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Abstract

We propose a model for online graph problems where algorithms are given access
to an oracle that predicts (e.g., based on modeling assumptions or on past data) the
degrees of nodes in the graph. Within this model, we study the classic problem
of online bipartite matching, and a natural greedy matching algorithm called
MinPredictedDegree, which uses predictions of the degrees of offline nodes. For
the bipartite version of a stochastic graph model due to Chung, Lu, and Vu where the
expected values of the offline degrees are known and used as predictions, we show
that MinPredictedDegree stochastically dominates any other online algorithm, i.e.,
it is optimal for graphs drawn from this model. Since the “symmetric” version of
the model, where all online nodes are identical, is a special case of the well-studied
“known i.i.d. model”, it follows that the competitive ratio of MinPredictedDegree
on such inputs is at least 0.7299. For the special case of graphs with power
law degree distributions, we show that MinPredictedDegree frequently produces
matchings almost as large as the true maximum matching on such graphs. We
complement these results with an extensive empirical evaluation showing that
MinPredictedDegree compares favorably to state-of-the-art online algorithms for
online matching.

1 Introduction

Online algorithms are algorithms that process their inputs “on the fly”, making irrevocable decisions
based only on the data seen so far. Since they do not make any assumptions about the future, they are
versatile and work even for adversarial inputs. Unfortunately, by focusing on the worst case, their
performance in “typical” cases can be sub-optimal. As a result there has been a large body of research
studying various relaxations of the worst-case model, where some extra information about the inputs,
or the distribution they are selected from, is available [1].

Motivated by the developments in machine learning, over the last few years, many papers have
studied online algorithms with predictions [47]. Such algorithms are equipped with a predictor that,
when invoked, provides an (imperfect) prediction of some features of the future part of the input,
which is then used by the algorithm to improve its performance. The specific information provided
by such predictors is problem-dependent. For graph problems studied in this paper, predictions could
include: the list of edges incident to a given vertex [33], the weight of an edge adjacent to a given
node in an optimal solution [4], or vertex weights that guide a proportional allocation scheme [36].

In this paper we focus on online graph problems, and propose a model where an algorithm is equipped
with a “degree predictor”, i.e., an oracle that, given any vertex, predicts the degree of that vertex
in the full graph (containing yet-unseen edges). This predictor has multiple appealing features.
First it is simple, natural, and easy to interpret. Second, it is useful: vertex degree information is
employed in many heuristic and approximation algorithms for graph optimization, for problems such
as maximum independent set [24] or maximum matching [53]. Third (as demonstrated in Section 7)
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such predictors can be easily obtained. Finally, degree prediction is closely related to the problem
of estimating the frequencies of elements in a data set1, and frequency predictors have been already
shown to improve the performance of algorithms for multiple data analysis problems [25, 28, 19, 17].

The specific graph problem studied in this paper is online bipartite matching, where we are given
a bipartite graph G = (U [ V,E), and the goal is to find a maximum matching in G. In the online
setting, the set U is known beforehand, while the vertices in V arrive online one by one. When a
new vertex v arrives, the edges in G adjacent to v are provided as well. Online maximum bipartite
matching is a classic question studied in the online algorithms literature, with many applications [41].
It is known that a randomized online greedy algorithm, called Ranking, computes a matching of size
at least 1� 1/e ⇡ 0.632 times the optimum [31], and that this bound is tight in the worst-case. A
large body of work studied various relaxations of the problem, obtained by assuming that vertex
arrivals are random [21] or that the graph itself is randomly generated from a given “known i.i.d.
model” [20]. In this paper we extend the basic online model by assuming access to a predictor that,
given any “offline” vertex u 2 U , returns an estimate of its degree. (Note that the degree of any
vertex in V is known immediately upon its arrival.)

