for numerical linear arithmetic is decid-
able [17].

2176

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

Algorithm 2: Procedure for learning a valid predicate

Input :Two sets of training samples

Output: A learned predicate that correctly classifies all Ts samples
1 Procedure Learn(Ts, Fs)
2 Models « {}
3 while Ts # 0 do

4 model « linearSVM(Ts, Fs)

5 Models «— Models U model

6 Ts < misclassified(Ts, model)
7 return VModels

Learn must return a predicate that should correctly classify all

TRUE samples. If the two sets of input samples are not linearly sepa-
rable, then the linear SVM may return a model that classifies certain
TRUE samples as FALSE. To address this problem, Learn iteratively
trains multiple linear SVM models. As shown in Alg. 2, it first trains
alinear SVM model over all training samples. If this model classifies
certain TRUE samples as FALSE, then it trains another model with
the mis-classified TRUE samples along with the FALSE samples. It
keeps training models in this manner until all the TRUE samples
are correctly classified. Lastly, Learn returns the disjunction of all
models as the learned predicate.
Predicate Construction: Each linear SVM model is a vector of
weights w. Each dimension in the space of samples corresponds
to a column. SIA constructs the predicate by setting the sum of
the products of the weight and the corresponding column to be
greater than zero [11]. Since SIA constructs a arithmetic binary
predicate for each SVM model, the disjunction of models maps to
to a disjunction of predicates.

5.5 Validation & Counter-Example Generation

Learned Predicate Validation: SynthesizeAux procedure uses
the Verify procedure to verify if the learned predicate is valid. The
latter procedure uses the solver for validation. Given the original
predicate p, and the learned predicate p,, the Verify procedure feeds
the following formula into the solver:

P APy

Both formulae use the encoding scheme that supports three-valued
logic (§5.2). If the solver decides that this formula is unsatisfiable,
then there is no tuple that satisfies p but not p;. In other words,
for any given tuple, if p accepts this tuple, then p; also accepts
this tuple. Based on Def 2, p, is thus a valid synthesized predicate.
In this case, SynthesizeAux uses CounterF to generate additional
FALSE samples to strengthen the predicate.

If the solver decides that this formula is satisfiable, then there is
at least one tuple that satisfies p but does not satisfy p;. In this case,
p; is invalid. SynthesizeAux uses CounterT to generate additional
TRUE samples to be used in next iteration of the learning process.
Generation of True Counter-Examples: SynthesizeAux uses the
CounterT procedure to generate TRUE counter-examples. Given the
original predicate p and an invalid learned predicate p, this pro-
cedure generates additional TRUE samples such that each sample
satisfies p but does not satisfy p;. CounterT leverages the solver to
generate these samples. It feeds the following formula to the solver:

p A =p; A NotOld

Research Data Management Track Paper

¢ Query: Q1
Calcite Compiler
¢ Logical Plan: P1 Rewritten
Columns Query Q2
SIA
Training Samples SVM Model
SMT Formula Satisfiable?

Z3 LibSVM

Figure 5: Architecture of SIA- SIA leverages three components: (1) CAL-
CITE query optimization framework, (2) Z3 SMT solver, and (3) SVM library.

Here, p represents the original predicate and —p; represents the
negation of the learned predicate. NotOld constrains the model
to not pick prior TRUE samples. This SMT formula is satisfiable.
Since p, is invalid, it is guaranteed that there exists a TRUE sample
that is incorrectly classified by p; as FALSE. CounterT extracts the
values of columns in the model returned by the solver to construct
a counter-example. This new TRUE samples is distinct from prior
TRUE samples, and does not satisfy p;. CounterT repeatedly feeds
the formula to the solver to get multiple samples.

Generation of False Counter-Examples: SynthesizeAux proce-
dure uses the CounterF procedure to generate FALSE counter-
examples. Given the original predicate p and a valid learned predi-
cate p;, this procedure generates additional FALSE samples such
that each sample does not satisfy p but does satisfy p;. CounterF
procedure feeds the following formula to the SMT solver:

Feoly € Cols” s.t.p; A NotOld A (Yol ¢ Cols” s.t.—p)

Here, p; represents the valid synthesized predicate. NotOId con-
strains the model to not pick prior FALSE samples. The last part of
the formula ensures that it is an unsatisfaction tuple. If the solver
decides that this formula is satisfiable, then CounterT extracts the
values from the model to generate a new FALSE sample. This new
FALSE samples is distinct from prior FALSE samples, and does sat-
isfy p;. If the solver decides that this formula is unsatisfiable, then
CounterT cannot generate additional FALSE samples. In this case,
based on Lemma 4, p; is optimal.

