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Abstract

We study the complexity of optimizing nonsmooth nonconvex Lipschitz functions by producing
(δ, ǫ)-Goldstein stationary points. Several recent works have presented randomized algorithms that

produce such points using Õ(δ−1ǫ−3) first-order oracle calls, independent of the dimension d. It has
been an open problem as to whether a similar result can be obtained via a deterministic algorithm.
We resolve this open problem, showing that randomization is necessary to obtain a dimension-free
rate. In particular, we prove a lower bound of Ω(d) for any deterministic algorithm. Moreover,
we show that unlike smooth or convex optimization, access to function values is required for any
deterministic algorithm to halt within any finite time horizon.

On the other hand, we prove that if the function is even slightly smooth, then the dimension-free
rate of Õ(δ−1ǫ−3) can be obtained by a deterministic algorithm with merely a logarithmic depen-
dence on the smoothness parameter. Motivated by these findings, we turn to study the complexity
of deterministically smoothing Lipschitz functions. Though there are well-known efficient black-box
randomized smoothings, we start by showing that no such deterministic procedure can smooth func-
tions in a meaningful manner (suitably defined), resolving an open question in the literature. We
then bypass this impossibility result for the structured case of ReLU neural networks. To that end,
in a practical “white-box” setting in which the optimizer is granted access to the network’s architec-
ture, we propose a simple, dimension-free, deterministic smoothing of ReLU networks that provably
preserves (δ, ǫ)-Goldstein stationary points. Our method applies to a variety of architectures of ar-
bitrary depth, including ResNets and ConvNets. Combined with our algorithm for slightly-smooth
functions, this yields the first deterministic, dimension-free algorithm for optimizing ReLU networks,
circumventing our lower bound.

1 Introduction

We consider the problem of optimizing a Lipschitz continuous function, f : R
d → R, which is po-

tentially not smooth nor convex, using a first-order algorithm which utilizes values and derivatives of
the function at various points. The theoretical analysis of nonsmooth and nonconvex optimization
has long been a focus of research in economics, control theory and computer science [Clarke, 1990,
Mäkelä and Neittaanmäki, 1992, Outrata et al., 1998]. In recent years, this area has received renewed
attention stemming from the fact that essentially all optimization problems associated with training
modern neural networks are neither smooth nor convex, due to their depth and the ubiquitous use of rec-
tified linear units (ReLUs), among other nonsmooth components [Nair and Hinton, 2010, Glorot et al.,
2011].
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Since the minimization of a Lipschitz function f is well known to be intractable [Nemirovski and Yudin,
1983, Murty and Kabadi, 1987, Nesterov, 2018], a local measure of optimality is required in order to
obtain any reasonable guarantees. Accordingly, it is common to make use of the generalized gradient
∂f(x) due to Clarke [1974, 1975, 1981], which is a natural generalization of the gradient and the con-
vex subgradient [Clarke et al., 2008, Rockafellar and Wets, 2009, Burke et al., 2020], and seek points
with small subgradient. Although under certain regularity assumptions it is possible to asymptotically
find an approximate Clarke stationary point of f ,1 the standard subgradient method fails to approach a
Clarke stationary point of a Lipschitz function in general [Daniilidis and Drusvyatskiy, 2020]; moreover,
it is not possible to find such points using any algorithm within finite time [Zhang et al., 2020, The-
orem 1]. Moreover, even getting near an approximate Clarke stationary point of a Lipschitz function
has been proven to be impossible unless the number of queries has an exponential dependence on the
dimension [Kornowski and Shamir, 2021]. For an overview of relevant theoretical results in nonsmooth
nonconvex optimization, we refer to Appendix A.

These negative results motivate rethinking the definition of local optimality in terms of a relaxed
yet still meaningful notion. To this end, we consider the problem of finding a (δ, ǫ)-Goldstein stationary
point of f [Goldstein, 1977], which are points for which there exists a convex combination of gradients
in a δ-neighborhood whose norm is less than ǫ (see Section 2 for a formal definition). The breakthrough
result of Zhang et al. [2020] proposed a randomized algorithm that finds such points with a dimension-
free complexity of Õ(δ−1ǫ−3) oracle calls. Though they make use of a non-standard first-order oracle
that does not apply to all Lipschitz functions, subsequent work [Davis et al., 2022, Tian et al., 2022]
has proposed variants of the algorithm that apply to any Lipschitz function using a standard first-order
oracle.

It is important to note that all of the aforementioned algorithms are randomized. This state of
affairs is unusual when contrasted with the regimes of smooth or convex optimization, where determin-
istic optimal dimension-free first-order algorithms exist and cannot be improved upon by randomized
algorithms [Nesterov, 2018, Carmon et al., 2021]. This raises a fundamental question:

What is the role of randomization in dimension-free nonsmooth nonconvex optimization?

1.1 Our Contributions

This paper presents several results on the complexity of finding (δ, ǫ)-Goldstein stationary points using
deterministic algorithms, providing a detailed answer to the question raised above. Our contributions
can be summarized as follows:

1. Necessity of randomness for dimension-free complexity (Theorem 3.1). We show that
deterministic algorithms cannot find (δ, ǫ)-Goldstein stationary points at any dimension-free rate,
by proving a dimension-dependent lower bound of Ω(d) for any deterministic first-order algorithm,
where δ, ǫ > 0 are smaller than given constants.

2. Deterministic algorithms require a zeroth-order oracle (Theorem 3.2). In sharp contrast
to smooth or convex optimization, we prove that without access to function values, no determin-
istic algorithm can guarantee to return a (δ, ǫ)-Goldstein stationary point within any finite time,
whenever δ, ǫ > 0 are smaller than given constants. On the other hand, we note that a gradient
oracle is sufficient to obtain a finite-time guarantee using a randomized algorithm (Remark 3.1).

1Namely, x ∈ R
d such that min{‖g‖ : g ∈ ∂f(x)} ≤ ǫ.
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3. Deterministic algorithm with logarithmic smoothness dependence (Theorem 4.1).
Considering cases in which the objective function is slightly smooth, we present a deterministic
first-order algorithm that finds a (δ, ǫ)-Goldstein stationary point of anyH-smooth function within
Õ(log(H)δ−1ǫ−3) oracle calls.2

4. Deterministic smoothing (Theorem 5.1 and Theorem 5.2). We show that unlike ran-
domized black-box smoothings, no deterministic black-box smoothing can produce a reasonable
poly(d)-smooth approximation using a dimension-free complexity, essentially solving an open ques-
tion due to Kornowski and Shamir [2021]. On the other hand, in a practical white-box model of
ReLU neural networks, we propose a simple, dimension-free, deterministic smoothing procedure
which applies to a variety of architectures, while provably maintaining the set of (δ, ǫ)-Goldstein
stationary points. Combined with the algorithm described in the previous bullet, we obtain the
first deterministic, dimension-free algorithm for optimizing ReLU networks, circumventing our
aforementioned lower bound.

Related work. Following an initial publication of our results, Tian and So [2022] have independently
presented an alternative proof of our first result (Theorem 3.1). A more detailed account of previous
results in nonsmooth nonconvex optimization is deferred to Appendix A.

2 Preliminaries and Technical Background

Notation. We denote [d] := {1, 2, . . . , d}. We denote by 0d ∈ R
d the zero vector and by e1, e2, . . . , ed ∈

R
d the standard basis vectors. For any vector x ∈ R

d, we let ‖x‖ be its Euclidean norm, and denote by
xi its i

th coordinate. For a set X ⊆ R
d, we let conv(X ) denote its convex hull. For a continuous function

f(·) : Rd 7→ R, we let ∇f(x) denote the gradient of f at x (if it exists). For a scalar a ∈ R, we let ⌊a⌋ and
⌈a⌉ be the smallest integer that is larger than a and the largest integer that is smaller than a. In addition,
we denote a closed ball of radius r > 0 around a point x ∈ R

d by Br(x) := {y ∈ R
d : ‖y − x‖ ≤ r}.

Given a bounded segment I ⊂ R, we denote by ξ ∼ U(I) a random variable distributed uniformly over
I. Finally, we use the standard big-O notation, with O(·), Θ(·) and Ω(·) hiding absolute constants
that do not depend on problem parameters, Õ(·) and Ω̃(·) hiding absolute constants and additional
logarithmic factors, and also denote by poly(·) polynomial factors.

Nonsmooth analysis. We call a function f : Rd → R L-Lipschitz if for any x,y ∈ R
d : |f(x) −

f(y)| ≤ L‖x− y‖, and H-smooth if it is differentiable and ∇f : Rd → Rd is H-Lipschitz, namely
for any x,y ∈ R

d : ‖∇f(x)−∇f(y)‖ ≤ H‖x− y‖. By Rademacher’s theorem, Lipschitz functions
are differentiable almost everywhere (in the sense of Lebesgue). Hence, for any Lipschitz function
f : Rd → R and point x ∈ R

d the Clarke subgradient set [Clarke, 1990] can be defined as

∂f(x) := conv{g : g = lim
n→∞

∇f(xn), xn → x} ,

namely, the convex hull of all limit points of ∇f(xn) over all sequences of differentiable points which
converge to x. Note that if the function is continuously differentiable at a point or convex, the Clarke
subdifferential reduces to the gradient or subgradient in the convex analytic sense, respectively. We say

2A function f : Rd → R is called H-smooth if for all x,y ∈ R
d : ‖∇f(x)−∇f(x)‖ ≤ H‖x− y‖.
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that a point x is an ǫ-Clarke stationary point of f(·) if min{‖g‖ : g ∈ ∂f(x)} ≤ ǫ. Furthermore, given
δ > 0 the Goldstein δ-subdifferential [Goldstein, 1977] of f at x is the set

∂δf(x) := conv
(
∪y∈Bδ(x)∂f(y)

)
,

namely all convex combinations of gradients at points in a δ-neighborhood of x. We say that a point x
is a (δ, ǫ)-Goldstein stationary point of f(·) if

min{‖g‖ : g ∈ ∂δf(x)} ≤ ǫ .

