
This paper is included in the Proceedings of the
19th USENIX Symposium on Networked Systems

Design and Implementation.
April 4–6, 2022 • Renton, WA, USA

978-1-939133-27-4

Open access to the Proceedings of the
19th USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by

OrbWeaver: Using IDLE Cycles in Programmable
Networks for Opportunistic Coordination

Liangcheng Yu, University of Pennsylvania; John Sonchack, Princeton University;
Vincent Liu, University of Pennsylvania

https://www.usenix.org/conference/nsdi22/presentation/yu

OrbWeaver: Using IDLE Cycles in Programmable Networks
for Opportunistic Coordination

Liangcheng Yu
University of Pennsylvania
leoyu@seas.upenn.edu

John Sonchack
Princeton University

jsonch@princeton.edu

Vincent Liu
University of Pennsylvania
liuv@seas.upenn.edu

Abstract
Network architects are frequently presented with a tradeoff:

either (a) introduce a new or improved control-/management-
plane application that boosts overall performance, or (b) use
the bandwidth it would have occupied to deliver user traffic.

In this paper, we present OrbWeaver, a framework that can
exploit unused network bandwidth for in-network coordina-
tion. Using real hardware, we demonstrate that OrbWeaver
can harvest this bandwidth (1) with little-to-no impact on
the bandwidth/latency of user packets and (2) while provid-
ing guarantees on the interarrival time of the injected traffic.
Through an exploration of three example use cases, we show
that this opportunistic coordination abstraction is sufficient to
approximate recently proposed systems without any of their
associated bandwidth overheads.

1 Introduction

The purpose of a computer network is to transmit messages to
and from connected devices. The bulk of these messages are
sent between two or more end hosts and are intended for use
in applications therein (video streaming, web browsing, ssh
terminals, stock trackers, etc). It is important to note, however,
that networks are also frequently used for other purposes
that are not directly related to end-to-end application traffic.
These uses include but are not limited to control messages,
keepalives, and probes.

In some cases, this second category of messages is sent
over dedicated networks (e.g., an out-of-band control plane).
Nevertheless, a significant portion is not, and for good reason.
Multiplexing the traffic over a unified network results in more
efficient resource utilization and helpful fate-sharing proper-
ties. For many uses, it is also required for correctness. For
instance, active probing generally relies on the probe facing
the same network conditions as normal traffic.

For in-band coordination, there is often a choice between
fidelity and overhead. More so as many protocols use high-
priority messages that directly cut into network capacity. For
example, when deciding on an appropriate interval for send-
ing routing-protocol keepalive messages, sending keepalives
more frequently results in faster failure detection but at the
cost of many extra packets in the network. Similarly, while
techniques like congestion tagging [3, 22] and in-band net-
work telemetry [27] can provide timely information about the

recent state of network paths, they require either extra probe
packets or space in the headers of existing packets, both of
which occupy valuable bandwidth.

Given this tradeoff between fidelity and overhead, today’s
networks end up settling for a little bit of both. In some cases,
the sacrifices are modest; in others, network operators are
forced to limit the aggressiveness of their systems despite evi-
dence of the benefits of finer granularity [6, 49]. In this paper,
we argue that for a diverse set of protocols, the sacrifice is
entirely unnecessary—systems can coordinate at high-fidelity
with a near-zero cost to usable bandwidth and latency. In
short: we can have our cake and eat it too.

Our system, OrbWeaver, is a framework for the opportun-
istic transmission of data across today’s programmable net-
works. OrbWeaver takes advantage of gaps between user
traffic and ‘weaves’ (i.e., injects) into every such gap cus-
tomizable IDLE packets that convey information across de-
vices. For modern, high-speed networks, these opportunities
are plentiful. Crucially, OrbWeaver provides guarantees about
the ‘weaved’ stream—guarantees on the maximum time be-
tween any two packets and guarantees on the impact of the
injected packets on user traffic, switch resources, and power
draw. A consequence of this predictability is that, even when
there is no opportunity to send, the absence of IDLE packets
reveals concrete information about the state of the network.

We note that a similar abstraction already exists at the
data-link layer. In particular, in today’s full-duplex Ethernet
standards, the Physical Coding Sublayer (PCS) will fill any
gaps in transmission with IDLE symbols [32,41]. The contin-
uous stream of incoming signals allows receivers to—with no
impact to user traffic—test for corruption and link integrity at
a fine granularity, even when there is no traffic on the network.
Further, by continuing to transmit IDLE symbols after a link
integrity issue has been raised, switches can also determine
when the link becomes usable again.

OrbWeaver extends this technique to higher layers of the
network stack by exploiting the data plane programmability,
architecture, and packet generation capabilities of emerging
programmable switching platforms. The resulting stream of
packets can be used to generalize Ethernet’s robust failure
detection properties to a broader class of faults; however,
its benefits go far beyond L3 failure detection. Rather, we
demonstrate in this paper that with proper application, the
nearly free communication that IDLE packets provide can be
used to eliminate the fidelity-utilization tradeoff of solutions

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1195

to several classic problems in networking including clock
synchronization and load balancing.

Implementing OrbWeaver’s packet weaving presented sev-
eral technical challenges. First, while IDLE symbols are part
of the Ethernet standard and enjoy direct hardware/protocol
support, to utilize today’s devices and maintain their current
performance, OrbWeaver must provide similar behavior with-
out changes to switch architectures. Second, while many
systems can benefit directly from opportunistic data transmis-
sion, many must continue to operate during periods where
user traffic is already occupying all available bandwidth. To
address the first challenge, OrbWeaver introduces a co-design
of the selective data-plane filtering mechanisms and the rich
priority configurations found in modern switches to guaran-
tee minimal impact on user traffic. We verify the approach
through a detailed examination of the specifications of the
queuing subsystems on a Tofino switch along with experi-
ments that stress-test worst-case behavior. To address the
second, we introduce novel mechanisms that exploit IDLE
packets and the guarantees of weaved streams to eliminate
the bandwidth overheads of existing network protocols. We
demonstrate these mechanisms through three case studies.

Our implementation1 and evaluation demonstrate the effi-
ciency and efficacy of OrbWeaver using real hardware, optical
attenuators, and power meters. We find that, despite the in-
troduction of the IDLE stream, OrbWeaver incurs negligible
impact on user traffic, the computational/state resources of
participating switches, or their power draw. We further demon-
strate that this messaging substrate can be used to (re-)design
recently proposed systems to eliminate their bandwidth over-
heads while closely approximating their performance.

2 Motivating Weaved Streams

This section presents the definition of a ‘weaved’ stream, its
motive, and where data plane programmability can help.

Definition. A weaved stream is a union of user and IDLE
packets traversing a link between two arbitrary network de-
vices that provides two guarantees:
R1 That no link stays unutilized for too long. More precisely,

there is some period τ where the interval between any
two consecutive packets, d, satisfies d ≤ τ.

R2 That the injected packets do not decrease the effective
throughput of user traffic or increase their loss rate.

Why weaved streams? Network protocols are, fundamen-
tally, distributed computations that require coordination be-
tween different devices—sometimes adjacent devices, some-
times remote devices—for monitoring, control, and manage-
ment. A perennial problem is how much bandwidth to allocate
to these protocols, as each byte devoted to coordination is a
byte that could have been used for user traffic instead. This
tradeoff has tangible effects for many networking tasks:

1Code is available at https://github.com/eniac/OrbWeaver

• Failure handling: A common strategy for detecting the
failure of remote network devices is the use of continuous
keepalive messages. Here, each node periodically sends a
keepalive to each of its neighbors; if a neighbor ever stops
sending keepalives, nodes assume that they have failed.
Fundamentally, the period between keepalives bounds the
speed at which we can detect failures. Unfortunately, be-
cause keepalives are most accurate when sent over the same
or higher-priority channels as user traffic, their sending rate
is typically kept low (e.g., at a period of O(100 ms)) at the
cost of slower detection.

• Clock synchronization: Prior work has also noted the utility
of synchronizing network devices [29], e.g., for coordi-
nated network updates [36, 45] or real-time streams [13].
Clock synchronization protocols typically pass messages
that periodically compute the drift between the clocks of
participating machines. Constant changes to not only the
relative clocks but also the relative clock rates mean that
more frequent updates can provide more accurate synchro-
nization (at the cost of additional packets in the network,
typically configured at a high priority).

• Congestion notification: Finally, this tradeoff can be seen
in the detection/communication of congestion and current
load. ACKs (and their corresponding loss/RTTs) are a
particularly common method for inferring the presence of
congestion, e.g., in TCP NewReno. As others have noted [3,
26], however, there are also advantages to more explicit
signaling of the current congestion and queue statistics.
Unfortunately, while effective, these statistics typically
occupy packet header space or introduce additional packets
into the network.

Over the years, network architects have developed many
workarounds. These include hardware changes [29, 32], co-
opting unused fields in headers [3,50], carefully balancing the
tradeoff for a particular service-level expectation [7], or other-
wise coming to terms with the cost of coordination. Outside
factors can guide the above decisions, such as whether ACKs
are already necessary (e.g., for reliability) or if extraneous
fields can be eliminated. However, in this paper, we ask a
more fundamental question: are these tradeoffs necessary?

To that end, OrbWeaver is a framework for implement-
ing network coordination that does not interfere with user
traffic. OrbWeaver’s weaved streams are both opportunistic
and highly predictable—consuming every inter-packet gap of
sufficient size but no more. Not every protocol can be imple-
mented solely using weaved streams (though many can benefit
from it). Even so, we demonstrate that at least for the three
use cases above, weaved streams are sufficient to approximate
state-of-the-art systems while reducing their impact on user
traffic to virtually zero.

Why are there gaps? Usable gaps between packets can oc-
cur for many reasons, the most basic being application-level
patterns and TCP effects. Indeed, prior work [37, 49] and

1196 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

User packet

IDLE packet

100 Gbps 10 Gbps 10 Gbps

A B C

Figure 1: An example OrbWeaver-enabled network with four
switches and three end hosts (connected with 10 Gbps links).
A single two-sided connection A↔ B occupies the network,
but a significant portion remains unused. Gaps between pack-
ets can occur for many reasons, but OrbWeaver can weave
IDLE packets into all of those gaps.

our conversations with several large clouds/ISPs verify that
micro-/milli-second inter-packet gaps are ubiquitous, even in
networks that primarily handle large bulk-data transfers.

