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Abstract
We study statistical/computational tradeoffs for
the following density estimation problem: given
k distributions v1, . . . , vk over a discrete domain
of size n, and sampling access to a distribution p,
identify vi that is “close” to p. Our main result is
the first data structure that, given a sublinear (in
n) number of samples from p, identifies vi in time
sublinear in k. We also give an improved version
of the algorithm of (Acharya et al., 2018) that
reports vi in time linear in k. The experimental
evaluation of the latter algorithm shows that it
achieves a significant reduction in the number of
operations needed to achieve a given accuracy
compared to prior work.

1. Introduction
Finding the hypothesis that best matches a given set of sam-
ples, i.e., the density estimation problem, is a fundamental
task in statistics and machine learning. In the finite setting,
this task can be formulated as follows: given k distributions
v1, . . . , vk over some domain U and access to samples from
a distribution p over U , output vi that is “close” to p. In the
“proper” case, we assume that p = vj for some 1 ≤ j ≤ k,
and the goal is to output vi such that ∥p−vi∥1 ≤ ε for some
error parameter ε > 0. In the more general “improper” case,
p is arbitrary and the goal is to report vi such that

∥p− vi∥1 ≤ C ·min
j
∥p− vj∥1 + ε

for some constant C > 1 and error parameter ε > 0.

The density estimation problem has been studied extensively.
The work of Scheffe (Scheffe, 1947), Yatracos (Yatracos,
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1985), Devroye-Lugosi (Devroye & Lugosi, 2001) showed
that O(log(k)/ε2) samples are sufficient to solve the im-
proper version of the problem for some constant C > 1
with a constant probability in O(k2 log(k)/ε2) time. Re-
cently Acharya et al (Acharya et al., 2018) improved the
time to O(k log(k)/ε2) time.

Despite the generality of the formulation, this approach
yields almost optimal sampling bounds for many natu-
ral classes of distributions such as mixtures of Gaus-
sians (Daskalakis & Kamath, 2014; Suresh et al., 2014;
Diakonikolas et al., 2019), see also the survey (Diakoniko-
las, 2016). Furthermore, the method has been extended to
enable various forms of privacy (Canonne et al., 2019; Bun
et al., 2019; Gopi et al., 2020; Kamath et al., 2020).

When the domain U is a discrete set of size n, the problem
can be viewed as a variant of approximate nearest neighbor
search over n-dimensional vectors under the L1 norm, a
problem that has been studied extensively (Andoni et al.,
2018). Specifically, given a set of k distributions v1, . . . , vk,
the goal of C-approximate nearest neighbor search is to
build a data structure that, given any query distribution p,
returns vi such that ∥p− vi∥1 ≤ C ·minj ∥p− vj∥1.

However, in the density estimation problem, the query dis-
tribution p is not specified fully, but instead the algorithm is
given only samples from p. This makes the problem substan-
tially richer and more complex, as in addition to the usual
computational resources (data structure space, query time),
one also needs to consider the number of samples taken
from p, a statistical resource. Thus, designing data struc-
tures for this problem involves making tradeoffs between
the computational and statistical resources, with the known
algorithms forming the endpoints of the tradeoff curve. In
particular:

• If the goal is to optimize the computational efficiency
of the data structure, one can learn the query distribu-
tion p up to an additive error of ε using O(n/ε2) sam-
ples (Kamath et al., 2015), and use any c-approximate
nearest neighbor algorithm for the L1 norm. In par-
ticular, the algorithm of (Andoni & Razenshteyn,
2015) yields (roughly) O(nk + k1+1/(2c−1)) space
and O(nk1/(2c−1)) query time. This leads to an algo-
rithm with polynomial space and sublinear (in k) query
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time, but at the price of using a linear (in n) number of
samples.

• If the goal is to optimize the statistical efficiency of
the data structure, then the aforementioned result of
(Acharya et al., 2018) yields a data structure that uses
only a logarithmic number of samples, but at the price
of near linear (in k) query time.

These two point-wise results raise the question of whether
“best of both worlds” data structures exists, i.e., whether
there are data structures which are efficient in both statistical
and computational terms. This is the focus of the paper.

Our results In this paper we initiate the study of computa-
tional/statistical tradeoffs of the (discrete) density estimation
problem. Our main theoretical contributions are as follows:

• We present the first data structure that solves the proper
version of the problem with polynomial space, sub-
linear query time and sublinear sampling complexity.
This demonstrates that one can achieve non-trivial com-
plexity bounds on all three parameters (space, query
time, sampling complexity) simultaneously.

• We also present an improved version of the data struc-
ture from (Acharya et al., 2018) for the improper
case, reducing its query time from O(k log(k)/ε2) to
O(k/ε2), i.e., linear in k, while retaining its optimal
sampling complexity bound of O(log(k)/ε2).

On the empirical side, we experimentally evaluate the linear-
time algorithm and compare its performance to the (Acharya
et al., 2018) algorithm on synthetic and on real networking
data. These experiments display the practical benefits of the
faster algorithm. For example, for synthetic data, we demon-
strate that our faster algorithm achieves over 2x reduction
in the number of comparisons needed to achieve the same
level of accuracy. Similarly, our experiments on network
data show up to 5x reduction in the number of comparisons.

Open questions We view a major part of the contri-
bution of this paper as initiating the study of statisti-
cal/computational tradeoffs in data structures for density
estimation. We design a data structure with polynomial
space and sublinear query and sampling complexity but only
in the proper case and only achieving query and sampling
bounds that are slightly sublinear in the input parameters.
Extending these results (1) to the improper case, (2) with
stronger sublinear bounds, or (3) showing lower bounds are
all exciting open problems.

1.1. Preliminaries

We assume the discrete distributions v1, . . . , vk over the
domain [n] are fully specified. We assume k, the number of

distributions, is much larger than n but still polynomially
related to n. For instance, n1.01 ≤ k ≤ nC for C = 100
suffices. This mimics the classic nearest neighbor search
(NNS) literature setting, where the aim is to get algorithms
sublinear in the dataset size, which exactly corresponds to k
in our setting.

Let p be the unknown distribution we sample from. We
actually attain results stronger than the truly proper case:
we relax the equality condition and assume that there exists
v∗ among the vi’s such that ∥p− v∗∥2 ≤ ε

2
√
n

.

We use the standard Poissonization trick and take s′ =
Pois(s) samples 1. This doesn’t affect the sample complex-
ity asymptotically as s′ = Θ(s) with high probability. This
is a standard trick used in distribution testing (Canonne,
2020; Szpankowski, 2011; Valiant & Valiant, 2011) and
ensures that for all i ∈ [n], the number of samples observed
that are equal to i when sampling from p is distributed as
Pois(s · p(i)) and the counts are independent. We say b ≲ a
for a, b > 0 if b ≤ C · a for some absolute positive constant
C which does not depend on a or b.

We recall the guarantees of ℓ∞ and ℓ2 NNS data structures.
Theorem 1.1. (Indyk, 2001) There exists some absolute con-
stant C such that given a dataset X ⊂ Rn with |X| = k, for
every δ ∈ (0, 1), we can solve the C

δ log log n-approximate
nearest neighbor problem on X in ℓ∞ using Õ(nk1+δ)
space and Õ(n) query time.

The following theorem is obtained by using a standard com-
bination of randomized dimensionality reduction theorem of
Johnson-Lindenstrauss and locality-sensitive hashing (Har-
Peled et al., 2012).
Theorem 1.2. (Har-Peled et al., 2012) Given a dataset
X ⊂ Rn with |X| = k, for every c > 1, we can solve the
c-approximate nearest neighbor problem on X in ℓ2 using
(k1+ρ + kn) logO(1) k space and (kρ + n) logO(1) k query
time where ρ ≤ 1/c.

Lastly, we define some convenient notation used shortly.
Definition 1.3. For a vector x ∈ Rn and a set A ⊆ [n],
let xA ∈ Rm denote the vector which is equal to x in
coordinates of set A and zero otherwise. x(i) refers to the
ith coordinate of the vector x.