Note that a point is ǫ-Clarke stationary if and only if it is (δ, ǫ)-Goldstein stationary for all δ > 0
[Zhang et al., 2020, Lemma 7].

Algorithms and complexity. Throughout this work we consider iterative first-order algorithms,
from an oracle complexity perspective [Nemirovski and Yudin, 1983]. Such an algorithm first pro-
duces an initial point x0 ∈ R

d (possibly at random, if it is a randomized algorithm) and receives
(f(x0), ∂f(x0)).

3 Then, for any t ≥ 1 produces xt possibly at random based on previously observed
responses, and receives (f(xt), ∂f(xt)). We are interested in the minimal number T for which we
can guarantee to produce some (δ, ǫ)-Goldstein stationary point, uniformly over the class of Lipschitz
functions.

3 Lower bounds for deterministic algorithms

3.1 Dimension-dependent lower bound

As discussed earlier, [Zhang et al., 2020, Davis et al., 2022, Tian et al., 2022] have presented randomized
first-order algorithms that given any L-Lipschitz function f : Rd → R and an initial point x0 that
satisfies f(x0) − infx f(x) ≤ ∆, produce a (δ, ǫ)-Goldstein stationary point of f within Õ(∆L2/δǫ3)
oracle calls to f . We show that this rate, and indeed any dimension-free rate, cannot be achieved by a
deterministic algorithm.

Theorem 3.1 For any ∆, L > 0, d ≥ 3, any T ≤ d − 2 and any deterministic first-order algorithm,
there exists an L-Lipschitz function f : Rd → R such that f(x0)− infx f(x) ≤ ∆, yet the first T iterates
produced by the algorithm when applied to f are not (δ, ǫ)-stationary points for any δ < ∆

L , ǫ <
L
252 .

Our result highlights that even though finding a (δ, ǫ)-Goldstein stationary point in nonsmooth
nonconvex optimization is computationally tractable using a randomized algorithm, it is essentially
harder than finding an ǫ-stationary point in smooth nonconvex optimization without randomization as
it requires Ω(d) oracle calls. We also note that Theorem 3.1 holds true regardless of the relationship
between the dimension d and the parameters (δ, ǫ), in contrast to the dimension-independent lower
bounds established for nonsmooth convex optimization [Nesterov, 2018], where the accuracy parameter
must scale polynomially with 1/d.

The full proof of Theorem 3.1 is deferred to Section 6.1, though we will now provide a proof sketch.
For any deterministic first-order algorithm, if an oracle can always return the “uninformative” answer

3For the purpose of this work it makes no difference whether the algorithm gets to see some subgradient or the whole
Clarke subgradient set. That is, the lower bounds to follow hold even if the algorithm has access to the entire subgradient
set, while the upper bounds hold even if the algorithm receives a single arbitrary subgradient.
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f(xt) = 0,∇f(xt) = e1 this fixes the iterates x1, . . . ,xT . Hence, it remains to construct a Lipschitz
function that will be consistent with the oracle answers, yet all the queried points are not (δ, ǫ)-stationary.
To that end, we construct a function which in a very small neighborhood of each queried point xt looks
like x 7→ e⊤1 (x−xt), yet in most of the space looks like x 7→ max{v⊤x,−1}, which has (δ, ǫ)-stationary
points only when x is correlated with −v. By letting v be some vector which is orthogonal to all the
queried points (which is possible as long as T < d− 1), we obtain the result.

This construction relies crucially on the function being highly nonsmooth—essentially interpolating
between two orthogonal linear functions in an arbitrarily small neighborhood. As it will turn out, if the
function to be optimized is even slightly smooth, then the theorem can be bypassed, as we will show in
Section 4.

3.2 Lower bound for gradient-only oracle

In this section, we demonstrate the importance of having access either to randomness or to a zeroth-
order oracle, namely to the function value. In particular, we prove that any deterministic algorithm
which has access only to a gradient oracle cannot return an approximate Goldstein stationary point
within any finite number of iterations.

Theorem 3.2 For any 0 < δ < ǫ < 1, any d ∈ N, T < ∞, and any deterministic algorithm which
has access only to a gradient oracle, there exists a 1-Lipschitz function f : Rd → [−1, 1] such that the
algorithm cannot guarantee to return a (δ, ǫ)-Goldstein stationary point using T oracle calls.

We will now sketch the proof; see Section 6.2 for the full proof. We can assume without loss of
generality that d = 1 (otherwise we can simple apply the “hard” construction to the first coordinate).
Suppose a deterministic algorithm has access only to a derivative oracle, which always returns the
“uninformative” answer f ′(xt) = 1. This fixes the algorithm’s iterates x1, . . . ,xT , which then attempts
to guarantee that some returned point x̂ is a (δ, ǫ)-stationary point. It remains to construct a Lipschitz
function that will be consistent with the oracle answers, yet x̂ will not be (δ, ǫ)-stationary. To that end,
we construct a function which looks like x 7→ x − x̂ in a long enough segment around x̂, ensuring it
is indeed not (δ, ǫ)-stationary. On the other hand, in a very small neighborhood of each queried point
xt we add a “bump” so that the function looks like x 7→ x − xt, consistent with our resisting oracle.
Finally, far away from all queried points we let the function be constant, so that its image remains in
[−1, 1].

Remark 3.1 In contrast with Theorem 3.2, there exist randomized algorithms that access only a gra-
dient oracle and guarantee to return a (δ, ǫ)-Goldstein stationary point in finite-time. Indeed, Lin et al.
[2022, Theorem 3.1] have shown that for fδ(x) := Eu∼Bδ(x)[f(u)] it holds that ∇fδ(x) = Eu∼Bδ(x)[∇f(u)] ∈
∂δf(x) (where u ∼ Bδ(x) is distributed uniformly over a Euclidean ball of radius δ centered at x), thus
it suffices to find an ǫ-stationary point of fδ. But since ∇f(u) is an unbiased estimator of ∇fδ(x) and
‖∇f(u)‖ ≤ L, this is well known to be possible using stochastic gradient descent [Ghadimi and Lan,
2013]. In particular, the same argument as in the proof of Lin et al. [2022, Theorem 3.2] shows that it
is possible to find such a point within O(

√
d(L4ǫ−4 +∆L3δ−1ǫ−4)) calls to a gradient oracle.

Remark 3.2 Note that in nonsmooth convex optimization or in smooth nonconvex optimization, a
deterministic algorithm can obtain (δ, ǫ)-Goldstein stationary points using only a gradient oracle, even
at a dimension-free rate. Indeed, in the nonsmooth convex case gradient descent returns x such that
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Algorithm 1 Binary-Search(δ, ∇f(·), g0, x)
Initialization: Set b ← δ, a ← 0 and t ← b.
while −∇f(x− t g0

‖g0‖
) · g0

‖g0‖
+ 1

2‖g0‖ ≥ − ǫ
4 do

Set t ← a+b
2 .

if f(x− b g0

‖g0‖
) + b

2‖g0‖ > f(x− t g0

‖g0‖
) + t

2‖g0‖ then
Set a ← t.

else
Set b ← t.

end if
end while
Output: ∇f(x− t g0

‖g0‖
).

f(x)− infx f(x) < δǫ within O(δ−2ǫ−2) gradient evaluations, and any such point is in particular a (δ, ǫ)-
Goldstein stationary point.4 Similarly, in the smooth nonconvex setting gradient descent returns an ǫ-
stationary point within O(ǫ−2) gradient evaluations, which is trivially also a (δ, ǫ)-Goldstein stationary
point.

4 Deterministic algorithm for slightly smooth functions

In this section we show that if the objective function is even slightly smooth, then the dimension free
rate of Õ(δ−1ǫ−3) can be obtained by a deterministic first-order algorithm, incurring a mild logarithmic
dependence on the smoothness parameter.

Theorem 4.1 Suppose f : R
d → R is L-Lipschitz, H-smooth, and x0 ∈ R

d is such that f(x0) −
infx f(x) ≤ ∆. Then Deterministic-Goldstein-SG(x0, δ, ǫ) (Algorithm 2) is a deterministic first-
order algorithm that given any δ, ǫ ∈ (0, 1) returns a (δ, ǫ)-Goldstein stationary point of f within T =

O
(
∆L2 log(HLδ/ǫ)

δǫ3

)
oracle calls.