Gaps can also happen for structural reasons. For example,
consider Figure 1 (sans IDLE packets). In it, a single connec-
tion A↔ B occupies all usable end-to-end bandwidth. Even
if A and B pace packets perfectly, no host can send additional
packets without displacing the existing user traffic, despite
significant opportunities to do so (because of, e.g., congestion,
link speed changes, and asymmetric connections). These gaps
present a chance for opportunistic coordination.

Why now? OrbWeaver’s ability to weave IDLE packets into
gaps between user traffic is enabled by several features in
modern switches: programmable data plane behavior, the
capacity for local packet generation, and the ability to fully
configure the queuing/prioritization of different traffic classes.
We note that none of these are sufficient on their own.

For example, consider strict packet prioritization, which
has been used for opportunistic bandwidth allocation [21, 24].
In SWAN [21], for instance, end hosts send low-priority back-
ground traffic to capture any bandwidth remaining after han-
dling interactive and elastic services. A naïve application of
these techniques, however, is a poor fit for in-network coor-
dination, which occurs between devices in the network (as
opposed to end hosts) and typically involves small data sizes
that benefit from even short sending opportunities. Figure 1,
for example, would not benefit from end-host actions.

3 Generating a Weaved Stream

Before we delve into the potential uses of weaved streams in
Section 4, we first detail how to implement the abstraction in
today’s programmable switches.

Switch model. For simplicity, we primarily focus on the
popular Tofino family of programmable networking devices
(and discuss generalization to other types of devices in Ap-
pendix B). Figure 2 shows a conceptual diagram of the rel-
evant components of the switches we consider. At a high
level, when a packet enters from one of the Ethernet ports, its
header is extracted by the programmable parser responsible

In
g

. A
rb

ite
r

…

Parser

Parser

Parser

Ingress
Pipeline

2

Rx MAC

Packet
Generator

Egress
Pipeline

PRE

Queueing &

Scheduling

4

Tx MAC

1

Packet
Buffer

3

Figure 2: Conceptual diagram of the relevant components of
an RMT switch, derived from the switch specifications in [12].
Only a single ingress/egress pipeline are shown. Circled
numbers indicate steps and potential points of contention
with user traffic that are handled in Section 3.1.

for that port. An ingress pipeline arbiter is then responsible
for selecting one of the parsed packets and passing it through
the ingress match-action pipeline.

After ingress processing, the packet will be placed in a
shared packet buffer until it is ready to be sent out. Instead,
the switch uses a shorter ‘packet descriptor’ for the next steps:
optional replication by a Packet Replication Engine (PRE)
(e.g., for multicast) and placement onto a per-port egress
queue for eventual processing/deparsing. The data plane pro-
gram and the traffic manager configuration decide whether an
incoming packet should be buffered and whether a buffered
packet should be enqueued for transmission.

Goal. R1 of the weaved stream abstraction requires a constant
stream of packets on every link such that the union of user
and IDLE packets satisfies d ≤ τ. We note that the optimal
guarantee for τ is dependent on both the bandwidth, B, of
each link and the MTU of the network. To see why, consider
the extreme case where a user is occupying all of the band-
width of a port i with MTU-sized packets. The receiver on
the other side of the link will receive packets at a period of
τi =

MTU
Bi

, with OrbWeaver unable to inject any additional
packets without impacting user traffic. Therefore, unless oth-
erwise noted, OrbWeaver uses τi =

MTU
Bi

even if smaller IDLE
packets would allow for faster injection.

In the worst case when there were zero user packets and N
egress ports, the resulting target IDLE-injection rate is:

T =
N

∑
i=1

Bi

MTU

For reference, for a 32 port switch with B = 100 Gbps and
MTU = 1500 B, the per-port inter-packet gap, τi, is 120 ns,
which results in T = 266.7M packets/sec.

Constraints. Complicating the injection of IDLE packets into
the network are R2 and hardware constraints on the through-
put of each switch pipeline, defined in terms of both byte-level
bandwidth (N×B) and packet-level bandwidth (proportional
to the clock rate of the pipelines). For the latter, switches

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1197

typically provide guarantees up to a certain minimum packet
size, and best-effort behavior for very small packets.

3.1 Mechanism Overview
OrbWeaver’s IDLE-packet weaving leverages a combination
of features found on our target platform: data-plane packet
generation, data plane programmability, and fine-grained ar-
biter/scheduler configuration options. The switches’ onboard
per-pipeline packet generator modules, in particular, form a
convenient substrate for our techniques. Using these modules,
a network operator can create packets with predetermined
content at a predetermined rate.

In principle, one could configure the generators to cre-
ate packets at a rate T (thus providing OrbWeaver with its
consistent stream of packets to convert into IDLE packets).
Unfortunately, in practice, these generators do not have nearly
enough capacity to satisfy the requirements of OrbWeaver.
Moreover, blind injection of packets may interfere with the
throughput, latency, or loss of user traffic. Instead, OrbWeaver
uses the selective amplification method described below.

1 Packet generation. The IDLE stream generation of Orb-
Weaver begins with a low-rate but predictable stream of gen-
erated IDLE packets. The focus of this process is to provide
a ‘seed’ stream with an emphasis on regularity; amplification
up to T occurs later in the pipeline. More specifically, the
generator module is configured to send a packet every τmin

2
secs, where τmin is the minimum τi of any port on the pipeline.

There are two important aspects of this seed stream. The
first is that the rate is double that of τmin in order to provide a
degree of oversampling for the subsequent optimizations with-
out sacrificing guarantees on the eventual spacing of packets.
The second is that the IDLE packets are configured with a
strict high priority at the ingress arbiter so that the packet
will always be serviced as soon as it is generated. While this
implies that IDLE packets are preferred over user traffic in
the ingress pipeline, the low rate of this seed stream means
that OrbWeaver incurs <1.5% overhead even for the worst
case of minimum-sized packets sent at τ100 Gbps (denoting the
optimal τi for a 100 Gbps link). More typical packet sizes and
utilization eliminate the overhead.

2 Amplifying the stream on-demand. OrbWeaver takes the
low-rate seed stream above and amplifies it, potentially up
to the full rate T , by leveraging another hardware feature
found in modern switches: flexible multicast. In Figure 2,
this behavior is implemented in the PRE, which can replicate
a packet descriptor to the egress queues at line rate.

Unfortunately, the naïve approach of replicating a packet to
every egress queue every τmin seconds can crowd out normal
multicast packets and waste significant egress capacity. More
specifically, there are two instances where it is not necessary
to multicast a packet to a particular port i:

1. If the port is slower than the maximum speed, then send-
ing at τmin will be too fast by a factor of Bmax

Bi
.

2. If a user packet was already sent to the egress port re-
cently, sending an IDLE packet is unnecessary.

OrbWeaver addresses both cases by oversampling the send-
ing history of each port (at rate τmin

2) and then selectively
filtering/multicasting toward only the ports that need an IDLE
packet. When a port is has bandwidth Bi < Bmax, the switch
downsamples the IDLE packets by configuring two multicast
groups (one with port i and one without) and picking the one
with i every dBmax

Bi
e packets. Similarly, if a port has sent a

packet (user or IDLE) in the past τmin
2 seconds, we can select

a multicast group that does not contain the given port.
Concretely, this filtering step uses a single stateful register

entry with a bit width equal to the number of ports attached to
the pipeline. In essence, the register is a bitvector where each
bit represents whether we have sent a packet to the associated
port within the last τi

2 seconds. For every incoming seed
packet, if the associated bit is 1, we omit the port and flip
the bit to 0; if the bit is originally 0, include the port in the
multicast and flip the bit to 1. Specifically:

user packet: filter_reg |= 1 << egress_port
seed packet: filter_reg ^= speed_mask

When all ports are the same speed, speed_mask is always
2N − 1; for hybrid configurations, the ith bit is 1 for every
dBmax

Bi
e packets and 0 otherwise. After updating the register,

OrbWeaver multicasts the current seed packet to the multicast
group specified by filter_reg (in particular, its value before
the xor)—if and only if bit i in the multicast group ID is 0,
port i is included in the multicast.

In principle, a direct application of the above filtering step
guarantees that the PRE will have enough bandwidth for all
user multicasts, assuming that each user multicast results in at
most one packet on each egress port. Two aspects of modern
switch design potentially complicate this design.

The first is that today’s switches typically cannot support a
unique multicast group for each of the 2N possible combina-
tions of target ports. OrbWeaver addresses this by reducing
the number of groups by coalescing ports into groups of M
such that, if any port in the set has its bit in filter_reg set,
the entire set receives the multicasted packet. This approach
trades a factor of 2M reduction in the number of multicast
groups for a worst-case M−1

N -factor decrease in PRE band-
width. The second is that modern switches are often com-
posed of different pipelines, each supporting distinct packet
generators, sets of registers, and groups of ports. Lack of
visibility across pipelines means that filter_reg may only
track local sends, which can also lead to higher PRE usage.

We note, however, that in both of the above cases, Orb-
Weaver will only incur false negatives (and no false positives)
of user packet presence, thus satisfying R1. We also note that
very few modern networks are continuously multicasting to
all ports at near line-rate.

3 Weaving the IDLE stream between user packets. Af-
ter the stream is amplified, it reaches the egress queues and

1198 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

pipeline of the switch. To bound the impact of the stream on
user traffic, OrbWeaver configures its packets to have a strictly
lower priority than any other user traffic on the same port. If
there is user traffic to send, the IDLE packets will not impact
them; if there is no traffic to send, the IDLE packets will be
sent at a minimum rate of τi per port i. The only potential im-
pact to the latency/throughput of user traffic is when an IDLE
packet is scheduled just before a user packet arrives, in which
case the user packet will be delayed by at most pkt_size/Bi.
The delay is only incurred once per packet burst, which im-
plies a bound on OrbWeaver’s end-to-end impact on latency
and throughput.

Upon arriving at the ingress pipeline of the downstream
switch, the packets will be dropped. This also has near-zero
impact on user traffic as IDLE packets are only received when
the upstream switch has nothing to send.

4 Managing the packet buffer and egress queues. Finally,
through the above process, there are two primary places where
IDLE packets can compete with user packets for memory
in addition to bandwidth. The first is the per-egress output
queues that hold packet descriptors before they are serviced
by the egress pipeline. The second is the shared packet buffer
that stores packet contents until they are sent out on the wire.

