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Exact simulations of quantum circuits (QCs) are currently limited to ~50 qubits be-
cause the memory and computational cost required to store the QC wave function scale
exponentially with qubit number. Therefore, developing efficient schemes for approxi-
mate QC simulations is a current research focus. Here we show simulations of QCs with
a method inspired by density functional theory (DFT), a widely used approach to study
many-electron systems. Our calculations can predict marginal single-qubit probabili-
ties (SQPs) with over 90% accuracy in several classes of QCs with universal gate sets,
using memory and computational resources linear in qubit number despite the formal
exponential cost of the SQPs. This is achieved by developing a mean-field description
of QCs and formulating optimal single- and two-qubit gate functionals — analogs of
exchange-correlation functionals in DF'T — to evolve the SQPs without computing the
QC wave function. Current limitations and future extensions of this formalism are

discussed.


bmarco@caltech.edu

1. Introduction

Noisy intermediate-scale quantum devices promise exciting advances in quantum algorithms
with no classical counterpart. Classical simulations remain essential to understand the
physics of these quantum devices, improve their design, and accelerate their progress*”.
An important direction is the development of approximate schemes that are both accurate
and computationally efficient, enabling simulations of generic QCs with arbitrary depth and
degree of entanglement, ideally with favorable computational scaling. Work in this area has
focused on tensor network matrix product states to simulate QCs with a range of structures,

814 and more recently on simulations of generic QCs

gate types, entanglement, and noise
using neural-network quantum states!'®. Despite these notable advances, approximate QC
simulations remain an area of active investigation.

There is an intriguing parallel between many-electron and many-qubit systems. In the
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many-electron problem — a grand challenge in chemistry and materials physics'
solutions are possible only for systems with one electron (the hydrogen atom). Therefore,
unlike QC simulations, electronic structure calculations of molecules and materials are dom-

16723 among which density functional theory (DFT) is the

inated by approximate methods
main workhorse. Leveraging a mean-field description centered on the electron density, DF'T
achieves low-polynomial scaling with system size, enabling studies of matter with thousands
of interacting electrons'™?*. Methods to study QCs with a similar trade-off of cost and ac-
curacy would be expedient. Early work on relating DFT to QCs focused on formal mapping
of QCs onto lattice fermions?® or connecting time-dependent DFT and spin Hamiltonians 2.
These notable efforts differ in method and scope from this work.

Here we show a DFT-inspired approach for QCs — in short, QC-DFT — able to accu-
rately simulate single-qubit probabilities (SQPs) in QCs with computational cost scaling
linearly with qubit number and depth, despite the formal exponential cost of the SQPs. We

present results for various random QCs using two different universal gate sets, and demon-

strate the formulation and optimization of QC-DFT gate functionals. We also apply this



formalism to nonrandom QCs, and study how the SQP distribution changes with QC size as
well as solve a simple model Hamiltonian. These results show that even though the exact QC
wave function is exponentially complex, marginal probability distributions such as the SQPs
can be obtained with a favorable trade-off of cost and accuracy without computing the QC
wave function. Although the current formulation is limited to QCs with low entanglement,

extensions based on reduced density matrices may enable further progress.

2. Theory: QC-DFT and Gate Functionals

The QC wave function for N qubits can be expanded in the computational basis as

2N _1
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where i, = 0,1 are basis states for a single qubit, # are binary numbers from 0 to 2V~
¢, are state-vector amplitudes, namely expansion coefficients of the QC wave function, and
|z) = |iyig...in) are N-qubit states in the computational basis (N-bit long bitstrings).
For N qubits, accessing this wave function requires storing and manipulating 2V complex
numbers, which is out of reach for modern computers for N > 50. (A laptop can handle
N = 25 qubits, and a small computer cluster N =~ 30 on a single core; parallelization
is needed beyond N = 30.) In a gate-based QC, the wave function evolves at each cycle
(or step) via a unitary transformation, and it can be computed exactly with a classical
algorithm by applying single- and two-qubit gates as 2 x 2 unitary matrices and updating
pairs of amplitudes in place*®. From the exact wave function at step s, one can obtain the

N-qubit probability distribution P(z) = |(x|¥,)[?, which can be measured experimentally

but is exponentially hard to compute?.



