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Abstract

We provide a unifying framework for the design and analysis of multi-calibrated and moment-
multi-calibrated predictors. Placing the multi-calibration problem in the general setting of multi-

objective learning—where learning guarantees must hold simultaneously over a set of distribu-
tions and loss functions—we exploit connections to game dynamics to obtain state-of-the-art
guarantees for a diverse set of multi-calibration learning problems. In addition to shedding
light on existing multi-calibration guarantees, and greatly simplifying their analysis, our ap-
proach yields a 1/ε2 improvement in the number of oracle calls compared to the state-of-the-art
algorithm of Jung et al. [19] for learning deterministic moment-calibrated predictors and an
exponential improvement in k compared to the state-of-the-art algorithm of Gopalan et al. [14]
for learning a k-class multi-calibrated predictor. Beyond multi-calibration, we use these game
dynamics to address existing and emerging considerations in the study of group fairness and
multi-distribution learning.

1 Introduction

In recent years, multi-calibration has emerged as a powerful tool for addressing fairness considera-
tions in machine learning. Founded on the principle of calibrated forecasting [5, 10]—which requires
that among instances that are assigned prediction probability h(x) = v, a fraction v of those in-
stances demonstrate a positive outcome—multi-calibration seeks to provide calibration guarantees
at finer and richer levels of decision making. These include the multi-calibration notion of Hebert-
Johnson et al. [18] that additionally seeks calibration across large and possibly overlapping collection
of sub-populations, the multi-class multi-calibration notion of Gopalan et al. [14] that considers cal-
ibration for predictors with rich label sets, and the moment multi-calibration notion of Jung et al.
[19] that in addition to average outcome seeks calibrated estimates of higher moments. Addressing
these additional considerations in calibration has contributed to the versatility of multi-calibration
and its connections to fairness, robust accuracy guarantees, computational indistinguishability, and
conformal predictions [18, 19, 13, 15, 6].

This development of new applications and variants of multi-calibration has introduced a plethora
of algorithms—with an accompanying lack of clarity as to which algorithms are appropriate for
which problem settings, particularly novel problem settings that have emerged recently. There have
been promising attempts to unify these approaches, such as outcome indistinguishability [6], but
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Problem Complexity Previous Results Our Results Reference

Moment MC
Oracle O

(
rε−4

)
[19] O

(
rε−2

)
Corr 4.12

Sample Õ
(
√

rε−4(d+ ln(1/λ))
)

[19] Õ
(
√

rε−3(d+ ln(1/λ))
)

k-class MC
Oracle O

(
kε−2

)
[14] O

(
ln(k)ε−2

)
Corr 4.7

Sample Õ
(
√

kε−3(d+ k ln(1/λ))
)

[14] Õ
(√

ln(k)ε−3(d+ k ln(1/λ))
)

Moment ND MC Sample Õ
(
(d+ ln(r/λ))ε−2

)
[15] O

(
(d+ ln(r/λ))ε−2

)
Corr 4.13

k-class ND MC Sample Õ
(
(d+ k ln(1/λ))ε−2

)
[15] Õ

(
(d+ k ln(1/λ))ε−2

)
Corr 4.5

Table 1: This table summarizes the oracle and sample complexity rates we obtain for various multi-
calibration (MC) problems, compared against the previously best known rates. We let λ denote calibration
bin size, S the set of groups one wants to be calibrated on, d the VC dimension of set S, k the number of
classes, and r the number of higher-order moments to be calibrated. The bottom two rows concern relaxed
settings where non-deterministic (ND) solutions are acceptable and for which we provide matching rates.

they have had limited success in providing a simple overarching conceptual framework that can
capture the diverse needs of calibration. In this paper, we tackle this challenge head-on, developing
a basic and versatile algorithmic framework that guides the design of simple and efficient multi-
calibrated learning algorithms for a wide range of increasingly specialized and diverse considerations
in calibration.

Our approach builds on well-established game dynamics for learning problems [see, e.g., 11, 8].
We show that most results in multi-calibration can be formulated in terms of one of two classical
scenarios in the dynamical formulation of two-player zero-sum games: no-regret versus no-regret
and no-regret versus best-response. Plugging in different no-regret and best-response algorithms
results in different multi-calibration algorithms exhibiting different trade-offs, obviating the need for
highly individualized, detailed, and careful analysis of specific settings. We also present a no-regret
algorithm that leverages the structure of any calibration-like function class to obtain improved
sample-complexity and oracle-complexity for several multi-calibration problems, including mean-
conditioned moment multi-calibrations and multi-class multi-calibration.

Still more generally, we introduce multi-objective learning as a framework for obtaining learning
guarantees that hold simultaneously over a collection of distributions and loss functions. Beyond
multi-calibration, this framework readily accommodates existing frameworks for collaborative learn-
ing [3, 24], multi-distribution learning [16], agnostic federated learning [23], and a variety of group
fairness frameworks [27, 26, 28]. Once again, we use the versatility of the game dynamics in multi-
objective learning problems to improve upon several existing results in these literatures.

1.1 Overview of Results

Simple and unifying framework. In Section 3, we give a general overview of game dynamics
as a concise and unifying framework for obtaining multi-objective learning guarantees. We apply
these techniques to several problems in multi-calibration by introducing a general-purpose no-regret
algorithm (Lemma 4.2) for calibration-like objectives. In addition to simplifying past techniques
and providing improved learning guarantees, our framework takes a step towards unifying seemingly
different approaches used in the field.

Improved guarantees. We show that our classical learning-in-games dynamics framework pro-
vides the best-known sample complexity rates for most multi-calibration objectives. In particular,
for the problem of k-class multi-calibration (for deterministic predictors) we obtain an exponential
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improvement in k over Gopalan et al. [14], by using only O
(
log(k)/ε2

)
rather than O

(
k/ε2

)
calls to

an agnostic oracle. For moment multi-calibration we use O
(
1/ε3

)
samples or O

(
1/ε2

)
calls to an

oracle to find a deterministic moment multi-calibrated predictor. This improves the state-of-the-art
results of Jung et al. [19] who uses O

(
1/ε4

)
samples or O

(
1/ε4

)
calls to an oracle. To achieve these

improvements, we design a no-regret algorithm in Lemma 4.2 that works for any calibration-like
functions—one that is fundamental to all applications of multi-calibration.

Simplified results and new considerations. In addition to the above improvements, we
broadly match the best-known guarantees of most multi-calibrated settings while obviating the
need for their individualized treatment, including for non-deterministic moment calibration and
multi-calibration results of Gupta et al. [15], Noarov et al. [25] in Corollaries 4.13 and 4.5 respec-
tively. We also show our game dynamics analysis extends to new variants of multi-calibration, such
as in agnostic settings, and beyond multi-calibration, such as for multi-group fairness (matching
[28]).

1.2 Technical Overview

The design of our algorithms is based on the construction of game dynamics—pitting players against
one another across many iterations—on game representations of multi-objective learning. It is well-
established that when the players in these dynamics use no-regret strategies, their time-averaged
actions give a randomized predictor that converges to an optimal solution. When one of the players
is best responding, we show that it may even be possible to extract a deterministic solution from
these dynamics (Lemma 3.2). One implementation of multi-objective learning game dynamics is
to have each player run an online learning algorithm, like Hedge, on the empirical game—since
their losses form a martingale, their true regret will quickly converge to their empirical regret (e.g.
see Haghtalab et al. [Lemma B.1 16]). However, convergence may be slow for players tasked with
optimizing over candidate hypotheses, as standard online learning algorithms would give them regret
bounds scaling in the complexity of H (or X ).

In this regard, multi-calibration is distinguished from the general setting of multi-objective
learning by just two properties that are both rooted in the special linear structure of the calibration
loss. The first is a folklore property that has been recently formalized by Hart [17] establishing that
the learner can compute her best response in a distribution-free way (without observing samples).
This means that there are game dynamics for calibration problems that converge faster than is
typically possible: at a rate independent of the complexity of one’s domain |X |. The second property
that we formalize in Lemma 4.2 is that the learner has a no-regret online learning strategy that does
not use randomization. The latter property has been implicitly used in multi-calibration literature
for specific choices of online algorithms. On the other hand, our Lemma 4.2 makes this explicit and
shows that any no-regret algorithm over a finite set can be used as a basis for creating a deterministic
no-regret algorithm for the calibration loss. By making this explicit, we identify opportunities for
unifying and simplifying existing algorithms and improving multi-calibration sample complexity
rates.

1.3 Related Works

Multi-calibration and related notions. The study of calibration in statistics took its roots in
forecasting [5, 17]. The classical literature also included work on calibration across multiple sub-
populations [9]. Motivated by fairness considerations, a formal definition of multi-calibration was
presented by Hebert-Johnson et al. [18], and that formulation has found a wide range of applications
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and conceptual connections to Bayes optimality, conformal predictions, and computational indistin-
guishability [18, 19, 13, 15, 6, 20]. Algorithms for multi-calibration have largely developed along
two lines, one studying oracle-efficient boosting-like algorithms [see, e.g., 18, 22, 14, 6] and another
studying algorithms with flavors of online optimization [see, e.g., 15, 25]. Our work establishes
that the contrast between these lines of work are entirely attributable to different choices of game
dynamics.

Other multi-objective learning problems. More broadly, multi-objective and multi-distribution
learning have been studied in settings involving fairness, collaboration, and robustness. Blum et al.
[3] initiated the study of optimal sample complexity for learning predictors with near-optimal accu-
racy across multiple populations. The recent work of Haghtalab et al. [16] uses game dynamics to
obtain tight sample complexity bounds (including agnostic and well-specified settings), improving
over past work that similarly drew on boosting-like and online optimization techniques [4, 24, 23].
Related notions of group fairness have also been studied by Kearns et al. [21] with a focus on using
weak oracles for optimization. More recently, multi-objective learning has been viewed as a mid-
dle ground between settings where sub-populations are mutually compatible with the best known
bounds arising by reduction to the online learning framework of sleeping experts [26, 28, 2]. In
Section 5, we show how our framework gives matching (or improved) guarantees relative to these
literature.

