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Abstract

We consider the problem of nding, through adaptive sampling,
which of n populations (arms) has the largest mean. Our objective is to
determine a rule which identies the best arm with a xed mini-mum

condence using as few observations as possible.We study such
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problems when the population distributions are either Bernoulli or
normal. We take a Bayesian approach that assumes that the unknown
means are the values of independent random variables having a com-
mon specied distribution. We propose to use the classical vector at a
time rule, which samples each remaining arm once in each round,
eliminating arms whose cumulative sum falls k below that of another
arm. We show how this rule can be implemented and analyzed in our
Bayesian setting and how it can be improved by early elimination.
We also propose and analyze a variant of the classical play the winner
algorithm. Numerical results show that these rules perform quite well,
even when considering cases where the set of means do not look like

they come from the specied prior.
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1 Introduction

Let F(x) be a family of distributions indexed by its mean : Suppose there are
n populations, and that each new observation from population i is inde-
pendent of all previous observations and is the value of a random variable

our objective is to decide which population has the largest mean. It is
supposed that a decision is made at each stage as to which population to next
take an observation from, with the decision made according to some rule which
eventually calls for stopping and declaring which population has the largest
mean. Our objective is to determine a rule that makes a decision in a relatively
small expected time, subject to the condition that its probability of making a
correct choice is at least : We will study such models both when the
population distributions are Bernoulli and when they are normal with a xed
variance. In the Benoulli case, we suppose that the result of an observation is
either a success or a failure, and the objective is to nd the population having
the largest success probability.

These type of models have many applications. Foremost is probably in
clinical trials to determine which of several medical approaches (e.g., drugs,
treatments, and procedures) yields the best results. Here a population would
refer to a particular approach, with its use resulting in either a success (suit-
ably dened) or not. Another application is to online advertising, where a
decision maker is trying to decide which of n dierent advertisements to
utilize. For instance, the advertisements might relate to army recruitment,
and a success might refer to a subsequent clicking on the advertisement to
obtain additional information. Another application is to choose among dif-
ferent methods for teaching a particular skill. Each day, a method can be
used on a group of students, with the students being tested at the end of the
day with each test resulting in a score which would be pass (1) or fail (0) in
the Bernoulli case, and numerical in the normal case.

It should be noted that this problems has been studied for quite some
time. However, the early work, such as in [3], [4], [9], [10], [11], [15], [16], was
done under the assumption that the dierence between the largest and sec-ond
largest population mean was at least some known positive value. More recent
work, such as [1], [5], [6], [7], [8], [13], do not make this assump-tion. What
primarily distinguishes our models from others considered in the literature is
that we take a Bayesian approach that supposes the unknown means are the
respective values of independent and identically distributed



(iid) random variables having a specied prior distribution F: Moreover, we

present numerical evidence that the rules obtained when we assume that F
is the uniform (0; 1) distribution tend to perform well for most sets of success
probabilities.

In Section 2 we consider the Bernoulli case where we want to nd rules whose
implementation results in a relatively small expected number of observations
needed before a decision is made, subject to the condition that the rule re-
sults in the probability of a correct choice being at least some specied value .
We reconsider the classical \vector at a time" (VT) rule, which is such that
each alive population is sampled once in each round. At the end of a round,
any population whose cumulative number of successes is k less than another
is no longer alive. The process ends when only one population is alive. The
appropriate value of k that results in the probability of a correct choice being
at least was determined in [15] and [16] under the assumption that the
dierence between the largest and second largest population mean is at least
some specied positive value d > 0: We show, in this section, how this rule
can be implemented and analyzed in our Bayesian setting. In particular, we
present a lower bound as well as an accurate approximation for the
probability that VT using critical value k makes the correct decision, as well
as an approximation for the mean number of observations it takes. These
bounds and approximations can be evaluated by a simple simulation, with
each simulation run requiring either 2 or 3 random numbers. We also present
some numerical evidence indicating that the version of this rule that results
when we assume a uniform (0; 1) prior appears to outperform more recently
proposed rules, even when the means do not come from the uniform prior.

In Section 3, we consider improving the VT rule by allowing for early
elimination if a population is j behind another after j rounds. (That is, if
one population has had 0 successes and another j successes in their rst j
observations, then the former is no longer alive.) We show how to determine
the probability that the population with largest mean is eliminated early,
as well as the mean number of the non-best populations that are eliminated
early.

In Section 4 we consider another classical rule: \play the winner" (PW).
Our variant of the PW rule is such that in all but the nal round each alive
population is continually sampled until it has a failure, where a population



is no longer alive if after a round its cumulative number of successes is at
least k smaller than that of some other arm. This variant diers from the
classical model of [15] which declared a population dead if at some point -not
necessarily at the end of a round - it has k fewer successes than another
population. We show how to analyze this rule in the Bayesian setting.

In Section 5 we consider the case of normal populations, where population
distributions are all normal distributions with some xed variance %; and
where the standard normal is the prior distribution on the means. Among
other things, by using that a normal conditioned to be positive has an in-
creasing failure rate, we improve upon known bounds for the probability that
a random walk of normal random variables reaches a before falling as low as

b for given positive numbers a;b:
Section 6 gives the paper’s conclusions.