Here we take a different approach and focus on the evolution of each individual qubit as a
result of mean-field interactions with single- and two-qubit gates. We define the single-qubit
probability (SQP) for qubit n, with values between 0 and 1, as the probability of measuring

qubit n in the excited state |1) at step s, regardless of the state of the other qubits:

pV = > [inin,. =1, in] ) (2)
{iq, a#n}

The ezact SQPs are marginals of the N-qubit probability distribution P,(z), and are also
exponentially hard to compute because they require knowledge of the QC wave function. We
define the SQP vector at step s, ps = (pV, p@, ..., p™),, as the set of SQPs for all qubits
in the QC. Note that the SQP vector has N components, and thus it can be stored with
memory resources linear in qubit number N. Experimentally, the SQPs can be accessed by

measuring the state of each single qubit.
We model the evolution of the SQP vector ps under the effect of single- and two-qubit
gates, using an approximate mean-field approach inspired by DFT. In a general QC, single-
and two-qubit gates are applied to a set of qubits at each step s. As a result, the SQP vector

evolves to a new value at step s + 1:

Ps+1 = fa(Ps) (3)

where we define the map fq as the exact gate functional. Here we derive approximate gate
functionals which evolve independently the SQPs of qubits acted on by single-qubit gates,
and couple qubits acted on by two-qubit gates (here, CZ and CNOT). Analogous to DFT,
where the electron interactions depend on the density, here we derive gate-qubit interactions
that depend only on the SQPs, and use them to evolve the SQP vector. Recall that p is the
probability of measuring a single qubit in state |1). We define a single-qubit mean-field state

consistent with this SQP:
p£) = /1 —p|0) £y/p [1) (4)
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where we use + to take into account two opposite phases between the |0) and |1) states.
For single-qubit gates, we apply the gate U to this mean-field state, and then compute
the probability of measuring |1) while taking the phase average over the + states. This

approach provides explicit rules to update the SQPs at each step:
1 2
Ps+1 = 2 Z [(LU]ps1)["- (5)
+

This equation defines the local-probability approximation (LPA) gate functional. Using eq 5,

we derive the following LPA update rules for common single-qubit gates:

Pauli X and Y: psi1 =1 —ps
Pauli Z, S and T: psi1 = ps (6)

H, VX and VY: psi1 = 0.5.

These results imply that the Pauli X and Y gates flip the SQP, the Pauli Z, S and T gates
leave the SQP unchanged as they act only on the phase, and the Hadamard, Pauli v X and
VY gates set the SQP to 1/2.

For the two-qubit gates considered here, CZ and CNOT, we use our intuition combined
with the LPA rules to approximate the SQP evolution. The probability p(® of the control

qubit is left unchanged, while the probability p® of the target qubit is evolved according to:

CZ: pit-i)-l = p(;)
CNOT: if p© < 0.5, pgl = pl¥ (7)

if p(c) > 0.5, pgl =1 —pgt) )

The CZ result follows from the LPA rule for the Pauli Z gate, which leaves the SQP un-

changed. The CNOT gate uses a p'© = 0.5 threshold for controlling the target qubit, but



the case pl© = 0.5 is more subtle and needs a separate update rule:

CNOT: if p© = 0.5 and p®=0or 1, p(sz)rl =0.5 (8)

if p =0.5and p£0or 1, pgl =1 —pgt) .

This choice allows us to address the important case of a Hadamard gate acting on the control
qubit of a CNOT gate, as in the Bell-state preparation QC?’, a key building block in the
random QCs discussed below. In particular, our CNOT and Hadamard update rules give
the correct SQPs for all possible two-qubit initial basis states in the Bell-state preparation
QC?" (see Table 1).

Table 1 | LPA functional applied to the Bell-state preparation QC. Exact wave
function ¥y, and the corresponding SQP vector ps, given as a function of step s for the
Bell-state preparation two-qubit QC?". This QC consists of H applied to qubit 0 (step 1)
followed by CNOT with control qubit 0 and target qubit 1 (step 2). As one can verify, the
LPA rules in eqs 5—7 give the same SQPs as the exact ones shown in the table, at all steps
and for all initial states in the computational basis.