Our results We study the following simple greedy algorithm for bipartite matching: upon the
arrival of a vertex v, if the set of neighbors N(v) of v in G contains any yet-unmatched vertex,
the algorithm selects u 2 N(v) of minimum predicted degree in G and adds the edge (u, v) to the
matching. This algorithm, which we call MinPredictedDegree (MPD), is essentially identical2 to
the algorithm proposed in [10] which in turn was inspired by the offline matching algorithm called
MinGreedy [53]. The intuition is that vertices with higher degree will have more chances to be
matched in the future.

Our main contributions are as follows. First, following in a long line of work on the average-
case analysis of matching algorithms initiated by [30], we analyze MPD under a natural random
bipartite graph model we refer to as CLV-B, a bipartite version of the Chung-Lu-Vu random graph
model [12]. A CLV-B random graph is parameterized by n = |U |, m = |V |, and two weight vectors
p = {pi}ni=1 2 [0, 1]n and q = {qi}mi=1 2 [0, 1]m. For any ui 2 U and vj 2 V , the edge {ui, vj}
appears in the graph with probability piqj and these events are mutually independent. This model
corresponds to the setting where consumers pick their edges with probabilities proportional to the
vector p which describes the relative distribution over the producers.

Many natural families of random graphs can be described in the CLV-B model. Of particular interest
is the case when q = (1, . . . , 1), corresponding to the consumers picking their edges i.i.d.; we will
refer to this case as the symmetric CLV-B model. The symmetric version can be viewed as a special
case of the well-studied known i.i.d. model of [20]. If we further let p = (p, . . . , p), then the CLV-B
graph is an Erdős-Rényi random bipartite graph with edge probability p.

Theoretical Results For the CLV-B model and the MPD algorithm which uses the expected degrees
as predictions, we make the following theoretical contributions:

• We show that MPD stochastically dominates any other online algorithm, i.e., it is optimal for
graphs drawn from the CLV-B model (Section 5). Specifically, we show that for any degree
distribution, any algorithm A and any integer t, the probability that A produces matching
of size at least t is upper bounded by the analogous probability for MPD. Since symmetric
CLV-B is a special case of the known i.i.d. model, it follows that the competitive ratio of
MPD for this model is at least equal to the best competitive ratio of any algorithm that works
for the known i.i.d. model. By the result of [11], this ratio is at least 0.7299.

• We analyze MPD on symmetric CLV-B model with power law degree distribution (Section 6).
Our theoretical predictions demonstrate that the competitive ratio achieved by our algorithm
on such graphs is very high. In particular, for several different power law distributions, it
exceeds 0.99.

• We also analyze MPD on Erdős-Rényi bipartite random graphs where all edges appear with
the same probability (Appendix K). In particular, the competitive ratio of the algorithm on

1The degree of a node is simply the number of times the node appears in the union of all edges.
2The main differences are syntactic: the algorithm of [10] computes the degrees based on the given “type

graph” (see Section 2), while in this paper we allow arbitrary predictors.
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such graphs is at least 0.831. Since in this case all expected degrees are equal, the prediction
oracle is of no help. Thus, we conjecture that this is the worst distribution for MPD among
all distributions in the CLV-B model class.

• Finally, we observe that the competitive ratio of MPD is 1/2 for worst case graphs, and
that this bound is tight. In addition, we show that the worst-case competitive ratio of
any algorithm with access to the offline degrees is at most 1 � 1/e, implying that degree
predictions do not help in the worst-case though they prove to be useful in the random model
as well as in practice. See Appendix E for details.

Experiments We complement our theoretical studies with an extensive empirical evaluation of
MPD for multiple random graph models and real graph benchmarks in Section 7. Our experiments
show that, on most benchmarks, MPD has the best performance among about a dozen state-of-the-art
online algorithms, even when compared to algorithms that use much more information about the
input. These experimental results demonstrate that MPD performs well beyond the average-case
instances we study theoretically.