2 The VectorataTime Rule in the Bernoulli
Case

Suppose there are n Bernoulli populations with respective means p1;:::; pn,
and that at each stage we are allowed to make an observation from a popu-
lation of our choice, stopping these observations at some point and making a
decision as to which population has the largest mean. As noted earlier, we

ing a specied distribution F: Subject to the constraint that the policy used
results in the probability of a correct choice being at least ; the objective is to
choose a policy whose mean number of observations is relatively small.

Denition The vector at a time (VT) rule, introduced in [3], is dened as
follows. For a given positive integer k, depending on the desired accuracy ; the
policy is as follows.

Initially all populations are alive
A round consists of a single observation from each alive population.

At the end of a round, a population is no longer alive if its cumulative
number of successes is k less than that of another population.



If only one population is alive, stop and declare it best. Otherwise
perform a new round.

Let piiy > ppzp > ::: > pin be the ordered values of the unknown means

assumption that there is a known positive value d such that pj;;  pp > d; it
was shown in [15] how to determine k so that P (C) : We now show how this

distributed random variables having distribution F.

Notation: We use the notation | fAg to be the indicator of the event A; equal
to 1 if A occurs and to O otherwise. Also, we use the notation X =, Y to
indicate that X and Y have the same distribution.

uniform (0; 1) random variables. Then
max X; =s¢ F 1(U'™")
I

Proof:

= F ' max U
i=1 n

.....

-, F Yur n

We now show how to bound P (C), the probability that the correct population is
chosen. To begin, suppose that in each round we take an observation from
each population, even those that may be dead. Let 0 be the best
population, namely the one with largest mean, and randomly number the
others as population 1;:::;n 1: Imagine that the best population is playing
a \gambler’s ruin game" with each of the others, with the best one beating
population i if the dierence of the cumulative number of wins of the best to
that of i hits the value k before k: Let B; be the event that the best



population beats i;i = 1;:::;n 1; and note that the best population will
be chosen if it wins all of its games. That is, if we let B B{B, B, 1;then
B C; giving that

P(C) P(B)

Lemma 2 P(B) (P(By))" *!

Proof: Let Ug;Uj;:::;Uy 1 and Uij;i = 0;1;:::;n 1;j 1 all be in-
dependent uniform (0;1) random variables. Let Xq = F 1(U01:n); Xi =
F (1 Ui)U§=”);i = 1;:::;n 1: Using Lemma 1 along with the fact that
conditional on the maximum, call it M; of n independent uniform (0; 1) ran-

dom variables, the n 1 of these uniforms whose values are less than M are
distributed as independent uniform (0; M) random variables, it follows that

best population, followed by the means of the other n 1 populations in a
random order.

Let IO;j = |f1 Uo;j < Xog;j 1; and Ii;j = |fUi;j < Xig;i =
1;:::;n  1;j 1: Note that I;;; has the distribution of the jth observa-tion
of populationi; i = 0;:::;n 1;j 1; and also that lg;j is increasing in

Uo;; whereas |;;; is decreasing in U;;j; i 1: Because X is decreasing in U; fori >
0, it consequently follows that, conditional on Ug; the indicator variables

variables Uq;:::;Un 1; Ui = 0;:::5;n 1;j 1: Consequently, given Ug; the
indicators IfB1g; :::1fB, 1g are associated, implying that
1
P(BjUo) P (BijUo)

i=1
which, by symmetry gives

P(BjUo) (P(B1jUo))" *:
Taking expectations gives

P(B) E[(P(B1jPo))" 1]
(E[P(B1jPo)))" * =
(P(By))" *



where the last inequality follows from Jensen’s inequality. [

To obtain an upper bound on P (B); let B be the event that the population
with largest mean wins its gambler’s ruin game against the population with
the second largest mean. Because B B we have

Lemma 3 P(B) P(B)

Remark: It is possible for the best arm to be chosen even if it does not win
all its games. Indeed, this will happen if the best arm loses to an arm that
at an earlier time had become dead, However, it is intuitive that this event
has a very small probability of occurrence. Consequently, P(C) P(B):

To compute P(B;) and P(B) we will use simulation with a conditional
expectation estimator. To begin, note that if populations with known prob-
abilities x and y play a game that ends when one has k more wins than the
other, then the probability that the one with probability x wins is the prob-
ability that a gambler, starting with fortune k, who wins each game with

probability p = ﬂl—xy()ﬂ—y\(/)l—xf will reach a fortune of 2k before 0. But, with

; 1 p_ vyl x)

P x(1 )
this gambler’s ruin probability is
P (x wins) = Lot 1 (1)
1 r2 1+ rk

Also, using known results from the gambler’s ruin problem along with Wald’s
equation (to account for the fact that not every round leads to a gain or a
loss) it follows that the mean number of plays is

k(1 )
(rk+ 1)(x y)

E[number of plays] = (2)

Proposition 1: Let U and V be independent uniform (0; 1) random vari-
ables, and let

X = F 1(U1=n); Y = F 1(U1=nV),' W =F 1(U1=nvl=(n 1))



oY X)) w( X)
COX(1Y)’ TOX(1 W)
then

P(B1) = El o ); P(B)= El )