6 Evaluation

We now describe our implementation and evaluation of SIA. We
begin with a description of our implementation in §6.1. We then
present a case study based on the Alibaba MaxCompute system
in §6.2. We next discuss how we construct a collection of queries
derived from the TPC-H benchmark [43] to evaluate SIA in §6.3. We
then report the results of our comparative analysis of SIA in §6.4
and §6.5. We next cover the impact of SIA on runtime performance
in §6.6. We discuss the limitations of SIA in §6.7.

6.1 Implementation

The architecture of SIA is illustrated in Fig. 5. SIA takes a predicate
p and a subset of columns Cols’ from the Cols used in p as inputs. It
returns a valid synthesized predicate p’ that only uses the columns
in Cols’. To facilitate integration with DBMSs, SIA directly operates
on SQL queries.

SIA leverages three components: @ A query compiler converts
the given SQL query to a relational algebraic representation. SIA

2177

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

4 Syntax-based Prospective Symbolically Relevant

100

A / .

° I /
g 7° i K
gL 5 £% 50 v
c 9o A/
83 23 A
£9 25 £C 55
[= o v
0 (R -2

<100 <1074 <1076
CPU Usage (100 Core * S)

(b) CPU Consumption

<10 <100 <1000 >10000 >1076

Execution time (s)
(a) Execution Time

o
5}

Percentage of
Queries

Noa N
a S o
-

re

e —
<1074 <1076 <10"8 >1018

Memory Footprint (GB * S)
() Memory Footprint
Figure 6: Case Study Metrics: Execution time, CPU consumption, and
memory footprint of: (1) syntax-based prospective, and (2) symbolically
relevant queries.

uses the open-source CALCITE query optimization framework for
this purpose [2]. It then converts the predicate into an SMT formula,
and implements the counter-example guided learning technique.
SIA uses the second component to generate training samples and
to validate the learned predicate. It uses the third component to
train a linear SVM model that is used for learning the predicate.
SIA is implemented in Java (2,925 lines of code). ® The second
component is the Z3 SMT solver that SIA leverages for determining
the satisfiability of an SMT formula and for generating models if the
given formulae is satisfiable [5]. ® The third component is an SVM
library [3]. We have provided the source code of SIA along with
this submission and plan to open-source it if the paper is published.

6.2 Case Study

To motivate the importance of synthesizing predicates on a given
set of columns, we present a case study based on the Alibaba Max-
Compute system. MaxCompute is a general purpose, fully managed
data processing platform for large-scale OLAP workloads [1]. We
focus on the predicate push-down through join optimization rule
in this experiment. We examined one day’s worth of production
queries on the MaxCompute platform. We first examine the syn-
tax of the queries to find those that contain at least one predicate
that refers to columns across multiple tables, such that at least
one of those tables (say 7°) does not have another predicate only
referring to its column(s). In this case, the optimizer may not be
able to push-down the predicate and the impact of not being able
to do so is significant since 7" must be fully scanned. We refer to
the queries satisfying this property as syntax-based prospective
queries. Since there is a predicate that refers to columns from the
table, it is possible that there exists a weaker predicate that only
refers to columns from that 7. We note that these queries may
have multiple predicates satisfying this property such that many
tables must be fully scanned for processing the query. For the target
databases in MaxCompute whose sizes range from TBs to PBs, these
queries have a significant overhead.

Among the syntax-based prospective queries, we next examine
if SIA is capable of finding a predicate that only refers to columns
from 7. SIA encodes the original predicate as a SMT formula, and
then tries to generate unsatisfication tuples for the given table. If

Research Data Management Track Paper

SIA successfully generates an unsatisfication tuple, then it syn-
thesizes a predicate that only refers to columns in 7, thereby en-
abling the application of the predicate push-down rule. We refer
to these queries as symbolically relevant queries. Among the
syntax-based prospective queries, some queries may not be symbol-
ically relevant only because SIA does not support certain complex
predicates. It does not imply that a weaker predicate does not exist.
We report the query execution time, CPU consumption, and
memory footprint of both categories of queries: 204, 287 syntax-
based prospective queries and 26, 104 symbolically relevant queries
in Fig. 6. The most notable observation in Fig. 6 is that majority of
these queries (74.63%) take longer than 10 seconds to execute and
will benefit from SIA. This is sufficient to justify the optimization
time for those queries. More importantly, most of these queries are
stored procedures that are optimized only once and their query
execution plans are stored in a plan cache. For these queries, the
optimizer may use SIA with an explicit timeout (e.g., 5 seconds).