Prediction Error For our theoretical results on the CLV-B graphs, MPD is given only the expected
(as opposed to the actual) degrees. Although this models the uncertainty in the input, it is natural to
ask howMPD performs when even the expected degrees are mispredicted. To this end, in Appendix D,
we suppose that the offline nodes are prioritized in an arbitrary order ⇡0 which may be different from
the order ⇡ obtained by sorting the nodes according to their expected degrees. Letting � be the
minimum number of offline nodes that needs to be deleted such that ⇡ and ⇡0 induce the same order
on the remaining nodes, we prove that using a noisy degree predictor which induces ⇡0 instead of
⇡ can shrink the size of the matching produced by MPD by at most �. We note that the number of
mispredicted nodes is an upper bound on �, but in general � could be much smaller.

Importantly, we also note that the empirical performance of MPD shows its resilience to prediction
error. Our experiments on real graphs use predictors which are noisy and which degrade over time
but still find large matchings. Furthermore, on synthetic Zipfian data, we experiment with artifically
adding noise and show a gradual degradation of MPD’s performance as error increases.

2 Preliminaries

CLV-Bmodel CLV-B is the bipartite version of the Chung-Lu-Vu model used in prior work [12, 42].
Given vectors p = {pi}ni=1 and q = {qj}mj=1, the edge {ui, vj} appears in the graph independently
with probability piqj . From the vectors p and q, we obtain the vector of offline expected degrees
d = {di}ni=1 = {pi · kqk1}ni=1. For our theoretical results within this model, our algorithm
MinPredictedDegree uses the degree predictor which returns the expected degree for each offline
node: �(ui) = di (see Appendix D for extension to noisy predictors). The particular case of
symmetric CLV-B where q = (1, . . . , 1) corresponds to the case where consumers (online) pick
their edges i.i.d. over producers (offline) and MPD has knowledge of the average preferences over
producers.

Known i.i.d. model In the known i.i.d. model of [20], algorithms are given access to a type graph
G = (U [V,E) and a distribution P : V ! [0, 1]. The nodes in V and their incident edges represent
“types” of online nodes. An input instance Ĝ = (U [ V̂ , Ê) is formed by picking m online nodes
i.i.d. from V according to the probabilities described by P . Note that the symmetric CLV-B model
defined earlier is a special case of this model. In our experiments, the degree predictions are given by
the expected degrees of the offline nodes.

3 Related Work

Online bipartite matching and its generalizations have been investigated extensively. The survey [41]
and the recent paper [9] provide excellent overviews of this area. The state of the art competitive
ratios are 1� 1/e ⇡ 0.632 in the worst case [31] and ⇡ 0.7299 for the known i.i.d. model [11]. See
[9] for an extensive empirical study of the existing algorithms. Other algorithms examined in the
experimental section include [20, 5, 40, 26, 18, 10].
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Algorithm 1MinPredictedDegree
Input: Offline nodes U and degree predictor � : U ! R�0

Output: MatchingM
InitializeM  ;.
while online node v 2 V arrives do
N(v)  unmatched neighbors of v
if |N(v)| > 0 then

u⇤  argmin
u2N(v) �(u) (ties broken arbitrarily)

M  M [ {(u⇤, v)}
end if

end while

More generally, there has been lots of interest in online algorithms with predictions over the last
few years, for problems like caching [39, 50, 55, 29], ski-rental and its generalizations [49, 22, 2, 3],
scheduling [45, 35] matching [33, 4, 36] and learning [14, 7]. Other areas impacted by learning-based
algorithms include combinatorial optimization [13, 6, 15], similarity search [52, 56, 27, 54, 16], data
structures [32, 44] and streaming/sampling algorithms [25, 28, 19]. See [47] for an excellent survey
of this area.

4 Algorithm

Online Bipartite Matching The online bipartite matching problem is defined as follows. Given a
bipartite graphG = (U [V,E), we call U the “offline” side and V the “online” side of the bipartition.
Let n = |U | and m = |V |. The nodes in U are known beforehand and the nodes in V arrive one at a
time, along with their incident edges. An online bipartite matching algorithm maintains a matching
throughout the process, with the goal of maximizing the size of the matching. As each node v 2 V
arrives, the algorithm can pick one of its neighboring edges to add to the matching.