Proof: The result follows from equation (1) upon using that the joint dis-
tribution of X; Y is that of the largest and a random one of the other means,
and the joint distribution of X; W is that of the largest and second largest
means. [ ]

Letting N be the number of observations, we can approximate E[N] by
approximating the mean number of plays of each of the non best populations
by the mean number of plays in their game against the best population,
and approximating the mean number of plays of the best population by the
mean number of plays in its game against the second best one. Hence, using
Equation (2) we see that

k(1 R 1+ E[ k(1 S%

E[IN] A (n 1)E[(Rk+ )X Y) (Sk+ 1)(X W)

)

Using Proposition 1 and Equation (3) enables us to eciently estimate
P(B1); P(B); and A by a simulation. Indeed, a simulation of 1;000;000
runs, yielded that when n = 10 and F(x) = x;0 x 1; the value k = 50
resulted in the estimates P(By)" ! = :9885; P(B) = :9889; and that A
5460:4, with an estimate of the standard deviation of the estimator of A being
26:7: Thus, :9885 < P (B) < :9889; and E[N] 5460:539: A much more time
consuming simulation (the preceding takes a fraction of a second) consisting of
1,000,000 runs, each run generating a random variable distributed as N,
yielded that P (C) 0:9886; E[N] 5466:318; with the standard deviation of the
estimate of E[N] being 17:34:

For another illustration of the utility of the approximations of P (C) and
of the mean number of observations, suppose n = 5 and VT with k = 10 is
used. A simulation based on Proposition 1 and Equation (3) yielded that

0:9523404 < P (B) < 0:9561526; A 358:398320



with a standard deviation of the estimate of A being 0:8256477: A simulation
with 500; 000 runs, with each run generating the value of N, yielded that

P(C) = 0:9540; E[N] = 358:3993;sd = 1:156
where sd refers to the standard deviation of the estimator of E[N]:

The following example compares the performance of VT with some recently
proposed rules.



Table 1: Algorithm Comparison

Case | TS1 | TS2 CR KL1 KL2
1 3968 | 4052 4516 8437 9590
2 1370 | 1406 3078 2716 3334

Example 1. Comparison with Recent Literature One might hope
that the vector at a time rule assuming a uniform (0; 1) prior assumption
performs well for any set of probabilities p1;:::;pn: The following compares
its performance with some recent algorithms - with names such as track
and stop, Cherno racing, and Kullback-Leibler racing (see [5]. [6], and [7].
These algorithms, some of which have some asymptotic optimality features as
the desired accuracy goes to 1, solve optimization problems to determine
which population to next observe (and, consequently, are much more dicult to
implement than is the VT rule). Table 1 is taken from [8]. It gives the
results of 5 of these algorithms for two cases: the rst case having n = 4 with
probabilities: (0:5;0:45;0:43;0:4); and the second having n = 5 with
probabilities (0:3;0:21;0:20;0:19;0:18). The parameters of the algorithms
are chosen to guarantee at least 90 percent accuracy. (TS1 and TS2 refer
to two variants of the track and stop algorithm; CR refers to the Cherno
racing algorithm, and KL1 and KL2 refer to two variants of the Kulback-
Leibler racing algorithm.

Because our algorithm assumes knowledge of a prior distribution, in cases
where there is no reason to assume that we know what the prior is, it seems
reasonable to assume a uniform (0; 1) prior and choose a larger accuracy
than is actually desired. So suppose we do so and require an accuracy, un-der
a uniform (0;1) prior, of 99 percent. When n = 4 the vector at a time
algorithm assuming a uniform prior requires k = 42; and when n = 5 if
requires k = 47: Simulation, using the probabilities in each case, yields that
the average number of observations needed in case 1 is 2738 with the correct
decision being made with probability 0:9999; whereas the average number of
observations needed in case 2 is 2372 with the correct decision being made
with probability 0:9999: If we were to be less conservative and only require 97
percent accuracy when assuming the uniform prior, then the required value
of the vector at a time rule is k = 15 when n= 4 and k = 16 when n = 5:



Simulation yields that the average number of observations needed in case 1
is 905 with the correct decision being made with probability 0:9999; whereas
the average number of observations needed in case 2 is 832 with the correct
decision being made with probability 0:998: Thus the vector at a time algo-
rithm signicantly outperforms the newer algorithms. (Though to be fair we
should mention that, under the uniform (0; 1) prior, k = 5 is sucient when
either n = 4 or n = 5 to obtain 90 percent accuracy. Using k = 5 in Case 1
yields that the average number of observations needed is only 166, but the
accuracy is :601: Using k = 5 in Case 2 yields that the average number of
observations needed is 213:2, with accuracy :81:)

Remark: The preceding example is very interesting in that it indicates that
the vector at a time algorithm that assumes a uniform (0; 1) prior can signi-
cantly outperform the newer algorithms even in cases where the probabilities
are highly unlikely to have come from this prior. Thus, while we are not
claiming that there are not cases where assuming a uniform prior will lead
to a poor result (for instance, for any value of k chosen, if all the p; are
approximately equal then the VT procedure will yield P (C) 1=n;) we do feel
that it will typically perform quite well.