6.3 Benchmark

To evaluate the efficacy of SIA in generating valid predicates, we

construct a collection of queries based on the TPC-H benchmark [43].

The reasons for constructing this benchmark are twofold. First, we
seek to make the queries publicly available. Second, we generate
queries to simulate the characteristics of predicates in production
query workloads. In particular, we use a sub-query of TPC-H Q4
with more complex predicates. All of these queries follow this tem-
plate:

Q: SELECT % FROM lineitem, orders

WHERE o_orderkey = 1_orderkey AND predicate
predicate = Term-1 AND Term-2 AND Term-K
Term = Expr Compare Expr
Expr = Column | Arithmetic Expr | Date | Interval

Here, predicate is a randomly-generated predicate in conjunctive
normal form consists of a set of terms. Each Term is a binary,
arithmetic predicate between: (1) a column, (2) a binary arithmetic
expression, (3) a date constant, or (4) an interval constant (i.e.,
number of days). We constrain predicate to use three columns from
lineitem table (I_shipdate, I_commitdate, and I_receiptdate), and
one column from orders table (o_orderdate). We ensure that each
generated binary predicate refers to the column in orders. Thus, the
optimizer cannot push down the original predicate below the join
operator to the lineitem table. Each predicate contains from three
through eight terms. We re-generate the query if the predicate
cannot be satisfied by any tuples. In this manner, we construct a
collection of 200 queries.

Baselines: We compare four techniques: (1) syntax-driven rules,
(2) SIA_v1 (only one iteration; 110 TRUE and FALSE samples, re-
spectively), (3) SIA_v2 (only one iteration; 2X more samples com-
pared to SIA_v1), (4) SIA (at most 41 iterations; 10 initial TRUE and
FALSE samples, respectively; at most the same number of samples
as SIA_v1). All the variants of SIA are listed in Table 1.

To the best of our knowledge, SIA is the first system to syn-
thesize valid, reduced predicates by leveraging machine learning
and verification algorithms. Previous state-of-the-art approaches
are based on syntax-driven rules (e.g., transitive closure). We im-
plement a syntax-driven transitive closure transformation for our
comparative analysis.

2178

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

Max # Initial # Initial # Samples
Iteration # True Samples False Samples per Iteration
SIA _v1 1 110 110 N/A
SIA _v2 1 220 220 N/A
SIA 41 10 10 5

Table 1: Baselines — We compare SIA against two non-iterative baselines.

6.4 Efficacy of SIA

In this experiment, we examine whether SIA is able to effectively
synthesize predicates over the given set of columns. We run SIA on
each query with all possible subsets of three columns I_shipdate,
I_commitdate, and I_receiptdate from lineitem table. In SIA, we set
the number of initial TRUE and FALSE samples to 10, respectively.
In each iteration of the learning loop, we configure the number
of newly added training samples to 5 (either TRUE or FALSE de-
pending on the requirements of the learning process). We set the
maximum number of allowed iterations to 41. After 41 iterations,
SIA either returns the current synthesized predicate, or returns
NULL if SIA cannot synthesize any valid predicate other than the
trivial predicate (TRUE).

To evaluate the efficacy of the iterative learning process guided
by counter-examples used in SIA, we use two non-iterative baselines
(i.e., number of iterations = 1). These baselines (SIA_v1 and SIA_v2)
seek to directly learn a predicate from initial training samples. In
SIA_v1, we set the number of initial TRUE and FALSE samples to
110, respectively. This is equivalent to the total number of samples
generated by SIA after it hits the final iteration. In SIA_v2, we set
the number of initial TRUE and FALSE samples to 220, respectively
(2% the number of samples given to SIA_v1). We conduct this ex-
periment on a commodity server (Intel Core i7-860 processor with
16 GB RAM).