2 Preliminaries

We will use X and Y to denote the feature space and label space of our learning problems. Two
common label sets we work with are Y := {1, . . . , k} and Y := [0, 1]k, using the latter especially
for calibration with k classes. We consider data distributions D over the set Z := X × Y. We
consider a hypothesis (or predictor) class H that is a set of functions mapping X to labels Y. We
consider loss functions of the form ℓ : H × Z → [0, 1]. Given a data distribution D and a loss
function ℓ, we denote the expected loss of any hypothesis h by LD,ℓ(h) := E(x,y)∼D [ℓ (h, (x, y))] and
suppress subscripts when clear from context. We also consider non-deterministic choices p ∈ ∆H
and q ∈ ∆D, where ∆ denotes a simplex of probability distributions over a base class. In this case,
we define their expected loss by Lq,ℓ(p) := ED∼q,h∼p [LD,ℓ(h)].

Multi-objective learning. Multi-objective learning is concerned with finding a hypothesis (or a
distribution over hypotheses) that performs well over any loss function and any distribution, from
a predetermined set of losses and distributions. A multi-objective learning instance is defined by
(D,G,H), where H is a hypothesis class, G is a set of loss functions ℓ : (H×Z) → [0, 1], and D is a
data distribution. The goal of multi-objective learning is to return a hypothesis h, or more generally
a distribution p ∈ ∆H, such that

max
ℓ∈G

LD,ℓ(p) ≤ min
h∗∈H

max
ℓ∈G

LD,ℓ(h
∗) + ε. (1)

We call L∗(h) := maxℓ∈G LD,ℓ(h) and the analogously defined L∗(p) the multi-objective loss. We call
a solution p that meets Equation (1) an ε-optimal solution to the multi-objective instance (D,G,H).
Note that p can take many forms—a non-deterministic hypothesis or a deterministic hypothesis.
Furthermore, a deterministic solution h may be proper (i.e., h ∈ H) or improper. While we prefer
to find a deterministic solution, depending on the application, non-deterministic solutions may also
be useful.
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Oracles. We access any distribution D ∈ D using only an example oracle, EXD, that samples
z ∼ D. We generally work with known loss functions G, though the class may be large. In some cases,
we interact with G only through optimization oracles. A (c, ε)-agnostic learning oracle for class G
(and distribution D) returns a q ∈ ∆G given any h ∈ H, such that LD,q(h)+ε ≥ c ·maxℓ∗∈G LD,ℓ∗(h).
We note that such learning oracles are readily available for finite G (such as the ERM oracle) and
structured infinite classes, using a small number of example oracle calls to D. We also consider
oracles return solutions that directly compete with the minmax value, instead of being instance-
wise nearly optimal. That is, we define a weak ε-oracle that takes as input a hypothesis h ∈ H and
returns a loss ℓ ∈ G such that LD,ℓ(h) ≥ ε + minh∗∈Hmaxℓ∗∈G LD,ℓ∗(h

∗) if there exists a choice of
ℓ′ where LD,ℓ′(h) ≥ 2ε + minh∗ maxℓ∗ LD,ℓ∗(h

∗), i.e., if ℓ′ beat the minmax value by 2ε. We call
a learning algorithm oracle-efficient if it interacts with G only through one of these oracles. We
generally state our results in terms of (1, ε)-agnostic learning oracles but all of our results extend
to weak ε-oracles as well (see Remark 3.3). Since we can always find a covering of G or just interact
with G through an oracle, we will use |ln(G)| instead of VC dimension VC(G), though our results
hold for both with at most an extra ln(1/ε) factor.

Games Formulation and Dynamics. Multi-objective learning is closely related to two-player
zero-sum games. For ease of notation, we now briefly consider an abstract two-player zero-sum game,
where Ai is the action set of player i, φi :

∏
j Aj → [0, 1] is the loss of player i, and φ1(a) = −φ2(a)

for all strategy profiles a ∈ ∏
j Aj. An ε-dominant strategy for player i is a pure strategy ai such

that for all a−i ∈ A−i and a′i ∈ Ai, φi(ai, a−i) ≤ φ(a′i, a−i) + ε. For any sequence of played actions,
a(1), . . . , a(T ), the regret of player i is defined as,

Regi(a
(1:T )) :=

T∑

t=1

φi(a
(t))− min

a′
i
∈Ai

T∑

t=1

φi(a
(t)
−i, a

′
i).

We also introduce a weak-regret notion for player i:

WRegi(a
(1:T )) :=

T∑

t=1

φi(a
(t))− T · min

a′
i
∈Ai

max
a′
−i

∈A−i

φi(a
′).

We define regret and weak regret analogously for sequences of mixed strategies. Formally, we
consider a multi-objective setting as a (stochastic) two-player zero-sum game where the learner’s
action set is A1 = H, the adversary’s action set is A2 = G, and φ1(h, ℓ) = LD,ℓ(h). We denote
the regret (or weak regret) of learner L and adversary A with RegL and RegA, respectively (and
WRegL and WRegA, respectively).

Since distributions in D can only be accessed via example oracles, the players do not directly
observe the value of φ(h, (D, ℓ)); rather, they estimate it via random samples z ∼ D. There-
fore, the history of play for multi-objective problems includes both the chosen strategies of players{
p(t), q(t)

}T

t=1
as well as random samples z(t) ∼ D. We define the corresponding notions of empirical

regret and weak regret, where player’s losses are their empirical loss on the realized samples z(t), as
follows

R̂egA

({
p(t), q(t), z(t)

}T

t=1

)
:= max

ℓ∗∈G

T∑

t=1

ℓ∗(p(t), z(t))−
T∑

t=1

q(t)(h(t), z(t))

ŴRegL

({
p(t), q(t), z(t)

}T

t=1

)
:=

T∑

t=1

q(t)(p(t), z(t))− min
h∗∈H

max
ℓ∗∈G

T∑

t=1

ℓ∗(h∗, z(t)).

5



We note that standard no-regret algorithms, such as Hedge [12], can be used to bound the empirical
regret of the adversary by O(

√
T log(|G|)) and the empirical regret of the learner by O(

√
T log(|H|)).

Later in this paper, we give tighter empirical regret bounds for special function classes.
An important feature of empirical regret is that, as long as learner’s and adversary’s choices

h(t), ℓ(t) are made before z(t) is realized, the empirical and true regret (respectively weak regret) are
close to each other. The next lemma, which we will state from the perspective of the adversary,
formalizes this more generally for martingale sequences.

Lemma 2.1. Let ℓ(1:T ) be the result of running an online learning algorithm on an adversarially
chosen sequence h(1:T ) which is constrained to be a martingale with respect to z(1:T ). Then, with
probability at least 1− δ,

RegA(ℓ
(1:T ), h(1:T )) ≤ E

[
R̂egA

(
ℓ(1:T ), h(1:T ), z(1:T )

)]
+O

(√
T log(|H| /δ)

)
.

3 Multi-Objective Learning with Game Dynamics

Expressing multi-objective learning as a game allows one to draw on learning-in-games techniques
for designing algorithms. We overview two such techniques, each relating to a game dynamic.

No-regret vs. no-regret (NRNR) dynamics. Game dynamics where two players each use a no-
regret algorithm to choose their actions have long played a role in empirical convergence to notions
of equilibria [12]. Generally, these dynamics will lead to non-deterministic near-optimal solutions.
In the following lemma, we slightly generalize these dynamics to a case where the adversary is no-
regret and the learner only has no weak-regret, i.e., the learner only needs to be on-average happier
than they would be at the true equilibrium.

Lemma 3.1 (No-Regret vs. No-Regret). Let (p, q)(1:T ) be a play history between a learner L

with actions H and an adversary A with actions G. If Tε ≥ WRegL
(
(p, q)(1:T )

)
and T · ε ≥

RegA
(
(p, q)(1:T )

)
, then a uniform distribution on p(1:T ) is a 2ε-optimal solution for the multi-

objective learning problem (G,H).

Proof. Since the adversary is no-regret (left inequality) and the learner is no-weak-regret (right),

max
ℓ∗∈G

T∑

t=1

L∗(p(t))− Tε ≤
T∑

t=1

L(t)(p(t)),

T∑

t=1

L(t)(p(t)) ≤ Tε+ T min
h∗∈H

max
ℓ∗∈G

L∗(h∗),

the claim immediately follows

max
ℓ∗∈G

1

T

T∑

t=1

L∗(p(t)) ≤ 2ε+ min
h∗∈H

max
ℓ∗∈G

L∗(h∗) = 2ε+OPT.

Generalizing these dynamics to weak regret allows us to leverage algorithms that are known to
be capable of beating the minmax optimal, rather than always being no-regret. We give one such
algorithm for calibration-like objectives in the next section. No-regret dynamics are also powerful
because they are robust to noise, as seen in Lemma 2.1; for instance, when we implement our
adversaries with Hedge, Lemma 2.1 allows us to directly work with distributional rather than
empirical regret.
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No-regret vs. best-response (NRBR) dynamics. NRBR are a form of no-regret dynamics
where one player must also (on-average) best-respond. This comes at a cost—best-responding often
requires greater sample complexity than being no-regret. While NRBR ensures that the empirical
play converges to equilibria, it also ensures that the no-regret player plays a reasonably good strategy
(beating the pure strategy minmax) at some time step. This means, for instance, that we can recover
a deterministic approximate solution for the no-regret player if they only play pure strategies at
each timestep.