Remark on Variance Reduction:

In practice, we observe that the number of plays using VT may have a large
variance. In the case where F is the uniform (0; 1) distribution, we can reduce
the variance of a simulation estimator that on each run generates the value
of N by using Y = 5 (11 - as a control variable, where P; and P, are the
means of the best and second best arms. That is, if let T denote the raw

estimator, then the neéw estimator is

T+ c(Y E[Y])

Cov(T;v)
Var(vy)
value of the control variable, we condition on P,

where the variance is minimized when c = . To obtain the mean

! E[E[———jP,]]

o p)! ° Pi(1 P,
1 1.
= E[l PzE[iJPZ]]
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| g( 2)
= E[(1 0 Pp)Z] because P;jP, unif(Py; 1)

21 yn 2log(x)
= n(n 1) . de
n(n 2 95,
roiq r

. . _ X n log(x) . .
where r is a large integer, and h(x) = ﬁT2T The values of Cov(T;Y)
and Var(Y ) can be estimated from the simulation, and these can then be used

to determine c. In our numerical examples, we observe that the variance is
reduced by between 50 and 60 percent.

3 VT with Early Elimination

Suppose we use VT but with an early elimination possibility in that if an
arm is j behind after the rst j rounds (that is, if the arm had all failures in
the rst j rounds while another arm had all successes) then that arm is
eliminated. To see by how much that can reduce the accuracy of VT, let
us compute P (L); where L is the event that the best arm is eliminated early.
Let O be the best population, let 1;:::;n 1 be the other popu-lations in

. Y :
P(L) = E[(1 Xo)'(1 (1 x%)]
i=0
Let us now consider the expected number of non best populations that are

eliminated early. Letting I be the indicator or the event that population k
is eliminated early, we have for k 1

Elhd = E[L X1 (1 Xb) (1 X}
i=0;k

Hence, with N being the number of non best populations that are eliminated
early, we have

EIND= (0 DELL X1 (1 xh) (1 X))

11



P (L) and E[N] are easily evaluated by a simulation.

The formulas for P (L) and E[N] considerably simplify when F is the
uniform (0; 1) distribution. Let N;;i = 0;:::;n 1; be the number of suc-
cesses of population i in the rst j rounds. Because F 1(x) = x; we obtain
when i 1 that

i
j+1

P(Ni = jjw) = E[(UW)jwW] =

ing gives

. _ i Wj n 1
P(LjW) = (1 W)(1 (1 j+1) )
Taking expectations gives
— j Wj n 1
P(L)=E[(1 W)(1 (1 j+1) )]

are conditionally independent given W, we have

P(N:= 0; maxNi= jjW) = P(Ni= OW)(1  P(N= jjw)) (4

i=1

Now,
P(N; = OjW) = 5[1(1 Ui W )jW]
= (1 xW) dx
) 10 (1 Ww)i+?
(j+ 1w
Also,
‘1P(Ni=J'J'W) = (1 WI)(E[1 (UW)jw])" 2
- @owia
Hence, Equation (4) yields
" I #
E[N]=(n 1)E ! (J(i 1)\?//\/)“1 1 (1 wii j\ivjl)”z

12



where W = U=";
Thus, when F (x) = x; both P (L) and E[N! are one dimensional integrals,
easily evaluated by numerical methods.

13



Example 2. The following are the values of P (L); the probability that the
best population is eliminated early, and E[N ]; the mean number of non best
populations that are eliminated early, for a variety of values of n and j when F
is the Uniform (0; 1) distribution.

n j\ P(L) E[N]
5 |2]|.02053 1.317
3 |.00336 0.851
4 | .00059 0.590
5 |.00011 0.432
10 | 2 | .01278 3.234
3 1.00201 2.310
4 | .00033 1.731
5 | .00006 1.343
20 | 2 | .00429 6.659
3 |.00053 4.978
4 | .00007 3.942
5 | .00001 3.229

For the cases considered in the preceding table, for a xed j the probability
that the best population is eliminated early decreases in the number of pop-
ulations n: Intuitively, the reason for this is that although it becomes much
more likely that at least one of the non-best populations has j successes in
its rst j trials as n increases, because the success probability of the best
population is distributed as the maximum of n independent uniform (0; 1)
random variables - and thus stochastically increases in n  the larger n is,
the less likely it is that the rst j observations of the best population will all be
failures. [

Let P¢(C) be the probability of a correct choice when using VT with
critical value k; and suppose Py 1(C) < < P(C): The randomized rule that

chooses VT with critical value k with probability p = (C,_Pﬂw_dLVT

with critical value k 1 with probability 1 p will yield thek correct choice
with probability : Another possibility is to use VT along with early
elimination parameter j; where jis the smallest value j for which using VT

14



with critical value k along with early elimination if behind by j after the rst j
rounds results in a correct choice with probability at least : (Of course, we
could use a policy that randomizes between VT with critical value k and early
eliminationatj 1andVT with critical value k and early elimination atj:) The
following is an example where randomizing among VT rules results in a
smaller mean number of observations than does VT with early elimination.

Example 3. Supposen=5; = :95and F(x) = x; 0 x 1: The following
simulated results were based on 500;000 runs. (The term sd refers to the
standard deviation of the estimator of E[N].)