2. Motivating our algorithm
As we discuss in the next section, our algorithm works
by considering the empirical sample distribution p̂ (where
p̂i = X(i)/s if i is sampled X(i) times) and delicately
combines nearest neighbor search data structures both for ℓ2
and ℓ∞ distance. Before describing our algorithm, we first

1Pois(s) denotes a draw from a Poisson distribution with pa-
rameter s.
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explain why simpler approaches do not work. First, since
we are interested in finding a close distribution in ℓ1 dis-
tance, it is a natural idea to simply construct an approximate
ℓ1 nearest neighbor data structure on the known distribu-
tions and directly querying it for p̂. As the following lemma
illustrates, this approach fails to return a close distribution
even with access to an exact nearest neighbor data struc-
ture which returns a true nearest neighbour to the empirical
distribution. Surprisingly, it can even be much worse than
simply returning a uniformly random known distribution
which would succeed with probability 1/k. All proofs in
this section are deferred to Appendix A.
Lemma 2.1. For any k ≤

(
n

n/2

)
, there exist distinct distri-

butions p, q1, . . . , qk over [n] such that ∥p − qi∥1 = 1 for
each i ∈ [k] and if p̂ is the empirical distribution obtained
from sampling s = n/2 elements from p, then the probabil-
ity that ∥p− p̂∥1 ≤ mini∈[k](∥qi− p̂∥1) is exp(−Ω(k)). In
fact, if k ≥ Cn log n for a sufficiently large constant C, the
probability is 0.

Another idea is to instead use an ℓ2 nearest neighbor data
structure on the empirical distribution. Perhaps less surpris-
ingly, this approach fails too, but whereas for ℓ1 the issue
was the light elements, for ℓ2 it is the heavy elements. For
simplicity, we consider the case of two distributions.
Lemma 2.2. There exists distributions p, q over [n] with
∥p− q∥1 = 1 such that for any sample size s = o(n), with
probability Ω(1), ∥p− p̂∥2 > ∥q − p̂∥2.

Finally, it should be clear that ℓ∞ nearest neighbor search
on the empirical distribution p̂ does not work with s = o(n)
samples. Indeed, consider distributions where all probabil-
ities are either 2

n or 0 and the most sampled coordinate i.
Even with an exact nearest neighbor data structure, we could
return an arbitrary distribution q such that q(i) = 2/n.

3. Main algorithm and proof intuition
As motivated by the previous section, our algorithm deals
with ‘heavy’ and ‘light’ elements separately. The first chal-
lenge is to formally define the notions of heavy and light
elements. The most natural choice is to declare a domain
element heavy for a distribution v if the probability mass v
places on the element is larger than some threshold γ. An
issue arises when we want to employ this definition for p,
the distribution we are sampling from. Since we only get
sample access to p, we will have tiny, but non-negligible,
error on estimates of the probabilities of p, which introduces
some ambiguity on the exactly partition of the domain into
heavy and light elements. Thus, we are motivated seek an
unequivocal definition of heavy and light.

Towards this goal, we can define a heavy and light parti-
tioning of [n] according to one of the fixed distributions
vi, which we know fully, via Algorithm 1. It partitions the

domain [n] with respect to a fixed threshold γ based on
the probability masses of vi. When we sample from p, we
wish to use one of these partitions of the domains (obtained
from inputting the vi’s into Algorithm 1) as the definition
of heavy and light elements for p. However, we still wish
to ensure that any element that we define as heavy for p
does not possess probability mass significantly greater than
γ. Lemma B.3 proves that p̂ and p are Õ(1/

√
n) close in

ℓ∞, where p̂ is the empirical distribution after sampling
from p. Let v∞ denote the closest distribution to p̂ among
the {vi}ki=1 in ℓ∞ distance. As there exists a choice of v∞

(namely v∗) which is O(1/
√
n) close to p (and p̂) in ℓ∞,

∥v∞ − p∥∞ ≤ O(1/
√
n). Hence, if we use the heavy/light

partitioning of v∞, then every domain element classified as
heavy for p has probability mass at least γ −O(1/

√
n) and

no light element has mass more than γ +O(1/
√
n).

The above discussion naturally leads us to our preprocessing
algorithm, Algorithm 2. In Algorithm 2, we first group all
the known distributions {vi}ki=1 into k groups such that the
ith group consists of all distributions which are close to
vi in ℓ∞ distance. Let v∞ denote the closest distribution
to p̂ in ℓ∞ and consider v∞’s group, denoted as S∞. We
essentially use the heavy / light partitioning of the domain
induced by v∞ as the definition of heavy or light for p. All
distributions in v∞’s group will also share the same heavy
/ light partitioning as v∞. By adjusting the log factors, we
can ensure that v∗ is also included in v∞’s group. Hence,
we only need to consider the distributions in S∞.

The key observation is that we can now completely disregard
the heavy elements. This is because p will be sufficiently
close to all distributions in S∞ in ℓ1 distance, restricted to
the heavy elements. This is formalized in Lemma 3.4.

Thus, it suffices to consider the distributions in S∞, re-
stricted to the light domain elements. It turns out that ℓ2 is
a suitable metric to use on the light elements. Therefore,
our main algorithm simply performs an ℓ2 nearest neighbor
using query p̂ and searches for the closest distribution in S∞
to p̂, restricted to the light domain elements. Since we know
v∗ is in S∞, we can guarantee that we will find a distribution
which is ‘close’ in ℓ1 distance on the light elements. We
conclude by combining the fact that all distributions in S∞
are close to p on the heavy elements already, and thus the
total ℓ1 error must be small.

To summarize, the overall algorithm outline is the following.
In the preprocessing step, we create an ℓ∞ data structure
on all the known distributions {vi}ki=1. Then we group all
of the known distributions into k groups, one for each vi,
with the property that all distributions in a fixed group are
Õ(1/

√
n) close in ℓ∞ distance. We additionally instantiate

an ℓ2 nearest neighbor data structure within each group,
but only on the light domain elements, which is defined
consistently within each group (using vi for vi’s group). See
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Algorithm 2 for details.

For the final algorithm, presented formally in Algorithm 3,
we take s samples from the unknown distribution p and let p̂
denote the empirical distribution. We query the ℓ∞ nearest
neighbor search data structure on p̂ which helps us narrow
down to a fixed group of distributions close on the heavy
elements, as defined in the preprocessing stage. We then
query the ℓ2 NNS data structure for this group on p̂, but
restricted to the light domain elements in the group2. The
returned distribution is our output for the closest distribution
to p. The main guarantee of our algorithms is given below.

Theorem 3.1. Set s = Θ
(

n
ε2(log k)1/4

)
= o(n) in Al-

gorithm 3 and γ = 1/n5/12 in Algorithm 2. Let ṽ de-
note the output of Algorithm 3. Then the preprocessing
algorithm, Algorithm 2, runs in time polynomial in k, re-
quires Õ(nk2) space, and the query time of Algorithm 3 is
Õ(n) + k1−1/(log k)1/4 = o(k). Furthermore, with proba-
bility 1− o(1), Algorithm 3 returns distribution ṽ satisfying
∥p− ṽ∥1 ≤ ε.

In summary, we use polynomial preprocessing time, s =
o(n) samples, and our query time is o(k), with the latter
two quantities being sublinear in the domain size and the
number of distributions, respectively. We present auxiliary
lemmas in Sections 3.1 and 3.2 (proofs in Appendices B
and C, respectively) and prove Theorem 3.1 in Appendix D.

Algorithm 1 Heavy light decomposition

1: Input: An ordered list of distributions q1, . . . , qt
2: Output: Vectors (qi)H , (qi)L for every i ∈ [t] (recall

Definition 1.3)
3: procedure HEAVY-LIGHT({qi}ti=1)
4: H,L← ∅
5: for j = 1 to n do
6: if q1(j) ≥ γ then ▷ We use q1 to define the

heavy and light elements for all q1, . . . , qt.
7: H ← H ∪ {j}
8: else
9: L← L ∪ {j}

10: end if ▷ H ∪ L is a disjoint partition of [n].
11: end for
12: Return: vectors {(qi)H , (qi)L}ti=1 ▷ We

use the distribution q1 to set the heavy and light domain
elements for all other distributions.

13: end procedure

3.1. Auxiliary lemma for heavy elements

Lemma 3.2 shows that any pair of distributions in a fixed
group, as defined in the preprocessing step, are close in

2To ensure independence, we actually query using an empirical
distribution using fresh samples.