Lemma 3.2 (No-Regret vs. Best-Response). Let (p, q)(1:T ) be a play history between a learner
L with actions H and a adversary A with actions G. Suppose Tε ≥ WRegL

(
(p, q)(1:T )

)
and∑T

t=1 L(t)(p(t)) + Tε ≥ ∑T
t=1 maxℓ∗ L∗(p(t)). Then there exists a t ∈ [T ] where p(t) is a 2ε-optimal

solution for the multi-objective learning problem (G,H).

Proof. We will show that there is a timestep t ∈ [T ] where the no-regret learner’s strategy is
nearly min-max optimal maxℓ∗∈G L∗(p(t)) ≤ minh∗∈H maxℓ∗∈G L∗(h∗) + ε′ using a proof by con-
tradiction. Therefore assume to the contrary that for all t ∈ [T ] we have maxℓ∗∈G L∗(h(t)) >
minh∗∈H maxℓ∗ ℓ

∗(h∗) + ε′. It follows that,

Tε >

T∑

t=1

L(t)(p(t))− min
h∗∈H

max
L∗

TL∗(h∗)

>

T∑

t=1

c · min
h∗∈H

max
ℓ∗∈G

L∗(h∗)− ε+ cε′ − T min
h∗∈H

max
L∗

L∗(h∗),

where the first inequality is our assumption by contradiction and the second inequality is because we
have both the adversary best-responding and the learner no-regretting. This yields the contradiction

T (2ε − cε′) > Tc ·OPT− min
h∗∈H

max
ℓ∗

Tℓ∗(h∗) → T (2ε+ (1− c)OPT− cε′) = 0 > 0.

Remark 3.3. An analogy of Lemma B.2 also holds if the best-responding player is replaced by a
weak learning oracle. In this case, assuming to the contrary that

T∑

t=1

L(t)(h(t)) >

T∑

t=1

min
h∗

max
ℓ∗

L∗(h∗) + ε,

immediately gives the contradiction,

Tε ≥
T∑

t=1

L(t)(h(t))− min
h∗∈H

max
ℓ∗

TL∗(h∗) > Tε.

Since Lemma 3.2 shows that there is some timestep where the no-regret learner plays a close-
to-optimal strategy, we note that testing for which timestep this occurs at involves trivial sample
complexity.

Lemma 3.4. Take any set of hypotheses p(1:T ) where at least one choice of p(t) is ε-optimal. The
following procedure Find(H,G) identifies a 2ε-optimal solution with probability at least 1 − δ, and
with only N = O

(
ε−2 ln(T |G| /δ)

)
samples: return p(t

∗) where t∗ = argmint∈[T ]maxℓ∈G L̂S(p
(t))

and S is a set of N samples drawn i.i.d. from D. This can also be implemented with T calls to an
agnostic learning oracle over G and 1 call to an agnostic learning oracle over [T ].
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Designing the dynamics. As we show in Section 4, existing multi-calibration algorithms, and
our proposed algorithms, all can be described in terms of one of the above game dynamics. How these
dynamics are implemented largely depends on what online learning and best-response guarantees
are possible for each player. There must always be a player that leads and a player that follows, with
the need to be no-regret being easier in general for the follower to meet. Indeed, in the calibration
problems we will study, the learner readily attains zero-regret if allowed to follow, motivating us to
have the adversary move first in most algorithms. However, once we turn to finding deterministic
calibrated predictors as afforded by Lemma 3.2, it is necessary for the adversary to best-respond.
This requires the learner to lead. In Lemma 4.2, we give a no-weak-regret learning algorithm that
works for any calibration-like loss function.

When computing the adversary’s best response, we often directly call agnostic learning oracles.
When we can directly access the adversary’s loss set G, we use a standard tool from adaptive data
analysis to implement to compute adversary best-response over an adaptive sequence of size T , with
a small number of samples.

Lemma 3.5 (Adaptive Data Analysis [1]). There is an algorithm that for any distribution D, any
set of loss functions G : H × X → [0, 1], and any adaptive sequence of hypotheses h(1:T ), with
probability at least 1− δ returns ℓ(1:T ) such that for all t ∈ [T ], L(t)(h(t)) ≥ maxℓ∗∈G L∗(h(t), z)− ε,
using no more samples from D than:

O

(√
T

ε2
log

( |G|
ε

)
log3/2

(
1

εδ

))
≈ Õ

(√
T ln(|G| /δ)

ε2

)
.

4 Calibration Guarantees

In this section, we use game dynamics to derive accessible proofs of, and more efficient algorithms
for, multi-calibration and moment calibration. Both belong to an especially tractable class of linear
multi-objective learning problems in which losses take the form ℓ(h, (x, y)) = 〈fℓ(h, x), h(x) − g(y)〉,
where fℓ : H×X → [−1, 1]k and g : Y → ∆k.

Best-responding to linear objectives. A classical observation about these problems—dating
back to Blackwell and Foster and formalized recently by Hart [17]—is that learners faced with linear
objectives selected by an adversary can compute a best-response without any samples. This is a
direct consequence of the minimax theorem.

Fact 4.1 (Hart [17]). Consider any online learning problem where an adversary chooses ℓ(h, (x, y)) =
〈fℓ(h, x), h(x) − g(y)〉 from a set of linear losses G and nature chooses datapoints (x, y). Then for
any mixed strategy of the adversary q ∈ ∆G and any r ∈ N, there is an explicitly constructable
mapping Br : ∆G → (∆Y)X that provides a (near-)zero regret strategy for the learner against any
datapoint that nature may draw: ∀z ∈ Z : q(Br(q), z) ≤ 1/r. Moreover, Br is distribution-free and
can be computed without samples.

It has immediate implications for finding non-deterministic solutions, since we can now thus imple-
ment no-regret vs no-regret dynamics with the learner following and have no sample complexity
dependence on the learner (e.g., on X or H).

No-regret learning on linear objectives. We now strengthen the previous result by proving
that linear objectives also imply an online learning strategy for learners that does not require
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randomization, can be computed without samples, and gives a weak-regret bound of order O
(√

T
)

and independent of domain complexity (e.g., |X |). This will allow us to implement game dynamics
where the learner leads and the adversary follows.

Lemma 4.2. Consider any linear multi-objective learning problem (G,H) where objectives are sym-
metric: for every ℓ ∈ G and permutation σ : [k] → [k] there is a ℓ′ ∈ G where fℓ(·) = σ(fℓ′(·)).
There is an online learning algorithm that only plays deterministic strategies and, against any adap-
tive adversary choosing losses ℓ(t), guarantees the weak regret bound WReg ≤ O(

√
ln(k)T ).

Proof. We will construct a predictor h(t) : X → ∆k by describing its behavior on each point x in
the domain. We interpret h(t)(x) as a distribution over k actions returned by a no-regret algorithm

on an adaptive sequence of losses, γ
(1)
x , . . . , γ

(t−1)
x , where γ

(τ)
x : [k] → [−1, 1]. In particular, we

consider the loss sequence γ
(τ)
x (ŷ) :=

〈
f (t)(h(t), x), ŷ

〉
for all ŷ ∈ [k]. We note that γ

(τ)
x is a valid loss

function for adaptive adversaries, who can observe the player’s mixed strategy h(t)(x) for all x, but
not the realized action ŷ. Using Hedge, or any similar no-regret algorithm for k actions, we have

that
∑T

t=1 Eŷ(t)∼h(t)

[
γ
(t)
x (ŷ(t))

]
≤ miny∗∈[k]

∑T
t=1 γ

(t)
x (y∗) + O(

√
ln(k)T ). Writing γ

(t)
x ’s definition

and using its linearity to substitute ŷ(t) ∼ h(t) for h(t), we have,

O(
√

ln(k)T ) ≥
T∑

t=1

〈
f (t)(h(t), x), h(t)

〉
− min

y∗∈[k]

T∑

t=1

〈
f (t)(h(t), x), y∗

〉
.

Taking an expectation over D, and subtracting the true labels g(y) from each side, we obtain

O
(√

ln(k)T
)
≥ E

[
T∑

t=1

〈
f (t)(h(t), x), h(t) − g(y)

〉 ]
−min

h∗

E

[
T∑

t=1

〈
f (t)(h(t), x), h∗(x)− g(y)

〉 ]

︸ ︷︷ ︸
(a)

.

We note that (a) ≤ 0 since g(y) is conditionally (on x) independent of f (t)(h(t), x) so the minimizer
can always choose h∗(x) to be the Bayes classifier E [g(y) | x]. This leaves to be shown that (a) is
less than OPT by proving OPT := minh∗ maxℓ∗∈G E [〈f∗(h∗, x), h∗(x)− g(y)〉] is nonnegative. We
will do so by the symmetry of G. Let h∗ and ℓ∗, f∗ correspond to the values attaining OPT. We
have,

∑

σ∈[k]→[k]

E [〈σ(f∗(h∗, x)), h∗(x)− g(y)〉]

= E


 ∑

σ∈[k]→[k]

∑

j∈[k]

f∗(h∗, x)σ(j)(h
∗(x)j − g(y)j)




= E


∑

j∈[k]


 ∑

σ∈[k]→[k]

f∗(h∗, x)σ(1)


 (h∗(x)j − g(y)j)




= E




 ∑

σ∈[k]→[k]

f∗(h∗, x)σ(1)


 ∑

j∈[k]

(h∗(x)j − g(y)j)




= 0,

where the second transition is because, for any vector v,
∑

σ vσ(j) is independent of j; and the last
transition is because h∗ and g(y) are both distributions over [k] and each sum to one. This equation

9



implies there is a permutation σ such that E [〈σ(f∗)(h∗, x), h∗(x)− g(y)〉] ≥ 0. Since σ(f∗) ∈ G by
symmetry, it must follow that OPT ≥ 0.