VT
k=9: P(C)= 0:948; E[N] = 313:64; sd = 2:11
k=10: P(C) = 0:954; E[N] = 358:40; sd = 1:156

VT early elimination when k = 10
2:P(C)= 0:9385; E[N] = 335:52; sd
3:P(C)= 0:9523; E[N] = 348:27; sd

8:29
2:70

j

j
Consequently, randomizing among VT with k = 9 and k = 10 to obtain
P(C) = :95 results in the mean number of observations being (2=3)313:64 +
(1=3)358:40 = 328:56; which is smaller than what can be obtained with VT
with early elimination. (It is also better than the newer proposed rules. Of
these, the Cherno bound algorithm performs best, giving a mean number of
423:4 with accuracy 0:953:)

4 Play the Winner rule

Another older rule that can also be utilized in the Bayesian setting is the
play the winner (PW) rule, which in each but the last round continues to
sample from each alive population until it has a failure. Our variation of
PW, which is somewhat dierent than what has been previously considered, is
as follows:

All populations are initially alive.

A round consists of subrounds. In a subround, each alive population is
observed once, with the successful ones continuing to the next sub-
round. If there is only one population that is successful in a subround,

15



then if that population currently has a cumulative number of successes
that is at least k more than any other population the process stops
and that population is declared the best; if not, that population moves
to the next subround. If none of the populations in a subround are
successful then the round ends.

At the end of a round, any population whose cumulative number of
successes is less than that of another by at least k is no longer alive.

Remarks:

1. Note that the process ends after a subround which had exactly one suc-
cessful arm, and that arm’s cumulative number of successes is now at least
k higher than all other populations and exactly k larger than at least one
population.

2. If we had dened a round by saying that each alive population is ob-
served until it had a failure, then when F is the uniform (0; 1) distribution,
the expected number of plays until the rst population used has a failure is
innite. On the other hand, dening rounds using subrounds results in the
mean number of plays being nite. For instance, suppose the probabilities are
the values of iid uniform (0; 1) random variables. Let N; denote the num-ber of
plays in the rst round of the arm with it" largest success probability. Denoting
this probability by Y;, its density is

=" (1 p) 'dp; O0< p<1

_ n!
)= e im

it follows that E[N;] E[, v_.ll < 1 wheni > 1: In addition,

n

X
Ni k+ mzax N; k+ N;i=2
In

giving that
X n
E[N:] k+ E[N;]< 1
i=2
3. The PW rule as dened in [15] and [16] was such that the populations are
initially randomly ordered. In each round, the alive populations were
observed in that order, with each population being observed until it had a
failure. If at any time one of the populations had k fewer successes than
another population, then the former is no longer alive. The process ends

16



when only a single population is alive, and that population is declared best.
Thus, for instance, in the original version if the rst population observed has k
successes in a row then that population is declared best.

4.1 Analysis of PW

To begin, suppose there are only 2 arms and that their success probabilities
are p; > p2: Suppose we are going to choose an arm by using the procedure
which in each round plays each arm until it has a failure, and then stopping
at the end of a round if one of the arms has had a cumulative number of
successes that is at least k more than the other, with that arm then being

chosen. Let qi= 1 pj;i= 1;2; and let Xi;r; i = 1;2; r 1; be independent
with P (Xi.,r = j) = qip;ij O:Interpret X;., as the number of successes of arm
i inroundr; and let Y, = X;., X2.r; r 1: Then,

1 piel p.e

It is now easy to check that E[e"r] = 1life = p,=p;. Thatis, E[(p,=p1)']= 1:If
we now let S, = P m, Y;; then (p2=p1)°; m 1 is a martingale with
mean 1. Letting

N = min(m:Sm k or S, k)
it follows by the martingale stopping theorem (see [11]) that
El(p2=p1)*]= 1
Let p= P(Sny k) be the probability that arm 1 is chosen. Then

1 = E[(p2=p1)°"]
= E[(p2=p1)°VjSn klp+ E[(p2=p1)*"jSn  KkI(1 p)

Letting Xi; i = 1;2; have the distribution of X;,,; it follows, by the lack of
memory property of X;, that

El(p2=p1)*¥jSn k1= (p2=p1)*El[(p2=p1)**] = (p2=p1)*(a1=0>)

E[(p2=p1)*"iSn  kl= (p2=p1) “El(p2=p1) **1 = (p1=p2)*(d2=01)

17



Substituting back yields that

_ 1 (p1=p2)*(92=01)
(P2=p1)(a1=02)  (p1=p2)*(a2=q1)

p (5)

Conditioning on which arm wins yields that
E[Sn] = (k+ E[Xa])p+ ( k E[X2])(1 p)

Letting m; = E[X;] = 1=q; 1= pi=q;; the preceding gives

E[Sn] = p(mi+ ma+ 2k) (my+ k)

Wald’s equation yields

p(my+ my+ 2k) m, Kk
mi ms

E[N] (6)

Because Xy, + X2, + 2 is the number of plays in round r; it follows that the
total number of plays, call it T, is P N (Xq,r + X2,r + 2): Applying Wald’s
equation and using (6) gives

m;+ m + 2
E[T]= (p(mi+ ma+ 2k) my, k) ——» = (7)
mi1  m2
Now, suppose that we utilize PW. Let B(p¢; p2) and M (py; p2) be, respec-
tively, the probability that the arm with value p; is chosen and the mean
number of plays before stopping. From equation (5) we have