Inltlal state \I/s:O Ps=0 \115:1 Ps=1 \IISZQ Ps=2
|00) (0,00 5 (100) +[10))  (0.5,0)  —5(]00) +[11)) (0.5, 0.5)
01) (0,1) (o) +[11))  (05,1) s (jo1)+[10))  (0.5,05)
|10) (1,0) 5 (j00) —[10))  (0.5,0)  —5(]00) —[11)) (0.5, 0.5)
|11) (L) 5(jo1) —[11))  (0.5,1)  Z5(|01) —[10)) (0.5, 0.5)

We implement these QC-DFT simulations using an in-house code (see Data Availability),
and apply them to random and nonrandom QCs ranging from small to large, with up to
a billion interacting qubits. For small QCs with less than ~30 qubits, we compare the ap-
proximate SQPs with exact values obtained from wave-function (also known as state-vector)
QC simulations carried out using the QUEST code® (see Appendix). For this comparison,
we define the SQP accuracy A, as the fraction of SQPs predicted correctly by QC-DFT at

step s (equivalently, the SQP error 1 — A; is the fraction of qubits with incorrect SQPs).



3. Random QC Simulations with the LPA Functional

First, we discuss results for random QCs with a universal Clifford+T gate set?®, a moderate
depth (20 steps), and QC sizes ranging from 20 to 32 qubits. In these QCs, at each step half
of the qubits, chosen at random, are acted on by a randomly chosen single-qubit gate in the
set, while the other half are acted on by CNOT gates that couple randomly-selected control
and target qubits (Fig. 1a). In the exact simulations, the state-vector of the QC is initially
set to [00...0), and then evolved according to the gate sequence, while the exact SQPs
are computed at each step via eq 2. The exact SQPs, with initial value of p = 0, evolve
nontrivially for 10—15 steps, after which in our random QCs they reach a fully randomized
value of p = 0.5. Our approximate QC-DFT simulations aim to capture the nontrivial SQP
dynamics in the first 10—15 steps before randomization occurs.

The results of our QC-DFT simulations for these Clifford+T QCs are shown in Fig. 1a.
We find that our approach can predict the SQPs with an accuracy greater than ~90% at
all steps. The highest error occurs near steps 5—7, where the qubits become nontrivially
correlated, and then decreases to zero when the QC becomes fully randomized, with all SQPs
trivially equal to 0.5. Throughout the dynamics, the exact SQP values for most qubits are 0,
0.5, or 1 due to the combined action of the Hadamard and CNOT gates, and thus the main
challenge for the approximate simulations is to capture the transitions between these values,
as further discussed below. We also simulate Clifford+T QCs with a different structure,
which alternates one step where all qubits are acted on by randomly chosen single-qubit
gates, and one step where all qubits are acted on by CNOT gates with randomly selected
control and target qubits. The results, given in Fig. S1 in the Supplementary Information,
show a similar SQP accuracy of 90% or higher at all steps.

To demonstrate the versatility of our approach, we also simulate a different family of
random QCs, introduced by Boixo et al.??, which use a T, Pauli v X and Y, and CZ
gate set (Fig. 1b). (We removed the Hadamard gate layer from the QCs in Ref.?° because

it would make the SQPs trivially equal to 0.5 at all steps). The initial conditions are the
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Figure 1 | QC-DFT simulations of random quantum circuits using LPA gate
functionals. a, Random QC using a universal Clifford+T gate set. Each step consists of
randomly chosen single-qubit gates applied to half of the qubits and CNOT gates applied to
the other half (top). The accuracy of the simulated SQPs at each step is shown for this type
of random QCs with different numbers of qubits (bottom). b, Random QC with T, v/X,
VY and CZ gates, taken from Ref.?* but with the H gates removed. Similar to (a), we plot
the SQP accuracy for different QC sizes (bottom). Both types of QCs have a depth of 20
steps, with a single step shown in shaded gray. The SQPs are obtained by averaging results
from 20 distinct random QC instances in (a) and 10 instances in (b).

same as in the Clifford+T circuits discussed above, but the quantum dynamics is richer,
with more possible SQP values than in the Clifford+T case due to the combined effects of

the T and square-root Pauli gates. Despite this greater complexity, our QC-DFT approach

can simulate the dynamics of these QCs with an SQP accuracy greater than 85—90% for



sizes ranging from 20 to 30 qubits (Fig. 1b). These results demonstrate that our QC-DFT
approach, combined with the LPA rules, can accurately predict the SQPs for various random

QCs without computing the exponentially complex QC wave function.