4.1 Multi-calibration

Multi-calibration is an example of a linear multi-objective learning problem, one that extends cal-
ibration to ask that one’s predictor be calibrated on multiple subsets of the domain [18]. We will
use the following definition of multi-calibration.1 To simplify the notation of level sets, we will use
Vλ := [0, λ, . . . , λ ⌈1/λ⌉] to denote the λ-discretization of [0, 1].

Definition 4.3. Fix some ε, λ, k > 0 and S ⊆ {0, 1}X . Suppose Y = [0, 1]k. A k-class pre-
dictor h : X → Y is (S, ε, λ)-multi-calibrated if for all S ∈ S, v ∈ V k

λ , and j ∈ [k] we have∣∣E(x,y)∼D [(h(x)− y)j · 1[h(x) ∈ v, x ∈ S]]
∣∣ ≤ ε. We refer to the special case of k = 2, i.e., Y = [0, 1],

simply as multi-calibration.

Fact 4.4. Let (S, ε, λ) be a k-class multi-calibration problem on distribution D. h ∈ ∆X
k is a

(S, ε, λ)-multi-calibrated predictor if h is ε-optimal for the multi-objective problem (G,∆X
k ) where

G :=
{
(h(x)i − y(x)i) · 1[h(x) ∈ v, x ∈ S] | ∀S ∈ S, v ∈ V k

λ , i ∈ [k]
}
.

This means we can use no-regret dynamics (Lemma 3.1) and the best-response method for linear
learners (Fact 4.1) to immediately provide a Õ

(
ln(|S|)/ε2

)
sample complexity bound.

Corollary 4.5. For any k-class multi-calibration problem, the following algorithm takes no more
than O

(
ε−2 (ln(|S| /δ) + k ln(1/λ))

)
samples from D and returns a nondeterministic predictor p ∈

∆(X → ∆k) such that w.p. at least 1− δ, p is a (S, ε, λ)-multi-calibrated predictor:

No-Regret vs No-Regret
Construct the corresponding multi-objective learning problem G as in Fact 4.4. For T =
O
(
ε−2 (ln(|S| /δ) + k ln(1/λ))

)
rounds, use a no-regret algorithm of regret

√
T ln(|G|) to choose

ℓ(t), use the best-response Br(ℓ
(t)) of Fact 4.1 to set h(t), and sample z(t) ∼ D to provide a feedback

vector to the adversary. Let p be uniform over h(1:T ).

Proof. As this result is immediate from Lemma 2.1, Fact 4.4, and Lemma 3.1, we will instead review
how the claimed algorithm maps into these lemmas as an example of how to construct these types
of game dynamics.

First, we want to verify that the multi-objective learning problem posed by multi-calibration
is linear and has objectives taking the form ℓ(h, (x, y)) = 〈fℓ(h, x), h(x) − g(y)〉. As constructed
by Fact 4.4, this is indeed the case with each objective ℓ ∈ G corresponding to choosing g as the
identity function, having G ∼= S × V k

λ × k, and letting f be an indicator function. This means that
the best response Br(x) indeed exists for the learner, and we can choose a sufficiently large r so that
the learner has distributional regret of effectively 0: RegL((h, ℓ)

(1:T )) ≈ 0. Similarly, we know that
the adversary has empirical regret of O(

√
T ln(|G|)) by construction; Hedge would suffice for this,

for example. Recall that at each iteration we sample a single datapoint to estimate the adversary’s
payoff vector; by linearity, this estimate is naturally unbiased. By Lemma 2.1, because the adversary
is running an online learning algorithm, its generalization error is of the same order as its regret;
that is, the adversary has distributional regret O(

√
T ln(|G|)). Since the learner and adversary

1We use the (α, λ)-definition of multi-calibration [18] and will always state our results and other work’s results for
this (α, λ) definition. Also, we use uniformly spaced calibration bins throughout, but our results directly apply to
uniformly occupied bins as well.
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have distributional regret bounded by O(
√

T ln(|G|)), Lemma 3.1 confirms the iteration complexity
and—since we only sample one datapoint per iteration—sample complexity of our dynamics.

Noarov et al. [25], Gupta et al. [15] achieve a matching rate for the binary setting (k = 2) by
using a more involved argument about minimizing an exponential potential function over G. Upon
closer inspection, their potential argument is a reiteration of Hedge’s regret bound. Corollary 4.5
establishes a more general and direct approach for obtaining these guarantees. An important caveat
of this approach generally is that it yields predictors that are nondeterministic. However, we observe
that one can recover a deterministic predictor from these procedures by using the discreteness of
the calibration bins.

Proposition 4.6. For any k-class multi-calibration problem, the following algorithm takes no more
than O

(
λ−2ε−2 (ln(|S| /δ) + k ln(1/λ))

)
samples from D and returns a deterministic predictor h∗ :

X → [0, 1]k such that w.p. at least 1− δ, h∗ is (S, ε, λ)-multi-calibrated:

No-Regret vs No-Regret with Majority Vote

Let h(1:T ) be the predictors returned by the algorithm of Corollary 4.5. Construct h∗

by defining h∗(x) := Mean(
{
h(t)(x) | t ∈ [T ], h(t)(x) ∈ [v∗(x), v∗(x) + λ)

}
) where v∗(x) :=

Mode
({⌊

h(t)(x)/λ
⌋}

t∈[T ]

)
is the majority vote on which bin h∗(x) should lie in.

Proof. The linear multi-objective learning expression of multi-calibration has the additional property
that, for every ℓ ∈ G, fℓ only depends on h locally: ℓ(h, (x, y)) = 〈fℓ(h(x), x), h(x) − y〉. For each
datapoint x ∈ X , let v∗(x) be the majority vote about which bin the prediction for x should

fall in: v∗(x) := Maj
({⌊

h(t)(x)/λ
⌋}

t∈[T ]

)
. Then, construct predictor h∗ : X → Y by setting

h∗(x) := 1
|I(x)|

∑
t∈I(x) h

(t)(x) where I(x) :=
{
t ∈ [T ] | h(t)(x) ∈ [v∗(x), v∗(x) + λ)

}
. We will see

that this only leads to a 1/λ degradation in our risk bound ε. For any objective ℓ ∈ G, we can
exploit the fact that ℓ is linear in h(x) for all values of h(x) belonging to the same bin:

Tε ≥
T∑

t=1

E
x

[
ℓ(h(t)(x), x)

]

= E
x


 ∑

t∈I(x)

ℓ(h(t)(x), x)




= E
x


|I(x)| ℓ


 1

|I(x)|
∑

t∈I(x)

h(t)(x), x






= E
x


|I(x)| ℓ


 ∑

t∈I(x)

h(t)(x), x






≥
⌈
T

λ

⌉
E
x

[∑

x∈X

|I(x)| ℓ(v∗(x), x)
]
.

The claim then follows by recalling that the uniform distribution on h(1:T ) provided by Corollary 4.5
is already ε-optimal.

11



To learn deterministic multi-calibrated predictors with even fewer samples, we turn to No-Regret
vs Best-Response dynamics. Whereas previously we had the adversary lead in the dynamics used
for Corollary 4.5, in order to use NRBR dynamics, the learner must lead. In order to recover a
deterministic predictor, the learner must not only lead, but also achieve vanishing regret while only
playing deterministic strategies. In Lemma 4.2, we showed that such an online learning strategy
indeed exists for linear multi-objective learning problems like calibration. In the following corollary,
we put these pieces together, using an agnostic learning oracle to implement the best-response
strategy of the adversary.

Corollary 4.7. For any k-class multi-calibration problem, the following algorithm makes O
(
ε−2 ln(k)

)

calls to an agnostic learning oracle and returns a deterministic k-class predictor h∗ : X → [0, 1]k

such that w.p. at least 1− δ, h∗ is (S, ε, λ)-multi-calibrated:

Best-Response vs No-Regret with Find

Construct the corresponding multi-objective learning problem G as in Fact 4.4. For T =
O
(
ε−2 ln(k)

)
rounds, use the no-regret algorithm of Lemma 4.2 to choose h(t) and call the ag-

nostic learning oracle to choose ℓ(t). Let h∗ = Find({h(t)}t∈[T ],G).

Proof. As we showed in Corollary 4.5, G is a linear multi-objective expression of our multi-calibration
problem. This means that Lemma 4.2 implies the existence of an online learning strategy for the
learner with weak regret bound O(

√
ln(k)T ) and no use of randomization. Similarly, we know

the adversary to be best-responding by assumption, because we delegate it’s best-responses to an
agnostic learning oracle. By Lemma 3.2, it follows that w.p. 1− δ/2 there exists a t ∈ [T ] where h(t)

is ε/2-optimal. By Lemma 3.4, the procedure Find w.p. 1− δ/2 identifies a h(t
′) that is ε-optimal;

moreover, this h(t
′) is a deterministic predictor. The sample complexity claim follows since we only

make one oracle call per iteration and Find can be implemented with either only ln(T/δ)/ε2 samples
or T more oracle calls.

Corollary 4.7 easily extends to variants of multi-calibration like degree-k multi-calibration [14]. Note
that one can translate the oracle complexity guarantee of Corollary 4.7 into a sample complexity
by implementing the best-responding adversary with an adaptive data analysis algorithm.