The idea behind this de-randomization is to replace a certain randomized line search in the algorithms
of Zhang et al. [2020], Davis et al. [2022], Tian et al. [2022], which in turn are based on Goldstein
[1977], with a deterministic binary search subroutine, Algorithm 1. This subroutine terminates within
O(log(Hδ/ǫ)) steps provided that the function is H-smooth. We note that such a procedure was derived
by Davis et al. [2022] for any H-weakly convex function along differentiable directions, and since any
H-smooth function is H-weakly convex and differentiable along any direction, this can be applied in an
identical manner. Although this algorithmic ingredient appears inside a proof of Davis et al. [2022], they
use it in a different manner in order to produce a randomized algorithm for weakly convex functions
in low dimension, with different guarantees suitable for that setting. We defer the full analyses of
Algorithm 1, Algorithm 2 which lead to the proof of Theorem 4.1 to Section 6.3.

4Otherwise, let g be the minimal norm element in ∂δf(x), and assume by contradiction that ‖g‖ > ǫ. Then Goldstein
[1977] ensures that f(x− δ

‖g‖
g) ≤ f(x)− δ‖g‖ < f(x)− δǫ < infx f(x) which is a contradiction.
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Algorithm 2 Deterministic-Goldstein-SG(x0, δ, ǫ)

1: Input: initial point x0 ∈ R
d, accuracy parameters δ, ǫ ∈ (0, 1).

2: for t = 0, 1, 2, . . . , T − 1 do
3: Set g(xt) ← ∇f(xt).

4: while f(xt − δ g(xt)
‖g(xt)‖

)− f(xt) > − δ
2‖g(xt)‖ and ‖g(xt)‖ > ǫ do

5: Set gnew ← Binary-Search(δ,∇f(·),g(xt),xt).
6: ht ← argmin{‖g(xt) + λ(gnew − g(xt))‖ : 0 ≤ λ ≤ 1}.
7: g(xt) ← ht.
8: end while
9: if ‖g(xt)‖ ≤ ǫ then

10: Stop.
11: else
12: xt+1 ← xt − δ g(xt)

‖g(xt)‖
.

13: end if
14: end for
15: Output: xt.

5 Deterministic smoothings

Motivated by the mild smoothness dependence of Deterministic-Goldstein-SG (Algorithm 2) as
proved in Theorem 4.1, we turn to the design of smoothing procedures. These are algorithms that act
on a Lipschitz function, and return a smooth approximation—allowing the use of smooth optimization
methods. Smoothing nonsmooth functions in order to allow the use of smooth optimization algorithms
is a longstanding approach for nonsmooth nonconvex optimization, both in practice and in theoretical
analyses. We refer to Appendix A for references. From a computational perspective, it is not clear
what it means for an algorithm to “receive” a real function as an input. For this reason, we make the
distinction between “black-box” smoothings which are granted oracle access to the original function,
and “white-box” smoothings which are assumed to have access to additional structural information.

5.1 Black-box smoothings

Recently, Kornowski and Shamir [2021] have studied black-box smoothings from an oracle complexity
viewpoint. One of their main results is that randomized smoothing [Duchi et al., 2012] is an optimal
smoothing procedure, in the sense that no efficient black-box smoothing procedure can yield an approxi-
mation whose smoothness parameter is lower than O(

√
d), which is achieved by randomized smoothing.

In particular, this implies that any efficient black-box smoothing unavoidably suffers from some dimen-
sion dependence. In that paper, the authors posed the open question of assessing what can be achieved
by a deterministic black-box smoothing, since efficient randomized smoothing is only able to return
stochastic estimates of the smoothed function. We solve this question for all “reasonable” smoothing
procedures, as defined next. Without loss of generality, we consider functions whose Lipschitz constant
is 1, since if the objective function is L-Lipschitz the algorithm can simply rescale it by L.

Definition 5.1 An algorithm S is called a black-box smoothing with complexity T ∈ N, if it uses a
first-order oracle of a 1-Lipschitz function f : Rd → R, such that given any x ∈ R

d it sequentially
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queries f ’s oracle at T points and returns f̃(x), gx = ∇f̃(x) for some smooth f̃ : Rd → R. We say
that the smoothing algorithm is meaningful if f̃ is poly(d)-smooth, and any (δ, ǫ)-Goldstein stationary
point of f̃ is a (poly(δ, ǫ),poly(δ, ǫ))-Goldstein stationary point of f .

In other words, a smoothing fails to be meaningful if either the smooth approximation has super-
polynomial smoothness (thus can hardly be treated as smooth), or introduces completely “fake” approximately-
stationary points of f .5 The latter case implies that running a nonconvex optimization algorithm over
f̃ fails to provide any meaningful guarantee for the original function f . Note that these assumptions are
extremely permissive, as we allow for any polynomial parameter blow-up, and do not even quantify the
requirement regarding the accuracy of the approximation. Notably, all black-box smoothings considered
in the literature, including randomized smoothing and the Moreau-Yosida smoothing for weakly-convex
functions [Davis and Drusvyatskiy, 2019], are easily verified to be meaningful (and, indeed, satisfy more
stringent conditions with respect to the original function). Further note that the randomized complexity
of these procedures is dimension-free.

Under this mild assumption, our previous theorems readily imply a answer to the question posed
by Kornowski and Shamir [2021].

Theorem 5.1 There is no deterministic, black-box meaningful smoothing algorithm with dimension-free
complexity.

Proof. Assuming towards contradiction there is such a smoothing algorithm S, we compose it with
Deterministic-Goldstein-SG. Namely, given any Lipschitz f , we consider the first-order algorithm
obtained by applying Algorithm 2 to f̃ = S(f). Since f̃ is poly(d)-smooth, and any (δ, ǫ)-Goldstein
stationary point of f̃ is a (poly(δ, ǫ),poly(δ, ǫ))-Goldstein stationary point of f , by Theorem 4.1 we
obtain overall a deterministic algorithm that finds a (poly(δ, ǫ),poly(δ, ǫ))-Goldstein stationary point of f
within O(log(poly(d)) ·poly(δ−1, ǫ−1)) = O(log(d) ·poly(δ−1, ǫ−1)) first-order oracle calls—contradicting
Theorem 3.1. �

5.2 Deterministic smoothing of ReLU networks

In this section we introduce a smoothing technique that can be applied to optimization of non-smooth
functions, provided that they are expressed as ReLUs in a neural network accessible to the smoothing
procedure. The idea of utilizing the representation of a function, as opposed to just having oracle
access to it, has been commonly used across diverse domains, from purely theoretical applications e.g.,
computational complexity theory, Daskalakis and Papadimitriou, 2011, Fearnley et al., 2021 to practi-
cal applications e.g., deep neural networks, LeCun et al., 2015, Goodfellow et al., 2016. We refer to this
function representation as the white-box model to contrast it with the previously discussed black-box
model. Our results demonstrate that having such a white box access is powerful enough to allow for
meaningful deterministic smoothing, as opposed to the black-box model whose insufficiency is estab-
lished in Theorem 5.1.

We start by giving a brief overview of the key observation underlying our deterministic smoothing
approach. Consider a single ReLU neuron with a bias term, namely for some point x ∈ R

d, weight
w ∈ R

d and bias b ∈ R :

(x,w, b) 7→ relu(w⊤x+ b) := max{w⊤x+ b, 0} . (5.1)

5It is important to recall that for smooth f̃ the notions of approximate-Clarke stationarity and approximate-Goldstein
stationarity coincide [Zhang et al., 2020, Proposition 6].
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We replace the nonsmooth ReLU with a smooth, carefully chosen “Huberized” function:

softreluγ(z) = Eξ∼U [−γ,γ][relu(z + ξ)] =





z , z ≥ γ
(z+a)2

4a , −γ ≤ z < γ

0 , z < −γ,

for some small γ > 0. Accordingly, we obtain the “smoothed” neuron of the form

(x,w, b) 7→ softrelua(w
⊤x+ b)

= Eξ∼U [−γ,γ][relu(w
⊤x+ (b+ ξ))] =





w⊤x+ b , w⊤x+ b ≥ γ
(w⊤x+b+a)2

4a , −γ ≤ w⊤x+ b < γ

0 , w⊤x+ b < −γ

.

Optimizing the function above (as a component of a larger neural network) with respect to (w, b)
is the goal of any optimizer seeking to “train” the network’s parameters to fit its input x. We see
that on one hand the smoothed neuron is a closed-form smooth approximation of the ReLU neuron
in Eq. (5.1), yet is mathematically equivalent to randomized smoothing over the bias term. Hence,
we obtain the meaningful guarantees of randomized smoothing, namely that optimizing the smoothed
model corresponds to optimizing the original nonsmooth function, without the need for randomization.
Moreover, as opposed to plain randomized smoothing which would smooth with respect to (w, b) ∈ R

d+1,
thus suffering from a dimension dependence in the smoothness parameter, smoothing over b alone
avoids dependence on d. Overall, replacing all ReLU neurons of a network with smoothed neurons is
mathematically equivalent to randomized smoothing over the parameter subspace corresponding to all
bias terms, reducing the dimension-dependence to a dependence on the number of biases, roughly the
size of the network.6

We now formally describe the class of representations that our smoothing procedure will apply to.
It is easy to see that this class contains ReLU neural networks with biases of arbitrary depth and width,
including many architectures used in practice.