4. Improved Functionals: Multi-Gate Approximation

We study whether the accuracy of QC-DFT can be improved by fine-tuning the gate func-
tionals, in a spirit similar to improving electronic exchange-correlation functionals in DFT %4,
Many SQP errors in the LPA simulations derive from applying two consecutive times the
same gate to a given qubit — a situation analogous to a strong local interaction in the many-
electron problem — or from specific gate sequences acting on a qubit. Because our LPA
focuses on local gate-qubit interactions at the current step, it lacks memory effects and can-
not accurately describe such multi-gate correlations. To address this problem, we formulate
multi-gate approximation (MGA) functionals encoding the effects of gate sequences, and
apply them as a correction to the LPA in the first ~10 steps, where multi-gate correlations
are important for predicting the SQP dynamics in our random QCs.

We define MGA-n gate-functionals which treat explicitly single-qubit gate sequences with

length [ < n. Their SQP update rules can be written as

psrr = (1 T] U: [0}, (9)

i=s—I

where Uj is a single-qubit gate acting at step 7. This approach captures the effect of sequences
of [ gates, from step s —1[ to the current step s, and focuses on early multi-gate corrections in
the QC by assuming that the gate sequences act on the initial single-qubit state |0). When
using these MGA-n gate-functionals, the SQPs are evolved at each step using the LPA, but
gate-sequences with length up to n are searched at each step; if a sequence included in the
functional is found, then the SQP is updated according to eq 9. For example, for an MGA

functional encoding a sequence of two Hadamard gates Uy, the first gate gives p; = 0.5 due



to the LPA rules, and the second gives ps11 = (1|U%|0) = 0, thus correcting the erroneous
LPA value psy1 = 0.5. Similarly, an MGA treating a sequence of two square-root of Pauli X
gates gives p, = 0.5 after the first and p,.1 = (1|(y/0x)?|0) = 1 after the second v'X gate.

We develop several MGA functionals (see Appendix) aimed at improving the SQP accu-
racy by addressing the shortcomings of the LPA in our random QCs. For the Clifford+T
QCs in Fig. la, our analysis of the LPA results reveals that two main gate sequences lead
to SQP errors: the H—H sequence consisting of two consecutive Hadamard gates applied to
the same qubit, which leads to ps;.1 = 0.5 in the LPA instead of the exact psy1; = 0, and the
three-gate sequence H—T—H, which gives p,.1 = 0.5 in the LPA instead of the exact result
Psi1 = 0.146447. Accordingly, we develop a simple MGA-3 functional addressing these two
sequences, and apply it to our Clifford+T random QCs. Figure 2a compares the accuracy of
this MGA-3 functional with the LPA for the random Clifford+T QCs in Fig. 1a. We apply
the multi-gate corrections in the first 7 steps, and find a significant improvement of SQP
accuracy, by roughly 5—8%, during those steps. Beyond step ~10, the QC state randomizes
and the SQP accuracy becomes nearly identical for the two functionals. We find similar
accuracy improvements for Clifford+T random QCs with a different structure, as shown in
Fig. S2 in Supplementary Information.

For the second family of random QCs discussed above, which employ T, Pauli v/ X and
VY, and CZ gates, we develop two types of MGA functionals: MGA-2 addressing only se-
quences of two consecutive v/ X or v/Y Pauli gates, and a systematically improved MGA-6
functional encoding sequences of up to six single- and two-qubit gates. Both of these MGA
functionals lead to accuracy improvements over the LPA, with the MGA-6 further improving
over the simpler MGA-2 (Fig. 2b). For both types of random QCs studied here, we analyze
the SQP dynamics for selected qubits (bottom panels in Fig. 2). We find that multi-gate
corrections can have several different effects: the MGA can leave the LPA results unchanged,
correct SQP errors in the LPA, fail to correct the LPA errors, or occasionally introduce errors

not present in the LPA. When the MGA correction is successful, the SQP accuracy improve-
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Figure 2| Optimized MGA gate functionals. a, Accuracy comparison between the LPA
and MGA-3 functionals applied to the Clifford+T circuits in Fig. la (top). The SQPs at
each step are plotted for selected qubits for both functionals and compared with exact results
(bottom). b, Accuracy comparison between the LPA and two different MGAs, MGA-2 and
MGA-6, encoding respectively up to two- and six-gate sequences (top), shown together with
the SQPs at each step for selected qubits (bottom). The results in (a) are for QCs with 32
qubits and in (b) for QCs with 20 qubits. The standard deviation of the SQP accuracy is
shown for each curve using shaded colors. These results are obtained by averaging over the
same number of QCs as in Fig. 1.