Corollary 4.8. Using Lemma 3.5 to implement an agnostic learning oracle, Corollary 4.7’s algo-
rithm takes Õ(ε−3(

√
ln(k) ln(1/δ)(ln(|S|)+k ln(1/λ)))) samples and returns a deterministic k-class

predictor h∗ : X → [0, 1]k where, w.p. 1− δ, h∗ is (S, ε, λ)-multi-calibrated.

Proof. This claim follows immediately from Corollary 4.7 and Lemma 3.5.

These corollaries improve upon Gopalan et al. [14]’s oracle complexity upper bound of O
(
k/ε2

)

with a bound of O
(
ln(k)/ε2

)
, an exponential reduction in the dependence on the number of classes

k. In concurrent work, Dwork et al. [7] also showed that O
(
ln(k)/ε2

)
oracle calls are sufficient

for multi-class multi-calibration, with an algorithm similar to Corollary 4.7 but using Dwork et al.
[6]’s outcome indistinguishability and working with specific multicalibration objectives. Our result
covers a more general class of problems, as we will see in the next section on moment calibration.

Together, Corollaries 4.5 and 4.7 each reflect previously distinct philosophies to multi-calibration
algorithm design: using online learning to quickly find non-deterministic predictors [15, 25], and
using potential-based arguments to more slowly find deterministic predictors [18, 6]. Our result
shows that these two approaches are closely related game dynamics.
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4.2 Moment calibration

We now extend our study of game dynamics from two-player games to games with sets of learners and
adversaries. This allows us to address a broader class of multi-objective problems while leveraging
the same helpful game dynamics as before (easily extending their proofs).

At a high level, this setting involves decomposing a multi-objective learning problem (D,G,H)
into b components H :=

∏
a∈[b] Ha and G :=

∏
a∈[b] Ga, and introducing a pair of learner and

adversary players for each of the b components. Each pair of learner and adversary, who have
agency over their own choices of actions, has a loss determined by not only their actions but also
the fixed actions of other players. We capture this as a single multi-objective learning problem with

a history of play {h(t)1:b, ℓ
(t)
1:b}t∈[T ] such that for any a ∈ [b], learner a’s actions h

(t)
a : X → [0, 1]k

belong to Ha and the corresponding adversary Aa’s actions ℓ
(t)
a : Ha ×X ×Y → [0, 1] belong to Ga.

To emphasize that the loss of any learner a still depends on the actions of other learners, we use
the notation ℓa(ha, h−a, z)—or when clear from the context—the notation ℓa(h, z) for z ∈ X × Y.
Given the decomposition of the above multi-objective learning problem across its components, we
sometimes construct solutions that are optimal on a subset of the coordinates only, and combine
these solutions later on.

Definition 4.9. For a multi-objective learning problem (G,H) where H =
∏

i∈[b]Hi, a solution that
is component-wise ε-optimal w.r.t. to a subset of its components I ⊆ [b] is a hypothesis p satisfying,
for every i ∈ I, that L∗(p)−minh∗

i
∈Hi

L∗(h∗i , p−i) ≤ ε.

The moment multi-calibration problem introduced by Jung et al. [19] is concerned not only with
having calibrated estimates of the mean of a population, but also of higher moments. This is
motivated by confidence interval estimation, as moment estimates provide rough Chernoff bounds.2

Definition 4.10. Fix some ε, λ, r > 0 and S ⊆ {0, 1}X . Suppose Y = [0, 1]. The pair of predictors
hµ : X → [0, 1] and hm : X → [0, 1]r is (S, ε, λ)-mean-conditioned moment-multi-calibrated if for
all groups S ∈ S, level sets vµ, vm ∈ Vλ, and moments a ∈ [r], we have that the mean estimator is
calibrated |E [(hµ(x)− y) · 1[hµ(x) ∈ vµ, hm,a(x) ∈ vm, x ∈ S]]| ≤ ε and the moment estimators are
calibrated |E [(hm,a(x)− (y − hµ(x))

a) · 1[hµ(x) ∈ vµ, hm,a(x) ∈ vm, x ∈ S]]| ≤ ε.

In this definition, we use Y = [0, 1] to denote the probability of predicting a label of 1. To match
our notation of multi-objective learning for the remainder of this section we will instead consider
Y = ∆2 such that a prediction probability y is represented as a vector (y, 1 − y) ∈ ∆2. In this
language, moment multi-calibration constitutes a linear multi-objective learning problem with k = 2
by convention; in the multi-component setting, linear objectives mean that, for every a ∈ [r], ℓ ∈ Ga,
we can write ℓa(h, (x, y)) := 〈fa(h, x), ha(x)− g(y)〉.

A challenging aspect of moment calibration is that hµ’s optimality criterion depends on hm, and
vice versa. Jung et al. [19] handled this with a careful analysis of alternating gradient descent from
a single-agent perspective, overall requiring a suboptimal Õ

(
r ln(1/δ)/ε4

)
number of calls to an

agnostic learning oracle. As we work with game dynamics, we can simply introduce hµ and hm as
different players to get, as a corollary of our previous results, a oracle complexity for deterministic
moment calibration of only Õ

(
r ln(1/δ)/ε2

)
.

2We use Jung et al. [19]’s “pseudo” definition of moment calibration—where moments are defined w.r.t. estimated
means—because all existing algorithms work by guaranteeing “pseudo” rather than literal calibration anyways. All
results results are stated terms of Definition 4.10.
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Fact 4.11. Take a moment calibration problem (S, λ). For S ∈ S, v,w ∈ Vλ, a ∈ [r], and i ∈ [2],
include in Gµ and Gm, respectively, the objectives:

ℓS,v,w,i,µ((hµ, hm), x) := 1[hµ(x) ∈ v]1[hm,a(x) ∈ w]1[x ∈ S](hµ(x)i − yi)

ℓS,v,w,i,a((hµ, hm), x) := 1[hµ(x) ∈ v]1[hm,a(x) ∈ w]1[x ∈ S](hm,a(x)i − (y1 − hµ(x)1)
a).

If h is a component-wise ε-optimal solution for both learners hµ, hm, then it is also (S, ε, λ)-mean-
conditioned moment multi-calibrated.

Corollary 4.12. For any r-moment calibration problem, the following algorithm takes O
(
ε−2r

)

calls to an agnostic learning oracle (analogously, Õ
(
ε−3√r ln(|S| /λ) ln(1/δ)

)
number of samples)

and returns a deterministic predictor p : X → [0, 1]r such that w.p. at least 1 − δ, p is a (S, ε, λ)-
mean-conditioned moment multi-calibrated predictor:

Best-Response vs No-Regret with Find

Construct the corresponding multi-objective learning instance as in Fact 4.11. For T = O
(
r/ε2

)

rounds, use agnostic learning oracles to choose a ℓ
(t)
m ∈ Gm and ℓ

(t)
µ ∈ Gµ, use two copies of the no-

regret algorithm of Lemma 4.2 to choose h
(t)
m : X → (∆2)

r and to choose h
(t)
µ : X → ∆2, and sample

a z(t) ∼ D to provide a feedback vector to the adversary. Call procedure Find({h(t)m , h
(t)
µ }t∈[T ],G)

to find an ε-optimal choice of h∗m, h∗µ, setting h∗ = [h∗µ, (h
∗
m)2, . . . , (h

∗
m)r].

Proof. In the claimed algorithm, we instantiate no-regret best-response dynamics with two sets of
learners and adversaries (b = 2), which respectively handle mean and moment prediction. Similarly
to multi-calibration, we see by Fact 4.11 that moment calibration is indeed expressible as a linear
multi-objective learning problem where for each ℓ ∈ G, fℓ is a indicator functions, and g is either
the identity function (for Gµ) or g(h, (x, y)) = (y − hµ(x))

a (for Gm). This means that Lemma C.1
(note that we are using the generalization of Lemma 4.2; this is because hm is handling a multi-label
problem) applies so we know each of the learners’ strategies in these dynamics to guarantee them

individual distributional regrets of O
(√

ln(2r)T
)
. Similarly, we know the adversaries to be best-

responding by assumption, because we delegate their best-responses to their own agnostic learning

oracles. By Lemma B.2, it follows that w.p. 1 − δ/2 there exists a t ∈ [T ] where h
(t)
m and h

(t)
µ

are both ε/2-optimal. By Lemma 3.4, the procedure Find w.p. 1 − δ/2 identifies a h(t
′) that is

ε-optimal.

As with multi-calibration, game dynamics allows us to unify online and batch treatments of moment
calibration. By switching to no-regret vs no-regret dynamics, we next derive sample complexity rates
matching Gupta et al. [15]’s rates of O

(
ε−2ln(|S| r/λ)

)
for finding nondeterministic predictors for

moment calibration. Note that nondeterministic predictors for moments are less useful for building
confidence intervals, so deterministic settings are likely more practical.

Corollary 4.13. For any r-moment calibration problem, the following algorithm returns a nonde-
terministic predictor p ∈ ∆(X → [0, 1]r) and takes only O

(
ε−2 ln(|S| r/λδ)

)
samples, such that w.p.

1− δ, p is (S, ε, λ)-mean-conditioned moment multi-calibrated:

No-Regret vs No-Regret
Construct the corresponding multi-objective learning instance as in Fact 4.11. For T =

O
(
ε−2 ln(|S| r/λδ)

)
rounds, use two no-regret algorithms of regret

√
T ln(|G|) to choose a ℓ

(t)
m ∈ Gm
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and ℓ
(t)
µ ∈ Gµ, use two copies of the no-regret algorithm of Lemma 4.2 to choose h

(t)
m : X → (∆2)

r

and to choose h
(t)
µ : X → ∆2, and sample a z(t) ∼ D to provide a feedback vector to the adversary.

Let p(x) be the uniform distribution over [(hµ)
(t)
1 , (hm,2)

(t)
1 , . . . (hm,r)

(t)
1 ]t∈[T ].