MinPredictedDegree In addition to knowing the offline nodes U beforehand, MinPredictedDegree
(MPD) is given a degree predictor � : U ! R�0. In practice, this predictor could be inferred from
additional knowledge about the graph or from past data. When a node v 2 V arrives, MPD (see
Algorithm 1) uses this predictor to greedily select the minimum predicted degree neighbor u⇤ of v
that is not already covered in the matching and then adds the edge {u⇤, v} to the matching. If no
such valid neighbor exists, MPD does nothing with v. Intuitively, low degree offline nodes should be
matched as early as possible as they only appear a few times while we will have many chances to
match high degree offline nodes.

The MPD algorithm has similar structure to the worst-case optimal Ranking algorithm [31] which
assigns a random cost to each offline node and at each step greedily matches with the lowest cost
offline neighbor. Specifically, if the degree predictor is random, MPD and Ranking are equivalent.
As we show in the later sections, if the predictor is “good enough”, MPD often performs much better
than Ranking, both in theory and in practice.

5 Optimality of MPD on CLV-B graphs

In this section we show that the size of the matching found by the the MPD algorithm stochastically
dominates the size of the matching found by any other algorithm. We start by providing some
preliminaries for the analysis.

Preliminaries For p 2 [0, 1]n and q 2 [0, 1]m, let Ip,q denote an instance of a CLV-B graph with
n = |U | offline nodes,m = |V | online nodes, and weight vectors p and q, such that the probability
that an edge (ui, vj) exists is equal to piqj for any i 2 [n], j 2 [m]. Assume with no loss of generality
that p is ordered, p1  p2  . . .  pn. Note that the expected degree of the offline node ui is pikqk1,
i.e., it is proportional to the weight pi.

In the online setting, the nodes of V arrive sequentially in the order v1, . . . , vm with the random
neighborhood of vj 2 V being revealed at the arrival of vj . When vj arrives, an online bipartite
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algorithm A can match vj to any of its unmatched neighbors in U but cannot change its decision later.
For any online bipartite matching algorithm A, let A(Ip,q) denote the size of the matching attained
by A on the instance Ip,q. Let A0 be the MinPredictedDegree algorithm which matches a node vj
with neighborhood S to an unmatched node ui 2 S such that pi minimal, i.e. to an available node in
S with minimal expected degree (ties broken arbitrarily but consistently, e.g. by sorted order of the
offline node id’s). Let p(A,S) be the resulting set of weights after algorithm A (potentially) chooses
a neighbor in S to match with.

Consider two ordered weight vectors p, p0 both of length n. We say that p0 dominates p, equivalently
p � p0, if pi  p0

i
for all i 2 [n]. We are now ready to state our main result on the optimality of MPD.

Theorem 5.1. Let p 2 [0, 1]n and q 2 [0, 1]m. Let A be any online algorithm and let t � 0. Then,

P(A(Ip,q) � t)  P(A0(Ip,q) � t).

To prove the theorem, we will need two technical Lemmas. Informally, Lemma 5.2 states that for any
S 6= ;, it is an advantage for A0 if the neighborhood of the first arriving node is S rather than the
empty set. Lemma 5.3 (the proof of which is the main technical challenge) states that if p � p0, then
A0(Ip0,q) stochastically dominates A0(Ip,q). Intuitively, Theorem 5.1 then follows from Lemma 5.3
by inducting on the number of online nodes m. For any algorithm A and non-empty subset S ✓ [n],
if A matches v1 to a node in the neighborhood S, then p(A,S) � p(A0, S), and we can apply
Lemma 5.3 together with the induction hypothesis with m� 1 online nodes. We need Lemma 5.2 to
handle the issue that A may not to match v1 even in the case that S is non-empty. The proofs of the
two lemmas and of Theorem 5.1 are postponed to Appendices A, B and C.
Lemma 5.2. Let p 2 [0, 1]n and q 2 [0, 1]m be weight vectors. Let p⇤ 2 [0, 1]n�1 be obtained from
p by removing its i’th entry for some i 2 [n]. For any t � 0,

P(A0(Ip,q) � t)  P(A0(Ip⇤,q) � t� 1).