Definition 5.2 (Neural Arithmetic Circuits (NAC)) We say that C is a neural arithmetic cir-
cuit with biases if it is represented as a directed acyclic graph with four different group of nodes: (i)
input nodes; (ii) bias nodes; (iii) output nodes; and (iv) gate nodes. The gate node can be one of
{+, relu,×, const(c)}, where const(c) stands for a constant c ∈ [−1, 1]. Moreover, a valid NAC with
biases satisfies the following conditions:

1. There is at least one input node. Every input node has 0 incoming edges and any number of
outgoing edges.

2. The number of bias nodes is equal to the number of relu gates. Every bias node has 0 incoming
edges, and only one outgoing edge.

3. The gate nodes in {+,×} have two incoming edges, and any number of outgoing edges.7

6Note that due to dependencies between neurons at different layers, this does not correspond to standard randomized
smoothing with respect to an isotropic distribution, but rather to a nontrivial distribution capturing the dependencies
among different bias terms. We remark that this is a major technical challenge in proving Theorem 5.2 to follow.

7We can generalize it to the case of any finite number of inputs. Focusing on two incoming edges does not lack the
generality since we can always compose these gates to simulate addition and maximum with many inputs by just increasing
the size and the depth of the circuit by a logarithmic factor.
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4. The gate node const(c) has 0 incoming edges, and any number of outgoing edges.

5. The gate node relu has 1 incoming edge but any number of outgoing edges. We also assume that all
the relu gates have biases, i.e., the predecessor vertex of a relu gate is always a “+” gate connected
to a bias node that is unique for every relu gate.

6. There is only one output node that has 1 incoming edge and 0 outgoing edges.

We denote by s(C) the size of C (i.e., the number of nodes in the graph of C).

The interpretation of C as a function f : Rd → R is very intuitive. The input nodes correspond to
the input variables x1, . . . , xd, followed by a gate node defining arithmetic operations over their input,
finally producing f(x) in the output node.

Example 5.1 Consider training a neural network ΦW,b to fit a labeled dataset (xi, yi)
n
i=1 with respect

to the quadratic loss, where W,b are the vectors of weights and biases of Φ, respectively. This task
corresponds to minimizing the following function:

f(W,b) =
n∑

i=1

(ΦW,b(xi)− yi)
2 .

It is easy to see that this function can be expressed as a neural arithmetic circuit according to Definition
5.2. The only requirement for ΦW,b is that every relu gate has a unique bias variable. Examples for
such ΦW,b include feed-forward ReLU networks, convolutional networks, and residual neural network
with skip connections.

Following the example above, we see that the problem of finding a (δ, ǫ)-Goldstein stationary point of
a function represented by a neural arithmetic circuit C captures a wide range of important nonsmooth
and nonconvex problems. To prove the efficiency of our proposed method, we need to impose the
following assumption, measuring the extent to which function values increase throughout the neural
arithmetic circuit. We note in Remark 5.1 that this assumption is satisfied by the practical design of
deep neural networks.

Assumption 5.1 For G > 0, we say that h : Rd → R is G-bounded over R if |h|R| ≤ G. Suppose
f : Rd → R is represented as a linear arithmetic circuit C. Let v1, . . . , vn be the nodes in C and fi be
the function that will be computed if vi would the output of the neural circuit. We assume that there
is a set R ⊆ R

d, such that for all i ∈ [n] : fi is Li-Lipschitz and Gi-bounded over R, according to the
following composition rules:

- vi is a + gate: if fi = fj + fk then Li = Lj + Lk and Gi = Gj +Gk.

- vi is a relu gate: if fi = relu{fj} then Li = Lj and Gi = Gj .

- vi is a const(c) gate: Li = 0 and Gi = c.

- vi is a × gate: if fi = fj · fk then Li = Lj ·Gk +Gj · Lk and Gi = Gj ·Gk.

- vi is a input or a bias node: Li = 1, Gi = diam(R) (the diameter of R).
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In particular, we assume that f is L-Lipschitz and G bounded over R according to the rules above. In
this case, we say that f is L-recursively Lipschitz and G-recursively bounded in R.

Remark 5.1 Note that the recursive rules used in Assumption 5.1 always provide an upper bound on
L > 0, however this bound can be much larger than the true Lipschitz constant L in the worst-case. To
bypass these bad cases, we impose Assumption 5.1. Notably, this assumption is not theoretically artificial
but is satisfied by generic constructions of neural networks in the context of deep learning. Indeed,
since the + and × gates are often used consecutively, leading to a bad Lipschitz constant in the worst
case, practitioners often force these upper bounds to be as small as possible by employing normalization
techniques in order to stabilize the training [Ioffe and Szegedy, 2015, Miyato et al., 2018].

As previously discussed, our deterministic smoothing idea is to replace the relu activation function
with its carefully chosen smooth alternative softrelu. We emphasize that this smoothing procedure is
simple, implementable and inspired by techniques that are widely accepted in practice (e.g Tatro et al.,
2020, Shamir et al., 2020). While proving that this results in a smooth approximation of the original
function is relatively straightforward, the main novelty of our proof is showing that any (δ, ǫ)-Goldstein
stationary point of the smoothed model is a (δ, ǫ)-Goldstein stationary point of the original, following
from our observation of the equivalence to randomized smoothing with respect to a low dimensional
subspace. This is crucial, as it allows optimization of the original function to be carried through the
smoothed model. We are now ready to state our main theorem in this section, whose proof is deferred
to Section 6.4.

Theorem 5.2 Let f : R
d → R be a L-recursively Lipschitz and G-recursively bounded function in

R ⊆ R
d (see Assumption 5.1), represented by a neural arithmetic circuit C. For every γ > 0, we can

construct a function f̃ : Rd → R such that for all x ∈ R it holds that:

1. |f(x)− f̃(x)| ≤ γ.

2. f̃ is L-Lipschitz and G-bounded.

3. f̃ is (G·L)O(s(C))

min{ǫ,δ,γ} -smooth.

4. Every (δ, ǫ)-Goldstein stationary point of f̃ is a (δ′, ǫ′)-Goldstein stationary point of f with ǫ′ = 2ǫ
and δ′ = 2δ.

At first glance, the smoothness parameter provided by the theorem above, though dimension-
independent, may seem overwhelming as it depends exponentially on the size of the network. Luckily,
this brings us back to Theorem 4.1 where we have proved that it is possible to incur merely a logarithmic
dependence on this parameter, resulting in the following corollary by setting γ = min{ǫ, δ}.

Corollary 5.3 Let f : R
d → R be a L-recursively Lipschitz and G-recursively bounded function

in R ⊆ R
d (see Assumption 5.1), represented by a neural arithmetic circuit C. Then if we apply

Deterministic-Goldstein-SG (Algorithm 2) to the function f̃ defined in Theorem 5.2 and R is such
that the algorithm’s iterates do not escape R, the algorithm is guaranteed to return a (δ, ǫ)-Goldstein

stationary point of f using O
(
GL2s(C) log(GLδ/ǫ)

δǫ3

)
first-order oracle calls.
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6 Proofs

6.1 Proof of Theorem 3.1

Fix d ≥ 3, ∆, L > 0 and let T ≤ d− 2. Consider the case that for any t ∈ [T − 1] the first-order oracle
response is f(xt) = 0,∇f(xt) = e1. Since the algorithm is deterministic this fixes the iterate sequence
x1, . . . ,xT . We will show this resisting strategy is indeed consistent with a function which satisfies the
conditions in the theorem.

To that end, we denote r := min1≤i6=j≤T ‖xi − xj‖/4 > 0 (without loss of generality) and fix some
v ∈ (span{e1,x1, . . . ,xT })⊥ with ‖v‖ = 1 (which exists since d ≥ T + 2). For any z ∈ R

d we define

gz(x) := min{‖x− z‖2/r2, 1}v⊤x+ (1−min{‖x− z‖2/r2, 1})e⊤1 (x− z) ,

and further define

h(x) :=

{
v⊤x , ∀t ∈ [T ] : ‖x− xt‖ ≥ r

gxt(x) , ∃t ∈ [T ] : ‖x− xt‖ < r
.

Note that h is well defined since by definition of r there cannot be i 6= j such that ‖x− xi‖ < r and
‖x− xj‖ < r.

Lemma 6.1 h : Rd → R as defined above is 7-Lipschitz, satisfies for any t ∈ [T ] : h(xt) = 0,∇h(xt) =
e1 and has no (δ, 1

36)-stationary points for any δ > 0.

Proof. We start by noting that h is continuous, since for any z and (yn)
∞
n=1 ⊂ Br(z), yn

n→∞−→ y such
that ‖y − z‖ = r we have

lim
n→∞

h(yn) = lim
n→∞

gz(yn)

= lim
n→∞

(
min{‖yn − z‖2/r2, 1}v⊤yn + (1−min{‖yn − z‖2/r2, 1})e⊤1 (yn − z)

)

= lim
n→∞

(‖yn − z‖2
r2

· v⊤yn +

(
1− ‖yn − z‖2

r2

)
e⊤1 (yn − z)

)

= v⊤y .