ment typically lingers for several steps, leading to sizable accuracy improvements relative to
the LPA. In addition, the multi-gate corrections allow us to capture SQP values different
from from 0, 0.5 and 1, the only possible values in the LPA. These results demonstrate a
systematic approach for improving QC-DFT gate functionals by explicitly addressing multi-

gate correlations.
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Figure 3 | Computational cost and SQP distribution scaling with quantum circuit
size. a, Quantum circuit structure used to obtain the computational cost and SQP distri-
bution as a function of QC size. The rules used to generate this type of QC are given in
Appendix. b, Linear scaling of QC-DFT computation time with qubit number. ¢, Invariance
of the SQP distribution with respect to QC size for QCs with the same structure, which is
given in (a). Results are shown for QCs with sizes of 20, 4000, and 10° qubits.

5. Large QCs and SQP Scaling

The favorable scaling of our approach allows us to simulate very large QCs. We focus on a
family of nonrandom QCs (with Hadamard, Pauli X, Y, Z, and CNOT gates), generated with
a set of deterministic rules given in Appendix, whose circuit diagram for an example size of 8
qubits is shown in Fig. 3a. Using this class of QCs, with sizes ranging from 20 to 10? qubits,
we demonstrate that the computational cost of QC-DFT has a linear scaling with number
of qubits in the QC (Fig. 3b). We are able to complete the largest calculation, with size one
billion qubits, using only a laptop computer for a few hours. Note that both the memory and

computational cost to obtain accurate SQPs scale linearly with QC size and depth in our
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QC-DFT approach, in clear contrast with the ezact SQPs from state-vector simulations®,

for which memory and computational cost scale exponentially with qubit number.

Our analysis of the nonrandom QCs in Fig. 3a further reveals an intriguing physical re-
sult: for QCs with a given structure, the SQP distribution is independent of QC size, and
thus is scale-invariant with respect to qubit number, as shown in Fig. 3c for three illustra-
tive QC sizes. (Although the simulations for large N values cannot be validated against
exact results, we have verified that simulations for N < 30 qubits achieve a 90% SQP ac-
curacy, similar to the other LPA results shown in this work.) This finding shows that the
SQP distribution is a fingerprint of the QC linked to its structure, a result reminiscent of
the map between the electron density and the material structure shown in the celebrated
Hohenberg-Kohn theorems of DFT . Our analysis suggests that the SQP is a central quan-
tity in mean-field simulations of QQCs — similar to the electron density in DFT, which is also

a one-body marginal probability — justifying the focus on SQPs in our approach.

6. Model Spin Hamiltonian

We conclude with an application of QC-DFT to obtain the ground-state energy of a simple
spin Hamiltonian. Extending the variational quantum eigensolver (VQE)3%3! discussion in
Ref.?", we model the N-qubit Hamiltonian H = ®jv:1 o where o) is the Pauli Z gate
acting on qubit j, and search the energy minimum starting from the trial wave function
¥ (0)) = vazl Rg(cj)(ﬁj) |00...0),, where R,(6;) is a rotation through angle #; around the
x-axis applied to qubit j (starting from an initial state [00...0) ), and 8 = (6,6s,...,6n)
is the set of rotation angles parametrizing the wave function. For this example Hamiltonian,
the energy E(0) can be obtained analytically: the rotation R,(f) acting on each qubit gives

a state |@(0)) written as

R,(0)[0) = |(0)) = cos(0/2) |0) — i sin(6/2) |1),, (10)

13



and thus we obtain:

=

N

E(0) = (U(6)|H|¥(6)) = [ (00,109 |¢(6))) = [ [lcos®(6;/2) — sin®(6;/2)] Hcos

j=1 j=1
(11)

In a state-vector simulation, preparing the trial wave function |V (60)) and computing
the associated energy E(0) for any set of angles € requires the application of N rotations
about the x-axis, with a computational cost growing exponentially with qubit number N.
Therefore, the search for the ground-state energy with state-vector simulations would require
exponential resources.