To bound the impact of OrbWeaver on both resources, we
statically carve the buffer using egress and ingress buffer
accounting mechanisms, respectively. For the former, we note
that the queue for IDLE packets (the lowest priority queue for
the port) is distinct from those of user packets. This queue
only needs to be one cell deep as another IDLE packet is
guaranteed to arrive in a timely fashion, and thus, the impact
on aggregate memory capacity is negligible. For the latter,
we can likewise keep the required buffer shallow because of
the guarantees of the packet generation process. Specifically,
we can confine the IDLE packets to a fixed-size, non-shared
region of the packet buffer. The buffer only needs to have a
depth equal to the sum of the egress, per-port IDLE-packet
queues plus a small amount of headroom for any potential
cycle-level processing delays. This is < 0.01% of the total
buffer size of a typical modern switch.

3.2 Evaluating the Weaved Stream

In this section, we delve deeper into OrbWeaver’s potential
impacts on user traffic. We do this with the assistance of a pro-
totype implementation on a 2×Wedge 100BF-32X testbed.
Additional experiments can be found in Appendix F.

3.2.1 Can OrbWeaver Inject at Rate T ?
To demonstrate that our approach can achieve T on a fully
provisioned switch, we validate it empirically. Specifically,
we configure a switch with all 32 ports active and running at
a full 100 Gbps. We then configured the switch’s packet gen-
erator module to generate seed packets at a rate of 2/τ100 Gbps
and then multicast every other IDLE packet to all ports.

τ

 0 20000 40000 60000 80000 100000 120000

O
b

s
e

rv
e

d
 i
n

te
rv

a
l
[n

s
]

Packet

Target rate
Maximum

Figure 3: An empirical evaluation of the switch’s capacity to
generate IDLE packets. Packets were injected to all ports, but
the graph depicts the observed inter-packet gap at only one of
those ports. Results are shown for both the target rate (Bi =
100 Gbps, MTU = 1500 B) and the maximum achievable rate.
y-axis omitted to protect confidential information.

Figure 3 shows a time series of the interval between IDLE
packets, as observed by the egress pipeline of a single port. To
record the series, we maintained a ring buffer (implemented
via a data plane register) of the difference between the current
egress_global_tstamp and the previous. The observations
were maintained in the egress pipeline and for a single port
(other ports’ results are identical).

We find that, not only is the injected stream able to achieve
τ100 Gbps for every port simultaneously, the observed rate is sta-
ble across packets. Further, increasing the amplification factor
of the multicast configuration enables IDLE packet generation
more than an order of magnitude faster than the target interval,
τ100 Gbps. Among other implications, this means IDLE packet
injection is robust to higher bandwidth and lower MTUs, even
without improvements to packet replication capacity.

3.2.2 Can OrbWeaver Bound Packet Gaps?
In addition to being able to generate IDLE packets at rate T ,
R1 also requires regularity in the form of a bound on the gap
between packets. We note that Figure 3 already demonstrates
the regularity of this gap on a switch without traffic. We
also note that in the other extreme (when ports are always
congested), R1 is trivially satisfied.

In this section, we extend these results to a network with
burstiness and varying levels of traffic. Specifically, we use
a hardware testbed consisting of two OrbWeaver-enabled
switches (A and B) and a set of servers connected to A. User
traffic is passed hosts→A→B with amplification to fully uti-
lize the ports at B. For this experiment, we used tcpreplay

and pcap traces from an ISP backbone [9] and a cloud data
center [8]. We set up a register in the ingress pipeline of the
downstream switch B to record the distribution of the interval
between consecutive packets.

Figure 4 shows the results for a single 25/100 Gbps port.
Without OrbWeaver, very few intervals are under τ for the
target link speed, and the tail is very long. OrbWeaver, on
the other hand, is able to weave in IDLE packets to guarantee
an upper bound on the packet interval regardless of the origi-
nal traffic pattern. In particular, for a configured generation
interval of t ns, out of 2.14×109 interarrival periods, the max-

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1199

0.0

0.2

0.4

0.6

0.8

1.0

10
2

10
3

10
4

τ=480

C
D

F

Packet interval [ns]

Original
OrbWeaver

(a) 25 Gbps ISP backbone

0.0

0.2

0.4

0.6

0.8

1.0

10
2

10
3

10
4

10
5

10
6

τ=480

C
D

F

Packet interval [ns]

Original
OrbWeaver

(b) 25 Gbps data center

0.0

0.2

0.4

0.6

0.8

1.0

10
1

10
2

10
3

10
4

τ=120

C
D

F

Packet interval [ns]

Original
OrbWeaver

(c) 100 Gbps ISP backbone

0.0

0.2

0.4

0.6

0.8

1.0

10
1

10
2

10
3

10
4

10
5

10
6

τ=120

C
D

F

Packet interval [ns]

Original
OrbWeaver

(d) 100 Gbps data center
Figure 4: Observed intervals between packets with/without
OrbWeaver’s weaved stream. The dotted line shows the ideal
period τ for each link speed. Without OrbWeaver, the maxi-
mum interval was >100s of ms but we truncate for readability.

imum observed interval was (t +3) ns (observed for only 32
intervals). The discrepancy is likely due to either clock drift
or the aforementioned cycle-level processing delays. Notably,
the presence or absence of cross traffic had negligible effect
on the frequency of these 3 ns outliers so in practice, we can
set t = τ−3 and achieve reliable results.

Explanation. The regularity of OrbWeaver’s weaved stream
derives from the architecture of the switch and the mecha-
nisms of OrbWeaver. From the components of Figure 2, the
parser used by the packet generator is separate from those of
the external traffic, the ingress pipeline grants strictly higher
priority to the generated packets over external traffic (user or
IDLE), and the packet buffer protects IDLE packets from in-
terference through static reservations for worst-case capacity.
When combined, a generated IDLE packet can only be de-
layed through HoL blocking when an external packet arrives
just before the generated packet. For unicast packets, this is
a 1-cycle delay; for full broadcasts, this is up to an N-cycle
delay (which is short for today’s high-speed networks).

At the egress pipeline, the priorities are reversed: IDLE
packets are set to a strictly lower priority than user traffic.
This change stems from a change in objective: in the egress
pipeline, it is no longer necessary for the IDLE packets to be
sent at a precise rate; instead, the goal is to send any packet at
above the minimum rate, τi. Choosing a user packet instead
of an IDLE one can only decrease the inter-packet gap.

Note that, in a Tofino, these priorities (unlike those at the
ingress) are only effective within their respective ports. Thus,
the switch will send a low-priority packet on port i even if
there is a higher-priority packet queued for a different port.
As long as the average packet size is above the minimum for
line-rate processing, ports can be considered in isolation.

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

 0 20 40 60 80 100

P
D

F

Packet interval [µs]

w/ IDLE stream
w/o IDLE stream

Figure 5: The impact of IDLE packets on user traffic at the
ingress pipeline with/without a generation rate of 2/τ100 Gbps.

3.2.3 Do IDLE Packets Affect External Traffic?
As important as the impact of cross traffic on generated IDLE
packets are the impacts of the generated packets on (1) user
traffic and (2) incoming IDLE packets. A significant impact
on (1) implies violations of R2; on (2), it implies inaccuracy in
inter-arrival times and potential violations of R1. We discuss
potential impacts in the two pipelines separately.

Ingress pipeline. While OrbWeaver’s packet prioritization
means that IDLE packets will be preferred over external traffic
in the ingress pipeline, its use of multicast amplification re-
duces their impact to 1.5% of maximum packet-level capacity,
with zero impact to byte-level capacity.

To evaluate the practical effects of this overhead, we re-
played a real-world packet trace over an ingress pipeline of
an OrbWeaver switch. The packet trace was generated using
tcpreplay and link-level packet traces captured from 10 Gbps
Internet routers [9]. To saturate the pipeline, we sped the
traces up to match our setup’s 100 Gbps per-link bandwidth
and replicated them to fill the switch.

We compare two cases. In the first, only the above external
traffic is present. In the second, we used the exact same
traces but, in parallel, we injected IDLE packets into the same
pipeline just as we did in the previous subsection. In both
cases, we measured the packet count and interarrival times of
user packets in the ingress pipeline with the help of stateful
registers that aggregate both statistics.

We find that, for the speeds and packet sizes in the evaluated
trace, the throughput and congestion loss of user traffic is
the same whether the generated IDLE stream is present or
not. The only metric that is impacted is latency, where a
slight delay can be introduced each time a generated packet is
processed one ‘clock cycle’ ahead of a user packet; however,
this is minor and mitigated by the low frequency of IDLE
packet injection. Figure 5 depicts the cumulative impact of
this delay using a histogram of the packet interarrival time of
the traces, with and without the IDLE stream—the majority of
the differences are due to randomness in tcpreplay between
executions, rather than OrbWeaver.

Egress pipeline. The benefits of the amplification strategy to
contention mitigation stop at the PRE, but two other factors
take its place in ensuring that user traffic is not impacted in
the egress pipeline. The first factor is the filtering step that
was introduced in Section 3.1, which prevents superfluous

1200 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0

100

200

300

400

500

600

700

800

20 40 60 80

Q
u

e
u

in
g

 t
im

e
 [

n
s
]

Utilization [%]

w/o IDLE stream
w/ IDLE stream
Maximum

Figure 6: The impact of IDLE packets on the latency of user
traffic at the egress pipeline. Results are shown for various
levels of average utilization. 0% and 100% are not shown as
OrbWeaver becomes trivially optimal. To provide an upper
bound on the impact, we disable adaptive ingress filtering and
populate the pipeline with only small (64 B) user packets. A
real OrbWeaver deployment would have much lower impact.

 1
 1.01
 1.02
 1.03
 1.04
 1.05
 1.06
 1.07
 1.08
 1.09

 5 10 15 20 25 30 35 40 45 50 55 60

W
a

tt
a

g
e

 [
n

o
rm

a
liz

e
d

]

Time [s]

Baseline
Only OrbWeaver

Maximum utilization

Figure 7: The power draw of a OrbWeaver switch compared
to that of an idle (baseline) and a maximally utilized switch. Y-
axis is normalized to the average power draw of the baseline.

usage of both the PRE and egress pipeline when the egress
ports are already occupied. For IDLE packets that are not
filtered in the ingress pipeline, the second factor is the strict
prioritization of user traffic over IDLE packets of the same
port, also introduced in Section 3.1. The second factor, in
particular, provides an upper bound on the impact of the
IDLE packets as long as the user traffic respects the minimum
average frame size requirements of the switch specification
(see Appendix D for a formal analysis).