Table 2 shows the results of this experiment. For each query,
we configure SIA to generate synthesized predicates with varying
complexity (ranging from one through three columns from lineitem
table). We classify the synthesized predicates into three categories
based on the number of columns they use. SIA seeks to construct a
predicate that uses all columns (i.e., coefficients must be non-zero).
We refer to the number of valid predicates referring to the given
set of columns as the number of possible predicates. For example,
if a query has two valid predicates, one using I_shipdate and an-
other one using [_commitdate, then we classify it as two possible
predicates in the first category.

The most notable observation in Table 2 is that SIA effectively
synthesizes valid predicates over the given columns. For predicates
that must only use one column, SIA successfully generates 182 out
of 233 predicates, while SIA_v1 only generates 158 predicates and
SIA_v2 only generates 166 predicates. We note that even though
SIA runs for 41 iterations, it may only generate 220 total training
samples (comparable to the samples used by SIA; 1 and half of that
used by SIA_v2). We found that the transitive closure transforma-
tion is not effective at this task.

The benefits of counter-example guided learning in SIA is more
prominent for more complex predicates that use two and three
columns. Specifically, for predicates with two columns, SIA success-
fully generates 102 out of 160 predicates, while SIA_v1 and SIA_v2
only generate 4 and 17 predicates, respectively. For predicates with
three columns, SIA generates 20 out of 30 predicates, while SIA_v1

Research Data Management Track Paper

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

SIA Transitive Closure SIA _v1 SIA _v2
of Used Columns # of Possible Predicates | # of Valid # of Optimal # of Valid #of Valid # of Optimal | # of Valid # of Optimal
one 233 182 158 18 158 75 166 98
two 160 102 20 4 11 3 17 4
three 30 20 0 0 2 0 1 0

Table 2: Efficacy of SIA- Comparative analysis of SIA against the baselines with respect to their ability to synthesize valid (possibly optimal) predicates.

& one column ' two columns three columns

580 N
e N N . sF
<10 <20 <30 <=40 >40

Number of Iterations

Figure 7: Efficiency of Learning Loop — Average number of iterations
that SIA takes to converge to an optimal predicate.

generates two and SIA_v2 only generates one predicate, respec-
tively. Besides synthesizing more predicates across all categories,
SIA also generates significantly more number of optimal predicates
in the first two categories compared to SIA_v1 and SIA_v2. This
is because the initial training samples used by SIA_v1 and SIA_v2
are completely random and may cluster together. In contrast, SIA’s
iterative counter-example guided learning forces the generated
samples to be of higher quality, thereby allowing it to learn more,
stronger valid predicates.

6.5 Efficiency of SIA

In this experiment, we study the efficiency of SIA. We first measure
the time taken by SIA and its baselines to synthesize the predicates.
We classify the total time taken into three categories: (1) generation
time, (2) validation time, and (3) learning time. Generation time
refers to the time taken to obtain the initial training samples and the
counter-example samples from the solver. Learning time refers to
the time taken to train the SVM model using the generated samples.
Validation time refers to the time taken to check if the synthesized
predicate is valid or if a valid synthesized predicate is optimal using
the solver. Table 3 shows the results of this analysis. SIA executes
nearly as fast as SIA_v1. SIA_v2 is slower than these two other
techniques since the data generation time dominates the overall
synthesis pipeline. Thus, to accelerate the synthesis process, we
must reduce the number of generated training samples.
Learning Loop: We next examine the efficiency of the learning
loop. We measure the number of iterations SIA takes to synthesize
the optimal predicate. Fig. 7 shows that SIA synthesizes 109 optimal
predicates (out of 182 generated predicates) in the first category
within 10 iterations. For more complex predicates that use two or
three columns, SIA often fails to find the optimal predicate within
the maximum number of iterations. Even if it does find the optimal
predicate, it requires more iterations compared to that needed for
predicates in the first category. We discuss this in §6.7.

We next measure the number of TRUE and FALSE samples that
SIA generates. This is important because the data generation time
dominates the overall time taken to synthesize predicates. Fig. 8a
shows the distribution of the number of TRUE samples in the final
iteration of the learning loop. Most of the successfully generated

2179

& one column % two columns three columns

g 180 E120

® ©

2135 £ 90

3 8

2 90 < 60

o [<)

]]

-g 45 -g 30

=] 3 N
2 oy 4 N

o

o

<50 <100 <150 <220
Number of False Samples

(b) Number of False Samples

<50 <100 <150 <220
Number of True Samples
(a) Number of True Samples
Figure 8: Sample Distribution — Distribution of the number of training
samples generated by SIA before the final iteration.