Having established continuity, since x 7→ v⊤x is clearly 1-Lipschitz (in particular 7-Lipschitz), in order
to prove Lipschitzness of h it is enough to show that gxt(x) is 7-Lipschitz in ‖x− xt‖ < r for any xt.
For any such x,xt we have

∇gxt(x) =
2v⊤x

r2
(x− xt) +

‖x− xt‖2
r2

v − 2e⊤1 (x− xt)

r2
(x− xt)−

‖x− xt‖2
r2

e1 + e1

v⊥xt=
2v⊤(x− xt)

r2
(x− xt) +

‖x− xt‖2
r2

v − 2e⊤1 (x− xt)

r2
(x− xt)−

‖x− xt‖2
r2

e1 + e1 , (6.1)

hence

‖∇gxt(x)‖ =

∥∥∥∥
2v⊤(x− xt)

r2
(x− xt) +

‖x− xt‖2
r2

v− 2e⊤1 (x− xt)

r2
(x− xt)−

‖x− xt‖2
r2

e1 + e1

∥∥∥∥

≤ 2‖v‖ · ‖x− xt‖2
r2

+
‖x− xt‖2

r2
‖v‖ + 2‖e1‖ · ‖x− xt‖2

r2
+

‖x− xt‖2
r2

‖e1‖+ ‖e1‖

≤ 2 + 1 + 2 + 1 + 1 = 7 ,
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which proves the desired Lipschitz bound. The fact that for any t ∈ [T ] : h(xt) = 0, ∇h(xt) = e1 is
easily verified by construction and by Eq. (6.1). In order to finish the proof, we need to show that h
has no (δ, 1

36) stationary-points. By construction we have

∂h(x) =

{
v , ∀t ∈ [T ] : ‖x− xt‖ > r

∇gxt(x) , ∃t ∈ [T ] : ‖x− xt‖ < r
,

while for ‖x− xt‖ = r we would get convex combinations of the two cases.8 Inspecting the set {∇gxt(x) :
‖x− xt‖ < r} through Eq. (6.1), we see that it depends on x,xt only through x− xt and that actually

{∇gxt(x) : ‖x− xt‖ < r} = {∇g0d
(x) : ‖x‖ < r} ,

which is convenient since the latter set does not depend on xt. Overall, we see that any convex
combination of gradients of h is in the set

{
λ1v + λ2

(
2v⊤x

r2
x+

‖x‖2
r2

v − 2e⊤1 x

r2
x− ‖x‖2

r2
e1 + e1

)
: λ1, λ2 ≥ 0, λ1 + λ2 = 1, ‖x‖ ≤ r

}

=
{
λ1v + λ2

(
2v⊤x · x+ ‖x‖2v− 2e⊤1 x · x− ‖x‖2e1 + e1

)
: λ1, λ2 ≥ 0, λ1 + λ2 = 1, ‖x‖ ≤ 1

}

=
{
(λ1 + λ2‖x‖2)v + 2λ2((v − e1)

⊤x)x+ λ2(1− ‖x‖2)e1 : λ1, λ2 ≥ 0, λ1 + λ2 = 1, ‖x‖ ≤ 1
}

.

We aim to show that the set above does not contain any vectors of norm smaller than 1
36 . Let u be an

element in the set with corresponding λ1, λ2,x as above. If ‖u‖ ≥ 1 then there is nothing to show, so
we can assume ‖u‖ < 1. We have

u⊤v = λ1 + λ2‖x‖2 + 2λ2(v − e1)
⊤x · x⊤v

= λ1 + λ2‖x‖2 + 2λ2(v
⊤x)2 − 2λ2e

⊤
1 x · x⊤v

≥ λ1 + λ2(v
⊤x)2 + λ2(e

⊤
1 x)

2 + 2λ2(v
⊤x)2 − 2λ2e

⊤
1 x · x⊤v

= λ1 + λ2(v
⊤x− e⊤1 x)

2 + 2λ2(v
⊤x)2

≥ λ1 + λ2(v
⊤x− e⊤1 x)

2

≥ λ2(v
⊤x− e⊤1 x)

2 , (6.2)

which gives

u⊤(e1 + v) = λ1 + λ2 + 2λ2(v
⊤x− e⊤1 x)(e

⊤
1 x+ v⊤x)

≥ 1− 4λ2|v⊤x− e⊤1 x|
(6.2)
≥ 1− 4

√
λ2u⊤v .

8Since we are interested in analyzing the δ-subdifferential set which consists of convex combinations of subgradients,
and subgradients are defined as convex combinations of gradients at differentiable points - it is enough to consider convex
combinations of gradients at differentiable points in the first place.
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Hence

1 ≤ |u⊤(e1 + v)|+ 4
√

λ2u⊤v ≤ ‖u‖ · ‖e1 + v‖+ 4
√

‖u‖

≤
√
2‖u‖+ 4

√
‖u‖

‖u‖<1

≤
√

2‖u‖+ 4
√

‖u‖

=⇒ ‖u‖ ≥ 1

(
√
2 + 4)2

>
1

36
.

�

Given the previous lemma we can easily finish the proof of the theorem by looking at

f(x) := max

{
L

7
h(x),−∆

}
.

f is L-Lipschitz (since h is 7-Lipschitz) and satisfies f(x0) − infx f(x) ≤ 0 − (−∆) = ∆, as required.
Furthermore, for any t ∈ [T ] : h(xt) = 0 > −∆ =⇒ f(xt) = L

7 h(xt) = 0. Since f is L-Lipschitz,
this further implies that for any x such that ‖x− xt‖ < ∆

L : f(x) > −∆ =⇒ ∂f(x) = L
7 ∂h(x). In

particular, ∂δf(xt) = L
7 ∂δh(xt) for any δ < ∆

L , so the lemma shows that xt is not a (δ, ǫ) stationary
point of f for ǫ < L

7 · 1
36 = L

252 .

6.2 Proof of Theorem 3.2

Let 0 < δ < ǫ < 1, and let T < ∞. It is enough to prove the case d = 1, since otherwise we can simply
look at x 7→ f(x1) with f being the lower bound construction in one dimension.

Suppose that an algorithm has access only to a derivative oracle, and consider the case that for any
t ∈ [T ] the oracles response is f ′(xt) = 1. Since the algorithm is deterministic this fixes the iterate
sequence Q := (x1, . . . ,xT ). Afterwards, the algorithm returns the candidate solution x̂ for being a
(δ, ǫ)-Goldstein stationary point. We remark that x̂ might not be in Q. We will show that the described
resisting strategy is indeed consistent with a function which satisfies the conditions in the theorem.
Namely, it suffices to construct a 1-Lipschitz function f such that f ′(xt) = 1 for all t ∈ [T ] yet x̂ is not
a (δ, ǫ)-Goldstein stationary point.

To that end, let η ∈ (0, 1− δ) be such that x̂+ δ + η /∈ Q and x̂− δ − η /∈ Q (recall that Q is finite,
thus such η exists). We set f(x) = x− x̂ for all x ∈ [x̂− δ + η, x̂+ δ + η], which ensures ∂δf(x̂) = {1},
and in particular the norm of the minimal-norm element in ∂δf(x̂) is 1. Since ǫ < 1, we get that x̂ is
not a (δ, ǫ)-Goldstein stationary, as required. Moreover, for all xt ∈ Q ∩ [x̂− δ + η, x̂+ δ + η], we have
f ′(xt) = 1. Thus, for these query points that lie in the interval [x̂ − δ + η, x̂ + δ + η], we satisfy the
resisting oracle condition,

We continue on to define the function f(x) for any x > x̂ + δ + η. The idea is to simply keep
f(x) = δ + η in this range while adding some small bumps to guarantee that f ′(xt) = 1 for all
xt ∈ Q ∩ (x̂ + δ + η,∞). Let Q̄ = Q ∪ {x̂ − δ + η, x̂ + δ + η} and r1 = 1

10 minx,x′∈Q̄,x 6=x′{|x − x′|}, we
define r = min{r1, δ} and

f(x) =





δ + η , ∀x′ ∈ Q : |x− x′| > r

δ + η − x , ∃x′ ∈ Q : |x− x′| ≤ r and x ≤ x′ − r
2

δ + η − r + x , ∃x′ ∈ Q : |x− x′| ≤ r and x > x′ − r
2

.
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We see from the above definition that 0 ≤ f(x) ≤ δ + η for all x > x̂ + δ + η and f ′(x) = 1 for all
x ∈ Q ∩ (x̂+ δ + η,∞). Similarly, we define f(x) for any x < −x̂− δ − η as:

f(x) =





−δ − η , ∀x′ ∈ Q : |x− x′| > r

−δ − η + x , ∃x′ ∈ Q : |x− x′| ≤ r and x ≤ x′ + r
2

−δ − η + r − x , ∃x′ ∈ Q : |x− x′| ≤ r and x > x′ + r
2

.

Putting all the pieces together, we get that f is a 1-Lipschitz function satisfying f ′(xt) = 1 for all
t ∈ [T ], and x̂ is not a (δ, ǫ)-Goldstein stationary point for any 0 < δ < ǫ < 1, yielding the desired
result.

6.3 Proof of Theorem 4.1

We start by concretely stating the purpose of the binary search given by Algorithm 1.

Lemma 6.2 Suppose x ∈ R
d and g0 ∈ ∂δf(x) are such that f(x − δ g0

‖g0‖
) − f(x) > − δ

2‖g0‖ and

‖g0‖ > ǫ. Then Binary-Search(δ,∇f(·),g0,x) terminates within O(log(Hδ/ǫ)) first-order oracle
calls and returns gnew ∈ ∂δf(x) such that g⊤

newg0 ≤ 3
4‖g0‖2.