Here we employ QC-DFT as an alternate route for efficient energy calculations. Using

the LPA gate functional, the update rule for the R,(6) rotation is
DPs+1 =5 Z 1|R |ps:|: = Ps COS (0/2) (1 - ps) Sln2<9/2> ) (12>

which becomes p, 1 = sin®(#/2) for our initial state with p, = 0. Using as trial wave function
the resulting mean-field state obtained with eq 4, |psi1) = cos(0/2) |0) £sin(0/2) |1), we write

the mean-field energy for a single-qubit Hamiltonian o, as:

eMF (0, Pss1) = (Pss1[0:Ipssn) = cos™(0/2) — sin’(6/2) = cos(0), (13)

where eyp depends explicitly on p,i1, the SQP obtained after applying the R,(f) rotation
in QC-DFT. This result can be extended to N qubits, by applying rotations Rg)(ﬁj) to
each qubit j to obtain the N-qubit mean-field state |psi1) = |pgil,pﬁ)1,. pﬂb, with
|p5+1> = cos(0;/2)[0); & sin(¢;/2) [1), as above. For our Hamiltonian H = ®5V:1 o the
N-qubit mean-field energy Eyp factors into a product of single-qubit mean-field energies,

and depends explicitly on the SQPs, ps.1, obtained after applying the z-axis rotation gates
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Figure 4 | Energy calculation with QC-DFT. Energy F(6,,0:), color-coded in arbitrary

units, for the two-qubit Hamiltonian H = oMo and the trial wave function U(6h,0,) =

Rg(cl)(é’l) R§3)(92) |00). The energy is computed with QC-DFT on a fine grid of angles (61, 62)
using eq (14) together with the LPA gate functional for the rotations R,.
in QC-DFT:

N N
Erie (0, pes1) = (Part|HIperr) = [] ek = [T cos(6). (14)
j=1 =1

This mean-field energy is identical to the exact analytic result in eq 11, and it can be
obtained in QC-DFT directly from the SQPs, without preparing the trial wave function.
Figure 4 shows the energy FE(6;,605) for the two-qubit case computed with QC-DFT on a
fine grid of rotation angles 6; and 6,. In this case, since E(6;,0s) = cos(f;)cos(fs), the
minima are found for (0;,6;) = (m,0) and (0,7) (see Fig. 4). For the general case with
N qubits, the energy E(0) can be computed in QC-DFT using only O(N) memory and
computational resources, by applying the x-axis rotation gates within the LPA. Conversely,
the same calculation has O(2") memory and computational cost in state-vector simulations.
Although the example examined here has a simple analytic solution, it illustrates the point

that QC-DFT may enable efficient mean-field calculations of ground-state energies.
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6. Discussion

It is important to understand the limitations of the proposed QC-DFT approach. At
present, our mean-field method cannot capture qubit phase and interference effects, which
are essential in many quantum algorithms. Therefore this method cannot compete with more
established techniques such as tensor networks. Satisfactory results are expected mainly in
QCs with low entanglement. For example, we have verified explicitly that LPA simulations
lead to inaccurate SQP predictions for the Deutsch-Jozsa, Bernstein-Vazirani, and Grover’s
search quantum algorithms?”. Extensions of the QC-DFT formalism using one- or two-qubit
reduced density matrices (RDMs) (instead of the SQPs), inspired by recent advances in

32,33 'may enable an improved description of gates such as

electronic structure using RDMs
S, T, Pauli Z and controlled-Z, which act on the qubit phase and are currently ignored in
our SQP-based approach. Preliminary results for QC-DFT using RDMs, to be presented
elsewhere, show improved accuracy for some of the quantum algorithms mentioned above.
Our formulation of a DFT analog for QC simulations motivates several future research
directions, including using machine learning to improve the QC-DFT gate functionals, as

shown recently for exchange-correlation functionals in DFT 343 and applying QC-DFT and

its future extensions to spin Hamiltonians and quantum algorithms.

7. Conclusion

In summary, we demonstrated mean-field simulations of QQCs inspired by DFT. The approach
shown in this work, called QC-DFT, can accurately predict the SQPs — marginals of the full
QC probability distribution — with low computational cost (despite their formal exponential
scaling) for various random and nonrandom QCs. Although the current approach is not
generic and is limited to QCs with low entanglement, improvements to this formalism based

on one- and two-qubit RDMs may enable simulations of more general classes of QCs.
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Appendix A. Numerical Methods

Exact QC simulations. The exact QC simulations are carried out using the QUEST
code®. All single- and two-qubit gates are used as provided in the code. We use appropriate
rotation operations to implement the square root Pauli gates, and compute the exact SQPs
from the state vector. Example input files for QUEST are available in the data sets accom-

panying this manuscript.