1
10000 00000

@ @
s‘g 8000 Eé 80000
3 E 5 &
(< (<=
e = 6000 = 60000
25 £5
g g 4000 § 5 40000

o o
c g &3

w 2000 w 20000

0 0
0 2000 10000 0

4000
Original Query
Execution Time(ms)
(a) Scale Factor = 1

6000 8000 20000 40000 60000 80000 100000

Original Query
Execution Time(ms)
(b) Scale Factor = 10
Figure 9: Impact on Runtime Performance — Comparison of the time
taken to execute the original and rewritten queries.

one-column predicates (178 out of 182) require less than 50 TRUE
samples. More complicated predicates require more TRUE samples
to learn a valid predicate. Fig. 8b shows the distribution of number
of FALSE samples in the final iteration of the learning loop. Most of
the optimal one-column predicates (118 out of 158) require less than
100 FALSE samples. More complicated predicates do not converge
even with more FALSE samples. We discuss this limitation in §6.7.

6.6 Impact on Runtime Performance

We next conduct an experiment to study the impact of SIA on
runtime performance. In particular, we examine if the predicates
synthesized by SIA enable the optimizer to apply predicate-centric
optimization rules to speed up query execution. Across 200 queries,
SIA successfully generates valid predicates for 114 queries that only
depend on columns from lineitem table. We measure the runtime
performance of these 114 queries (without and with the synthesized
predicates). It is important to note that the rewritten queries are
semantically equivalent to their original counterparts. We execute
these queries on the TPC-H database on PostgreSQL (v12). We
consider two scale-factors: one and ten.

The results are shown in Fig. 9. The x-axis and y-axis in these
plots represent the time taken to execute the original and rewritten
queries, respectively. We highlight the break-even point for each
query using a black slanted line. With a scale-factor of one, 85 out of
114 rewritten queries are below the the break-even line (i.e., faster

Research Data Management Track Paper

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

SIA SIA v1 SIA v2
Generation Learning Validation | Generation Learning Validation | Generation Learning Validation
of Used Columns Time (ms) Time (ms) Time (ms) Time (ms) Time (ms) Time (ms) Time (ms) Time (ms) Time (ms)
one 893.2 1.8 98.5 2625 0.5 1 9304 1.9 11.3
two 2933 14.6 281.4 2739 1.0 7.3 10159 3.2 11.64
three 4154 38.9 328.2 3801 1.0 8.5 11859 5.0 12.0

Table 3: Efficiency of SIA- Comparative analysis of SIA against the baselines with respect to their time taken to synthesize predicates.

Scale Factor ‘ # of Faster Avg. Selectivity ‘ # of 2X Faster

Avg. Selectivity ‘ # of Slower

Avg. Selectivity ‘ # of 2x Slower Avg. Selectivity

85
95

0.76 36
0.78 66

one
ten

0.69
0.74

29
19

0.97 2
0.96 4

0.98
0.94

Table 4: Selectivity — Average selectivity of synthesized predicates with respect to lineitem table. We classify them based on their performance impact.

than their original counterparts). This highlights the impact of SIA
on runtime performance. Only 29 rewritten queries fall above the
break-even line. Furthermore, 36 rewritten queries exhibit more
than 2x speedup. Only 2 of them slow down by more than 2X. The
benefits of SIA on more significant when the scale factor is set to
ten (Fig. 9b). Here, 95 rewritten queries fall below the break-even
line, and 66 of them are at least 2x faster. Only 19 rewritten queries
fall above the break-even line, and 4 of them are more than 2x
slower.

Selectivity of Predicates: To examine the efficacy of the synthe-
sized predicates in accelerating queries, we measure the selectivity
of the predicates with respect to the lineitem table. We classify
these 114 synthesized predicates into four categories based on their
impact on runtime performance on the TPC-H database. As sum-
marized in Table 4, the selectively of the synthesized predicate de-
termines its impact. When the scale factor is set to one, the average
selectivity of synthesized predicates in faster and slower rewritten
queries is 0.76 and 0.97, respectively. The newly added predicate
allows the optimizer to push down the predicate in the re-written
query. So, the execution plan of the re-written query contains an
additional filter operator before the join operator compared to that
of the original query. If the selectivity of the synthesized predicate is
low, then the execution time of the additional filter higher is higher
than the time saved in the join operator. In this case, the re-written
query takes more time to execute compared to the original query.