Proof. Using the first assumption on x, g0 we apply the fundamental theorem of calculus to see that

1

2
‖g0‖2 ≥

‖g0‖
δ

(
f(x)− f

(
x− δ g0

‖g0‖

))
=

1

δ

∫ δ

0

〈
∇f

(
x− r

‖g0‖
g0

)
,g0

〉
dr

= Eξ∼U [x,x− δ
‖g0‖

g0]
[〈∇f(x+ ξ),g0〉] ,

hence in expectation with respect to the uniform measure over the segment [x,x − δ
‖g0‖

g0], sampling
a gradient will indeed satisfy the required condition. Applying the fundamental theorem again, it is
easy to see that the if condition in Algorithm 1 checks whether the average gradient along the right
half of the segment has larger inner product with g0 than other half or vise versa, and then continues
examining the half with the smaller expected inner product. Thus, after k iterations of this process we
are left with a segment Ik of length 2−kδ along which

Eξ∼U [Ik] [〈∇f(x+ ξ),g0〉] ≤
1

2
‖g0‖2.

But recalling that ∇f is H-Lipschitz, we get that all gradients of f over Ik are at distance smaller than
H · 2−kδ from one another. In particular, for k = O(log(Hδ/ǫ)) we get that all ξ ∈ I satisfy

〈∇f(x+ ξ),g0〉 ≤
1

2
‖g0‖2 +

ǫ2

4
≤ 3

4
‖g0‖2 ,

where we have applied the second assumption on g0. Thus the algorithm terminates, and returns gnew
satisfying the required condition. �

Having established the complexity and guarantee produced by the binary search subroutine, we
are now ready to analyze Deterministic-Goldstein-SG(x0, δ, ǫ). Since gnew ∈ ∂δf(xt) and ∂δf(x)
is a convex set, we observe that g(xt) ∈ ∂δf(xt). Accordingly, we see that whenever the while loop
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terminates then either ‖g(xt)‖ ≤ ǫ, meaning that xt is a (δ, ǫ)-Goldstein stationary point, or else
f(xt+1) ≤ f(xt)− δ

2‖g(xt)‖ < f(xt)− δǫ
2 . If the former occurs we are done, while the latter can occur

at most 2∆
δǫ = O(∆δǫ) times by the assumption that f(x0)− infx f(x) ≤ ∆.

Hence, it remains to show that the inner loop (lines 5-7) is repeated at most O
(
L2 log(L/ǫ)

ǫ2

)
times

per outer loop (namely, per t) in order to obtain the desired complexity overall. To that end, assume

that f
(
xt − δ g(xt)

‖g(xt)‖

)
− f(xt) > − δ

2‖g(xt)‖ and ‖g(xt)‖ > ǫ. By the previous lemma, we know that

g⊤
newg(xt) ≤ 3

4‖g(xt)‖2. But that being the case, we get by definition of ht that for all λ ∈ [0, 1] :

‖ht‖2 ≤ ‖g(xt) + λ(gnew − g(xt))‖2

= ‖g(xt)‖2 + 2λg(xt)
⊤(gnew − g(xt)) + λ2‖gnew − g(xt)‖2

≤ (1− 2λ) ‖g(xt)‖2 + 2λg(xt)
⊤gnew + 4L2

≤
(
1− λ

2

)
‖g(xt)‖2 + 4L2 .

By letting λ = ‖g(x)‖2

16L2 and recalling that ǫ ≤ ‖g(x)‖ ≤ L we get

‖ht‖2 ≤
(
1− ǫ2

64L2

)
‖g(xt)‖2 .

Hence each iteration shrinks ‖g(xt)‖2 by a factors of
(
1− ǫ2

64L2

)
. Since initially ‖g(xt)‖2 ≤ L2, this

can happen at most O
(
L2 log(L/ǫ)

ǫ2

)
times before having ‖g(xt)‖2 < ǫ2, as claimed.

6.4 Proof of Theorem 5.2

We construct the function g by using exactly the same neural arithmetic circuit of f , where we replace
all the relu gates with the softrelu gates:

softrelua(z) =





z , z ≥ a
(z+a)2

4a , −a ≤ z < a

0 , z < −a

,

and note that
softrelua(z) = Eξ∼U [−a,a][relu(z + ξ)] .

The following summarizes the properties of softrelu gates, and can be easily verified.

Lemma 6.3 We have that (i) |relu(z) − softrelua(z)| ≤ a
4 , (ii) softrelua(·) is 1-Lipschitz, and (iii)

softrelua is 1
2a -smooth.

We prove the theorem inductively, going through the gates of C one by one with respect to a
topological sorting of C which will remain fixed throughout the proof. Our goal is to compare the
evaluation of the nodes, in the order of this topological sorting, in the circuit of f and in the circuit of
g under Assumption 5.1. We denote by fi be the function evaluated in the node i of the circuit of f , in
the topological sorting of the circuit of f , and by gi the corresponding function evaluated in the node
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i of the circuit of g. Let also Li > 0 be the corresponding Lipschitz parameter of fi and Gi > 0 the
corresponding value bound parameter.

As to the base of our induction, we examine the input nodes. The input nodes and the constant
gates for f and g both have the same value, and have gradient ej for some j. Thus, they are 0-smooth.
Also, the input nodes are 1-Lipschitz and are bounded in value by the diameter of R, while the constant
nodes are clearly 0-Lipschitz. This will serve as the basis of our induction.

Our inductive hypothesis is that the following is satisfied for i : For any x ∈ R, any j < i, it holds
that (i) |fj(x)−gj(x)| ≤ γj, (ii) gj is Sj-smooth, (iii) gj is Lj-Lipschitz, and (iv) gj is Gj-bounded. Then,
we seek to prove that (i) |fi(x) − gi(x)| ≤ γi for all x ∈ R, (ii) gi is Si-smooth, (iii) gi is Li-Lipschitz,
and (iv) gi is Gi-bounded, while bounding γi, Si, Li, Gi as functions of the previous parameters.

We consider different cases according to the type of node i:

• output node. In this case, the value and Lipschitz constant of node i is the same as of a node
j < i. Thus, we have |fi(x)− gi(x)| ≤ γj =: γi and obtain that Si = Sj, Li = Lj , and Gi = Gj .

• × node. In this case, there exists j, k < i such that fi(x) = fj(x) · fk(x) and gi(x) = gj(x) · gk(x)
which means that

|fi(x)− gi(x)| = |fj(x) · fk(x) − gj(x) · gk(x)|
≤ |fj(x)| · |fk(x)− gk(x)|+ |gk(x)| · |fj(x)− gj(x)|
≤ Gj · γk + γj ·Gk =: γi .

Also, Si ≤ Sj · Gk + Gj · Sk + 2Lj · Lk. The Lipschitz constant of gi is upper bounded by
Lj ·Gk +Gj · Lk which is equal to Li by Assumption 5.1. Thus, gi is Li-Lipschitz. It is also easy
to see that gi is Gi = Gj ·Gk bounded.

• + node. In this case, there exist j, k < i such that fi(x) = fj(x)+fk(x) and gi(x) = gj(x)+gk(x)
which means that |fi(x)−gi(x)| ≤ γj +γk =: γi. Also, Si ≤ Sj +Sk. Then, the Lipschitz constant
of gi is upper bounded by Lj+Lk which is equal to Li by Assumption 5.1. Thus, gi is Li-Lipschitz
and is also easy to see that it is Gi = Gj +Gk bounded.

• relu node. In this case, there exists j < i such that fi(x) = relu(fj(x)) and gi(x) = softrelu(gj(x)).
Using Lemma 6.3, the triangle inequality and the fact that relu is 1-Lipschitz, we have |fi(x) −
gi(x)| ≤ a

4 + γj =: γi. The next is to bound the smoothness Si. By definition, we have

∇gi(x) = ∇softrelua(gj(x)) = softrelu′a(gj(x))∇gj(x) ,

hence

‖∇gi(x)−∇gi(y)‖ = ‖softrelu′a(gj(x))∇gj(x)− softrelu′a(gj(y))∇gj(y)‖
≤ |softrelu′a(gj(x))| · ‖∇gj(x)−∇gj(y)‖

+ |softrelu′a(gj(x))− softrelu′a(gj(y))| · ‖∇gj(y)‖

≤ (Gj · Sj +
1

2a
Lj)‖x− y‖.

So, Si ≤ Gj ·Sj +
1
2aLj. Also, due to the fact that softrelu is 1-Lipschitz, the Lipschitzness of gi is

upper bounded by Lj which is equal to Li by Assumption 5.1. Thus, gi is Li-Lipschitz. Finally,
gi is obviously Gj bounded and hence Gi bounded by Assumption 5.1.

17



Note that the sequence of errors {γi}i≥1 is increasing. Going through all the cases we considered above,
we see that γi ≤ a

4 +Gkγj +Gjγk ≤ 1
a + 2Gγi−1 which implies that γi ≤ a · (2G)i. Thus, we have

|f(x)− g(x)| ≤ a · (2G)s(C) .