Algorithm 2 Preprocessing

1: Input: Distributions {vi}ki=1 according to Section 1.1
2: Output: An ℓ∞ data structure, a number of ℓ2 NNS

data structures such that each vi is associated with a
unique ℓ2 data structure

3: procedure PREPROCESSING({vi}ki=1)
4: D∞ ← ℓ∞ data structure on {vi}ki=1

5: for all i ∈ [k] do
6: Si ← {v′ ∈ {vi}ki=1 | ∥vi − v′∥∞ ≤

O((log n)2 · (log log n)/
√
n)}

7: end for
8: for j = 1 to k do
9: Write Sj = {w1, . . . , wt} where w1 = vj

10: {(wi)H , (wi)L}ti=1 ← Heavy-Light(Sj)
11: Dj ← ℓ2 NNS data structure on {(wi)L}ti=1 ▷

Sj corresponds to a well defined partition of [n] into
heavy and light elements based on vj via Algorithm 1

12: end for
13: Return: D∞, data structures {Dj}kj=1

14: end procedure

Algorithm 3 Sublinear Time Hypothesis Selection

1: Input: Distributions {vi}ki=1; preprocessed data struc-
tures D∞, {Dj} ← Preprocessing({vi}ki=1);
Poi(s) samples from query distribution p

2: Output: A distribution vj
3: procedure SUBLINEAR-HYPOTHESIS-
4: SELECTION({vi}ki=1)
5: p̂ ← empirical distribution of the first half of the

samples from p
6: v∞ ← output of D∞ on query p̂ with approxima-

tion c = O(log(n) · log log n)
7: D′ ← ℓ2 NNS data structure corresponding to v∞

8: L← the light domain elements for D′

9: p̂′ ← empirical distribution of the second half of
the samples from p

10: ṽ ← output of D′ on p̂′L with approximation c =

1 + sε2

32n
11: Return: ṽ
12: end procedure

ℓ1 distance, when the ℓ1 distance is restricted to the heavy
domain elements in the group.

Lemma 3.2. Suppose γ = 1/nC in Algorithm 1. Consider
the sets Sj = {w1, . . . , wt} defined in line 9 of Algorithm
2. Consider the vectors (wi)H , which are the heavy subsets
of the distributions in Sj , as defined in line 10 of Algorithm
2. Then for all j and for all w,w′ ∈ Sj , we have

∥wH − w′
H∥1 ≤ O

(
(log n) log log n

n1/2−C

)
.

Lemma 3.3 shows that v∗, the distribution close to p as

4



Data Structures for Density Estimation 5

defined in Section 1.1, must belong to the same group as
v∞, the distribution returned after querying p̂ in the ℓ∞ data
structure in Algorithm 3.

Lemma 3.3. Suppose s ≥ Ω(n/(log n)1/2). Consider the
output v∞ on p̂ when inputted into the ℓ∞ data structure
D∞, as done in line 6 of Algorithm 3. Let S∞ denote
the group of v∞ from Algorithm 2. Assuming the event in
Lemma B.3 holds, it must be that v∗ ∈ S∞.

The final 3.4 below argues that S∞, the group of v∞ in the
preprocessing algorithm, has the property that p must be
close in ℓ∞ distance to every member of S∞. Consequently,
p must be close to every distribution in S∞ in ℓ1 distance,
restricted to the heavy elements of the group.

Lemma 3.4. Consider the same setting as in Lemma 3.3
and suppose γ = 1/nC . Let H denote the heavy domain
elements of group S∞. Then for all w ∈ S∞, we have
∥p− w∥∞ ≤ O

(
(log n)2 log log n√

n

)
. Consequently, we also

have ∥pH − wH∥1 ≤ O
(

(log n)2 log log n
n1/2−C

)
.

Essentially, the lemmas above ensure that v∗ will be in the
group S∞ which in turn has the property that for all the
distributions are close in ℓ1 on the heavy elements. In order
to actually find the closest distribution in ℓ1, we have to
switch our attention to the light elements within the group
and for this we need the lemmas of the next section.

3.2. Auxiliary lemmas for light elements

We now state auxiliary lemmas concerning light elements.
Recall the definition of L from line 8 in Algorithm 3. We
first show the expected value of ∥s · p̂′L − s · vL∥2 captures
the ℓ2 distance between p and v, restricted to the light el-
ements. Note that we are using the empirical distribution
p̂′ which does not share any samples with p̂, insuring the
independence of L and p̂′. We also define T in the lemma
below as T =

∑
i∈L p(i).

Lemma 3.5. E[∥s · p̂′L− s · vL∥22] = s ·T + s2∥pL− vL∥22.

We now derive concentration of the estimator around its
expected value. First we consider the case where v is suffi-
ciently close to p.

Lemma 3.6. Suppose p satisfies ∥pL − vL∥2 ≤ ε
2
√
n

. Set

t =
s2∥pL−vL∥2

2

4 + s2ε2

4n and Z1 = ∥s · p̂′L − s · vL∥22. If

s = Ω
(
max

(
n∥pL∥2

ε2 , n2/3

ε4/3

))
then P[|Z1−E[Z1]| ≥ t] ≤

0.01.

Next we consider the case where ε/
√
n ≲ ∥pL − vL∥2. In

this case, we need to obtain a stronger concentration result
since later we union bound over possibly Ω(k) different
distributions which are in group S∞.

Lemma 3.7. Suppose p satisfies ∥pL − vL∥2 ≥ 0.75 · ε√
n

.

Set t =
s2∥pL−vL∥2

2

4 + s2ε2

4n , suppose γ = 1/n5/12, and
let Z1 = ∥s · p̂′L − s · vL∥22 denote our estimator. If s =

Ω
(

n2γ3 log(k)2

ε4

)
then P[|Z1 − E[Z1]| ≥ t] ≤ 1/poly(k).

Putting it all together: Proof of Theorem 3.1 We give a
high level outline of the proof by showing how to combine
the prior results to prove the main theorem and defer the full
proof to Appendix D. See Section 3 for additional inituition.

Lemma 3.4 states that we can essentially ignore the heavy
elements in the group S∞ and furthermore, Lemma 3.3
proves that v∗ ∈ S∞. Thus we can restrict our attention to
the light elements of the group belonging to v∞. Lemma
3.5 states that the expected value of the (scaled) ℓ2 distance
squared from p̂′L, the empirical distribution, to v∗L is at most
s + s2∥pL − v∗L∥22 ≤ s + s2ε2/(4n) (assuming T is a
constant for the sake of simplicity of the discussion). On
the other hand, the expected value of the same statistic for
any distribution v in S∞ which is 0.99ε far from p in ℓ1 has
to be at least s+ s2∥pL− vL∥22 ≥ s+(0.99)2s2ε2/n. This
is bigger than the corresponding value for v∗ by a factor
of roughly 1 + O(ε2s2/n). These calculations are only
true in expected value so we use Lemmas 3.6 and 3.7 to
prove that the quantities are close to their expected value
with high probability. Since the values of the ℓ2 statistic
are sufficiently far apart in these two cases, the ℓ2 NNS
data structure outputs a close distribution ṽ satisfying the
theorem guarantees.

4. Improving the runtime for classic
hypothesis testing

We now switch our focus to algorithms for the classic hy-
pothesis selection problem in the improper setting. Re-
call from Section 1.1 that we are given a set of k distri-
butions V = {v1, . . . , vk} over [n] and a set of samples
S from some distribution p also over [n]. Given the sam-
ples, our goal is to output v̂ ∈ V such that ∥p − v̂∥1 ≤
C ·minj ∥p − vj∥1 + ε with probability at least 1 − δ for
some constant C and some small parameters ε and δ. In the
case k = 2, this problem can be solved using the so called
Scheffe test (Scheffe, 1947) which we will discuss shortly.
This test uses O( log 1/δ

ε2 ) samples and returns a v̂ ∈ V satis-
fying the above bound with C = 3. In (Devroye & Lugosi,
2001) this was extended to the case k > 2. They showed
that with s = O((log k + log 1

δ )/ε
2) samples, running the

Scheffe test for each pair of distributions and outputting the
one with the most wins, yields an estimate that satisfies the
bound above with C = 9. This is referred to as the Scheffe
tournament. The running time for this tournament, clearly
scales with O(k2). However, using a knockout tournament
style algorithm, (Suresh et al., 2014) showed that the run-
ning time can be reduced to O

(
k
ε2 (log k + log 1

δ )
)

for a
fairly large constant C even when we are only given sample

5
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access to the distributions in V . In (Acharya et al., 2018) the
authors showed that a simple algorithm Quick-Select
obtains C = 9 with the same running time and sample size.
Here we show how to reduce this runtime to O

(
k
ε2 log

1
δ

)
with a slight blow-up in the value of C. For instance, when
δ = Ω(1) this shaves off a factor of log k of the running time.
To obtain this bound, we will allow our algorithm a simple
preprocessing step, namely for each pair of distributions
(vi, vj), we compute and store the total variation distance
between them. This can be done in total time O(k2n).