Lemma 5.3. Let p, p0 2 [0, 1]n, be ordered weight vectors and q 2 [0, 1]m. Suppose that p � p0.
For any t � 0,

P(A0(Ip,q) � t)  P(A0(Ip0,q) � t).

While optimally only holds when the predicted degrees are the expected degrees (or at least induce
the same ordering over the offline nodes), the performance of MPD cannot be much worse if the
predictions are slightly off. Formally, for an arbitrary degree predictor �, let p[�] be the array of CLV-
B offline weights ordered by � and let LIS(p[�]) be the size of the longest increasing subsequence
in this array. We show (via a more general result) in Appendix D that MPD will match at most
n� LIS(p[�]) fewer nodes than when given the expected degrees as predictions.

6 Competitive ratio of MPD on symmetric CLV-B random graphs

Though we know that MPD is optimal within the CLV-B model, this result does not give explicit
competitive ratios for MPD. In this section we analyze MPD under the symmetric CLV-B model,
and derive a set of equations that give a lower bound on MPD’s competitive ratio. To recap, the
symmetric model is parameterized by n = |U |,m = |V |, and a vector d = {di}ni=1 corresponding
to the expected degrees of the offline nodes. Formally, for any ui 2 U and vj 2 V , the edge {ui, vj}
appears in the graph with probability di/m.

As in the previous section, we analyze MPD when the degree predictions are given by the expected
degrees d. Our main results within this model are a set of equations that describe the size of the
matching produced by MPD as well as the size of the maximum matching.

• Given a set of expected degrees d, Equation 4 models the behavior of MPD on a symmetric
CLV-B(d) graph. We extend these results to the asymptotic case in Appendix J, giving the expected
matching size as n,m ! 1 for a given distribution of expected degrees.

• Given a set of expected degrees d,in Appendix I, we give an upper bound on the expected size of the
maximum matching on a symmetric CLV-B(d) graph, and in Appendix J, we give the asymptotic
equivalent. Empirically, we find this upper bound to be close to the maximum matching size when
d follows a power law distribution.
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• Using these equations, we show that in expectation MPD returns matchings almost as large as the
maximum when the expected degrees of the offline nodes follow a power law distribution (see
Table 1 and Figure 6). For both MPD and the maximum matching, we show that the matching
sizes are concentrated about their expectations (Appendix L and M), implying that on these graphs,
MPD achieves a large competitive ratio.

6.1 Competitive ratios on power law graphs

CUTOFF � ↵ = 0.5 ↵ = 1 ↵ = 1.5 ↵ = 2

10 0.967 0.948 0.934 0.928
100 0.998 0.986 0.958 0.937
1000 1.000 0.995 0.966 0.940
10000 1.000 0.997 0.969 0.940
100000 1.000 0.998 0.970 0.940

Table 1: Lower bound on the competitive ratio of MPD on symmetric CLV-B graphs with offline
expected degrees following a power law with exponential cutoff distribution as n,m ! 1. The
fraction of offline nodes with expected degree d is proportional to d�↵e�d/� for d = {1, 2, ...}.

In Table 1, we show the competitive ratio of MPD on symmetric CLV-B graphs with expected offline
degrees following a power law with exponential cutoff distribution [9, 46] and with n,m ! 1. For
d = {1, 2, ...}, the fraction of offline nodes with expected degree d is proportional to d�↵e�d/� for
exponent ↵ and cutoff �. Note that in the asymptotic case, as the sizes of MPD’s matching and
the maximum matching are concentrated about their expectations (Theorems L.1, M.1), the ratio
of expectations is equivalent to the competitive ratio (expectation of ratio). When the exponent is
small or the cutoff is large, MPD achieves a better competitive ratio, with the ratio exceeding 0.99
when both occur. When ↵ = 2, while MPD still achieves a competitive ratio of up to 0.94, the
competitive ratio is not as affected by a larger cutoff as with smaller exponents (the power law factor
is already significantly limiting the fraction of offline nodes with large expected degree). The analysis
we develop is general and can be used to evaluate MPD on symmetric CLV-B graphs with different
parameters than those we have considered.