To truly stress these mechanisms, we evaluate an extreme
scenario in which multiple hosts send minimum-size (64 B)
packets toward a single egress port and OrbWeaver’s filter-
ing mechanism is disabled. This situation is not possible in
OrbWeaver, but is helpful in demonstrating the efficacy of
egress prioritization for protecting user traffic. The results
verify the analysis above, even for high user-traffic utiliza-
tion. For comparison, we also show the impact of an IDLE
stream operating at the order-of-magnitude-higher maximum
rate of Figure 3 but still set to low-priority. Again, across all
experiments, throughput was unaffected.

3.2.4 Does Injection Affect Power Usage?
Finally, we investigate the impact of weaving on the power
consumption of today’s switches. A natural concern is that the
continuous stream of packets will increase consumption; how-
ever, we find the actual impact is minimal as the underlying
Ethernet MAC already continuously sends IDLE symbols.

To evaluate this, we used a P3 Kill-A-Watt Electricity Us-

Infer
Network

Conditions Consume
IDLE

Registers

Process
User

Produce
IDLE

Registers

Process
User

User packet IDLE packet
Prepare
IDLE Seed

IDLE seed packet

Traffic
Manager

EgressIngress

from packet
generator

Switch
CPU

Figure 8: Structure of a P4 program that processes a weaved
stream. The ingress pipeline extracts information from the
weaved stream, then processes user and IDLE packets sepa-
rately. The egress pipeline processes user packets and trans-
forms seed packets into IDLE packets. Pipelines can commu-
nicate using registers that are synchronized with either seed
packets or the switch CPU, as shown by the thick lines.

age Monitor (Model P4400) to measure the total power draw
of a Wedge100BF-32X programmable switch. The monitor
sits between the switch’s power plug and its power outlet
and can measure wattage to within 0.2–2.0%. To emulate
the switch’s deployment into a network of programmable
switches, we connect every port on the switch to a second
switch that logically functions as 32 neighboring switches.
We test three distinct configurations:

• Baseline: All ports on the switch are connected at 100 Gbps;
however, the switch is otherwise inactive, i.e., there is no
incoming traffic nor any IDLE packets.

• Only OrbWeaver: Same as above, but with OrbWeaver’s
IDLE stream generation enabled on all switches. The
switch is, thus, both sending and receiving packets at T .

• Maximum utilization: The worst case scenario, where the
switch is both sending and receiving user packets at the
maximum rate and generating IDLE packets (that are even-
tually dropped in the ingress pipeline).

Figure 7 shows the power draw of each configuration over
a 1 min period. OrbWeaver’s transmission of packets at rate
T increases the average power draw of the switch by <2%.

4 Use Cases

Figure 8 outlines the general structure of a P4 program that
uses OrbWeaver. Whereas a standard P4 program processes a
stream of user packets, an OrbWeaver P4 program processes
a weaved stream of user and IDLE packets. OrbWeaver pro-
grams can append/read information from the payloads of the
IDLE packets (which appear on the wire as a special Ether-
Type) or infer statistics from the timing of the weaved stream.
In either case, the content of IDLE packets can be manipulated
just like any other packet (metadata like the drop decision,
priority, or egress port should not be changed).

In typical usage, the receiving switch will process, record,
and drop incoming IDLE packets before the end of the ingress

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1201

pipeline. In most cases, the IDLE packets bypass the normal
pipeline logic and, thus, will not affect user byte/drop/error
counters. Separately, they use either (a) an agent on the
switch CPU [47] or (b) a locally generated IDLE seed packet
to transfer data from the ingress to the egress pipeline before
sending to the downstream switch. Together, they facilitate
multi-hop communication over IDLE packets.

In this section, we detail three example use cases of Orb-
Weaver (see Appendix A for others). For each example, we
consider a recently proposed network system, and we explore
how well OrbWeaver can approximate it without introducing
any additional impact on user traffic. We note that, in some
cases, this restriction can result in suboptimal designs (i.e.,
imposing on user traffic may result in better overall perfor-
mance, even if it incurs overhead). Rather, we ask: how far
can operators go before needing to ever consider the choice
between network throughput and features?

4.1 Use Case #1: Fast Failure Detection
Failures of network components are common in large net-
works where the number of devices involved ensures a con-
stant flow of incidents. Reasons for the failures include over-
heating components, power instability, bit flips in the sig-
nal, loose transceivers, bent fibers, or any number of other
causes [15, 44, 51, 52]. In the end, however, the symptom of
many of these failures is the same: lost packets in the network.

Thus, as the first steps toward mitigation, quickly de-
tecting and quantifying packet loss is critical to maintain-
ing high availability and stringent SLOs, particularly as net-
works improve in both bandwidth and reaction time such
that control-plane processing is no longer the sole bottle-
neck [11, 26, 30–32, 47]. Unfortunately, as mentioned in Sec-
tion 2, common detection approaches—periodic keepalives or
pings—force network architects to sacrifice detection latency
to constrain overheads. Moreso as pings are traditionally
prioritized over user packets to minimize false positives.

Even recent systems like NetSeer [50] that track user-
packet loss inband (without injecting additional packets) suf-
fer from this tradeoff. For example, NetSeer’s choice to not
inject additional packets means that the network is necessar-
ily slow to detect a black hole (differentiating from a lack
of demand requires CPU coordination to compare the flow
counters of adjacent switches). Likewise, their choice to tag
every packet with a sequence number incurs a bandwidth over-
head of 0.3%∼6.3% in return for higher detection granularity
(unless there are previously unused bits in the header and we
cannot change the data plane to remove them).

4.1.1 An OrbWeaver Redesign
Taking NetSeer as a base, we can replace its inter-switch com-
munication with an OrbWeaver-influenced design to eliminate
bandwidth overheads and significantly improve detection time.
We refer readers to the original paper [50] for full details of
the existing system but summarize the relevant components

as follows. NetSeer records the 5-tuple of each packet in the
egress pipeline using per-port ring buffers and tags it with
a 4-byte sequence number. The downstream switch stores
the last observed sequence number. Upon detecting a gap
(e.g., packet 14 after packet 12), it sends 3 duplicate and high-
priority drop notifications to the upstream switch for each
missing sequence number. If the upstream switch receives at
least one such notification, it will use the records in the ring
buffer to generate a flow event for the missing packet, which
will be compressed/summarized for the management plane.

In NetSeer-OW, switches maintain per-port hash tables that,
like NetSeer, record the 5-tuples and packet counts of passing
flows (using the 5-tuple hash as the index). The caches are
maintained in the egress pipeline of each upstream switch
as well as the ingress pipeline of each downstream switch.
As channels are FIFO and the tables use the same size and
deterministic hash function, their content should always be
identical. The only exceptions occur after a packet loss, at
which point either a counter or a 5-tuple will differ.

In this re-design, user packets are not tagged with any
additional data nor does it require triple-notifications. In-
stead, the upstream switch will opportunistically embed in
IDLE packets psuedo-randomly selected cache records2. If
the downstream switch finds that a record differs from its
local copy, it will generate an event for the contained 5-tuple.
It will also generate an event if packets stop arriving, which is
detected with locally generated IDLE seed packets that scan
per-port weaved-stream counters. After NetSeer-OW com-
presses/filters these events, the control plane sends the results
over a low-priority TCP connection to the central controller.

Note that, in addition to exploiting the IDLE stream to
carry flow information, (R1)’s guarantee of packet arrival
rates enables provably optimal detection speed of link fail-
ures. In principle, OrbWeaver can trigger an alert if the
ingress_mac_tstamp of any two consecutive packets is ≤ τ.
While that level of granularity may be too aggressive for many
networks, we note that recent proposals for data plane rerout-
ing have made detection speed a bottleneck [11, 26, 30, 32],
particularly if a goal is zero-loss failure recovery. In the end,
the point is that OrbWeaver can provide arbitrarily precise
failure detection/statistics for current and future networks.

Dealing with a lack of sending opportunities. While ex-
tended periods of maximum utilization are rare in most net-
works [9,38,49], NetSeer-OW can still provide useful proper-
ties during these extreme conditions. For example, for failure
detection, a downstream switch in a fully utilized network
can immediately detect a packet drop by examining the gaps
between adjacent packets (a drop occurred when the gap > τ).

Flow attribution is slightly more challenging, with the chief
concern that the switch evicts the flow before including it in
an IDLE packet. We can quantify the probability of this hap-

2To improve the update rate, we can pack up to three 5-tuple-counter
records (IPv4 and counters of 3 B) in each packet. To handle register access
limitations, we can pack the records or split the table across multiple arrays.

1202 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

NetSeer NetSeer-OW

Data structure size (per-port) 256 64 512 128

SRAM (KB) 384 192 896 320
Number of sALU/register arrays 6 6 7 7

Table 1: Data plane resource usage for typical NetSeer and
NetSeer-OW configurations on a 64×100 Gbps switch.

pening using the formalization in Appendix E. For reference,
using the assumptions of Appendix E, average utilization
of [9, 38], and flow cache performance of [39], ISP routers
with 128 cache entries per port would have a P(notified) ≈

0.72
0.72+0.28∗0.45/3 = 94.4%. A data center switch with 128 cache

entries would have P(notified)≈ 0.75
0.75+0.25∗0.16/3 = 98.2%, or

with 512 entries P(notified)≈ 0.75
0.75+0.25∗0.05/3 = 99.4%.

Benefits. Compared to the original NetSeer design, the pri-
mary benefit of the OrbWeaver augmentation is to completely
eliminate all sources of bandwidth overhead—in essence, we
can apply NetSeer for ‘free.’ In particular, it eliminates the
overhead of sequence number tagging (0.3%∼6.3%) of ca-
pacity; the replicated, high-priority failure notifications (up
to 100% of reverse link capacity); and the impact on user
traffic of the event reports. Beyond overhead, it also improves
the speed to detect inter-switch failures, particularly during
periods of low utilization.

Table 1 shows the data plane memory consumption of both
systems. Additional memory increases P(notified), however
the relationship is different for each system. As a concrete
data point, consider the coverage goal highlighted in the orig-
inal NetSeer evaluation [50]—to correlate 90% of packet loss
events with flows. For a 64×100 Gbps switch and a similar
estimation strategy as above, NetSeer-OW meets this goal
with 320 KB of SRAM (128 cache slots per port) in both
ISP and data center workloads. On the other hand, assuming
the network’s minimum packet size is 64 B, NetSeer requires
approximately 384 KB of SRAM to meet the 90% coverage
objective because it must allocate enough ring buffer slots per
port (256) to ensure that sequence numbers are not overwrit-
ten before switches have a chance to correlate their results.