Proof. This proof follows identically to Corollary 4.12. In this case, we instead use no-regret algo-
rithms to implement our adversaries with low distributional regret, invoking Lemma A.1.

5 New Considerations for Multi-Objective Learning

In this section, we show that embracing different types of game dynamics in multi-objective learning
allows us to enrich the fairness guarantees afforded by multi-calibration and adjacent frameworks.

Agnostic multi-calibration. Multi-calibration defines a population/group as a set of included
features S ⊆ X . These definitions do not address common use cases where two individuals which
belong to different identity groups share the same features, e.g., due to regulatory or practical
reasons. To overcome this, we consider a multi-calibration setting that allows people with the
same feature vectors to belong to different populations. Multi-calibration may not be possible in
these cases since identity groups may have conflicting Bayes classifiers. Instead, we can relax to
ask that one provide the best-possible calibration guarantee that can hold uniformly across all
subpopulations.

Definition 5.1. Fix some ε, λ, k, u > 0. Suppose Y = [0, 1]k and X = X ′ × {0, 1}u. A k-
class predictor h : X ′ → Y is (ε, λ)-agnostic multi-calibrated if L∗(h) ≤ minh∗ L∗(h∗) + ε where
L∗(h) := maxi∈[u],v∈V k

λ
,j∈[k]

∣∣E((x,w),y) [(h(x)− y)j · 1[h(x) ∈ v, i ∈ w]]
∣∣. Here, we limit ourselves to

a hypothesis class H ⊆ YX ′

where

The absence of the concept of a Bayes classifier in this setting rules out existing proofs of multi-
calibration using potential arguments and outcome indistinguishability [see, e.g., 18, 6]. However,
an advantage of building our technical approach on game dynamics is that our results immediately
extend to provide agnostic multi-calibration guarantees. In fact, our algorithms and analysis for
multi-calibration (namely Corollaries 4.7 and 4.5) extend directly to the non-agnostic case with
comparable sample complexity. Note, however, that our linear objectives take the slightly different
form ℓ(h, (x,w)) = 〈fℓ(h, x), h(x) − g(y)〉.

For non-deterministic predictors, agnostic multi-calibration is achievable with no change in our
sample complexity bound. This is because Lemma 3.1 and Fact 4.1 carry through as usual.

Corollary 5.2. For any k-class multi-calibration problem the algorithm of Corollary 4.5 takes
O
(
ε−2 (ln(u/δ) + k ln(1/λ))

)
samples from D and returns a non-deterministic predictor p ∈ ∆(X →

∆k) such that w.p. 1− δ, p is a (ε, λ)-agnostic-multi-calibrated predictor.

For deterministic predictors, agnostic multicalibration requires more careful consideration. This
is because the optimal deterministic agnostic multi-calibrated predictor can involve unnecessary, and
sometimes undesirable, optimizations. Specifically, in the below remark, we construct an example
where a learner is incentivized to lump points together into the same level set.

Remark 5.3. Consider agnostic calibration on the learning problem where the label space is binary
k = 2, there are two groups we want to be calibrated over u = 2, and the domain consists of three
points X = {x1, x2, x3} over which we define a uniform distribution. The two groups are both
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supported on, and have the same label distribution on, point x1: Pr(y = 1 | x = x1, w = 1) =
Pr(y = 1 | x = x1, w = 2) = 0.1. The two groups are also supported on, but have opposing label
distributions on, points x2, x3: Pr(y = 1 | x = x2, w = 1) = Pr(y = 1 | x = x3, w = 2) = 1 and
Pr(y = 2 | x = x3, w = 1) = Pr(y = 2 | x = x2, w = 2) = 1. It seems like an optimal predictor should
look like Pr(ŷ = 1 | x = x1) = 0.1 and Pr(ŷ = 1 | x = x2) = Pr(ŷ = 1 | x = x3) = 0.5. However, the
optimal agnostic multicalibrated predictor actually has |Pr(ŷ = 1 | x = x1)− Pr(ŷ = 1 | x = x2)| ≤ λ
and vise versa for x1 and x3. This is because the learner is incentivized to ensure that its predictions
for point x1 and points x2, x3 all fall into the same calibration bin so as to dilute the non-realizability
of points x2, x3.

Thus, for deterministic predictors, we will relax from seeking ε-optimality. Rather, we will seek
predictors that are near ε-optimal but allowed some slack if, within the predictor’s calibration bins,
there is a significant difference between the expected labels of each group. We will formalize this
slack with the quantity ∆ := maxv∈V k

λ

maxj∈[u] Ex [Cov(1[h∗(x) ∈ v, j ∈ w], y | x)], describing the
expected correlation between the event that a datapoint falls in calibration bin v and belongs to
group j, and the event that a label y is returned. In our previous remark’s example, this slack is
sufficient to restore the optimal predictor as being Pr(ŷ = 1 | x = x1) = 0.1 and Pr(ŷ = 1 | x =
x2) = Pr(ŷ = 1 | x = x3) = 0.5.

Corollary 5.4. For any k-class multi-calibration problem, the algorithm of Corollary 4.7 (with a
modified Find subroutine) takes O

(
ε−2 ln(k/δ)

)
calls to an agnostic learning oracle and returns a

deterministic k-class predictor h∗ : X → [0, 1]k such that w.p. 1− δ, h∗ is (ε−∆, λ)-agnostic-multi-
calibrated, where ∆ := maxv∈V k

λ

maxj∈[u]Ex [Cov(1[h∗(x) ∈ v, j ∈ w], y | x)].

Group-conditional multi-calibration. Another subtle aspect of multi-calibration definitions
is that the strength of the guarantees is proportional to the size of a subgroup in a prediction
bracket (note the use of the indicator function in Definition 4.3). This can lead to predictors
that are uncalibrated on underrepresented/rare groups, and motivates our definition of conditional
multi-calibration below.

Definition 5.5. Fix some ε, λ, k > 0. Suppose Y = [0, 1]k and S ⊆ {0, 1}X . A k-class predictor
h : X → Y is (ε, λ)-conditional multi-calibrated if for all S ∈ S, v ∈ V k

λ , and j ∈ [k], we have∣∣E(x,y)∼D [(h(x)− y)j · 1[h(x) ∈ v] | x ∈ S]
∣∣ ≤ ε.

Since this stronger notion of multi-calibration necessarily requires that algorithms be able to sam-
ple from the data distribution conditional on the events x ∈ S, we will assume access to example
oracles EXS for each S ∈ S that each yield samples from the conditional distribution D | x ∈ S. Ac-
cordingly, we will reduce conditional multi-calibration to a multi-distribution multi-objective learn-
ing problem of form (D,G,H) rather than the single-distribution problems (G,H) we have considered
previously. Here, D refers to a set of data distributions for which example oracles are available and
we define the multi-distribution multi-objective loss as L∗(h) := maxD∈D maxℓ∈G ℓD,ℓ(h).

Fact 5.6. Let (S, ε, λ) be a k-class multi-calibration problem on distribution D. h ∈ ∆X
k is

a (S, ε, λ)-conditional multi-calibrated predictor if h is ε-optimal for the multi-objective problem
({D | x ∈ S}S∈S ,G,∆X

k ) where G :=
{
(h(x) − y(x))j · 1[h(x) ∈ v] | v ∈ V k

λ , x ∈ S, j ∈ [k]
}
.

For non-deterministic multi-calibration, this reduction implies, as one would expect, a linear (in
|S|) increase in sample complexity upper bounds.

Corollary 5.7. For any k-class multi-calibration problem (S, ε, λ) the following algorithm makes
O
(
ε−2 |S| (ln(|S| /δ) + k ln(1/λ))

)
calls to example oracles in {EXS}S∈S and returns a non-deterministic
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predictor p ∈ ∆(X → ∆k) such that w.p. 1− δ, p is a (S, ε, λ)-conditionally multi-calibrated predic-
tor:

No-Regret vs No-Regret

Construct the multi-objective problem (D,G,H) of Fact 5.6. For T = O
(
ε−2 (ln(|S|) + k ln(1/λ))

)

rounds, use Hedge to choose ℓ(t),D(t), use the best-response Br(ℓ
(t)) of Fact 4.1 to set h(t), and

sample z
(t)
D ∼ D from every D ∈ D at each iteration to provide a feedback vector to the adversary.

Let p be uniform over h(1:T ).

For deterministic multi-calibration, requiring conditional guarantees similarly results in a linear
increase in oracle complexity bounds. Here, the oracle is maximizing over both distributions and
objectives: maxD∈D,ℓ∈G LD,ℓ(h), where h is the hypothesis it is given.

Corollary 5.8. For any k-class multi-calibration problem (S, ε, λ), running Corollary 4.7’s algo-
rithm but using the multi-objective problem (D,G,H) of Fact 5.6 results in a deterministic k-class
predictor h∗ : X → [0, 1]k such that w.p. 1 − δ, h∗ is (S, ε, λ)-conditionally multi-calibrated predic-
tor. Moreover, only O

(
ε−2 |S| ln(k)

)
calls to an agnostic learning oracle are made; this implies, by

Lemma 3.5, that only Õ
(
(|S|3/2 k ln(1/λδ))/ε3

)
samples are needed overall.

Other group fairness notions. In agnostic multi-objective learning problems, the trade-off
between objectives is arbitrated by the worst-off objectives maxℓ∗∈G ℓ

∗(·). However, this approach
to negotiating trade-offs may be suboptimal when some objectives are inherently more difficult.
Specifically, in some multi-objective problems, the non-realizability of the overall problem may be
due to the non-realizability of individual objectives rather than trade-offs between objectives. In
such cases, it makes sense to allow practitioners to hand-design alternative hypotheses and require
our algorithm to try to beat said alternatives, requiring that there is no group for which there exists
a competitor h ∈ H∗ that performs significantly better.