6.2 Differential equation analysis of MPD

Let Y t

d
be the number of offline nodes with expected degree d who are unmatched by MPD after

seeing the tth online node. Within this random graph model, {Y t

d
}m
t=0 form a Markov chain with the

following expected evolution:

E[Y t+1
d

� Y t

d
] =�

⇣
1� (1� d/m)Y

t
d

⌘ Y

d0<d

(1� d0/m)
Y

t
d0 . (1)

The first term corresponds to the probability that at least one unmatched offline node with expected
degree d is incident on the (t+ 1)st online node while the second term corresponds to the probability
that this online node has no neighboring unmatched offline nodes with smaller expected degree
(which would be prioritized).

Let kd = � log(1�d/m). To simplify the analysis of MPD, it will be helpful to consider the random
variables Zt

d
= �kd ⇤ Y t

d
where

E[Zt+1
d

� Zt

d
] = kd

⇣
1� eZ

t
d

⌘ Y

d0<d

eZ
t
d0 . (2)

Following the work of Kurtz and many subsequent researchers [34, 57, 43, 38, 48], we show that the
behavior of MPD as described by these Markov chains is well approximated by the trajectory of the
following system of differential equations for all unique expected degrees d in d:

dzd(t)

dt
= kd

⇣
1� ezd(t)

⌘ Y

d0<d

ezd0 (t). (3)
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These functions zd(t) represent continuous-time approximations of the Markov chains with their
derivatives corresponding to expected change from Equation 2. In Appendix G, we give the solution
to these differential equations. Relying on past work [38], we give the following theorem (see
Appendix H for proof).
Theorem 6.1. Let G be a symmetric CLV-B random graph with unique expected offline degrees
{�i}`i=1. Let fd = �d · n be the number of offline nodes with expected degree d. Then, the expected
(over the randomness in G) size of the matching formed by MPD approaches

`X

i=1

f�i + z�i(m)/k (4)

as n = m approach infinity, where z�i(t) for i 2 {1, . . . , `} form the solution to the system of
differential equations in Equation 3.

The solution to the system of differential equations gives us a closed form continuous-time approxi-
mation for expected performance of MPD in terms of d. In particular, in the asymptotic case, the
equations give the exact expected performance and in the non-asymptotic case give an approximation
on the number of unmatched offline nodes (and thus the matching size).

7 Experiments

In this section, we evaluate the empirical performance of MPD on real and synthetic data. For each
dataset, we report the empirical competitive ratio of MPD and a variety of baselines. In each case, the
empirical competitive ratio is the average, over 100 trials, of the ratios of the sizes of the matchings
outputted by a given algorithm and the sizes of the maximum matching. In addition to the average
ratio, we report one standard deviation of the ratio across the trials.

Datasets We evaluate MPD on the following datasets.

• Oregon: 9 graphs3 sampled over 3 months representing a communication network of internet
routers from the Stanford SNAP Repository [37]. Each graph has ⇠ 10k nodes on each side of the
bipartition and ⇠ 40k edges. For MPD, the offline degree predictor � : U ! R is based on the
first graph: if an offline node u (i.e. a specific router) appeared in the first graph, �(u) is the degree
of u in that graph. If an offline node u did not appear in the first graph, �(u) = 1. For each trial,
the order of arrival of the online nodes is randomized.

• CAIDA: 122 graphs3 sampled approximately weekly over 4 years representing a communication
network of internet routers from the Stanford SNAP Repository [37]. Each graph has ⇠ 20k
nodes on each side of the bipartition and ⇠ 100k edges. The degree predictor is the same as for
the Oregon dataset (for each year, the first graph of the year is used to form the predictor). As
seen in Figure 8 (see Appendix N), the degree distribution of the graphs for both the Oregon and
Caida datasets are long-tailed and the error of the first graph predictor increases over time as the
underlying graph evolves. For each trial, the order of arrival of the online nodes is randomized.