4.1.2 Evaluation
Detecting failures more quickly. To quantify how quickly
NetSeer-OW can detect a failure, we deployed NetSeer-OW to
a hardware testbed and randomly disconnected a link between
the two switches A and B 100 times to emulate 100 fail-stop
link failure events. To test the limits of our approach, we
configured the probes to mark a τ-timeout failure as soon as
even a single packet loss is detected.

Figure 9a shows the detection time of trials for 10, 25,
and 100 Gbps links. NetSeer-OW achieved 100% precision
and recall. It also consistently detected the failure within
10s of nanoseconds of the optimal time. In contrast, typical
configurations for protocols like Bidirectional Forwarding

 0

 0.5

 1

 1.5

10G 25G 100G

D
e
te

c
ti
o
n
 t
im

e
 [

µ
s
]

BFD 10
5
 µs

(a) Link fail-stop detection

1

3

5

 0 1 2 3 4

< 1µs

#
 P

a
c
k
e
t
/

µ
s

Time [µs]

Original Dropped Reroute

(b) Link fail-stop recovery
Figure 9: (a) the min, Q1 (p25), median, Q3 (p75), and max of
OrbWeaver’s time to detection across 100 failure events. (b)
OrbWeaver’s time to recovery (<1µs) from a bidirectional
failure of a 25 Gbps link. A total of two packets are lost.

0.0

0.2

0.4

0.6

0.8

100MB 1GB

C
o

m
p

.
T

im
e

 [
s
e

c
] Original

OrbWeaver
BFD

(a) Completion time during failures (b) Optical attenuators
Figure 10: (a) shows the transfer completion time comparison
for original, NetSeer-OW, and BFD (100 ms) in a simple leaf
spine topology. With NetSeer-OW’s fast detection and data
plane reroutes, the impact is minimal.

Detection (BFD) are closer to 10s or 100s of milliseconds;
even recent data plane detection systems [20, 30] are several
orders of magnitude slower than NetSeer-OW can achieve.

Figure 9b shows the resulting seamless recovery when
NetSeer-OW is combined with a simple data plane rerouting
mechanism. In the experiment, we induce a bidirectional
failure in one link between A and B, and we configure B to
failover to a backup path as soon as it detects an error. On
top of this setup, we send a steady stream of packets on the
target link at a relatively high rate of 5M packets per second.
A total of two packets were lost—likely in-flight.

End-to-end impact. To evaluate the end-to-end impact, we
emulate a leaf-spine topology with 2 leaf switches L1, L2 and
2 spine switches S1, S2. All switches run OrbWeaver with
pre-computed data plane backup paths. Between L1 and L2,
we insert a variable fiber optic in-line attenuator capable of
0∼60 dB attenuation. On hosts connected to the leaf switches,
we run TCP transfers of varying sizes using iperf, during
which we increase attenuation from zero until failure and
examine the impact over the transfers experiencing the events.
As Figure 10a shows, with OrbWeaver, the impact of failure
is negligible with respect to completion time. In contrast,
with BFD, failures cause the 100MB transfers to take over
4× longer and the 1GB transfers to take over 30% longer.

4.2 Use Case #2: Time Synchronization
Time synchronization is another common task in modern net-
works. Like failure detection, time synchronization requires

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1203

INIT

Egress

Ingress

Switch A Switch B

Ingress

Egress

t1
t2

t3
t4

Transmit
t1

Transmit t3
o =

BEACON

t4- t3- d

Egress

Ingress

Switch A Switch B

Ingress

Egress

t1
t2

t3
t4

Transmit t1
Cache t1, t2

Transmit
t1, t2, t3

Cache t1, t2

o = ((t2+t3)-(t1+t4)) / 2
d = ((t4-t1)-(t3- t2)) / 2

Figure 11: Time sync in DPTP-OW, using IDLE packets.
When the difference between t2 and t3 is small, A treats the
message as part of an INIT phase and calculates o, the clock
offset, and d, the one way delay. When it is high, the BEACON
phase uses the most recent d to track clock frequency drift.

coordination between adjacent switches, and many other ap-
plications rely on its accuracy [13, 36, 45, 46].

Unfortunately, the most common methods for synchroniz-
ing time between adjacent machines involve the computation
of One-Way Delay (OWD) using periodic, high-priority echo
requests/replies [1, 14, 30]. Here too, architects are presented
with a tradeoff: clock frequency drifts imply that the faster we
send echoes, the more closely we can bound the clock offset
and the more accurate the synchronization. Protocols like
DTP [29] that integrate the protocol into the physical layer
can circumvent this overhead but require hardware changes.

4.2.1 An OrbWeaver Redesign
The state-of-the-art in time synchronization for programmable
switches is DPTP [25]. In it, two adjacent switches (a client,
A, and a server, B) compute the offset of their local clocks by
leveraging switches’ ability to embed timestamps into each
packet during different stages of packet processing. Host and
multi-hop synchronization are also possible using multiple
strata. The protocol calls for three messages in each round
of the protocol: (1) a DPTP request [A→ B], (2) a DPTP
response [B→ A], and (3) a DPTP follow-up [B→ A]. All
three messages are high-priority to eliminate queuing delay.

(1) is timestamped using the Tofino egress_deparser-

_tstamp and ingress_mac_tstamp of A (t1) and B (t2), respec-
tively. (2) is timestamped using the same counters in B (t3)
and A (t4), respectively. In a traditional clock synchroniza-
tion protocol, the offset would be computed as (t2+t3)−(t1+t4)

2 .
Unfortunately, we note a fundamental limitation of today’s
programmable switches—that the egress_deparser_tstamp

does not capture the actual point of packet serialization. Thus,
the computed offset is subject to variable delays as a result
of egress MAC contention. As a result, DPTP introduces the
third packet, the follow-up, which embeds a more accurate
egress serialization timestamp (obtained out-of-band). Again,
we refer interested readers to [25] for full details.

An OrbWeaver-inspired redesign can obviate the need for
the third, follow-up message by inferring the egress MAC
contention from the weaved stream (and only using results

with no contention). This allows us to use the traditional two-
way protocol of Figure 11. It can also eliminate the impact of
the remaining messages using opportunistic sends.

Opportunistic synchronization: Rather than relying on high-
priority echoes, a system can rely solely on OrbWeaver’s
IDLE packets to piggyback timestamps. In particular, when-
ever A has an opportunity, it sends a request to B on an IDLE
packet with a field for t1. Upon receiving the packet, B main-
tains a cache for the most recent values of t1 and t2. Separately,
whenever B has an opportunity, it sends the most recent values
of t1 and t2 along with the local egress_deparser_tstamp in
t3. In an empty network, A can calculate the clock skew as
(t2+t3)−(t1+t4)

2 just as DPTP but with much more frequent syn-
chronization (leading to lower jitter, i.e., nominal error [33]).

A challenge with the above approach occurs in networks
with high utilization. The traditional OWD estimation method
used above implicitly assumes that the clock drift is constant
for the duration of the protocol round; otherwise, the delays at
the time of the request and response may not be comparable
due to clock frequency drift. In OrbWeaver, this can happen
if there is congestion from B to A; the gap between t2 and t3
can be unbounded, leading to inaccurate results.

We address this challenge by borrowing an idea from a dif-
ferent protocol, DTP [29]: the decoupling of synchronization
into INIT and BEACON rounds. If the time between t2 and
t3 is sufficiently small, the round is treated as an INIT round
and A computes the offset as above. Otherwise, A treats the
message as part of a BEACON round where it takes d, the
OWD computed from the last INIT round (d = (t4−t1)−(t3−t2)

2),
and it computes a new offset: o′ = t ′4− t ′3−d.

Selective synchronization: Finally, to remove the need for
DPTP’s third ‘follow-up’ message, we can exploit the im-
plicit information contained in the woven stream’s timing.
The underlying intuition is simple: if the gap between an
IDLE packet and its preceding packet is less than τ, the IDLE
packet may have encountered contention at the egress MAC.
In this case, the packet’s timestamp may be unreliable. DPTP
corrects for this contention with the follow-up message; Orb-
Weaver simply ignores these protocol rounds. While this
filtering effectively requires that usable gaps be > τ ∼ 2τ,
it greatly improves the accuracy of the protocol while still
permitting frequent re-synchronization in modern networks.

Dealing with a lack of opportunity to send. The above pro-
tocol fully synchronizes switches when both links have con-
current IDLE gaps. The protocol also includes support for
correcting small drifts when only one direction has a gap (by
adjusting to the fastest clock in the network). We note that in
a network with multiple paths, we can configure synchroniza-
tion to propagate among any one of those paths. Thus, if we
view the network as a directed graph, the only time a switch
may lose synchronization is if sufficient links are maintaining
100% utilization that the links form a cut of the graph. In
the end, if operators need assurances, they may need to send

1204 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

10
0

10
1

10
2

10
3

10
4

10
5

DPTP-OW
DPTP

PTP(15ms)

PTP(750ms)

P
re

c
is

io
n

 [
n

s
]

(a) Clock precision

0.0

0.2

0.4

0.6

0.8

1.0

 1 10 100

C
D

F

Offset [ns]

Medium
Heavy

Medium (selective)
Heavy (selective)

(b) Clock jitter
Figure 12: (a) shows the precision for different synchroniza-
tion protocols and a heavy workload (∼80% CAIDA user traf-
fic). (b) shows the CDF of observed offsets (absolute value)
for DPTP-OW upon medium and heavy loads for 10 Gbps link
(τ = 1200 ns), w/ or w/o selective sync. OrbWeaver achieves
a precision of 11 ns even under heavy user traffic.

higher-priority messages if too much time elapses; however,
we can extend our techniques so that the messages only need
to be prioritized above the lowest-priority user traffic—high-
priority, interactive applications would be unaffected.

Benefits. As long as there is occasional usable bandwidth in
the network, OrbWeaver again eliminates all bandwidth over-
heads without sacrificing accuracy or nominal error. When the
network is underutilized, it actually provides similar re-sync
intervals as DTP but using commodity PISA switches.