Similarly, we have that Si ≤ 2G · Si−1 + 2L2 + L
a , so as long we set 1

a large enough compared to 2L2

(which will indeed be the case later on) we can simplify this to Si ≤ 2G·Si−1+2L
a , hence Si ≤ 2L

a ·(2G)i.
Thus, we have

Si ≤
2L

a
· (2G)s(C) .

Next, we proceed to prove the equivalence between the Goldstein stationary points of f and g.
Towards this goal we introduce some notation: let n = s(C), let Bi be all the bias variables that are
used in the topological ordering of the neural circuit in nodes before the node i and b be the total
number of bias variables, i.e., b = |Bn|. We relate any (δi, ǫi)-Goldstein stationary of gi to those of fi
through the following lemma.

Lemma 6.4 Let x ∈ R. Then there exists two positive sequences δ1, . . . , δn > 0 and ǫ1, . . . , ǫn > 0, a
sequence of vectors s1, . . . , sn, and a sequence of distributions Dx

1 , . . . ,Dx
n supported on [−a, a]s(C) such

that for all i ∈ [s(C)] the following hold:

• δi ≤ (40 · L ·G)s(C) · a, ǫi ≤ (160 · L ·G)3s(C) · a and ‖si‖2 ≤ ǫi.

• ∇gi(x) = Ey∼Dx

i
[∇fi(y)] + si.

• The support of Dx
i has diameter δi and contains only points where fk is differentiable for all k.

Moreover, the support of Dx
i only contains points y for which either yi = xi for all i that correspond

to input variables that are not biases, or are biases which are not used in the computation of fi,
gi.

Proof. We prove this lemma by induction on i. For the base of the induction we observe that all the
input and constant nodes are in the beginning of the topological ordering, and satisfy gi = fi, and that
fi is differentiable. For this reason, input and constant nodes satisfy the lemma with Dx

i equal to the
Dirac delta distribution at x, si = 0, δi = 0, ǫi = 0. Now for the inductive step we assume that the
lemma holds for all j < i and we split into the following cases for the node i, depending on the type of
the node in the circuit.

• output node. In this case, we have that gi = gj , fi = fj hence the lemma follows immediately
by the inductive hypothesis.

• + node. In this case, we have that gi = gj + gk, fi = fj + fk. By the inductive hypothesis we get

∇gj(x) = Ey∼Dx

j
[∇fj(y)] + sj , ∇gk(x) = Ey∼Dx

k
[∇fk(y)] + sk .

Now let’s assume without loss of generality that j ≥ k, then we set Dx
i = Dx

j and from the fact
that Bj is a super set of Bk and from linearity of expectation we get

∇gi(x) = ∇gj(x) +∇gk(x) = Ey∼Dx

i
[∇fj(y) +∇fk(y)] + sj + sk

= Ey∼Dx

i
[∇fi(y)] + sj + sk ,

hence the lemma holds for this i with δi ≤ max{δj , δk}, si = sj + sk, ǫi = ǫj + ǫk.
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• × node. In this case, we have gi = gj · gk, fi = fj · fk and by inductive hypothesis we get that

∇gj(x) = Ey∼Dx

j
[∇fj(y)] + sj , ∇gk(x) = Ey∼Dx

k
[∇fk(y)] + sk.

Recall that gi is differentiable, hence

∇gi(x) = gj(x)∇gk(x) + gk(x)∇gj(x) .

Also, because we will only consider points x for which all fi’s are also differentiable we have that

∇fi(x) = fj(x)∇fk(x) + fk(x)∇fj(x) .

Let’s assume without loss of generality that j ≥ k, then we set Dx
i = Dx

j and from the fact that
Bj is a super set of Bk we have that

∇gj(x) = Ey∼Dx

i
[∇fj(y)] + sj , ∇gk(x) = Ey∼Dx

i
[∇fk(y)] + sk . (6.3)

Using Eq. (6.3), the gradient of gi and linearity of expectation we have

∇gi(x) = gj(x)Ey∼Dx

i
[∇fk(y)] + gk(x)Ey∼Dx

i
[∇fk(y)] + gk(x)sj + gj(x)sk

= Ey∼Dx

i
[gj(x)∇fk(y) + gk(x)∇fk(y)] + gk(x)sj + gj(x)sk . (6.4)

At this point we invoke Assumption 5.1 to utilize that gj , gk are G-bounded and that fj, fk are
L-Lipschitz and hence we have that

‖∇gi(x)− Ey∼Dx

i
[∇fi(y)]‖2 ≤ L ·

(
Ey∼Dx

i
[|gj(x)− fj(y)|] + Ey∼Dx

i
[|gk(x)− fk(y)|]

)

+G · (ǫj + ǫk) . (6.5)

So it remains to bound Ey∼Dx

i
[|gj(x)−fj(y)|] and Ey∼Dx

i
[|gk(x)−fk(y)|]. We will prove an upper

bound on Ey∼Dx

i
[|gj(x) − fj(y)|], while the same upper bound will work for for k as well. First,

observe that because of the structure of the biases and the definition of Dx
i we have that

Ey∼Dx

i
[|gj(x)− fj(y)|] = Ey∼Dx

j
[|gj(x)− fj(y)|] .

Now we get that

Ey∼Dx

j
[|gj(x)− fj(y)|] ≤ Ey∼Dx

j
[|gj(x) − gj(y)|] + Ey∼Dx

j
[|gj(y) − fj(y)|] . (6.6)

We can now use the first statement of the theorem that we have already proved to recall that
|gj(y) − fj(y)| ≤ γj ≤ (2G)j · a, and we can also use the Lipschitz constant of gj to get that

Ey∼Dx

j
[|gj(x)− fj(y)|] ≤ L · δj + (2G)i · a . (6.7)

Combining Eq. (6.5) and Eq. (6.7) we obtain

‖∇gi(x)− Ey∼Dx

i
[∇fi(y)]‖2 ≤ L2 · δj + L · (2G)i · a+G · (ǫj + ǫk) ,

and the lemma follows for this case as well with δi ≤ max{δj , δk} and ǫi ≤ L2 · δj +L · (2G)i · a+
G · (ǫj + ǫk).
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• relu node. In this case we use the structure of the bias variables, and see that gi(x) = softrelu(gj(x)+
xbi) and fi(x) = relu(fj(x) + xbi) where bi is the index of the vector x that corresponds to the
bias variable appearing only in the relu-node i. From the definition of softrelu we have that
gi(x) = Eu∼U [−a,a][relu(gj(x) + xbi + u)]. Using the fact that we only focus on x for which fj is
differentiable we get that

∇gi(x) = Eu∼U [−a,a][1{gj(x) + xbi + u ≥ 0}(∇(gj(x) + xbi))]

= Eu∼U [−a,a][1{gj(x) + xbi + u ≥ 0}](∇(gj(x) + xbi))

= Pu∼U [−a,a](gj(x) + xbi + u ≥ 0)(∇(gj(x) + xbi)) ,

and also
∇fi(x) = 1{fj(x) + xbi ≥ 0}(∇(fj(x) + xbi)) .

From the inductive hypothesis and the fact that every bias variable appears only once we get

∇(gj(x) + xbi) = Ey∼Dx

i
[∇(fj(y) + xbi)] + sj ,

so by denoting ζi(x) = Pu∼U [−a,a](gj(x) + xbi + u ≥ 0) the above implies that

∇gi(x) = ζi(x) · (Ey∼Dx

i
[∇(fj(y) + xbi)] + sj) .

We now need to distinguish several cases: (1) gj(x) + xbi ≥ a + γj + Lδj, (2) gj(x) + xbi ≤
−a− γj − Lδj , and (3) |gj(x) + xbi | ≤ a+ γj + Lδj.

We start with the first case. If gj(x)+xbi ≥ a+ γj +Lδj then this means that ζi(x) = 1 and that
fj(y) + xbi ≥ 0 for all y that are δj-close to x. This implies that we can choose Dx

i = Dx
j and we

immediately get
∇gi(x) = Ey∼Dx

i
[∇fi(y)] + sj ,

hence the lemma holds with δi = δj , ǫi = ǫj and si = sj .

Similarly, for the second case we have that ζi(x) = 0 and fj(y)+xbi ≤ 0 for all y that are δj-close
to x. In this case we have that

∇gi(x) = 0 = Ey∼Dix[∇fi(y)] ,

hence the lemma holds with δi = δj , ǫi = ǫj and si = 0.