6.7 Limitations

The key limitation of SIA manifests when the generated TRUE and
FALSE samples are not linearly separable. In this case, it fails to
synthesize optimal or even valid predicates during the learning
step. Consider the following predicate: a > b && a < b + 50 &&
b > 0 && b < 150. In this case, the FALSE samples are on both sides
of TRUE samples. So, during the learning step, SIA either returns a
disjunction of predicates that is not optimal, or returns an invalid
predicate because the underlying linear SVM model only seeks to
minimize the penalty term. We note that SIA always discards these
incorrect predicates during the verification step.

7 Related Work

Predicate Synthesis: Researchers have focused on learning ap-
proximate predicates to accelerate query execution [25, 29, 39].
This line of research includes: training probabilistic predicates to
accelerate inference in machine learning pipelines [29], inferring
simpler approximate predicates from expensive UDFs [25]. SIA dif-
fers from these efforts in two ways. First, the predicate it learns is

2180

strictly weaker than the original predicate. Second, it is guaranteed
to preserve the semantics of the original predicate.

Another seminal work in this area focuses on inferring strictly
weaker predicates for expensive mining models [41]. SIA differs
from this work in that the predicates it generates are guaranteed to
use the given set of columns Cols’. In contrast, the predicates in-
ferred in the previous work use all the input columns for the model
(Cols). Generating predicates that only use a subset of columns
enables the optimizer to apply predicate-centric optimization rules.

Another line of research focuses on inferring predicates using

column’s statistics [26] and data correlations [23, 27]. SIA seeks to
synthesize predicates with a given set of columns by only examining
the original predicate (and does not rely on real data).
Symbolic Reasoning: Researchers have proposed using an SMT
solver to generate tuples for: (1) database testing [6, 46, 47], (2)
to prove or disprove query equivalence [12, 49]. The problem of
synthesizing a valid reduced predicate maps to a constrained horn
clause (CHC) problem. Many CHC solvers have been proposed [7,
21, 22, 31, 35, 50], including techniques for synthesizing invariant
based on learning [9, 20, 36, 38]. However, these techniques only
require the predicate to be valid. Thus, unlike SIA, they may always
return a trivial valid predicate (e.g., TRUE).

8 Conclusion

In this paper, we presented the design and implementation of SIA,
a system for synthesizing a valid predicate based on the given
predicate and a subset of columns in the given predicate. SIA uses
an SMT solver to generate samples for learning the predicate and to
verify the learned predicate. We formalize the problem of computing
a valid, optimal predicate and present a proof for its optimality of
the synthesized predicate. Our evaluation shows that SIA effectively
synthesizes valid predicates. On a collection of 114 queries derived
from the TPC-H benchmark that are rewritten by SIA, 66 queries
exhibit more than 2X speed up.

Acknowledgments

This work was supported in part by the U.S. National Science Foun-
dation (IIS-1850342, IIS-1908984), ONR Award(AWD-101549-S1),
Alibaba Innovative Research (AIR) Program, and Intel. We thank
Zhenyu Hou and Xiaowei Jiang for their constructive feedback and
helping us access the query log. We are grateful to the reviewers
for their insightful feedback.

https://www.nsf.gov/awardsearch/showAward?AWD_ID=1850342
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1908984

Research Data Management Track Paper

References

[11]
[12]
[13]

[14

[15]

=
&

(17

[18]
[19

[20

[21]

[22

[23]

[24

[25]

[26

[27]

[n.d.]. Alibaba MaxCompute.
maxcompute.

[n.d.]. Apache Calcite Project. http://calcite.apache.org/.

[n.d.]. LibSVM. https://github.com/cjlin1/libsvm.

[n.d.]. PostgreSQL. https://www.postgresql.org/.

[n.d.]. Z3Prover: Z3 Theorem Prover. https://github.com/Z3Prover/z3.

https://www.alibabacloud.com/product/

Shadi Abdul Khalek, Bassem Elkarablieh, Yai O. Laleye, and Sarfraz Khurshid.