4.2.2 Evaluation
Following prior work, we evaluate DPTP-OW’s precision [29,
43] (defined as the maximum clock skew in the network), as
well as its jitter [33] (defined as the distribution of measured
offsets or nominal error). Again to match prior work, we eval-
uate these in a two-switch testbed during a 20 min collection
for 10 Gbps link with a medium workload (a CAIDA trace
with 25% average utilization) and a heavy workload (the same
trace sped up to ∼80% average utilization). We compare to
both DPTP (with 2000 requests/sec) and PTP. For PTP, prior
work has suggested message frequencies ranging from 15 ms
to 2 s [1, 2, 29, 30]; we pick two points in this range: 15 ms as
a lower bound and 750 ms per the evaluation baseline [29].

We observe that, even at high loads, DPTP-OW can achieve
10 ns bounds in both precision (Figure 12a) and jitter (Fig-
ure 12b) without imposing on user traffic. These bounds are
similar to or better than DPTP, which incurs high-priority
bandwidth overhead. Preliminary tests on higher-link speeds
indicate that precision will only improve as τ decreases. In
Figure 12b, we further observe that selective synchronization
is an effective technique to reduce the message complexity of
the protocol while maintaining low jitter and good precision.

4.3 Use Case #3: Congestion Feedback

Finally, many modern networks rely on robust load balancing
algorithms to efficiently utilize their multiple paths. There
are numerous approaches to load balancing, but among them,

adaptive approaches [3, 26] are attractive as they can react to
current network conditions when making balancing decisions.

A state-of-the-art approach is taken by HULA [26], which
proposes a protocol for adaptive data center load balancing
using programmable switches. In HULA, every switch main-
tains two tables: a bestHop table that stores the best next-hop
to each destination ToR, and a pathUtil table that stores the
utilizations of those next-hops. Destination ToRs periodically
flood the network with high-priority probes that traverse all
paths (in the reverse direction, dst-to-src) and track the bot-
tleneck link utilization of the best such path—intermediate
switches update their bestHop/pathUtil tables accordingly.

As in the previous use cases, congestion feedback mecha-
nisms like the one in HULA force a tradeoff between overhead
and the availability/freshness of congestion data. HULA even-
tually sets the probing interval to 1-RTT and makes a case for
why that is a good tradeoff, but OrbWeaver can potentially
provide similar performance using only opportunistic sends.

4.3.1 An OrbWeaver Redesign
An OrbWeaver-inspired redesign replaces the high-priority
HULA probes with OrbWeaver’s opportunistic IDLE packets.
There are two new challenges. The first is building a ‘flood’
communication model on top of OrbWeaver’s opportunistic
sends. The second is dealing with congestion on the reverse
path and the resulting lack of new information.

Per-path propagation: For any path through the network,
there are two types of hops: ingress-to-egress hops (that
bridge the pipelines of a local switch) and egress-to-ingress
hops (that bridge adjacent switches).

For the former, HULA-OW leverages the switching ASIC’s
PCIe interface to asynchronously mirror the pathUtil table
between the ingress and egress pipelines of a single switch.
We use Mantis [47] to mirror the registers, which completes a
mirror operation every ∼20µs without impacting data plane
throughput. For the latter type of hop, the system simply
sends the contents of pathUtil using IDLE packets. To make
this process more efficient, we can stripe the pathUtil table
across m registers and pack m (dstToR, pathUtil) records
into each IDLE packet round-robin style. In an unloaded
network, the full table is transmitted in Rτ

m time, where R is
the number of ToRs in the data center. We note that even for
R = 1000 and m = 1 (i.e., an unoptimized update rate), this
is still more frequent than HULA.

Stale information: If there is persistent congestion on the
reverse path, utilization information may not be able to propa-
gate across the network; the switch adjacent to the congestion
will know the utilization of the adjacent link, but not down-
stream links. To handle this case, HULA-OW uses a simple
aging mechanism. Specifically, it will track the EWMA of all
observed pathUtil values for every destination ToR (in addi-
tion to the minimum). After each RTT with no information
from the best path, it will shift the best path’s pathUtil value
toward the average (with a lower bound of the adjacent link’s

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1205

0.0

0.2

0.4

0.6

0.8

1.0

 10 30 50 70 90

A
v
g
.
F

C
T

 [
N

o
rm

a
liz

e
d
]

Load [%]

ECMP
HULA

HULA-OW

(a) Web Search

0.0

0.2

0.4

0.6

0.8

1.0

 10 30 50 70 90

A
v
g
.
F

C
T

 [
N

o
rm

a
liz

e
d
]

Load [%]

ECMP
HULA

HULA-OW

(b) Data Mining
Figure 13: Avg. FCT (normalized to ECMP) for HULA and
HULA-OW upon different loads of DCTCP and VL2 traces.

utilization). If no information comes from any neighbor for
several RTT and the adjacent links are all equal, the switch
will fall back to random flowlet placement.

Dealing with a lack of opportunity to send. We note that
the effect of the above metric-aging strategy is that bestHop
will be quickly overwritten by the ‘next-best hop’ whose
reverse path has opportunities to send. Assuming that at least
some congestion information gets through, HULA-OW will
still provide substantial benefits due to properties like the
power of two choices [34]. In the worst case, it achieves
equivalent performance to flowlet ECMP.

Benefits. Across all regimes, HULA-OW eliminates the
probe overhead on network bandwidth. In networks with
low utilization or high burstiness, it provides more frequent
utilization updates than HULA in addition to increasing the
peak usable bandwidth (see below).

4.3.2 Evaluation

Performance. We evaluate HULA-OW in NS-2 using the
same FatTree topology as the original paper (Figure 4 of [26]).
Also like HULA, we leverage synthetic workloads based on
web-search [4] and data-mining [16]) and configure HULA
to probe at a 200µs interval. Figure 13 shows the avg. FCT
(normalized to ECMP) for HULA and HULA-OW.

Despite the frequent periods of full utilization in these
workloads (especially at high average load), we observe that
HULA-OW is able to find sufficient gaps between packets to
efficiently transfer utilization information. Overall, HULA-
OW is able to provide comparable or better performance than
HULA in all of the tested cases, even in the presence of very
high average utilization. The performance is also always
either equivalent or better than the ECMP baseline.

Overhead reduction. The bandwidth overhead of HULA
probes is given by probeSize×numToRs×100

probeFreq×linkBandwidth [26]. With 500
ToRs, probeFreq=200µs, probeSize=64 B, and 100 Gbps
links, HULA occupies 1.6% of the network’s bandwidth. In
contrast, HULA-OW occupies close to zero of the network’s
usable bandwidth and only 1.5% of the packet-level capacity
of the ingress pipeline (which HULA’s probes also consume).

5 Related Work

Leveraging unused resources. OrbWeaver is not the first
system to propose the opportunistic use of leftover resources.
Indeed, many applications of priorities are in a similar spirit.
Even in contexts outside of computer networking, others have
used low-priority background tasks and spot VMs to harvest
unused CPU cycles and memory [5].

In networking, close related work includes software WANs
like SWAN [21] and B4 [24], which divide traffic into classes
that range from interactive to background—interactive traf-
fic is given priority while background traffic soaks up any
remaining bandwidth. These systems successfully provide
opportunistic bandwidth utilization but focus on end-host
data. As explained in Section 2, these approaches can leave
parts of the network unutilized due to both application traffic
patterns and structural bottlenecks. OrbWeaver is, thus, com-
plementary to these approaches and can be used to reclaim
the remaining bandwidth for intra-network coordination.

Prior work has also applied similar techniques to lower
layers, for instance, in the case of Ethernet’s IDLE symbols
or F10’s rapid heartbeats [32]. F10, in particular, proposed a
failure detection mechanism that is close to OrbWeaver’s in
which devices continue to send traffic even when idle. In com-
parison, OrbWeaver’s contribution is make the idea practical
on high-speed programmable switches, to closely examine
the resulting impacts on switch configurations and user traffic,
and to show how to seamlessly integrate the weaved stream
into a spectrum of applications beyond the use case of F10.

Applications of OrbWeaver. OrbWeaver also builds explic-
itly on prior work that improves networks with coordination,
signaling, and probes. We refer readers to the relevant parts
of Section 4 for a discussion of the systems on which Orb-
Weaver builds, and to the original papers for a more complete
examination of related work for our applications.

In general, however, OrbWeaver improves on much of the
prior work by providing comparable or better performance
with near-zero overhead. Exceptions include systems like
F10 [32] and DTP [29], which use hardware support to elimi-
nate protocol overheads. As mentioned above, OrbWeaver’s
contribution is to generalize the concept and demonstrate a
practical framework for it on commodity network devices.

6 Conclusion

Must data plane applications always choose between coordi-
nation fidelity and bandwidth overhead? This paper demon-
strates that, somewhat surprisingly, they do not. To that end,
we introduce OrbWeaver, a framework for opportunistic co-
ordination in a manner that does not affect user traffic or
switch power consumption. Using three recently proposed
systems, we show how to leverage OrbWeaver to eliminate
their bandwidth overheads while maintaining their efficacy.

1206 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Acknowledgments

We gratefully acknowledge Vladimir Gurevich for his assis-
tance in understanding the Tofino switch architecture. We also
thank Vladimir, Gianni Antichi, our shepherd Aurojit Panda,
and the anonymous NSDI reviewers for all of their thoughtful
comments. This work was funded in part by Google, Face-
book, VMWare, and NSF grant CNS-1845749.

References

[1] Ieee standard 1588-2008. https://ieeexplore.ieee.org/
xpl/mostRecentIssue.jsp?punumber=4579757, 2008.

[2] Juniper precision time protocol overview. https://www.
juniper.net/documentation/us/en/software/junos/
time-mgmt/topics/concept/ptp-overview.html, 2020.

[3] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar,
Ramanan Vaidyanathan, Kevin Chu, Andy Fingerhut, Vinh The
Lam, Francis Matus, Rong Pan, Navindra Yadav, et al. Conga:
Distributed congestion-aware load balancing for datacenters.
In Proceedings of the 2014 ACM conference on SIGCOMM,
pages 503–514, 2014.

[4] Mohammad Alizadeh, Albert Greenberg, David A Maltz, Jiten-
dra Padhye, Parveen Patel, Balaji Prabhakar, Sudipta Sengupta,
and Murari Sridharan. Data center tcp (dctcp). In Proceedings
of the ACM SIGCOMM 2010 Conference, pages 63–74, 2010.

[5] Pradeep Ambati, Inigo Goiri, Felipe Frujeri, Alper Gun,
Ke Wang, Brian Dolan, Brian Corell, Sekhar Pasupuleti,
Thomas Moscibroda, Sameh Elnikety, Marcus Fontoura, and
Ricardo Bianchini. Providing slos for resource-harvesting vms
in cloud platforms. In 14th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI 20), pages
735–751. USENIX Association, November 2020.