1 (p1=p2)*(a2=01) (8)
(p2=p1)*(d1=0a2)  (p1=p2)*(a2=01)
Because PW would stop play once the winning arm is ahead by k, whereas
E[T] is the mean number of plays when we continue on until a failure occurs,
we obtain by conditioning on which arm wins that

B(p1;pa) =

B(p1; p2) 1 B(p1;p2)

1 2

q q
(B(p1; p2)(m1+ my+ 2k) my k)

E[T]

M (p1; p2)

mi+ my+ 2 B(py;p2)

1

(

9)

B(p1; p2)

m: m2 q1
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where m; = p;=q;:

Now suppose there are n arms whose means are the values of independent
random variables with distribution F, and let C be the event that the PW
policy chooses the best arm. As in our analysis of VT, suppose that all
arms participate in each round. Let arm 0 be the best arm, and randomly
number the other arms as 1;:::;n  1: Say that the best arm beats arm i if
the end of round dierence between the cumulative number of successes of
arm 0 and arm i is at least k before it is less than or equal to k: Letting
Bi;i = 1;:::;n 1; be the event that arm 0 beats arm i, we have, by the
same arguments as in Section 1, the following.

Lemma 4. WithB BB, B, 1,
P(C) P(B) (P(By))" *
Also, P(B) P(B); where B is the event that 0 beats the best of arms

L,:::;n 1
Our preceding analysis yields the following corollary.

Corollary 1. With U and V being independent uniform (0;1) random
variables, and

X = F 1(U1=n); Y =F 1(U1=nV),' W=F 1(U1=nvl=(n 1))

P(B1) = E[B(X;Y)]
P(B) = E[B(X;W)]

Also, if we let M denote the mean number of plays, then

MA=(n 1EM(X;Y)+ E[M(X;W)]
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4.2 PW with Early Elimination

Suppose we use PW with critical number k and add an early elimination
on any population whose rst j observations are all failures. Let B. be the
event that the best population is eliminated early. Letting f(p) = F%(p)
be the density function of the prior distribution, the success probability of
the best population has density function f,(p) = nF" (p)f(p); 0 < p < 1:
Consequently, it follows that

Z 1

P(B)= (1 p)nF" Y(p)f(p)dp

0
Let N,, be the number of nonbest populations that are eliminated early. To
compute E[N,p]; note that the probability a randomly chosen population is
eliminated early is Rol(l p)if(p)dp; giving that

z 1
n (1 p)f(p)dp = E[number eliminated early] = E[N,,] + P (B¢)

Hence,
Z 1 ' Z 1 .
E[Nnp] = n . (1 p)f(p)dp . (1 p)nF" Yp)f(p)dp

When F is the uniform (0; 1) distribution

21 o 1 nlj!
P(Be) = 0(1 p)np p—m
and "
n nlj!
E[Nn] = - -
[Nns ] j+1 (n+j)!

For instance, if F is the uniform (0; 1) distribution, then when n = 10;j =
5, we have P (B.) = 0:000333 and E[N,,] = 1:666:

43 VT versus PW

Based on numerical experiments, VT and PW have roughly similar perfor-
mances when F (x) = x:

Example 5. When n = 5; simulation yielded the following results for PW.

20



PW:
k=42:P(C) = 0:9494; M = 319:78; sd = 1:64
k= 43:P(C) = 0:9502; M = 327:80; sd = 1:65
k= 48:P(C) = 0:9543; M = 375:4; sd = :899

Thus, choosing PW with k = 42 with probability :25 and k = 43 with
probability :75 results in P(C) = :950; and requires, on average, 325:795
observations, which is slightly less than the average of 328:56 which, as shown
in Example 3, can be obtained by a randomization of VT rules to obtain
P(C) = :95: On the other hand if we wanted = :954; then both VT with k
= 10 and PW with k = 48 achieve that, with VT having a mean of 358:4
observations, compared to 375:4 for PW. (Because the average number of
trials needed for PW with k = 47 is 367:05; randomizing between PW(47)
and PW/(48) still would not be as good as VT(10).)

5 The Normal Case

5.1 VT Rule in the Normal Case

Suppose that observations on population i are the values of independent

random variables. As before our objective is to determine, using relatively
few observations, the population i such that i = argmax; under the proviso
that the probability of a correct decision is at least some specied value : The
VT rule with parameter c > 0 is as follows:

Initially all populations are alive
A round consists of a single observation from each alive population.

At the end of a round, a population is no longer alive if its cumula-
tive sum of observed values is more than c less than that of another
population. (That is, if A is the set of alive populations after round
k 1, and Si(k) is the cumulative sum of the rst k observations of
population i, then i 2 A would no longer be alive after round k if
S.(k) < maxXjaa Sj(k) CI)
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If only one population is alive, stop and declare it best. Otherwise
perform a new round.

Before showing how to determine the appropriate value of ¢ we present some
preliminaries concerning normal partial sums.