2008. Query-Aware Test Generation Using a Relational Constraint Solver. In
ASE.

Aws Albarghouthi, Arie Gurfinkel, and Marsha Chechik. 2012. Whale: An
Interpolation-Based Algorithm for Inter-procedural Verification. In VMCAL
Nikolaj Bjerner, Ken McMillan, and Andrey Rybalchenko. 2013. On Solving
Universally Quantified Horn Clauses.

Adrien Champion, Tomoya Chiba, Naoki Kobayashi, and Ryosuke Sato. 2018.

ICE-Based Refinement Type Discovery for Higher-Order Functional Programs.
Chih-Chung Chang and Chih-Jen Lin. 2011. LIBSVM: A Library for Support
Vector Machines. ACM Trans. Intell. Syst. Technol. 2, 3 (2011).

Alvin Cheung, Armando Solar-Lezama, and Samuel Madden. 2012. Using Program
Synthesis for Social Recommendations. In CIKM. 1732-1736.

Shumo Chu, Chenglong Wang, Konstantin Weitz, and Alvin Cheung. 2017.

Cosette: An Automated SQL Prover.. In CIDR.

Mariano P. Consens, Alberto O. Mendelzon, Dimitra Vista, and Peter T. Wood.

1995. Constant Propagation Versus Join Reordering in Datalog. In RIDS.

Dennis W. Cooper. 1972. Theorem proving in arithmetic without multiplication.

In Machine Intelligence.

Martin Davis, George Logemann, and Donald W. Loveland. 1962. A machine
program for theorem-proving. Commun. ACM (1962).

Leonardo Mendonca de Moura and Nikolaj Bjgrner. 2008. Z3: An Efficient SMT
Solver. In TACAS.

Isil Dillig, Thomas Dillig, Kenneth L. McMillan, and Alex Aiken. 2012. Minimum
Satisfying Assignments for SMT. In CAV.

Bruno Dutertre. 2014. Yices 2.2. In CAV.

Mostafa Elhemali, César A. Galindo-legaria, Torsten Grabs, and Milind M. Joshi.

2007. Execution Strategies for SQL Subqueries. In SIGMOD.
Pranav Garg, Daniel Neider, P. Madhusudan, and Dan Roth. 2016. Learning
Invariants Using Decision Trees and Implication Counterexamples. In POPL.

Sergey Grebenshchikov, Nuno Lopes, Corneliu Popeea, and Andrey Rybalchenko.

2012. Synthesizing Software Verifiers from Proof Rules. (2012).

Matthias Heizmann, Jochen Hoenicke, and Andreas Podelski. 2010. Nested
Interpolants. In POPL.

Thab F. Ilyas, V. Markl, P. Haas, P. Brown, and A. Aboulnaga. 2004. CORDS:
automatic discovery of correlations and soft functional dependencies. In SIGMOD.
Yannis Ioannidis and Raghu Ramakrishnan. 1988. Efficient Transitive Closure
Algorithms.. In VLDB.

Manas Joglekar, Hector Garcia-Molina, Aditya Parameswaran, and Christopher
Re. 2015. Exploiting Correlations for Expensive Predicate Evaluation. In SIGMOD.
Srikanth Kandula, Laurel Orr, and Surajit Chaudhuri. 2019. Pushing Data-Induced
Predicates through Joins in Big-Data Clusters. (2019).

Hideaki Kimura, George Huo, Alexander Rasin, Samuel Madden, and Stan Zdonik.

2009. Correlation Maps: A Compressed Access Method for Exploiting Soft

2181

®
=

@
20,

~
=

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

Functional Dependencies. (2009).

Alon Y. Levy, Inderpal Singh Mumick, and Yehoshua Sagiv. 1994. Query Opti-
mization by Predicate Move-Around. In VLDB.

Yao Lu, Aakanksha Chowdhery, Srikanth Kandula, and Surajit Chaudhuri. 2018.
Accelerating Machine Learning Inference with Probabilistic Predicates. In SIG-
MOD.

Yuri V. Matiyasevich. 2005. Hilbert’s Tenth Problem and Paradigms of Computa-
tion. In CiE.

Kenneth L. McMillan. 2006. Lazy Abstraction with Interpolants. In CAV.

Greg Nelson and Derek C. Oppen. 1979. Simplification by Cooperating Decision
Procedures. ACM Trans. Program. Lang. Syst. (1979).