[6] Behnaz Arzani, Selim Ciraci, Luiz Chamon, Yibo Zhu,
Hongqiang (Harry) Liu, Jitu Padhye, Boon Thau Loo, and
Geoff Outhred. 007: Democratically finding the cause of
packet drops. In 15th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 18), pages 419–435,
Renton, WA, April 2018. USENIX Association.

[7] Ran Ben Basat, Sivaramakrishnan Ramanathan, Yuliang Li,
Gianni Antichi, Minian Yu, and Michael Mitzenmacher. Pint:
Probabilistic in-band network telemetry. SIGCOMM ’20,
page 662–680, New York, NY, USA, 2020. Association for
Computing Machinery.

[8] Theophilus Benson, Aditya Akella, and David A Maltz. Net-
work traffic characteristics of data centers in the wild. In
Proceedings of the 10th ACM SIGCOMM conference on Inter-
net measurement, pages 267–280, 2010.

[9] Caida. The caida ucsd statistical information for the caida
anonymized internet traces. https://www.caida.org/
data/passive/passive_trace_statistics.xml, 2019.

[10] M. Chiesa, R. Sedar, G. Antichi, M. Borokhovich,
A. Kamisiński, G. Nikolaidis, and S. Schmid. Fast reroute on
programmable switches. IEEE/ACM Transactions on Network-
ing, pages 1–14, 2021.

[11] Marco Chiesa, Roshan Sedar, Gianni Antichi, Michael
Borokhovich, Andrzej Kamisiński, Georgios Nikolaidis, and
Stefan Schmid. Purr: A primitive for reconfigurable fast
reroute: Hope for the best and program for the worst. In Pro-
ceedings of the 15th International Conference on Emerging
Networking Experiments And Technologies, pages 1–14, 2019.

[12] Intel Corporation. P4-16 intel tofino native architecture – pub-
lic version. Application Note 631348-0001, Intel Corporation,
March 2021.

[13] Thomas G. Edwards and Warren Belkin. Using sdn to fa-
cilitate precisely timed actions on real-time data streams. In
Proceedings of the Third Workshop on Hot Topics in Software
Defined Networking, HotSDN ’14, page 55–60, New York, NY,
USA, 2014. Association for Computing Machinery.

[14] Yilong Geng, Shiyu Liu, Zi Yin, Ashish Naik, Balaji Prabhakar,
Mendel Rosenblum, and Amin Vahdat. Exploiting a natural
network effect for scalable, fine-grained clock synchronization.
In 15th {USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 18), pages 81–94, 2018.

[15] Phillipa Gill, Navendu Jain, and Nachiappan Nagappan. Un-
derstanding network failures in data centers: measurement,
analysis, and implications. In Proceedings of the ACM SIG-
COMM 2011 conference, pages 350–361, 2011.

[16] Albert Greenberg, James R Hamilton, Navendu Jain, Srikanth
Kandula, Changhoon Kim, Parantap Lahiri, David A Maltz,
Parveen Patel, and Sudipta Sengupta. Vl2: A scalable and
flexible data center network. In Proceedings of the ACM
SIGCOMM 2009 conference on Data communication, pages
51–62, 2009.

[17] Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong Dang,
Ray Huang, Dave Maltz, Zhaoyi Liu, Vin Wang, Bin Pang, Hua
Chen, et al. Pingmesh: A large-scale system for data center
network latency measurement and analysis. In Proceedings of
the 2015 ACM Conference on Special Interest Group on Data
Communication, pages 139–152, 2015.

[18] Arpit Gupta, Rob Harrison, Marco Canini, Nick Feamster, Jen-
nifer Rexford, and Walter Willinger. Sonata: Query-driven
streaming network telemetry. In Proceedings of the 2018
Conference of the ACM Special Interest Group on Data Com-
munication, SIGCOMM ’18, page 357–371, New York, NY,
USA, 2018. Association for Computing Machinery.

[19] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar,
David Mazières, and Nick McKeown. I know what your
packet did last hop: Using packet histories to troubleshoot net-
works. In 11th {USENIX} Symposium on Networked Systems
Design and Implementation ({NSDI} 14), pages 71–85, 2014.

[20] Thomas Holterbach, Edgar Costa Molero, Maria Apostolaki,
Alberto Dainotti, Stefano Vissicchio, and Laurent Vanbever.
Blink: Fast connectivity recovery entirely in the data plane.
In 16th {USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 19), pages 161–176, 2019.

[21] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang,
Vijay Gill, Mohan Nanduri, and Roger Wattenhofer. Achiev-
ing high utilization with software-driven wan. In Proceed-
ings of the ACM SIGCOMM 2013 Conference on SIGCOMM,
SIGCOMM ’13, page 15–26, New York, NY, USA, 2013.
Association for Computing Machinery.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1207

[22] Kuo-Feng Hsu, Ryan Beckett, Ang Chen, Jennifer Rexford,
and David Walker. Contra: A programmable system for
performance-aware routing. In 17th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 20),
pages 701–721, 2020.

[23] Van Jacobson. Compressing tcp/ip headers for low-speed
serial links. Technical report, RFC 1144, February, 1990.

[24] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon
Poutievski, Arjun Singh, Subbaiah Venkata, Jim Wanderer,
Junlan Zhou, Min Zhu, Jon Zolla, Urs Hölzle, Stephen Stuart,
and Amin Vahdat. B4: Experience with a globally-deployed
software defined wan. In Proceedings of the ACM SIGCOMM
2013 Conference on SIGCOMM, SIGCOMM ’13, page 3–14,
New York, NY, USA, 2013. Association for Computing Ma-
chinery.

[25] Pravein Govindan Kannan, Raj Joshi, and Mun Choon Chan.
Precise time-synchronization in the data-plane using pro-
grammable switching asics. In Proceedings of the 2019 ACM
Symposium on SDN Research, pages 8–20, 2019.

[26] Naga Katta, Mukesh Hira, Changhoon Kim, Anirudh Sivara-
man, and Jennifer Rexford. Hula: Scalable load balancing
using programmable data planes. In Proceedings of the Sym-
posium on SDN Research, pages 1–12, 2016.

[27] Changhoon Kim, Anirudh Sivaraman, Naga Katta, Antonin
Bas, Advait Dixit, and Lawrence J Wobker. In-band network
telemetry via programmable dataplanes. In Demo paper at
SIGCOMM ’15, 2015.

[28] Daehyeok Kim, Jacob Nelson, Dan R. K. Ports, Vyas Sekar,
and Srinivasan Seshan. Redplane: Enabling fault-tolerant state-
ful in-switch applications. In Proceedings of the 2021 ACM
SIGCOMM 2021 Conference, SIGCOMM ’21, page 223–244,
New York, NY, USA, 2021. Association for Computing Ma-
chinery.

[29] Ki Suh Lee, Han Wang, Vishal Shrivastav, and Hakim Weather-
spoon. Globally synchronized time via datacenter networks. In
Proceedings of the 2016 ACM SIGCOMM Conference, pages
454–467, 2016.

[30] Yuliang Li, Gautam Kumar, Hema Hariharan, Hassan Wassel,
Peter H Hochschild, Dave Platt, Simon Sabato, Minlan Yu,
Nandita Dukkipati, Prashant Chandra, et al. Sundial: Fault-
tolerant clock synchronization for datacenters. 2020.

[31] Junda Liu, Aurojit Panda, Ankit Singla, Brighten Godfrey,
Michael Schapira, and Scott Shenker. Ensuring connectivity
via data plane mechanisms. In 10th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 13),
pages 113–126, 2013.

[32] Vincent Liu, Daniel Halperin, Arvind Krishnamurthy, and
Thomas Anderson. F10: A fault-tolerant engineered net-
work. In Presented as part of the 10th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 13),
pages 399–412, 2013.

[33] Jim Martin, Jack Burbank, William Kasch, and Professor
David L. Mills. Network Time Protocol Version 4: Protocol
and Algorithms Specification. RFC 5905, June 2010.

[34] Michael Mitzenmacher. The power of two choices in ran-
domized load balancing. IEEE Transactions on Parallel and
Distributed Systems, 12(10):1094–1104, 2001.

[35] Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan, Pra-
teesh Goyal, Venkat Arun, Mohammad Alizadeh, Vimalkumar
Jeyakumar, and Changhoon Kim. Language-directed hardware
design for network performance monitoring. In Proceedings
of the Conference of the ACM Special Interest Group on Data
Communication, pages 85–98, 2017.

[36] Jonathan Perry, Amy Ousterhout, Hari Balakrishnan, Devavrat
Shah, and Hans Fugal. Fastpass: A centralized "zero-queue"
datacenter network. In Proceedings of the 2014 ACM Con-
ference on SIGCOMM, SIGCOMM ’14, page 307–318, New
York, NY, USA, 2014. Association for Computing Machinery.

[37] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and
Alex C Snoeren. Inside the social network’s (datacenter)
network. In Proceedings of the 2015 ACM Conference on
Special Interest Group on Data Communication, pages 123–
137, 2015.

[38] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby
Armistead, Roy Bannon, Seb Boving, Gaurav Desai, Bob Fel-
derman, Paulie Germano, Anand Kanagala, Jeff Provost, Jason
Simmons, Eiichi Tanda, Jim Wanderer, Urs Hölzle, Stephen
Stuart, and Amin Vahdat. Jupiter rising: A decade of clos
topologies and centralized control in google’s datacenter net-
work. SIGCOMM Comput. Commun. Rev., 45(4):183–197,
August 2015.

[39] John Sonchack. Balancing Performance and Flexibility in
Hybrid Network Telemetry Systems. PhD thesis, University of
Pennsylvania, 2020.

[40] John Sonchack, Devon Loehr, Jennifer Rexford, and David
Walker. Lucid: A language for control in the data plane. In
Proceedings of the 2021 ACM SIGCOMM 2021 Conference,
SIGCOMM ’21, page 731–747, New York, NY, USA, 2021.
Association for Computing Machinery.

[41] Charles E. Spurgeon. Ethernet: The Definitive Guide.
O’Reilly & Associates, Inc., USA, 2000.

[42] Nik Sultana, John Sonchack, Hans Giesen, Isaac Pedisich,
Zhaoyang Han, Nishanth Shyamkumar, Shivani Burad, André
DeHon, and Boon Thau Loo. Flightplan: Dataplane disaggre-
gation and placement for p4 programs. In 18th {USENIX}
Symposium on Networked Systems Design and Implementation
({NSDI} 21), pages 571–592, 2021.