5.2 Some Preliminaries

Let be the standard normal distribution function. Dene

R(a) = ), (10)
1 a

Lemma 5. If W is a normal random variable with mean and variance 1,
then

Ele *Wjw > 0] = R( )
2=
e
E[WjW > 0] = -
[Wjw > 0] pzo‘R()
Ele *Wjw < 0] = e 2
<3
E[WjW < 0] = 2110

Proof:

4
1 1 -

E[e 2WjW > 0] - %(W . 0) i e 2x e(x )2=2 dx

1 %1

e (x*)7=2 g4y
2” 0

1 00

LetZ = W

E[WjW > 0] + E[ZjZ > ]

L
+ p — xe ¥72dx
200
2=2
+ p ©
200
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Because E[e 2W] = 1; the third equality follows from the rst upon using
the identity

1= E[e 2Wjw > 0]() + E[e 2Vjw < 0]J(1 0)
Similarly, the fourth equality follows from the second since = E[WjW >
0]() + E[WjW < 0](1 0): [

Lemma 6. Let S, = PI=Q W;; n 1; where W;;i 1 are independent normal
random variables with mean > 0 and variance 1: For given b> 0; let N =
minfn : eitherS, < borS, > bg:

(a) R( )e ®< E[e 25vjSy > b]< e 2°(b)

e?® < E[e 25vjSy < bl< e?PR()

Proof: The right hand inequality of (a) is immediate since > 0: To prove the
left side of (a), note that conditional on Sy > b and on the value Sy 1; that
Sn is distributed as b plus the amount by which a normal with mean and
variance 1 exceeds the positive amount b Sy 1 given that it does exceed
that amount. But a normal conditioned to be positive is known to have
strict increasing failure rate (see [2]) implying that Sy jfSy > b;Sy 18 is
stochastically smaller than b+W;jfW; > 0g. As this is true no matter what the
value of Sy 1; it follows that Sy jfSy > bg is stochastically smaller than b+
W;jfW; > Og, implying that E[e 25V jSy > b] > e 2°E[e 2Wijw; > 0]: The
result now follows from Lemma 5.

The left hand inequality of (b) is immediate. To prove the right hand
inequality, note that the same argument as used in part (a) shows that
SnjfSn < bg>s¢ b+ W;jfW; < 0g; implying that E[e 25vjSy < b] <
e?’E[e 2WijW; < 0]: Thus, the result follows from Lemma 5. =

P
Proposition 2. Let S, = "_; W;; n 1; where W;;i 1 are independent
normal random variables with mean > 0 and variance 1: For given b> 0; let
N = minfn : eitherS, < borS, > bg:

e 1 e® R() 1

(11)
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Proof: Let p= P(Sy > b):Because E[e 2Wi] = 1;itfollows thatfe 2°';n 1g
is a martingale with mean 1. Hence, by the martingale stopping theorem

1 = E[e 2°V]
= E[e 2°VjSy > blp+ E[e 25VjSy < bJ(1 p)
Hence,
E[e 25vjSy < b] 1 1
P= Ele 25vjSy < b] E[e 25vjSy > b (12)
Because i 1. 0< y< 1< x; increases in both x and vy, the inequalities (11)
now follow from Lemma 6. ]

Although we don’t directly use the following proposition, it is of independent
interest.

Proposition 3. With N as previously dened.

e2R() 1 2b e =2 b
E[N] elR—e » ¥ 1) 27 (13)
EIN e 1 2 e "2 pe?
[N} R( Je L THaP )=
223
e
- S— 14
2(T () (14)
Proof: Wald’s equation gives
E[N] = E[SnjSn > bJp+ E[SnjSn < DbJ(1  p)
(b+ E[WjW > 0])p b(1 p)
222
e
= 2b — b
p(2b + &2'(T+ )

where the rst inequality used, as shown in Lemma 6, that Sy jfSy > bgis
stochastically smaller than b+ W jfW > 0g. Inequality (13) now follows from
Proposition 2. The lower bound follows from

E[N] = E[SnjSn > blp+ E[SnjSn < DJ(1 p)
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bp+ ( b+ E[WjW; < 0])(1 p)

229 2=

+ B e e
20 ()

= (2b -
2(T ()

where the inequality used that Sy jfSy <  bg is stochastically larger than
b+ W;jfW; < 0g: Inequality (12) now follows from Proposition 2. [ ]

Remark: One way to approximate p= P(Sy > b) and E[N] is to \neglect
the excess" and assume Sy jSy > b band SyjSy < b] ¢ b: From (12)
this gives that

2b
e 1
Pab e (15)
Also, E[N] bp b(1 p); and so (15) gives that
2b(e?® 1) b
E[N] (62 e 25) (16)

Example 6: If b= 3; = 1; then (13), (14), and (16) yield that

2:9838 E[N] 4:2842; E[N] 2:9852

P
Corollary 2: Let S, = ;.1 V;; n 1; where V;;i 1 are independent normal
random variables with mean > 0 and variance 2 : For givenc > 0; let N =
minfn : eitherS, < <corS, > cg:

c=? e R(e) 1
c=2 . 1\ =< P(Sn > ¢) < c=2 R{ ( 2 ) c=2
e R( 37=)e € RE—+-) e
Moreover,
2c (e* - 1) C
E[N] — -
(e - =)
Proof: Let W; = —)g:; note that E[W;] = = Now, using b = —vsGZ:; apply
Proposition 2 and Equation (16). -
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5.3 Analyzing the VT Rule in the Normal Case