To achieve this improvement, we recall the classic Scheffe
test (Scheffe, 1947). This test can be seen as an algorithm
for the hypothesis selction problem for the case k = 2. The
algorithm takes as input two distributions v1 and v2 over
[n] and samples from an unknown distribution p over [n].
Let’s define S = {i ∈ [n] : v1(i) > v2(i)}. Upon receiving
the samples, the algorithm computes µS the frequency of
samples in S. It then outputs v1 if |v1(S)−µS | ≤ |v2(S)−
µS |. Otherwise, it outputs v2. Note that the values v1(S)
and v2(S) can be computed directly from the total variation
distance between v1 and v2. It was shown in (Devroye &
Lugosi, 2001) that for k = 2 and with s samples, with
probability 1 − δ the Scheffe test outputs a distribution v
satisfying that

∥p− v∥1 ≤ 3 · min
j∈{1,2}

∥p− vj∥1 +

√
10 log 1

δ

s
. (1)

Except for a simple modification, our algorithm is similar
to the algorithm proposed in (Suresh et al., 2014). Assume
for simplicity that k is a power of two — this assumption
can easily be dispensed with. Define δi = δ/4i and si =
10 log(1/δi)

ε2 . Finally, define V1 = V . Our algorithm first
initializes a set C ← ∅. Then for i = 1, . . . , lg k, it performs
the following steps:

1. Randomly select a subset of min{k1/3, |Vi|} elements
from |Vi| and move them to C.

2. Randomly form |Vi|/2 pairs of distributions in Vi and
run the Scheffe test on each pair using the set Si con-
sisting of the first si elements of the sample.

3. Define Vi+1 to be the set of |Vi|/2 winners.

Finally, our algorithm runs the Scheffe test on all pairs of

distributions in C using a single set of
10 log((|C|

2 )/δ)
ε2 new

samples from p (independent of the samples used in step 2.
above). It outputs the distribution v̂ in C with the most wins
among these comparisons (breaking ties arbitrarily).

The difference between this algorithm and the algorithm
in (Suresh et al., 2014) is that we do not use the entire sample
in the lower levels of the tournament tree. Intuitively, for a
subtree of the tournament tree containing 2i distributions,

we only need to consider a sample of size si in order to union
bound over the bad events that the distribution in V closest
to p loses to either of the ‘far’ distributions in this subtree.
As running a single Scheffe test with a sample of size s
takes O(s) time, the running time used for the knockout
tournament is therefore O

(∑lg k
i=1 sik/2

i
)
= O

(
k
ε2 log

1
δ

)
.

We defer the full proof to Appendix E.

Theorem 4.1. Assume that δ ≥ k−1/4. With probability
1−O(δ), the algorithm of Section 4 outputs a distribution v̂
with ∥p− v̂∥1 ≤ 27 ·minj ∥p−vj∥1+O(ε). The algorithm
uses s = O((log k + log 1

δ )/ε
2) samples from p and has

running time O
(

k
ε2 log

1
δ

)
.

5. Experiments
We experimentally evaluate the faster tournament algorithm
given in Section 4 and compare its performance to the base
knockout tournament (Suresh et al., 2014) on synthetic and
on real networking data.3 These experiments display the
practical benefits of the faster algorithm.

The algorithms have several key parameters which we vary
throughout the experiments. nAllPairs is the number of
distributions in each level of the tournament which are ran-
domly sampled to compete in an all-pairs tournament at the
end of the algorithm. This parameter is used in both the base
tournament and our fast tournament. fastConst controls the
number of samples used in each level of the fast tourna-
ment. In particular, at the ith level, the fast tournament uses
fastConst · i samples for each Scheffe test. While adjust-
ing these parameters slightly does not change the constant
factors in the analysis in Section 4, we find they make a
large impact empirically and thus test the algorithms under
various parameter settings.

We measure computation cost by the number of Scheffe
operations performed by each tournament. One Scheffe
operation is one comparison of a pair of distributions at a
given sampled element (the basic computation performed
during a Scheffe test). Below, we describe the experimental
setup for the datasets.

5.1. Synthetic Experiments

Setup We compare two synthetic datasets corresponding
to half-uniform and Zipfian distributions. The half-uniform
dataset consists of k = 8192 distributions over a domain of
size n = 500. Each distribution is uniform over a random
n/2 sized subset of the domain. We consider a number of
samples s ∈ {20, 30, 40, 50, 60}.

The Zipfian dataset consists of k = 4096 distributions over

3Code available at https://github.com/justc2/
datastructdensityest
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Figure 1. Grid search on half-uniform data with 20 samples.

Figure 2. Grid search on half-uniform data with up to 30 samples.

a domain of size n = 250. Each distribution is a random
permutation of the standard Zipfian distribution where the
ith element has probability proportional to 1/i. We consider
a number of samples s ∈ {20, 30, 40}.

In both cases, queries are formed by taking samples from
one of the distributions in the dataset and performance is
measured by the accuracy of the algorithms (i.e., the fraction
of queried points for which the algorithm returned the true
distribution). As runtime can always be decreased by not
using all of the sampled elements, for results using s sam-
ples, we also report all results using fewer than s samples.
For these experiments, we grid search over fastConst ∈
{5, 10, 15, 20} and nAllPairs ∈ {0, 10, 20, 30}. The re-
ported results are averaged over 5 random sets of 20 queries
each.

Results We will focus on the results for the half-uniform
dataset as the conclusions for the Zipfian dataset are similar
(see specific comments at the end of this subsection). In
Figures 1-5, we compare the accuracy and computational
cost of the base tournament and our fast tournament under
the various parameters setting described above. For both
algorithms, the upper envelope of points (i.e., the discrete
approximation of the Pareto curve for the accuracy/time
tradeoff) are highlighted. As the number of samples in-
creases, the accuracy both algorithms dramatically increases

Figure 3. Grid search on half-uniform data with up to 40 samples.

Figure 4. Grid search on half-uniform data with up to 50 samples.

from 13% at 20 samples up to 98% at 60 samples.

Across different levels of sampling, the fast tournament is
able to attain similar accuracy to the base tournament while
using significantly fewer samples. For example, at 60 sam-
ples, the fast tournament is able to achieve accuracy of 88%
using fewer than 165,000 operations while the slow tour-
nament requires more than 400,000 operations to achieve
accuracy greater than 80% (an improvement of more than
2.4×). In general, we find that the most important factor
influencing accuracy is the number of total samples. On
the other hand, using fewer samples in earlier rounds of the
tournament via small fastConst has a moderate to negligible
impact on accuracy. Finally, the points of the right side of
the plots with many operations correspond to larger values
of nAllPairs. Increasing nAllPairs (at least beyond a certain
point) has small impact on accuracy while significantly in-
creasing computation due to the quadratic dependence on
the all-pairs comparison at the end of the tournament.

The overall results for the Zipfian datset in Figures 6-8 are
very similar though the Zipfian distributions are qualitatively
different from the half-uniform distributions as they contain
several elements with quite large probabilities.

7
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Figure 5. Grid search on half-uniform data with up to 60 samples.

Figure 6. Grid search on Zipfian data with 20 samples.

5.2. Networking Experiments

Setup The underlying network data we use comes from
the CAIDA Anonymized Internet Trace internet traffic
dataset4, which is IP traffic data collected at a backbone link
of a Tier1 ISP in a data center in NYC. Within each minute,
there are approximately ≈ 3.5 · 107 packets recorded.

We split 7 minutes of the IP data into 2,148 chunks, each
representing ≈ 170ms and approximately 105 packets. For
each chunk, we construct a distribution corresponding to
the empirical distribution over source IP addresses in that
chunk. The support sizes of the chunks (and therefore of
the distributions) are approximately 45,000. The goal of
approximate nearest neighbor search within this context is to
identify similar traffic patterns to the current chunk of data
within past data. Further, algorithms for density estimation
allow this computation to be done on subsampled traffic
data, which is a common practice in networking to make
data acquisition feasible (cis).