Massimo Pezzini, Donald Feinberg, Nigel Rayner, and Roxane Edjlali. 2014. Hy-
brid Transaction/Analytical Processing Will Foster Opportunities for Dramatic
Business Innovation. https://www.gartner.com/doc/2657815/.

John C Platt. 1999. Advances in Kernel Methods. (1999).

Philipp Riimmer, Hossein Hojjat, and Viktor Kuncak. 2013. Disjunctive Inter-
polants for Horn-Clause Verification. In CAV.

Sriram Sankaranarayanan, Swarat Chaudhuri, Franjo Ivancic, and Aarti Gupta.
2008. Dynamic inference of likely data preconditions over predicates by tree
learning. In ISSTA.

Praveen Seshadri, Joseph M. Hellerstein, Hamid Pirahesh, T. Y. Cliff Leung, Raghu
Ramakrishnan, Divesh Srivastava, Peter J. Stuckey, and S. Sudarshan. 1996. Cost-
Based Optimization for Magic: Algebra and Implementation. In SIGMOD.

Rahul Sharma, Saurabh Gupta, Bharath Hariharan, Alex Aiken, and Aditya Nori.

2013. Verification as Learning Geometric Concepts. In SAS.
Narayanan Shivakumar, Hector Garcia-Molina, and Chandra Chekuri. 1998. Fil-

tering with Approximate Predicates. In VLDB.

Vishal Sikka, Franz Farber, Wolfgang Lehner, Sang Kyun Cha, Thomas Peh,
and Christof Bornhovd. 2012. Efficient Transaction Processing in SAP HANA
Database: The End of a Column Store Myth. In SIGMOD. 731-742.

Chaudhuri Surajit, Narasayya Vivek, and Sarawagi Sunita. 2002. Efficient evalua-
tion of queries with mining predicates. In ICDE.

J. A. K. Suykens and J. Vandewalle. 1999. Least Squares Support Vector Machine
Classifiers. Neural Process. Lett. (1999).

The Transaction Processing Council. 2013. TPC-H Benchmark (Revision 2.16.0).
http://www.tpc.org/tpch/.

Nga Tran, Andrew Lamb, Lakshmikant Shrinivas, Sreenath Bodagala, and Jaimin
Dave. 2014. The Vertica Query Optimizer: The case for specialized query opti-
mizers. In ICDE.

Jeffrey ullman. 1989. Principle of database and knowledge-bas systems.

Margus Veanes, Pavel Grigorenko, Peli de Halleux, and Nikolai Tillmann. 2009.
Symbolic Query Exploration. In FormaliSE.

Margus Veanes, Nikolai Tillmann, and Jonathan de Halleux. 2010. Qex: Symbolic
SQL Query Explorer. In LPAR.

Brett Walenz, Sudeepa Roy, and Jun Yang. 2017. Optimizing Iceberg Queries with
Complex Joins. In SIGMOD.

Qi Zhou, Joy Arulraj, Shamkant B. Navathe, William Harris, and Dong Xu. 2019.
Automated Verification of Query Equivalence Using Satisfiability Modulo Theo-
ries. PVLDB 12, 11 (2019), 1276-1288.

He Zhu, Stephen Magill, and Suresh Jagannathan. 2018. A data-driven CHC
solver.

https://www.alibabacloud.com/product/maxcompute
https://www.alibabacloud.com/product/maxcompute
http://calcite.apache.org/
https://github.com/cjlin1/libsvm
https://www.postgresql.org/
https://github.com/Z3Prover/z3
https://www.gartner.com/doc/2657815/
http://www.tpc.org/tpch/

	Abstract
	1 Introduction
	2 Motivation
	3 Overview
	3.1 Counter-Example Guided Learning
	3.2 Motivating Example

	4 Problem Formulation
	4.1 Problem Definition
	4.2 Key Conceptual Insights

	5 Synthesizing Predicates
	5.1 Predicate Synthesis
	5.2 Predicate Encoding
	5.3 Generation of Initial Samples
	5.4 Predicate Learning
	5.5 Validation & Counter-Example Generation

	6 Evaluation
	6.1 Implementation
	6.2 Case Study
	6.3 Benchmark
	6.4 Efficacy of SIA
	6.5 Efficiency of SIA
	6.6 Impact on Runtime Performance
	6.7 Limitations

	7 Related Work
	8 Conclusion
	References