Definition 5.9. For a multi-objective learning problem (D,G,H), a solution that is ε-competitive
w.r.t. a class H′ is a hypothesis p satisfying, for every i ∈ I

L∗
H′(p)− min

h∗∈H
L∗
H′(h∗) ≤ ε where L∗

H′(h) := max
D∈D

max
ℓ∈G

LD,ℓ(h)− min
h∗∈H′

LD,ℓ(h)

Only a simple modification is needed to handle competition: amplify your original objectives G into
a new objective set G′ :=

⋂
h′∈H′ {ℓ(·)− ℓ(h′) | ℓ ∈ G} and solve as usual.

Fact 5.10 (Competitive Multi-Obj Reduction). Consider a multi-objective learning problem (D,G,H).
For some choice of H′, let G′ :=

⋂
h′∈H′ {ℓ(·)− ℓ(h′) | ℓ ∈ G}. Any solution p that is ε-optimal for the

multi-objective learning problem (D,G′,H), is also ε-competitive w.r.t. H′ for the original problem
(D,G,H).

When H′ = H, we can see that competition becomes similar to a objective-wise notion of optimality,
where a hypothesis p satisfies, for every ℓ ∈ G, that LD,ℓ(p)−minh∗∈H LD,ℓ(h

∗) ≤ ε. The following
is an immediate consequence of standard multi-distribution learning sample complexity bounds (see
Haghtalab et al. [Theorem 4.1 16]).

Corollary 5.11. The following algorithm takes O
(
(log(|G| |H|) + |D| ln(|D| /δ))/ε2

)
samples and

with probability at least 1 − δ yields an objective-wise ε-optimal hypothesis for the multi-objective
problem ({D} ,G,H) when objective-wise optimality is attainable: create a new problem (D,G′,H)
where G′ :=

⋂
h′∈H {ℓ(·)− ℓ(h′) | ℓ ∈ G}, simultaneously run no-regret dynamics by implementing

Hedge on G′ and on H to get (ℓ, h)(1:T ), and return a uniform distribution over h(1:T ).
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Rothblum and Yona [26] study a specific case of this problem where only a single data distribution
is involved (D = {D}) and where objective-wise optimality is assumed to be attainable. For this
“group-compatible” setting, Tosh and Hsu [28] attained optimal rates of log(|G| |H|)/ε2 using a
reduction to sleeping experts, which Corollary 5.11 matches with simple no-regret dynamics and
extends to multiple distributions.

We further note that not only does Corollary 5.11 attain the minimax sample complexity rate
for objective-wise optimal learning, but also requiring objective-wise optimality does not change the
minimax rate for the problem of multi-distribution multi-objective learning. This is because there
is a sample complexity lower bound of Θ̃

(
(log(|G| |H|) + |D|)/ε2

)
for basic multi-objective learning

(see Haghtalab et al. [16]’s Theorem 4.3). Adding competitiveness or objective-wise optimality
requirements to multi-objective learning therefore does not change things significantly: the same
algorithms still work and minimax rates do not change beyond constants.
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A Proofs for Section 2

In this section, we restate the technical results mentioned in Section 2 along with references. These
are all existing results and we refer interested readers to the references for details.

Lemma 2.1 is a special case of the following lemma about the martingale losses of online learning.
We believe this result is folklore, and refer readers interested in an explicit proof to Lemma B.1 of
Haghtalab et al. [16], who prove the result in their Fact B.3.

Lemma A.1 (Haghtalab et al. [16]). Let (h, ℓ, z)(1:T ) be the result of running an online learning

algorithm on any adversarially chosen sequence a
(1:T )
−i which we constrain to be a martingale with

respect to φ̂(1:T ). Then, with probability at least 1− δ,

Regi(a
(1:T )) ≤ E

[
R̂egi

(
a(1:T )

)]
+O

(√
T ln(|Ai| /δ)

)
.

Lemma 3.5 originates from adaptive data analysis, and is taken in its current form from Corollary 6.4
in Bassily et al. [1]. This bounds the sample complexity of implementing a noisy-max oracle.

Lemma 3.5 (Adaptive Data Analysis [1]). There is an algorithm that for any distribution D, any
set of loss functions G : H × X → [0, 1], and any adaptive sequence of hypotheses h(1:T ), with
probability at least 1− δ returns ℓ(1:T ) such that for all t ∈ [T ], L(t)(h(t)) ≥ maxℓ∗∈G L∗(h(t), z)− ε,
using no more samples from D than:

O

(√
T

ε2
log

( |G|
ε

)
log3/2

(
1

εδ

))
≈ Õ

(√
T ln(|G| /δ)

ε2

)
.

B Proofs of Section 3

In this section, we will prove generalizations of Lemma 3.1 and Lemma 3.2 that directly imply them.
As we will be working in a general multi-player setting, we will use the following definitions of regret
and weak regret analogous to those of the two-player games setting:

RegAa
({h(t)1:b, ℓ

(t)
1:b}t∈[T ]) := max

ℓ∗a∈Ga

T∑

t=1

E
z∼D

[
ℓ∗a(h

(t), z)
]
−

T∑

t=1

E
z∼D

[
ℓ(t)a (h(t), z)

]

WRegAa

La
({h(t)1:b, ℓ

(t)
1:b}t∈[T ]) :=

T∑

t=1

E
z∼D

[
ℓ(t)a (h(t), z)

]
− min

h∗

a∈Ha

max
ℓ∗a∈Ga

T∑

t=1

E
z∼D

[
ℓ∗a(h

∗
a, h

(t)
−a, z)

]

Lemma B.1 (No-Regret vs. No-Regret (Generalization of Lemma 3.1)). Let (h1:b, ℓ1:b)
(1:T ) be a

play history between b learners and b adversaries. Suppose, for every a ∈ [b], learner a has bounded
weak regret Tε ≥ WRegAa

La

(
(h, ℓ)(1:T )

)
and T · ε ≥ RegAa

(
(h, ℓ)(1:T )

)
. Then a uniform distribution

on h(1:T ) is a component-wise 2ε-optimal solution for the multi-objective learning problem (G,H).

Proof. By the regret guarantees of adversaries Aa, we have that for all a ∈ [u]

max
ℓ∗a∈Ga

T∑

t=1

E
z∼D

[
ℓ∗a(h

(t), z)
]
−

T∑

t=1

E
z∼D

[
ℓ(t)a (h(t), z)

]
≤ Tε.
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Furthermore, by the weak regret guarantees of every learner with respect to the adversaries, we
have

T∑

t=1

E
z∼D

[
ℓ(t)a (h(t), z)

]
− min

h∗

a∈Ha

max
ℓ∗a∈Ga

T∑

t=1

E
z∼D

[
ℓ∗a(h

∗
a, h

(t)
−a, z)

]
≤ Tε.

Therefore, for all a ∈ [u] we have

max
ℓ∗a

T∑

t=1

E
z∼D

[
ℓ∗a(h

(t)
1:r, z)

]
− min

h∗

a∈Ha

max
ℓ∗a

T∑

t=1

E
z∼D

[
ℓ∗a(h

∗
a, h

(t)
a )

]
≤ 2Tε.

Lemma B.2 (No-regret vs. Best-Response (Generalization of Lemma 3.2)). Let (h1:b, ℓ1:b)
(1:T ) be

a play history between b learners and b adversaries. Suppose for every a ∈ [b], learner a has bounded
weak regret Tε ≥ WRegAa

La

(
(h, ℓ)(1:T )

)
, where adversary a has been—on average—best responding:

∑T
t=1 L

(t)
a (h(t))+ ε ≥ c

∑T
t=1 maxℓ∗a L∗

a(h
(t)) for some constant c ∈ [0, 1]. Then there exists a t ∈ [T ]

where h(t) is a component-wise 1
c (2εb + (1 − c)α)-optimal solution for the multi-objective learning

problem (D,G,H), where

α :=
∑

a∈[b]

min
h∗

a∈Ha

max
ℓ∗a

T∑

t=1

L∗
a(h

∗
a, h

(t)
−a).

Proof. We want to show that there is a t ∈ [T ] where, for every a ∈ [b], maxℓ∗a L∗
a(h

(t)) ≤
minh∗

a∈Ha
maxℓ∗a L∗

a(h
∗
a, h

(t)
−a) + ε′. We will use a proof by contradiction. Accordingly, suppose that

for all t ∈ [T ], we have that ∃a ∈ [b] where,

max
ℓ∗a

L∗
a(h

(t)) > min
h∗

a∈Ha

max
ℓ∗a

L∗
a(h

∗
a, h

(t)
−a) + ε′.

Note that we still always have the general fact that, for any a ∈ [r],

max
ℓ∗a

L∗
a(h

(t)) ≥ min
h∗

a∈Ha

max
ℓ∗a

L∗
a(h

∗
a, h

(t)
−a).

Now take the assumption that the learners are weakly no-regret to see that,

∑

a∈[b]

T∑

t=1

L(t)
a (h(t))−

∑

a∈[b]

min
h∗

a∈Ha

max
ℓ∗a

T∑

t=1

L∗
a(h

∗
a, h

(t)
−a) ≤ Tεb.