For a series of 100 query chunks, we use the prior 2,048
chunks as the set of distributions to search over. We test

4From CAIDA internet traces 2019, https:
//www.caida.org/catalog/datasets/monitors/
passive-equinix-nyc/

Figure 7. Grid search on Zipfian data with up to 30 samples.

Figure 8. Grid search on Zipfian data with up to 40 samples.

the algorithms in two parameter regimes: 100 samples and
fastConst = 10 as well as 250 samples and fastConst = 25.
In both regimes, we test with nAllPairs = 0 and nAllPairs =
5. To measure performance, we report the total variation
distance of the distribution returned by the tournament al-
gorithms as well as the true nearest neighbor distance and
average distance across all 2,048 distributions. Results are
averaged over 10 trials for each of the 100 queries and one
standard deviation is shaded.

Results In Figures 9 and 10, we plot the performance
of the base and fast tournaments on the networking data
across samples 100 and 250 and for nAllPairs set to 0 and
5, respectively. In all parameter settings, across the 100
queries, the fast tournament returns a distribution within
roughly the same distance as the base tournament. The fast
tournament uses 5× (when nAllPairs = 0) or 2.4× (when
nAllPairs = 5) less number of operations. Interestingly,
neither algorithm performs better with the inclusion of an
all-pairs comparison at the end of the tournament. Even with
the relatively small sampling rate compared to a domain of
all possible IPs and support size of 45k, the tournament
algorithms are able to recover distributions close to the
nearest neighbor distance. Comparing the results with 100
and 250 samples, the distance to the distribution returned
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Figure 9. Networking experiments with nAllPairs = 0. The base
tournament uses 5× more operations than the fast tournament.

by the algorithms moderately improves and the variance
reduces considerably with more samples.

Experiment summary In both the synthetic and real-
world experiments, the tournament algorithms perform well
in recovering close distributions using few samples. The
most important factor in the algorithms’ performance is
the number of total samples. On the other hand, the fast
tournament is able to use very limited sample sizes for ear-
lier rounds of the tournament in order to save up to 5x on
computational cost while retaining essentially the same per-
formance to the base tournament which uses all samples at
all steps. According to the theoretical results, this computa-
tional gap will only increase for larger k.

6. Conclusion
We introduce the question of sublinear time density estima-
tion, a natural generalization of nearest neighbor search to
discrete distributions. We obtain the first algorithm with
sublinear sample complexity and query time and with poly-
nomial preprocessing, in the proper case. In the improper
case, we improve upon prior results of (Acharya et al.,
2018) to obtain a linear time algorithm with optimal sam-
ple complexity. Our work raises a number of interesting
follow up questions: To what extent can our upper bounds
of query and sample complexity be improved? What are

Figure 10. Networking experiments with nAllPairs = 5. The base
tournament uses 2.4× more operations than the fast tournament.

the computational-statistical tradeoffs between the sample
complexity and query time? While we studied discrete dis-
tributions under total variation distance, it is also interesting
to ask if we can obtain efficient retrieval algorithms for other
distances for distributions, discrete or continuous.
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A. Omitted Proofs of Section 2
Lemma 2.1. For any k ≤

(
n

n/2

)
, there exist distinct distributions p, q1, . . . , qk over [n] such that ∥p− qi∥1 = 1 for each

i ∈ [k] and if p̂ is the empirical distribution obtained from sampling s = n/2 elements from p, then the probability that
∥p− p̂∥1 ≤ mini∈[k](∥qi− p̂∥1) is exp(−Ω(k)). In fact, if k ≥ Cn log n for a sufficiently large constant C, the probability
is 0.

Proof. Let p = (p(1), . . . , p(n)) where each p(i) = 1/n. Let x(i) ∼ Bin(s, 1/n) denote the number of times item
i is sampled, so that p̂(i) = x(i)/s. Fix a subset A ⊆ [n] with |A| ≤ n/2 and define qA = (qA(1), . . . , qA(n)) by
qA(i) = 2/n if i ∈ A and qA(i) = 0 otherwise. Note that ∥p − qA∥1 = 1. Let ℓ1 = |{i ∈ A | x(i) ≥ 1}| and
ℓ2 = |{i ∈ [n] \A | x(i) ≥ 1}|. If s ≤ n/2, then for all i such that x(i) ≥ 1 it holds that

|p(i)− p̂(i)| =

{
x(i)/s− p(i), x(i) ≥ 1

p(i), x(i) = 0,

and a similar equation holds for |qA(i) − p̂(i)|. Using this, simple calculations show that ∥p̂ − p∥1 = 2 − ℓ1+ℓ2
n and

∥p̂− qA∥1 = 2− 4ℓ1
n . In particular, ∥p̂− qA∥1 − ∥p̂− p∥1 = 2

n (ℓ1 − ℓ2). By symmetry, if A is sampled at random (and in
particular A and Ac is sampled with the same probability), the events ∥p̂− qA∥1 > ∥p̂− p∥1 and ∥p̂− qA∥1 < ∥p̂− p∥1
occur with exactly the same probability. Moreover, conditioning on the x(i)’s, it is simple to check that regardless of their
values, ℓ1 ̸= ℓ2 with probability Ω(1). It follows that the probability that ∥p̂ − p∥1 ≤ ∥p̂ − qA∥1 is at most 1 − c for
some constant c > 0. Now pick the distributions q1, . . . , q2k independently and uniformly at random by picking random
A1, . . . , A2k with |Ai| = n/2 and defining qi = qAi

(note that we may have repetitions). By independence, the probability
that ∥p̂− p∥1 ≤ min ∥p̂− qi∥1 is exp(−Ω(k)). If k = O(n log n), it moreover holds with the same high probability that
{q1, . . . , q2k} contains at least 2k different distributions and so the result follows. If on the other hand k ≥ Cn log n for C
sufficiently large, then we can pick k′ = Cn log n distributions q1, . . . , qk′ satisfying the statement of the theorem. The
error probability is P0 = exp(−Ω(k′)) but there are at most nn/2 ways to do the sampling from p. Therefore, if for at least
one way of sampling from p it was the case that ∥p̂− p∥1 ≤ mini∈[k′] ∥p̂− qi∥1, then this event would in fact occur with
probability at least n−n/2. This is a contradiction since P0 = exp(−Ω(k′)) < n−n/2 when C is sufficiently large.

Lemma 2.2. There exists distributions p, q over [n] with ∥p − q∥1 = 1 such that for any sample size s = o(n), with
probability Ω(1), ∥p− p̂∥2 > ∥q − p̂∥2.

Proof (sketch). Suppose for simplicity that n = 2n0 + 1 is odd. Let p = (p(1), . . . , p(n)) be given by

p(i) =


1
2 , i = 1,
1

2n0
, i = 2, . . . , n0 + 1,

0, i = n0 + 2, . . . , 2n0 + 1,

Simple concentration bounds show that with high probability,
∑n

i=2(X(i) − sp(i))2 ≤ (1 + o(1))s/2. Define next
q = (q(1), . . . , q(n)) by

q(i) =


1
2 + 1√

s
, i = 1,

0, i = 2, . . . , n0 + 1,
1
2−

1√
s

n0
, i = n0 + 2, . . . , 2n0 + 1,

Again with the assumption that s = o(n), standard concentration bounds show that
∑n

i=2(X(i)− sq(i))2 ≤ (1 + o(1))s/2
with high probability. It follows from these observations that if X(1) ≥ s/2 +

√
s, then ∥p− p̂∥2 > ∥q − p̂∥2. By standard

properties of the binomial distribution B(s, 1/2), this happens with probability Ω(1).

B. Omitted Proofs of Section 3.1
Remark B.1. We remark that in the proofs of this and all subsequent sections, the notation 1/poly(n) or 1/poly(k) refers to
quantities of the form 1/nC or 1/kC where we can choose C to be an arbitrarily large constant.
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The following is a standard tail bound for Poisson distributions5.

Lemma B.2. If Y ∼ Poi(λ), then for any t > 0, P(|Y − λ| ≥ t) ≤ 2 exp
(
− t2

2(λ+t)

)
.