We can obtain a lower bound and an eective approximation to P(C); the
probability that the correct choice is made, by a similar argument as in the
Bernoulli case. Letting population 0 be the one with the largest mean, and

game between populations 0 and i in which the winner is the rst one whose
cumulative sum is at least ¢ more than that of the other. With B; being the
event that the best wins this game against population i, and B the event
that the best wins all these games, we can show exactly as before that

P(C) P(B) (P(Bi))" % P(B) P(B)

where P (B) is the probability that the best beats the population with second
largest mean. Given the values ;1;:::;n 1, the dierence between the value
of a population 0 observation and one from a dierent population is a normal
random variable with variance 2%: Letting

c=2 1 gc= > 1
R K U() = c=2 c=2 (17)
( sl < e R(pz) — e

2

e

L0 =

be the lower and upper bounds on P (Sy > c); Corollary 2 yields the follow-
ing proposition.

Proposition 4: Let U and V be independent uniform (0; 1) random vari-
ables, and let

X = 1(U1=n) 1(U1=nV); Y = 1(U1=n) 1(U1=nV1=(n 1))

Then
P(C) P(B) (E[L(X))" * and P(B) E[U(Y)]

Letting N be the number of observations, we can approximate E[N] by
approximating the mean number of plays of each of the non best populations
by the mean number of plays in their game against the best population,
and approximating the mean number of plays of the best population by the
mean number of plays in its game against the second best one. Hence, using
Equation (16) we see that
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EIN] A (n 1)E[M(X)] + E[M(Y)] (18)
where
2c(e* - 1)
( e=e =)
The following table compares the performance of VT with the most
quoted algorithms of the recent literature: LIL-UCB, TrackAndStop, and
Cherno. The LIL-UCB algorithm (see [6]) uses upper condence bounds
(UCB) based on the law of the iterated logarithm for the expected reward of
the arms. At each stage it uses the arm with the largest upper bound, sim-ilar
to the UCB algorithm of bandit problems. We use a heuristic variation of the
LIL-UCB which has been shown to perform somewhat better than the
original [6]. The TrackAndStop algorithm in [8] tracks lower bounds on the
optimal proportions of the arm draws and uses a stopping rule based on
Cherno’s work on Generalized Likelihood Ratio statistic. The Cherno
algorithm is similar to TrackAndStop, but rather than track the optimal
proportions it instead chooses between the empirical best and second-best.
In each of 10; 000 simulation runs we generate the n means by generating n
standard normals and then simulate the results of the dierent algorithms.

| o

M() =
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Table 2: N is the average number of plays in 10; 000 simulation runs

Algorithm c N p

09 | VT 5 15 0.9068

TrackAndStop | - 1351 | 0.9988

LIL - 505 0.9989
Cherno - 1476 |1

095 | VT 11 35 0.9504
TrackAndStop | - 1545 |1

LIL - 504 0.999
Cherno - 1546 |1

0.99 | VT 40 | 489 0.9913
TrackAndStop | - 1759 |1

LIL - 503 0.9989
Cherno 5 - 1760 |1

09 | VT 7.8 | 62 0.910
TrackAndStop | - 1748 |1

LIL - 1657 | 0.9979
Cherno - 1703 |1

095 | VT 16.3 | 143 0.9537
TrackAndStop | - 1961 |1

lilUCB-H - 1654 | 0.9979
Cherno - 1872 |1

0.99 | VT 85 979 0.9909
TrackAndStop | - 2209 |1

ILIL - 1651 | 0.9979
Cherno - 2151 |1

1009 | VT 10.3 | 138 0.911
TrackAndStop | - 2071 |1

LIL - 2008 | 0.9989
Cherno - 1965 |1

095 | VT 20.6 | 304 0.9502
TrackAndStop | - 2173. | 1

LIL D8 2005 | 0.9989
-Cherno - 2055 |1



6 Conclusions

We have presented a Bayesian model for nding the population having the
largest mean when the populations under consideration are either all Bernoulli
or all normal with a xed variance. In both cases we take a Bayesian approach
that assumes the unknown means are the values of independent random vari-
ables having a specied distribution F: We consider two old rules that had
previously been analyzed under the assumption that the largest mean diers
from the second largest mean by at least some known positive number. The
rst of these rules is the vector at a time rule (VT) which in each round
takes a sample from each population, eliminates any population whose cu-
mulative sum after a round is at least k less than that of another population,
and continues until one one population is left. The second old rule, appli-
cable in the Bernoulli case, is play the winner rule which in each but the
last round continues to sample from each remaining population until it has
a failure. For a given constant k we present easily computed bounds and
approximations of the probability these rules yield the correct choice and the
mean number of observations that are required. We also present numerical
evidence showing in the Bernoulli case that the VT rule resulting when F is
the uniform (0; 1) distribution has good results, when compared with more
recent algorithms that make no assumptions about the set of means, even
when the set of means does not look like it came from a uniform (0; 1) distri-
bution. Although we recommend in any problem instance that one utilizes
one’s prior knowledge to determine the appropriate prior F, it is comforting
to know that the method appears to work well even in cases when the actual
means do not appear to have come from F:

7 Conict of Interest
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