• Symmetric CLV-B random graph: We consider symmetric CLV-B model where the expected
offline degrees are distributed according to Zipf’s Law, a popular power law distribution where
di = C · i�↵ [46]. In our experiments, we set size n = m = 1000, set C = m/2, and vary the
exponent ↵.

• Known i.i.d.: Finally, we compare MPD to algorithms for the known i.i.d. model, copying the
methodology of Borodin et al. [9] for synthetic power law graphs (Molloy Reed and Preferential
Attachment) and real world graphs. In the Molloy Reed experiments, the type graph is sample from
a family of random graphs with degrees distributed according to a power law with exponential
cutoff. In the Preferential Attachment experiments, the type graph is formed by the preferential
attachment model in which edges are added sequentially with edges between high degree nodes
being more likely. The Real World graphs are comprised of a variety of graphs from the Network
Repository [51]. See Appendix N for more results on Real World graphs.
3The graphs in the Oregon and CAIDA datasets are made bipartite following the bipartite double cover or

duplicating method used in prior work [9]. Given a graph G = (V,E), the bipartite double cover of G is the
graph G0 = (U 0 [ V 0, E0) where U 0 and V 0 are copies of V and there is an edge {u0

i, v
0
j} 2 E0 if and only if

{vi, vj} 2 E.
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Baselines We compare our algorithm to a variety of baseline algorithms.

• Ranking In all experiments, we compare to the classic, worst-case optimal Ranking algorithm [31].
• MinDegree The MinDegree algorithm is a version of MPD with a perfect oracle, i.e. �(u) returns
the true degree of u. In comparison with MPD, MinDegree shows the effect of prediction error on
the performance of MPD.

• Known i.i.d. baselines For the experiments in the known i.i.d. case, we also compare to the
baselines in the extensive empirical study of [9]–see their paper for detailed descriptions of all
algorithms. The code is distributed under the GPL license. Notably, the algorithms Category-
Advice and 3-Pass are not strictly online algorithms: they take multiple passes over the data, using
some limited information from previous passes to make better decisions in the next pass. It should
also be noted that BKPMinDegree is distinct from either the MPD or MinDegree algorithms we
have described–it does not use the type graph but rather maintains and updates an estimate of the
degree of the offline nodes throughout the runtime of the algorithm.
Most known i.i.d. baselines are not greedy–they do not always match an online node even if it
has unmatched neighbors. [9] evaluate greedy augmentations of these algorithms (denoted by
Algorithm(g)) which match to an arbitrary unmatched neighbor in these cases and generally show
them to outperform their non-greedy counterparts. We additionally evaluate MPD augmented
versions of these algorithms (denoted by Algorithm(MPD)) which applies the MPD rule in these
cases using the expected degrees as predictions.

Figure 1: Comparison of empirical competitive ratios on the Oregon dataset. The first graph is used
to form predictions.

Figure 2: Comparison of empirical competitive ratios on the CAIDA dataset. For each subfigure, the
first graph of the year is used to form predictions for the rest of the year.

Results Across the various datasets, MPD performs well compared to the baseline algorithms. For
the Oregon, CAIDA, and symmetric CLV-B random graph datasets, MPD significantly outperforms
Ranking, and for Oregon and CAIDA, the performance of the algorithm mildly declines as the degree
predictions degrade. For the known i.i.d. datasets, MPD often outperforms all online baselines,
despite making only limited use of the known i.i.d. model. Additionally, augmenting the known i.i.d.
algorithms with the (MPD) rule often improves their performance over both the base and the greedy
(g) versions of the algorithms.

• Oregon and CAIDA (Figures 1, 2): On the Oregon dataset, MPD achieves a competitive ratio
of ⇠ 0.99 across the graphs compared with competitive ratios ranging from 0.95 to 0.97 for
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(a) Comparison across Zipf’s Law exponents. (b) Analysis of predictor noise (exponent
↵ = 1).