Finally, we consider the case |gj(x) + xbi | ≤ a + γj + Lδj . This implies that |fj(y) + xbi | ≤
a+ 2γj + 2Lδj for all y that are δj-close to x. We define the distribution Dx

i as follows: we first
sample y from Dx

j , and let y−bj be the vector y with all the coordinates but bj . We then sample
y′bj from a distribution such that with probability ζi(x) it holds that f(y)+y′bj ≥ η for some value

η > 0 and with probability 1− ζi(x) it holds that f(y)+y′bj ≤ −η. We then observe the following:

(a) by Rademacher’s theorem we now that all fj’s are almost everywhere differentiable, so for an
arbitrarily small value η and for every y we can find values y′bj such that what we want holds and

also all the functions fj are differentiable in (y−bj , y
′
bj
), and (b) the desired values y′bj are at most
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a + 2γj + 2Lδj away from xbj , hence at most 2a + 4γj + 4Lδj away from each other. Also, from
the definition of Dx

i we have that

Ey∼Dx

i
[∇fi(y)] = Ey∼Dx

i
[1{fj(y) + ybi ≥ 0}(∇fj(y) + ebi)]

= Ey∼Dx

j
[Ey′

bi

[1{fj(y−bi) + y′bi ≥ 0}(∇fj(y) + ebi)]]

= Ey∼Dx

j
[Ey′

bi

[1{fj(y−bi) + y′bi ≥ 0}](∇fj(y) + ebi)]

= Ey∼Dx

j
[Py′

bi

(fj(y−bi) + y′bi ≥ 0)(∇fj(y) + ebi)]

= Ey∼Dx

j
[ζi(x)(∇fj(y) + ebi)]

= ζi(x)Ey∼Dx

j
[(∇fj(y) + ebi)]

= ζi(x)(∇gj(y) + ebi)− ζi(x)sj

= ∇gi(x)− ζi(x)sj ,

where in the first line we used the definition of the distribution Dx
i , in the second line we use the

fact that the bias variable ybi does not appear in the computation of fj, in the fourth line we use
the definition of the distribution of y′bi given y, and in the rest we use the definition of ζi and
our inductive hypothesis. Overall we get that the lemma follows with δi ≤ δj + 2a + 4γj + 4Lδj ,
ǫi ≤ ǫj, and si = ζi(x) · sj .

To conclude, using the fact that both δi and ǫi are increasing according to the definitions above and
using the worst bounds from all these cases we get

δi ≤ δi−1(4L+ 1) + (8G)s(C)a ,

implying that
δn ≤ (40 · L ·G)s(C) · a .

Using this bound we can compute the worst possible bound for ǫi, as we have

ǫi ≤ L2 · δj + L · (2G)i · a+ 2G · ǫi−1

=⇒ ǫi ≤ (80 · L ·G)2s(C) · a+ 2G · ǫi−1

implying that
ǫn ≤ (160 · L ·G)3s(C) · a ,

hence the lemma follows. �

Overall, for all the analyzed quantities we get

γn ≤ a · (2G)s(C) ,

δn ≤ a · (40LG)s(C) ,

ǫn ≤ a · (160LG)3s(C) ,

Sn ≤ 2L

a
· (2G)s(C) .

Setting a = (160 · L ·G)3s(C) · γ finishes the proof.
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7 Conclusion

We have provided lower and upper bounds on the complexity of finding an approximate (δ, ǫ)-Goldstein
stationary point of a Lipschitz function in deterministic nonsmooth and nonconvex optimization. We
have shown that unlike dimension-free randomized algorithms, any deterministic first-order algorithm
must suffer from a nontrivial dimension dependence, by establishing a lower bound of Ω(d) for any
dimension d, whenever δ, ǫ > 0 are smaller than given constants. Furthermore, we established the
importance of a zeroth-order oracle in deterministic nonsmooth nonconvex optimization, by proving that
any deterministic algorithm that uses only a gradient oracle cannot guarantee to return an adequate
point within any finite time. Both lower bounds stand in contrast to randomized algorithms, as well as
deterministic smooth nonconvex and nonsmooth convex settings, emphasizing the unique difficulty of
nonsmooth nonconvex optimization.

We have also provided a deterministic algorithm that achieves the best known dimension-free rate
with merely a logarithmic smoothness dependence, allowing de-randomization for slightly-smooth func-
tions. This motivated the study of deterministic smoothings, in order to apply our algorithm for
nonsmooth problems. We proved that unlike existing randomized smoothings, no efficient deterministic
black-box smoothing can provide any meaningful guarantees, providing an answer to an open question
raised in the literature. Moreover, we have bypassed this impossibility result in a practical white-box
model, providing a deterministic smoothing for a wide variety of widely used neural network architec-
tures which is provably meaningful from an optimization viewpoint. Combined with our algorithm, this
yields the first deterministic, dimension-free algorithm for optimizing such networks, circumventing our
lower bound.

As to future directions, it is interesting to note that our lower bound for deterministic first-order
optimization is linear with respect to the dimension, though we are not aware of any such algorithm
with sub-exponential dimension dependence (namely, better than exhaustive grid-search). Therefore,
we pose the following question:

Open problem: Is there a deterministic first-order algorithm for nonsmooth nonconvex
optimization that returns a (δ, ǫ)-Goldstein stationary point using poly(d, δ−1, ǫ−1) oracle
calls?
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A Related Work

To appreciate the difficulty and the scope of research agenda in nonsmooth nonconvex optimization,
we describe the relevant literature. In this context, existing research is mostly devoted to estab-
lishing the asymptotic convergence of optimization algorithms, including the gradient sampling (GS)
method [Burke et al., 2002a,b, 2005, Kiwiel, 2007, Burke et al., 2020], bundle methods [Kiwiel, 1996]
and subgradient methods [Benäım et al., 2005, Davis et al., 2020, Daniilidis and Drusvyatskiy, 2020,
Bolte and Pauwels, 2021]. More specifically, Burke et al. [2002a] provided the systematic investiga-
tion of approximating a generalized gradient through a simple yet novel random sampling scheme,
motivating the subsequent development of celebrated gradient bundle method [Burke et al., 2002b].
Then, Burke et al. [2005] and Kiwiel [2007] proposed the modern GS method by incorporating key
modifications into the scheme of the aforementioned gradient bundle method and proved that any clus-
ter point of the iterates generated by the GS method is a Clarke stationary point. For an overview of
GS methods, we refer to Burke et al. [2020].

There has been recent progress in the investigation of different subgradient methods for nonsmooth
nonconvex optimization. It was shown by Daniilidis and Drusvyatskiy [2020] that the standard subgra-
dient method fails to find any Clarke stationary point of a Lipschitz function, as witnessed by the exis-
tence of pathological examples. Benäım et al. [2005] established the asymptotic convergence guarantee of
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stochastic approximation methods from a differential inclusion point of view under additional conditions
and Bolte and Pauwels [2021] justified automatic differentiation as used in deep learning. Davis et al.
[2020] proved the asymptotic convergence of subgradient methods if the objective function is assumed
to be Whitney stratifiable. Turning to nonasymptotic convergence guarantee, Zhang et al. [2020] pro-
posed a randomized variant of Goldstein’s subgradient method and proved a dimension-independent
complexity bound of Õ(δ−1ǫ−3) for finding a (δ, ǫ)-Goldstein stationary point of a Hadamard direc-
tionally differentiable function. For the more broad class of Lipschitz functions, Davis et al. [2022]
and Tian et al. [2022] have proposed two other randomized variants of Goldstein’s subgradient method
and proved the same complexity guarantee. Comparing to their randomized counterparts, deterministic
algorithms are relatively scarce in nonsmooth nonconvex optimization.

In convex optimization, we have a deep understanding of the complexity of finding an ǫ-optimal point
(i.e., x ∈ R

d such that f(x)− infx∈Rd f(x) ≤ ǫ) [Nemirovski and Yudin, 1983, Guzmán and Nemirovski,
2015, Braun et al., 2017, Nesterov, 2018]. In smooth nonconvex optimization, various lower bounds
have been established for finding an ǫ-stationary point (i.e., x ∈ R

d such that ‖∇f(x)‖ ≤ ǫ) [Vavasis,
1993, Nesterov, 2012, Carmon et al., 2020, 2021]. Further extensions to nonconvex stochastic opti-
mization were given in Arjevani et al. [2020, 2022] while algorithm-specific lower bounds for finding
an ǫ-stationary point were derived in Cartis et al. [2010, 2012, 2018]. However, these proof techniques
can not be extended to nonsmooth nonconvex optimization due to different optimality notions. In this
vein, Zhang et al. [2020] and Kornowski and Shamir [2021] have demonstrated that neither an ǫ-Clarke
stationary point nor a near ǫ-Clarke stationary point can be obtained in a poly(d, ǫ−1) number of queries
when ǫ > 0 is smaller than some constant. Our analysis is inspired by their construction and techniques
but focus on establishing lower bounds for finding a (δ, ǫ)-Goldstein stationary point.

The smoothing viewpoint starts with Rockafellar and Wets [2009, Theorem 9.7], which states that
any approximate Clarke stationary point of a Lipschitz function is the asymptotic limit of appropri-
ate approximate stationary points of smooth functions. In particular, given a Lipschitz function f ,
we can attempt to construct a smooth function f̃ that is δ-close to f (i.e., ‖f − g‖∞ ≤ δ), and ap-
ply a smooth optimization algorithm on f̃ . Such smoothing approaches have been used in convex
optimization [Nesterov, 2005, Beck and Teboulle, 2012] and found the application in structured non-
convex optimization [Chen, 2012]. For a general Lipschitz function, Duchi et al. [2012] proposed a
randomized smoothing approach that can transform the original problem to a smooth nonconvex opti-
mization where the objective function is given in the expectation form and the smoothness parameter
is dimension-dependent. Moreover, there are deterministic smoothing approaches that yield dimension-
independent smoothness parameters but they are computationally intractable [Lasry and Lions, 1986,
Attouch and Aze, 1993]. Recently, Kornowski and Shamir [2021, 2022] have explored the trade-off be-
tween computational tractability and smoothing, ruling out the existence of any (possibly randomized)
smoothing approach that achieves computational tractability and a dimension-independent smoothness
parameter.
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