Multi-gate functionals. The MGA-n functionals are implemented in our QC-DFT code
by looking for specific gate sequences in the QC. If a gate sequence encoded in the functional
is found within cycle spay, the SQPs are updated using pgy; from eq 9. These multi-gate
corrections are applied only up to once for each qubit. For the Clifford+T QCs, the MGA-3
functional used in Fig. 2a corrects for the gate sequences H-H (using ps4; = 0) and H-T-H
(ps+1 = 0.146447) up to cycle spax = 7, including cases where CNOT gates act on the qubit
within these sequences. This means that CNOT control and target operations are ignored
when looking for these gate sequences — for example, the gate sequence H—CNOT—H acting
on a qubit is treated as H—H and corrected. For the QCs in Fig. 2b, the MGA-2 functional
corrects for the vV X —vX and vY —VY sequences up to cycle smax = 7. In this case, the CZ
control operations are ignored when looking for gate sequences, while CZ target operations
are taken into account. For example, if the gate sequence v X—CZ—+vX involves the CZ
control qubit, it is treated as v X —+/X and the multi-gate correction is applied. If the same
sequence is found for the CZ target qubit, the multi-gate correction is not applied.

The MGA-6 functional includes several multi-gate corrections with up to 6-gate se-
quences, applied up to cycle sp.x between 6 and 10 depending on the sequence. Some
sequences take into account CZ gates, while others ignore them. Next we provide the full
list of gate-sequences for our MGA-6 functional, using a naming convention for gate sequences
where, for a given qubit, the rightmost gate acts at the current step, and the leftmost gate
acts at the earliest step in the sequence; steps where no gates act on the qubit are ignored.

This means that sequences are given in the same order as when reading the QC from left
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to right, ignoring steps with no gates. The CZ gates are explicitly taken into account, in
the same way for control and target qubits, unless otherwise stated. With these conven-
tions, the gate sequences treated in our MGA-6 functional are as follows: 2-gate sequences
VX —VX and VY —VY (both with p, 1 =1 and sy.=6); 3-gate sequences v X —CZ—vX
and VY —CZ—VY (pss1 =1, Smax = 6), VY =T—VX (pey1 = 0.14645, 51 = 8, CZ gates
ignored) and VY —T—VY, VX-T—VX, and VX-T—VY (pss1=0.85355, Smax =8, CZ
gates ignored); 4-gate sequences T—V/Y-T—VX and T-vVX-T—VY (Ps31="0.75, Spax =
10, CZ gates ignored); 5-gate sequences CZ—V/X-T-CZ—VX, CZ—V/X-T-CZ—VY,
CZ—VY -T—CZ—VX, and CZ—VY —=T—CZ—VY (pss1=0.5, Smax = 10); 6-gate sequences
VY —CZ—V/X-T—CZ~VX (psi1 = 0.14645, sppa = 10), VX —CZ—Y -T—CZ—/X and
VX—-CZ—VY-T-CZ-Y (ps+1=0.85355, Smax = 10). These sequences can be found in

the MGA-n QC-DFT codes provided in the data sets accompanying this manuscript.

Nonrandom QCs. The nonrandom QCs used for the scaling calculations in Fig. 3 are gen-
erated using deterministic rules. For a QC with size N qubits, step 1 consists of alternating
H and Pauli X gates; in step 2, a CNOT gate connects each qubit ¢ < N/2 (control) to qubit
i+ N/2 (target); step 3 consists of alternating Pauli Y and Z gates; step 4 has CNOT gates
every 4 qubits, each with neighboring control and target qubits; step 5 applies H gates every
10 qubits. Only QCs with size N multiple of 4 and 10 have the same structure, and thus give
the same SQP distribution as shown above. Codes for generating these (QCs and reproducing

the calculations in Fig. 3 are provided in the data sets accompanying this manuscript.
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Data Availability
The data sets generated and analyzed in this study, as well as the QC-DFT codes, will

be made available in the CaltechDATA repository. Additional data and information are
available upon reasonable request. The QUEST code® used for the exact QC simulations
is an open source software, which can be downloaded at https://quest.qtechtheory.
org. The QC drawings were prepared using the Quantikz LaTeX package®®, which can
be downloaded at https://ctan.org/pkg/quantikz. The QC-DFT PYTHON code will be

made available in the CaltechDATA repository.

Supporting Information
The Supporting Information is available free of charge at [link|. Figure S1, additional LPA

simulations of Clifford+T random QCs; Figure S2, additional results for optimized MGA

functionals.
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