Figure 3: Comparison of empirical competitive ratios on symmetric CLV-B random graphs with
offline expected degrees following Zipf’s Law with exponent ↵. In (a), we vary ↵ and MPD uses
the expected degree as its predictor. In (b), the degree predictor is the offline degree in a random
subgraph using a (varying) fraction of the online nodes.

Figure 4: Comparison of empirical competitive ratios for Known i.i.d. Molloy-Reed graphs. Algo-
rithms depicted in gray are not online algorithms (they use extra information or multiple passes).
Algorithms in green are augmented with MPD.

Ranking. Compared with MinDegree, which uses knowledge of the true offline degrees, MPD’s
performance slowly degrades over time as the graphs become less similar to Graph#1 (see Figure 8
in Appendix N for quantitative details).
Similarly, on the CAIDA dataset, MPD does significantly better than Ranking, achieving com-
petitive ratios almost always greater than 0.98 compared to ratios around 0.95, respectively. As
the performance of the degree predictor degrades over time, the performance of MPD gradually
declines (though it still significantly outperforms Ranking for both datasets).

• Symmetric CLV-B random graph (Figure 3): For symmetric CLV-B random graphs with offline
expected degrees following Zipf’s Law, MPD outperforms Ranking across a spectrum of exponents
↵ ranging from 0.2 to 2. For exponents less than 0.5 and greater than 1.5, MPD achieves a
competitive ratio close to 1 (greater than 0.995). All of the online algorithms have worse competitive
ratios when the exponent is closer to one with MPD achieving a ratio of ⇠ 0.93 and Ranking
achieving a ratio of ⇠ 0.86 when ↵ = 0.8. Though MPD does worst at ↵ = 0.8, it also achieves
its greatest improvement over Ranking at this setting.
In Figure 3b, we analyze the performance of MPD with a noisy degree predictor on Zipf’s Law
symmetric CLV-B random graphs with exponent 1. To introduce noise, the degree predictor �(u)
is given by the number of neighbors u has with a random subset of the online nodes V . As
we decrease the fraction of V we subsample, thus increasing the variance of the predictor, the
performance of MPD steadily declines. Even when the degree predictor only uses 10% or even 1%
(the leftmost point on the graph) of the online nodes, it still outperforms Ranking.

• Known i.i.d. (Figures 4, 5): Across all of the experiments in the known i.i.d. model, MPD is
among the top online algorithms, and is often the best performing online algorithm (note the
algorithms in gray are not strictly online algorithms). Most of the algorithms (e.g. BahamiKapralov
and ManshadiEtAl) rely heavily on the type graph, including precomputing an optimal matching
on the type graph. By contrast, MPD only uses first-order information: it only looks at degrees
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Figure 5: Comparison of empirical competitive ratios on Known i.i.d. Preferential Attachment graphs
and Real World graphs. Algorithms depicted in gray are not online algorithms (they use extra
information or multiple passes). Algorithms in green are augmented with MPD. See Appendix N for
more Real World results.

and does not rely on any information about specific edges. Even so, in most cases, it outperforms
all of the other online algorithms. Additionally, the (MPD) augmented versions of the known
i.i.d. algorithms always beat the base algorithms and often beat the greedy (g) versions, indicating
the potential of predicted degrees to be integrated with other algorithms. Note that while the
standard deviations are quite wide (the known i.i.d. model is inherently stochastic), as the results
are summarized over 100 trials, relatively small differences in the average performance of these
algorithms are statistically significant as the standard error is small.
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(c) Did you discuss any potential negative societal impacts of your work? [No] We

did not include a discussion of this in the text of the paper as our paper is focused
on fundamental research. That being said, as online bipartite matching has a wide
variety of applications, developing and better understanding algorithms for this problem
may have impact on these diverse applications. In particular, metrics other than the
competitive ratio of algorithms (such as certain notions of fairness) are important to
consider in applications involving individuals and are being studied in other works.
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of GPUs, internal cluster, or cloud provider)? [No] The experiments are relatively
lightweight and the focus of this paper is not on computational resources (rather, we
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not too expensive). The experiments were all run on a 2018 MacBook Pro.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
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