Lemma B.3 below bounds the ℓ∞ distance between p̂, the empirical distribution, and p, the unknown distribution.
Lemma B.3. Let p̂ denote the empirical distribution of Algorithm 3. With probability at least 1− 1/poly(n), we have that
for all i ∈ [n],

|p̂(i)− p(i)| ≤ O

(
max

(√
p(i) log n

s
,
log n

s

))
.

Proof. Note that s · p̂(i) is distributed as Poi(s · p(i)). By setting t = C ′ ·max
(√

s · p(i) log n, log n
)

in Lemma B.2 for
a large enough constant C ′, we see that the probability s · p̂(i) deviates by t is at most 1/poly(n), where we can make the
degree of the polynomial arbitrarily large by increasing C ′. The proof is completed by dividing by s.

Lemma 3.2. Suppose γ = 1/nC in Algorithm 1. Consider the sets Sj = {w1, . . . , wt} defined in line 9 of Algorithm 2.
Consider the vectors (wi)H , which are the heavy subsets of the distributions in Sj , as defined in line 10 of Algorithm 2.
Then for all j and for all w,w′ ∈ Sj , we have

∥wH − w′
H∥1 ≤ O

(
(log n) log log n

n1/2−C

)
.

Proof. There can be at most 1/γ = nC heavy elements since each heavy element has probability mass at least γ,
by Algorithm 1. Let H be the set of heavy elements. We know that any two distributions w and w′ ∈ Sj are at
most O((log n) · (log log n))/

√
n apart in ℓ∞. Thus, the ℓ1 difference restricted to the heavy elements is at most nC ·

O
(

(log n)·(log log n)√
n

)
= O

(
(log n) log log n

n1/2−C

)
.

Lemma 3.3. Suppose s ≥ Ω(n/(log n)1/2). Consider the output v∞ on p̂ when inputted into the ℓ∞ data structure D∞,
as done in line 6 of Algorithm 3. Let S∞ denote the group of v∞ from Algorithm 2. Assuming the event in Lemma B.3 holds,
it must be that v∗ ∈ S∞.

Proof. We know ∥p − v∗∥∞ ≤ ∥p − v∗∥2 ≤ 1
2
√
n

by our assumption on v∗ given in Section 1.1. Furthermore, Lemma

B.3 implies that ∥p − p̂∥∞ ≤ O
(

(log n)3/4√
n

)
so by adjusting constants, it follows from the triangle inequality that

∥p̂− v∗∥∞ ≤ O
(

(log n)3/4√
n

)
. By definition of v∞, the distribution returned by the ℓ∞ data structure in line 6 of Algorithm

3, we know that ∥p̂− v∞∥∞ ≤ c∥p̂− v∗∥∞, where c = O(log(n) · log log n) set in line 6 of Algorithm 3. Hence,

∥v∞ − v∗∥∞ ≤ ∥p̂− v∞∥∞ + ∥p̂− v∗∥∞
≤ (c+ 1)∥p̂− v∗∥∞

≤ O

(
(log n)1.75 · (log log n)√

n

)
,

so v∗ must be in S∞ from line 6 of Algorithm 2.

Lemma 3.4. Consider the same setting as in Lemma 3.3 and suppose γ = 1/nC . Let H denote the heavy domain

elements of group S∞. Then for all w ∈ S∞, we have ∥p − w∥∞ ≤ O
(

(log n)2 log log n√
n

)
. Consequently, we also have

∥pH − wH∥1 ≤ O
(

(log n)2 log log n
n1/2−C

)
.

Proof. Take any w ∈ S∞. We know that

∥p̂− w∥∞ ≤ ∥p̂− v∞∥∞ + ∥v∞ − w∥∞

≤ ∥p̂− v∞∥∞ +O

(
(log n)2 · (log log n)√

n

)
,

5see e.g. https://math.stackexchange.com/questions/2434883/chernoff-style-bounds-for-poisson-distribution/
2434922

12

https://math.stackexchange.com/questions/2434883/chernoff-style-bounds-for-poisson-distribution/2434922
https://math.stackexchange.com/questions/2434883/chernoff-style-bounds-for-poisson-distribution/2434922


Data Structures for Density Estimation 13

where the last inequality holds from the construction of S∞ in Algorithm 2. Since ∥p̂− v∞∥∞ ≤ c∥p̂− v∗∥∞, for c defined
in line 6 of Algorithm 3, by definition,

∥p− w∥∞ ≤ ∥p̂− w∥∞ + ∥p− p̂∥∞

≤ c∥p̂− v∗∥∞ + ∥p− p̂∥∞ +O

(
(log n) · (log log n)√

n

)
.

The proof of Lemma 3.3 implies that ∥p − p̂∥∞, ∥p̂ − v∗∥∞ ≤ O((log n)3/4/
√
n), so by adjusting constant factors, the

first inequality in the lemma statement holds, as O
(
(log n)2 log log n/

√
n
)

is the dominant term.

The second inequality in the lemma statement holds by an identical reasoning as used in the proof of Lemma 3.2, as there
are at most nC heavy coordinates.

C. Omitted Proofs of Section 3.2
Recall that T =

∑
i∈L p(i).

Lemma 3.5. E[∥s · p̂′L − s · vL∥22] = s · T + s2∥pL − vL∥22.

Proof. Note that the light elements refer to elements in L defined in Algorithm 3. Set X(i) := s · p̂′L(i) and recall that
X(i) ∼ Pois(s · pL(i)). We have

E[∥s · p̂′L − s · vL∥22]

=
n∑

i=1

E[X(i)2 + s2vL(i)
2 − 2sX(i)vL(i)]

=

n∑
i=1

spL(i) +

n∑
i=1

(
s2pL(i)

2 − 2s2pL(i)vL(i) + s2vL(i)
2
)

= sT + s2∥pL − vL∥22.

We now bound the variance. The following lemma bounds the variance one term at a time.

Lemma C.1. Let X(i) = s · p̂′L(i). We have Var[(X(i)− svL(i))
2] ≤ 4spL(i) · (spL(i)− svL(i))

2+6(spL(i))
2+ spL(i).

Proof. Define the auxiliary variables y := spL(i) and z := svL(i). We have

Var[(X(i)− svL(i))
2] = E[(X(i)− svL(i))

4]− E[(X(i)− svL(i))
2]2

= E[(X(i)− svL(i))
4]− (s2pL(i)

2 − 2s2pL(i)vL(i) + s2vL(i)
2 + spL(i))

2

= E[(X(i)− svL(i))
4]− (y + y2 − 2yz + z2)2.

Since X(i) is a Poisson random variable with parameter y, we know that

E[X(i)3] = y + 3y2 + y3,

E[X(i)4] = y + 7y2 + 6y3 + y4.

By expanding, we have

E[(X(i)− sv(i))4] = E[X(i)4]− 4E[X(i)3]z + 6E[X(i)2]z2 − 4E[X(i)]z3 + z4

= (y + 7y2 + 6y3 + y4)− 4(y + 3y2 + y3)z + 6(y + y2)z2 − 4yz3 + z4.

13
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Putting everything together gives us

Var[(X(i)− svL(i))
2] = E[(X(i)− svL(i))

4]− (y + y2 − 2yz + z2)2

=
(
(y + 7y2 + 6y3 + y4)− 4(y + 3y2 + y3)z + 6(y + y2)z2 − 4yz3 + z4

)
− (y + y2 − 2yz + z2)2

= 4y3 − 8y2z + 4yz2 + 6y2 + y − 4yz

= 4y(y − z)2 + 6y2 + y − 4yz

≤ 4y(y − z)2 + 6y2 + y

= 4spL(i) · (spL(i)− svL(i))
2 + 6(spL(i))

2 + spL(i).

The following lemma bounds the total variance.

Lemma C.2. Var[∥s · p̂′L − s · vL∥22] ≤ 4s3∥pL∥2∥pL − vL∥22 + 6s2∥pL∥22 + sT .

Proof. Summing the result of Lemma C.1 for all coordinates i gives us

Var[∥s · p̂′L − s · vL∥22]

≤
n∑

i=1

4spL(i) · (spL(i)− svL(i))
2 + 6(spL(i))

2 + spL(i)

=
n∑

i=1

4s3pL(i) · (pL(i)− vL(i))
2 + 6s2∥pL∥22 + sT

≤ 4s3∥pL∥2∥pL − vL∥22 + 6s2∥pL∥22 + sT.