Observing that adversaries are best-responding,

T∑

t=1

L(t)
a (h(t)) ≥

T∑

t=1

c ·max
ℓ∗a

L∗
a(h

(t))− ε,

we see that, for any particular a:

Tεb ≥
T∑

t=1

∑

a∈[b]

(
c ·max

ℓ∗a
L∗
a(h

(t))− ε

)
−

∑

a∈[b]

min
h∗

a∈Ha

max
ℓ∗a

T∑

t=1

L∗
a(h

∗
a, h

(t)
−a)
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>

T∑

t=1

cε′ +
∑

a∈[b]

(
c · min

h∗

a∈Ha

max
ℓ∗a

L∗
a(h

∗
a, h

(t)
−a)− ε

)
−

∑

a∈[b]

min
h∗

a∈Ha

max
ℓ∗a

T∑

t=1

L∗
a(h

∗
a, h

(t)
−a)

This implies

T
(
2εb− cε′

)
>

∑

a∈[b]

c ·
T∑

t=1

min
h∗

a∈Ha

max
ℓ∗a

L∗
a(h

∗
a, h

(t)
−a)−

∑

a∈[b]

min
h∗

a∈Ha

max
ℓ∗a

T∑

t=1

L∗
a(h

∗
a, h

(t)
−a)

︸ ︷︷ ︸
α

,

or in terms of α, reaching the contradiction:

2εb+ (1− c)α > cε′.

Lemma 3.4. Take any set of hypotheses p(1:T ) where at least one choice of p(t) is ε-optimal. The
following procedure Find(H,G) identifies a 2ε-optimal solution with probability at least 1 − δ, and
with only N = O

(
ε−2 ln(T |G| /δ)

)
samples: return p(t

∗) where t∗ = argmint∈[T ]maxℓ∈G L̂S(p
(t))

and S is a set of N samples drawn i.i.d. from D. This can also be implemented with T calls to an
agnostic learning oracle over G and 1 call to an agnostic learning oracle over [T ].

Proof. By the size of N , we know that with probability at least 1− δ, for all t ∈ [T ], ℓ ∈ G:

∣∣∣L̂S(h
(t))− LS(h

(t))
∣∣∣ ≤ ε/2.

For the oracle-efficient implementation, use an agnostic learning oracle to find, for each t ∈ [T ], a
(ℓ∗)(t) ∈ G such that (L∗)(t)(h(t)) ≥ maxℓ∗∈G L∗(h(t))− ε. Then, use another oracle to find t∗ ∈ [T ]
such that (L∗)(t

∗)(h(t
∗)) ≤ mint∈[T ](L∗)(t)(h(t)) + ε.

C Proofs for Section 4

For Fact 4.1, we refer interested readers to Hart [17] for an explicit construction of Br and further
discussion. We will sketch an existence proof here to give intuition.

Fact 4.1 (Hart [17]). Consider any online learning problem where an adversary chooses ℓ(h, (x, y)) =
〈fℓ(h, x), h(x) − g(y)〉 from a set of linear losses G and nature chooses datapoints (x, y). Then for
any mixed strategy of the adversary q ∈ ∆G and any r ∈ N, there is an explicitly constructable
mapping Br : ∆G → (∆Y)X that provides a (near-)zero regret strategy for the learner against any
datapoint that nature may draw: ∀z ∈ Z : q(Br(q), z) ≤ 1/r. Moreover, Br is distribution-free and
can be computed without samples.

Proof Sketch. To observe the existence of Br : ∆G → (∆Y)X satisfying ∀z ∈ Z : q(Br(q), z) ≤ 1/r,
discretize the output of Br to intervals of length 1/r and define each Br(x) to be a mixed strategy
over their midpoints. Conditioning on an x ∈ X , consider the game between a learner choosing
a strategy for Br(x) and an adversary choosing a distribution over labels g(y). If the adversary
was forced to move first, the learner could choose Br(x) to be a point distribution on the midpoint
closest to g(y), where |g(y) −Br(x)| ≤ 1/r. By Sion’s minimax theorem, there must also be a
1/r-regret strategy ŷ for the learner if they were to move first; accordingly define Br(x) = ŷ.
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Lemma C.1 is a generalization of Lemma 4.2 to a general online learning setting involving multiple
classes, multiple labels (groups of classes), multiple groups, and for a more general class of semi-
linear symmetric multi-objective learning problems. For example, this lemma is needed for agnostic
multi-calibration and moment multi-calibration. Lemma 4.2 arises as a special case where r = 1.
Below, let M ◦M ′ denote Hadamard product.

Lemma C.1. Consider any multi-label online learning problem with loss function ℓ, a learner which
chooses from H = (∆r

k)
X and an adaptive adversary which chooses b-dimensional (say, real-valued)

parameters β ∈ Rb. For ease, we will write labels and predictions as matrices of size r × k.

• Assumption 1 (Linearity) There is a function M : H × X × {0, 1}[u] × Rb → [−1, 1]r×k and
g : Y → ∆r

k s.t. ℓ takes the linear form: ℓ(h, (x, y, w), β, γ) = M(h, x,w, β) ◦ (h(x)− g(y)).

• Assumption 2 (Symmetry) There exists an i ∈ [b] s.t. for any β and permutation matrix P of
size r × r, there exists another β′ such that β−i = β′

−i and M(·, β) = M(·, β′)P .

Then, there is an explicit online learning algorithm for the learner such that the following weak regret
guarantee holds against any evaluation distribution D over X × Y × {0, 1}[u]:

WRegi :=
T∑

t=1

Lw(t)(h(t), β(t))− min
h∗∈H

max
β∗

i
∈R

T∑

t=1

Lw(t)(h∗, β
(t)
−iβ

∗
i ) ≤ O

(√
r ln(k)T +∆

)
,

where ∆ is a covariance adjustment ∆ := −Ex

[
Cov

[∑T
t=1 M(h(t), x, w, β(t)), g(y) | x

]]
if y is

correlated with w and 0 otherwise.

Proof. We will construct our online learning algorithm by defining each iterate h(t) in terms of
its behavior on each x in the domain X . For each x, we interpret each prediction h(t)(x) as a r
distributions over k imaginary actions returned by running a no-regret algorithm on an adaptive
sequence of losses γ(1), . . . , γ(t−1) where γ(τ) : [k]r → [−1, 1]. In particular, we consider the loss

sequence γ(τ)(ŷ) := Ew∼D

[
M(h(τ), x, w, β(τ)) ◦ ŷ | x

]
for all ŷ ∈ [k]r. We note that γ

(τ)
x is a valid

loss function for adaptive adversaries, who can observe the players mixed strategy h(t)(x) for all x,
but not the action ŷ realized from the strategies. Using Hedge, or any other online algorithm with
similar regret for kr choices of ŷ, we have that,

T∑

t=1

E
ŷ∼h(t)

[
γ(t)x (ŷ)

]
≤ min

y∗∈[k]r

T∑

t=1

γ(t)x (y∗) +O
(√

r ln(k)T
)
.

Replacing in the definition of γ
(t)
x and leveraging its linearity to substitute ŷ(t) ∼ h(t) with the

probability vector h(t) we have,

T∑

t=1

E
w∼D

[
M(h(t), x, w, β(t)) | x

]
◦ h(t) ≤ min

y∗∈[k]r

T∑

t=1

E
w∼D

[
M(h(t), x, w, β(t)) ◦ y∗ | x

]
+O

(√
r ln(k)T

)
.

Subtracting from both sides C := Ew,y∼D

[∑T
t=1 M(h(t), x, w, β(t)) ◦ g(y) | x

]
, for any η ∈ YX we

have:

E
x,y,w∼D

[
T∑

t=1

M(h(t), x, w(t), β(t)) ◦ (h(t) − g(y(t)))

]
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≤ E
x∼D

[
min

y∗∈[k]r

T∑

t=1

E
w∼D

[
M(h(t), x, w, β(t)) | x

]
◦(y∗ − η(x)) | x

]

︸ ︷︷ ︸
(a)

]
+O

(√
r ln(k)T

)

+ E
x∼D

[
T∑

t=1

E
(w,y)∼D

[
M(h(t), x, w, β(t)) ◦ (η(x)− g(y)) | x

]]

︸ ︷︷ ︸
(b)

.

We note that (a) ≤ 0, since the minimizer can always choose y∗ such that M1:T ◦y∗ = C, where C =∑T
t=1 Ew

[
M(h(t), x, w, β(t)) | x

]
◦η(x). We also note that (b) = −Ex

[
Cov

[∑T
t=1 M(h(t), x, w, β(t)), g(y) | x

]]

if we choose η(x) to be the label distribution of x marginalized over w.

What remains to be shown is that
∑T

t=1 maxβ∗

i
L(h∗, β(t)

−iβ
∗
i ) is non-negative. We will now lever-

age our symmetry assumption. Let P denote the space of all k × k permutation matrices. Further

define βP
i ∈ R to be the value implied by Assumption 2 such that M(·, β(t)

−iβ
P
i ) = M(·, β(t)

−iβ
∗
i )P .

E
x

[∑

P∈P

T∑

t=1

E
w,y

[
M(h∗, x, w, β

(t)
−i , β

P
i ) ◦ (h∗(x)− g(y)) | x

]]

=

T∑

t=1

E
x,w,y

[∑

P∈P

M(h∗, x, w, β
(t)
−i , β

∗
i )P ◦ (h∗(x)− g(y))

]

=
T∑

t=1

E
x,w,y







∑

P∈P

M(h∗, x, w, β
(t)
−i , β

∗
i )P

︸ ︷︷ ︸
Matrix with identical rows




◦ (h∗(x)− g(y))




= 0,

where the final equality is because h∗(x) and g(y) are right stochastic matrices. Thus, even if

T∑

t=1

E

[
M(h∗, x, w, β

(t)
−i , β

I
i ) ◦ (h∗(x)− g(y))

]
< 0,

where I is the identity permutation, there must exists another summand

T∑

t=1

E

[
M(h∗, x, w, β

(t)
−i , β

P
i ) ◦ (h∗(x)− g(y))

]
> 0.
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