Lemma 3.6. Suppose p satisfies ∥pL − vL∥2 ≤ ε
2
√
n

. Set t =
s2∥pL−vL∥2

2

4 + s2ε2

4n and Z1 = ∥s · p̂′L − s · vL∥22. If

s = Ω
(
max

(
n∥pL∥2

ε2 , n2/3

ε4/3

))
then P[|Z1 − E[Z1]| ≥ t] ≤ 0.01.

Proof. By Chebyshev’s inequality and Lemma C.2,

P[|Z1 − E[Z1]| ≥ t] ≤ Var[Z1]

t2

≲
s3∥pL∥2∥pL − vL∥22

s4ε4/n2
+

s2∥pL∥22
s4ε4/n2

+
s

s4ε4/n2

≤ n∥pL∥2
sε2

+

(
n∥pL∥2
sε2

)2

+
n2

s3ε4
≤ 0.01

where the last inequality holds if s ≥ Cmax
(

n∥pL∥2

ε2 , n2/3

ε4/3

)
for a sufficiently large constant C.

We then consider the case where ε/
√
n ≲ ∥pL−vL∥2. As stated in the main body, we need to obtain a stronger concentration

result since later we union bound over possibly Ω(k) different distributions which are in group S∞.

To obtain a stronger concentration result, we need the coordinates of both p̂L and vL to be bounded. For each vi, we know
that ∥(vi)L∥∞ ≤ 2γ by construction if we set γ ≥ Ω̃(1/

√
n). Lemma B.3 readily implies a similar statement for p̂L (with

high probability).
Remark C.3. Therefore, in the following concentration bound, we utilize the fact that maxi{pL(i), vL(i)} ≤ O(γ), which
holds with high probability.

The main tool we use is Bernstein’s concentration inequality on Z1 = ∥s · p̂′L − s · vL∥22. Towards this, we first prove a
bound on a variance like quantity.

Lemma C.4. With probability 1− 1/poly(k) (over the randomness in p̂′), we have

max
i∈[n]
|(s · p̂′L(i)− s · vL(i))2 − E[(s · p̂′L(i)− s · vL(i))2]| ≤ O

(
log k · (sγ)1.5)

)
.

14
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Proof. Define X(i) = s · p̂′L(i). Recall each X(i) is distributed as Pois(s · pL(i)). From Lemma B.2, we have that with

probability 1− 1/poly(k), |X(i)− spL(i)| ≤ O
(
max

(√
spL(i) log k, log k

))
for all i. Call this event E . Now

(X(i)− s · vL(i))2 − E[(X(i)− s · vL(i))2]
= X(i)2 − 2svL(i)X(i) + s2vL(i)

2 − (s2pL(i)
2 − 2s2pL(i)vL(i) + s2vL(i)

2 + spL(i))

= X(i)2 − s2pL(i)
2 − spL(i) + 2svL(i)(spL(i)−X(i)).

Thus conditioning on E and recalling Remark C.3, we have

|X(i)2 − s2pL(i)
2 − spL(i)| ≤ O((spL(i))

1.5 log k) = O((sγ)1.5 log k)

and
|2svL(i)(spL(i)−XL(i))| ≤ O(sγ · (√sγ + 1) log k)

for all i. Altogether, we have that under E ,

max
i
|(X(i)− s · vL(i))2 − E[(X(i)− s · vL(i))2]|

≤ O
(
log k · (s1.5γ1.5

)
).

Lemma 3.7. Suppose p satisfies ∥pL − vL∥2 ≥ 0.75 · ε√
n

. Set t = s2∥pL−vL∥2
2

4 + s2ε2

4n , suppose γ = 1/n5/12, and let

Z1 = ∥s · p̂′L − s · vL∥22 denote our estimator. If s = Ω
(

n2γ3 log(k)2

ε4

)
then P[|Z1 − E[Z1]| ≥ t] ≤ 1/poly(k).

Proof. Define X(i) = s · p̂′L(i). Recall Bernstein’s inequality: for a random variable R =
∑

i Ri where Ri are independent,
it states

P(|R− E[R]| ≥ t) ≤ 2 exp

(
− t2/2

Var(R) + tM/3

)
(2)

where M is such that |Ri − E[Ri]| ≤M with probability 1 for every i. In our case, Z1 =
∑

i(X(i)− s · vL(i))2, so we
must first bound the maximum deviation of

|(X(i)− s · vL(i))2 − E[(X(i)− s · vL(i))2]|

for all i. To do so, we condition on the event E of Lemma C.4. This gives

P[|Z1 − E[Z1]| ≥ t] = P[|Z1 − E[Z1]| ≥ t | E ] · P(E) + P[|Z1 − E[Z1]| ≥ t | Ec] · P(Ec).

We have P[|Z1 − E[Z]| ≥ t | Ec] · P(Ec) ≤ P(Ec) ≤ 1
poly(k) so it suffices to bound P[|Z1 − E[Z1]| ≥ t | E ]. We drop the

conditioning E for simplicity. Note that a similar analysis as above also shows that |E[Z1]− E[Z1 | E ]| ≤ 1
poly(k) which is a

much smaller lower order term compared to t so we ignore it for simplicity. A similar statement holds for the variance of Z1.

Now Bernstein’s inequality gives us

P(|Z1 − E[Z1]| ≥ t) ≲ exp

(
− t2/2

4s3∥pL∥2∥pL − vL∥22 + 6s2∥pL∥22 + s+ tM/3

)

where we have used Lemma C.2 to substitute in the variance. We can furthermore set M = O
(
log k · (sγ)1.5

)
) from

Lemma C.4. If we show that

min

(
t2

s3∥pL∥2∥pL − vL∥22
,

t2

s2∥pL∥22
,
t2

s
,
t

M

)
≥ Ω(log k),

where the constants in the Ω(log k) are sufficiently large, then it follows that

t2/2

4s3∥p∥2∥pL − vL∥22 + 6s2∥pL∥22 + s+ tM/3
≥ Ω(log k)

15
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and we get the desired concentration bound. Thus, we proceed to analyze each of the four fractions individually. Using
t =

s2∥pL−vL∥2
2

4 + s2ε2

4n , we see that

t2

s3∥pL∥2∥pL − vL∥22
≥ s∥pL − vL∥22

∥pL∥2
≥ sε2

n∥pL∥2
,

t2

s2∥pL∥22
≥ s2ε4

n2∥pL∥22
,

t2

s
≥ s3ε4

16n2
.

Thus, s ≥ Ω(max(n2/3 log(k)2/3/ε2/3, n∥pL∥2 log k/ε2)) is required. We now consider t/M Recalling their values, we
observe that

t

s1.5γ1.5
≥ s0.5ε2

nγ1.5
.

(Note that sγ ≫ 1 in our setting). If s ≥ Ω(n∥p∥2 log k/ε2), then sε2/(nγ) = Ω(log k). To ensure s0.5ε2

nγ1.5 ≥ Ω(log k), we

need to satisfy s = Ω
(

n2γ3 log(k)2

ε4

)
. Recalling the value of γ, we can easily check that s ≥ Ω

(
n2γ3 log(k)2

ε4

)
implies all

other lower bounds we have imposed on s so far, proving the lemma.

D. Proof of Theorem 3.1
Theorem 3.1. Set s = Θ

(
n

ε2(log k)1/4

)
= o(n) in Algorithm 3 and γ = 1/n5/12 in Algorithm 2. Let ṽ denote the output of

Algorithm 3. Then the preprocessing algorithm, Algorithm 2, runs in time polynomial in k, requires Õ(nk2) space, and the
query time of Algorithm 3 is Õ(n) + k1−1/(log k)1/4 = o(k). Furthermore, with probability 1− o(1), Algorithm 3 returns
distribution ṽ satisfying ∥p− ṽ∥1 ≤ ε.

Proof. Let v∞ be the output of line 6 of Algorithm 3 and S∞ be the group of v∞ from Algorithm 2, the preprocessing step.
Let H and L be the partition of [n] into heavy and light elements induced by v∞. From Lemma 3.4, we know that p is close
to ṽ on H as ṽ ∈ S∞: ∥p− ṽ∥1 ≤ o(1). Thus it suffices to bound ∥pL − ṽL∥1.

Lemma 3.3 states that v∗ ∈ S∞ with probability 1− 1/poly(n). Since we assumed that ∥p− v∗∥2 ≤ ε/(2
√
n), Lemma 3.6

implies that

∥s · p̂′L − s · v∗L∥22 ≤ sT +
5s2ε2

16n
(3)

with probability 1− o(1) (note Lemma 3.6 is stated as holding with probability 99% but we are picking a much larger value
of s than required by the lemma. Plugging into the Chebyshev inequality bound readily gives us that the failure probability
is o(1)).

Now we claim that ṽ cannot satisfy ∥ṽL − pL∥2 ≥ 0.99 · ε/
√
n. Let us assume for the sake of contradiction that

∥ṽL − pL∥2 ≥ 0.99 · ε/
√
n. Then from Lemma 3.5,

E[∥s · p̂′L − s · ṽL∥22] = sT + s2∥pL − ṽL∥22,

and Lemma 3.7 implies that with probability at least 1− 1/poly(k), we have

∥s · p̂′L − s · ṽL∥22 ≥ sT + .75s2∥pL − ṽL∥22 − 0.25 · s
2ε2

n
≥ sT + 0.48 · s

2ε2

n
, (4)

where the last inequality follows from the assumption that ∥pL − ṽ∥22 ≥ (.99)2ε2/n. However, the ratio of the quantities on
the right hand side of (4) and (3) is at least

sT + 0.48 · s
2ε2

n

sT + 5s2ε2

16n

≥ 1 +
z/2

T + z

16
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for z = 5sε2/(16n). Now if T ≤ z then z/2/(T + z) ≥ 1/4 so the ratio is at least 1.25. Otherwise, if T > z, we always
know that T ≤ 1 so T + z ≤ 2 and hence the ratio is at least 1 + z

4 ≥ 1 + 5sε2

64n . Since (1 + x)1/2 ≥ 1 + x/2.5 for any
x ∈ [0, 1], we have that (in our regime of s) the square root of the ratio is strictly larger than 1 + sε2/(32n), by setting s
appropriately. However, this contradicts the ℓ2 nearest neighbor search guarantees set in line 10 of Algorithm 3, since it
means we return a ṽ which has the property that ∥p̂′L − ṽL∥2 is larger than ∥p̂′L − v∗L∥2 by a factor larger than c set in line
10 (and v∗ was also considered by the ℓ2 data structure).

Therefore, we must have ∥ṽL − pL∥2 ≤ 0.99 · ε/
√
n which implies that ∥ṽL − pL∥1 ≤ 0.99 · ε. Since we already know

that ∥ṽH − pH∥1 ≤ o(1), we have that ∥ṽ − p∥1 ≤ (1 + o(1))0.99 · ε < ε. This proves the approximation.

For the sample complexity, note that if we set s = Θ(n/(log k)1/4) then s is larger than the values required in Lemmas 3.6
and 3.7. The prepossessing time follows from Theorem 1.1. Finally, the query time follows from 1.2 by plugging in the
value of c from line 10 of Algorithm 3 (the ℓ2 NNS approximation parameter) into statement of Theorem 1.2 and noting
that all log(k) factors can be absorbed into the exponent as kΘ(1/(log k)1/4) ≫ poly(log k). Note that we get an extra Õ(n)
runtime from also querying an ℓ∞ NNS datastructure as well in step 6 of Algorithm 3. Finally, we remark that an alternative
expression for the approximation guarantee is ∥p− ṽ∥1 ≤ ∥p− v∗∥1 + ε. This completes the proof.

E. Omitted Proofs of Section 4
Theorem 4.1. Assume that δ ≥ k−1/4. With probability 1−O(δ), the algorithm of Section 4 outputs a distribution v̂ with
∥p− v̂∥1 ≤ 27 ·minj ∥p− vj∥1 +O(ε). The algorithm uses s = O((log k + log 1

δ )/ε
2) samples from p and has running

time O
(

k
ε2 log

1
δ

)
.

Proof. The statement about the number of samples is clear. Indeed, for the iterative part of the algorithm, we use a total
of slg k = 10 log(k2/δ)

ε2 samples and for the final part, we use a further 10 log(|C|2/δ)
ε2 ≤ 10 log(k2/δ)

ε2 samples. Regarding the
running time, we already argued above that the time used for the knockout tournament is O

(
k
ε2 log

1
δ

)
. Further, since

|C| ≤ k1/3 log k, running the Scheffe test on all pairs of distributions in C takes time O
(
sk2/3 log2 k

)
= O

(
k
ε2 log

1
δ

)
.

For the bound on the quality of the estimate v̂, we define v∗ = argminv∈V ∥p− v∥1 and letW0 = {v ∈ V : ∥p− v∥1 ≤
3∥p− v∗∥1 + ε} andW1 = V \W0. We first want to argue that with probability 1−O(δ), some element ofW0 gets added
to C. For i = 1, . . . , lg k, we let Ti be the set of 2i − 1 distributions that v∗ could possibly be paired with in step 2. of the
algorithm during the first i rounds of the tournament (this is the set of 2i − 1 distributions in the subtree of the tournament
tree rooted i steps above v∗). Let Ai denote the event that there exists a distribution v′ in Ti ∩W1 such that v∗ loses the
Scheffe test to v′ using the sample Si. By the choice of si and the bound in (1), we have that

Pr[Ai] ≤ |Ti ∩W1|δi ≤
δ

2i
,

so Pr[
⋃

i Ai] ≤ δ. We now consider two cases: Suppose first that at some stage i, |Vi∩W0|
|Vi| ≥ log 1/δ

k1/3 . In this case, the

probability that no element of Vi is added to C during step 1. of iteration i of the algorithm is at most (1− log 1/δ
k1/3 )k

1/3 ≤ δ.
If on the other hand, at each step i, |Vi∩W0|

|Vi| < log 1/δ
k1/3 , then the probability that v∗ gets paired with an element ofW0 in step

i (conditioned on it surviving the first i− 1 steps) is at most log 1/δ
k1/3 . Note that if none of the events Ai occurs and v∗ never

gets paired with a distribution inW0, then v∗ will win the tournament, and thus get added to C in some step. Thus, by a
union bound, the probability that no element ofW0 gets added to C is at most

Pr

[⋃
i

Ai

]
+ δ +

log k log 1/δ

k1/3
≤ 2δ +

(log k)2

4k1/3
= O(δ),

where we used δ ≥ k−1/4 in the final step.

It was shown in (Devroye & Lugosi, 2001) that running the Scheffe test on all pairs of distributions in a set C using a sample

of size
10 log((|C|

2 )/δ)
ε2 and outputting the one v̂ with the most wins, we have with probability at least 1− δ that

∥p− v̂∥1 ≤ 9 ·min
v∈C
∥p− v∥1 + 4ε.

17
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Since C contains a distribution ofW0 with probability 1−O(δ) we obtain that with probability 1−O(δ),

∥p− v̂∥1 ≤ 9 ·min
v∈C
∥p− v∥1 + 4ε

≤ 9 · (3∥p− v∗∥1 + ε) + 4ε = 27∥p− v∗∥1 + 13ε,

as desired.

Remark E.1. We can also handle error probabilities δ < k−1/4. In this case, we set δ0 = k−1/4 and run the iterative part of
the algorithm above ℓ = log 1/δ

log 1/δ0
times to obtain a candidate set of distributions C ⊆ V (ℓ times larger than before) which

contains an element ofW0 with probability 1−O(δ). We then again run the complete tournament on C with a sample of

size
10 log((|C|

2 )/δ)
ε2 . The bound on the quality of the estimate, follows as above. Moreover, easy calculations show that the

number of samples used is still O( log 1/δ
ε2 ) and that the total running time is

O

(
1

ε2
log

1

δ

(
k + ℓ2k2/3 log2 k

))
,

which is O
(

k
ε2 log

1
δ

)
except for extremely small δ.

Remark E.2. In a slightly different model, we are not given the distributions of V explicitly but can only access them
through sampling. In this model, we can skip the preprocessing step and instead estimate the probabilities vi(S) and vj(S)
through sampling whenever we run the Scheffe test for distributions vi and vj . This comes at the cost of a larger value of the
constant C. When running the algorithm above in this model, we obtain the same reduction of the running time and with no
preprocessing.
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