[43] Maarten Van Steen and Andrew S Tanenbaum. Distributed
systems. Maarten van Steen Leiden, The Netherlands, 2017.

[44] Xin Wu, Daniel Turner, Chao-Chih Chen, David A Maltz,
Xiaowei Yang, Lihua Yuan, and Ming Zhang. Netpilot: au-
tomating datacenter network failure mitigation. In Proceed-
ings of the ACM SIGCOMM 2012 conference on Applications,
technologies, architectures, and protocols for computer com-
munication, pages 419–430, 2012.

[45] Nofel Yaseen, John Sonchack, and Vincent Liu. Synchronized
network snapshots. In Proceedings of the 2018 Conference
of the ACM Special Interest Group on Data Communication,
pages 402–416, 2018.

1208 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[46] Nofel Yaseen, John Sonchack, and Vincent Liu. tpprof: A
network traffic pattern profiler. In 17th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 20),
pages 1015–1030, Santa Clara, CA, February 2020. USENIX
Association.

[47] Liangcheng Yu, John Sonchack, and Vincent Liu. Mantis: Re-
active programmable switches. In Proceedings of the Annual
conference of the ACM Special Interest Group on Data Com-
munication on the applications, technologies, architectures,
and protocols for computer communication, pages 296–309,
2020.

[48] Lior Zeno, Dan RK Ports, Jacob Nelson, and Mark Silber-
stein. Swishmem: Distributed shared state abstractions for
programmable switches. In Proceedings of the 19th ACM
Workshop on Hot Topics in Networks, pages 160–167, 2020.

[49] Qiao Zhang, Vincent Liu, Hongyi Zeng, and Arvind Krish-
namurthy. High-resolution measurement of data center mi-
crobursts. In Proceedings of the 2017 Internet Measurement
Conference, pages 78–85, 2017.

[50] Yu Zhou, Chen Sun, Hongqiang Harry Liu, Rui Miao, Shi Bai,
Bo Li, Zhilong Zheng, Lingjun Zhu, Zhen Shen, Yongqing
Xi, et al. Flow event telemetry on programmable data plane.
In Proceedings of the Annual conference of the ACM Special
Interest Group on Data Communication on the applications,
technologies, architectures, and protocols for computer com-
munication, pages 76–89, 2020.

[51] Yibo Zhu, Nanxi Kang, Jiaxin Cao, Albert Greenberg, Guohan
Lu, Ratul Mahajan, Dave Maltz, Lihua Yuan, Ming Zhang,
Ben Y Zhao, et al. Packet-level telemetry in large datacenter
networks. In Proceedings of the 2015 ACM Conference on
Special Interest Group on Data Communication, pages 479–
491, 2015.

[52] Danyang Zhuo, Monia Ghobadi, Ratul Mahajan, Klaus-Tycho
Förster, Arvind Krishnamurthy, and Thomas Anderson. Un-
derstanding and mitigating packet corruption in data center
networks. In Proceedings of the Conference of the ACM Spe-
cial Interest Group on Data Communication, pages 362–375,
2017.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1209

Application Class System Weaved
Inference?

IDLE
Messaging? Description

Traffic
Engineering

Flowlet load balancing [3, 26] Section 4.3.

Performance-aware routing [22]
Propagate route updates in customizable distance-
vector routing algorithms using IDLE packets.

Micro-burst detection [49]
Detect micro-bursts from weaved stream, provide feed-
back to upstream switches with IDLE packets.

Fault
Tolerance

Fast failure recovery [50]
Detect failures (Section 4.1), alert upstream switches
with IDLE packets for fast data-plane mitigation [10].

Consistent replicas [28, 48]
Synchronize eventually-consistent distributed state,
e.g., for distributed firewalls, with IDLE packets.

Monitoring

Packet forensics [19]
Transfer packet postcards in IDLE packets to reduce
overhead of packet history tracking.

Network queries [18, 35] Support queries over both flow and weaved stream
statistics, export query results in IDLE packets.

Latency localization [17]
Measure latency in network core using weaved stream,
disseminate measurements with IDLE packets.

Network
Services

Clock synchronization [25] Section 4.2.

Header compression [23, 42]
Synchronize state of point-to-point packet header com-
pressors with IDLE packets.

Event-based network control [40] Carry network control events in IDLE packets.

Table 2: OrbWeaver use cases. A diverse range of data-plane applications can use OrbWeaver’s weaved stream to learn about
conditions in the network and/or communicate via IDLE packets that consume no data-packet bandwidth.

A Applications of OrbWeaver

Table 2 surveys 11 applications that can benefit from an Orb-
Weaver implementation, belonging to four distinct classes.
We describe several implementations in Section 4. All appli-
cations can be expressed as OrbWeaver P4 programs with the
basic architecture shown in Figure 8.

Across all applications, we find that there are two overar-
ching benefits to an OrbWeaver implementation:

1. OrbWeaver’s weaved stream allows data plane applica-
tions to infer information about network conditions, such
as the presence of congestion or failures in an upstream
path.

2. OrbWeaver’s IDLE packet abstraction lets data plane
applications disseminate information without consum-
ing user bandwidth. IDLE packets are useful for data
transfer between directly connected switches (e.g., to
synchronize the context tables of a switch-to-switch
packet-header compressor [42]) or across the wider net-
work (e.g., to disseminate information about network
faults [32], congestion [49], or even user query met-
rics [35]).

We note that our focus of these applications and this paper
is in-network communication. However, end hosts may also
be able to benefit from OrbWeaver, e.g., by examining the
output of the weaved stream coming from host-facing ports
of ToR switches. Efficient end-host generation of a weaved
stream may also be possible, but we leave a full exploration
to future work.

A.1 Balancing Multiple Applications
IDLE packets are generated and weaved entirely by the Orb-
Weaver framework. Applications only embed information
and extract it in the receiver. IDLE packets can carry the
information of multiple applications. For example, a time
synchronization application that needs 12B to carry 4 times-
tamps can co-exist with a failure detection protocol that needs
48B. In this paper, we assume minimum-sized packets but, in
principle, IDLE packets can be MTU-sized with the only ef-
fect being a proportionally increased worst-case packet delay.
Of course, there are fundamentally a limited number of bytes
in each IDLE packet; OrbWeaver leaves the decision on how
to allocate these bytes to network architects and operators.

A.2 Preventing Starvation
The primary goal of the paper is to explore the opportunistic
use of IDLE cycles for in-network coordination. Because of
our opportunistic approach, there may be cases where IDLE
packets get starved by user packets; however, as previously
noted, two factors mitigate the issue:

• The lack of IDLE packets itself reveals concrete informa-
tion of the network condition (per R1 guarantee of the
weaved stream predictability).

• Prior works observed that persistent user traffic is rare, in-
stead, IDLE cycles (every 10s or 100s of µs) are ubiquitous.

1210 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

A wide range of applications can be implemented with only
opportunistic communication. Of course, some applications
may need additional guarantees, e.g., applications requiring
a strict, real-time guarantee w.r.t. minimum rate (i.e., maxi-
mum inter-IDLE-packet gap); or applications that need more
aggregate bandwidth than the weaved stream can guarantee
in a timely fashion.

In these cases, networks can apply a priority escalation
mechanism by adding a single register of N (number of ports)
slots and check the elapsed time since last seen IDLE packet.
Applications can seamlessly escalate the priority of IDLE
packets when too much time passes (per the applications’
guaranteed rate SLO). In these situations, OrbWeaver still
eliminates nearly all overhead in the presence of (micro)bursts,
but may impose a fixed overhead during extended periods of
congestion.

B Generalization to Other Platforms

Our focus in this paper was on the Tofino family of pro-
grammable switches. While a detailed taxonomy and analysis
of every programmable platform is out of the scope of this
paper, there is reason to believe that other programmable
platforms have similar features or can emulate the features
needed to implement OrbWeaver.

In particular, OrbWeaver leverages three hardware features
of Tofino switches: (1) packet generation, (2) multicast, and
(3) packet prioritization. Among these, support for the latter
two can be found in almost every modern forwarding device
that is designed to handle the Ethernet protocol. Support for
onboard packet generation is not as universal; however, one
potential solution is to connect a port on each switch to a sim-
ple device/CPU responsible for generating regular, periodic
packets. Of course, a CPU, even with real-time scheduling
optimizations, may not be as dependable as the Tofino packet
generator. This may necessitate additional tolerances.

Finally, our conversations with switch vendors indicate that
OrbWeaver’s mechanisms will scale to future switches with
both increased bandwidth and port counts. Part of this is
due to the fact that most of OrbWeaver’s components scale
with the clock rate of the switch and/or are independent to
each pipeline. The notable exception is packet generation;
however, we note that OrbWeaver currently has more than
an order of magnitude of headroom (Section 3.2.1). If MTU
transmission time does eventually outpace packet generation
latency, OrbWeaver’s properties will degrade gracefully.

C Energy-Efficient Ethernet (EEE)

The Ethernet standard contains an optional EEE mecha-
nism [41], which allows switches to transition links into a
Low-Power Idle (LPI) mode when there is no data to send.

OrbWeaver may be able provide compatibility by turning
off the IDLE stream on a per-port, per-direction basis if there
is no user traffic during the past S seconds. Each packet
flowing between two OrbWeaver switches would then need
a single bit reserved as an ‘LPI’ indicator. Upon receiving
an IDLE packet with the ‘LPI’ indicator set, a receiver will
change its expectation from requiring a packet every τi sec-
onds to requiring one every τ′i seconds (τ′i � τi). The very
first user packet after the low-power idle mode will be sent
with the ‘LPI’ indicator unset. Loss can be addressed by again
emulating EEE and sending several indicator packets in a row.

Enabling this feature may impact the responsiveness of
OrbWeaver applications, but we note that all of the use cases
studied can make do with less frequent but still regular coor-
dination. OrbWeaver may be able to synchronize these low-
power updates with existing synchronization-maintenance
events in the PHY.

D Proof of Priority-effect on User Traffic

Theorem. For an arbitrary user packet size distribution and
arrival process, with strict priority scheduling and a measure-
ment time window T � ∆t (∆t denotes transmission time of
a single IDLE packet), the throughput of the user traffic is
unaffected by the IDLE stream.

Proof. Consider a packet sequence p1, . . . , pn with size
∆t1, . . . ,∆tn and original schedule t1, . . . , tn, denote the new
schedule upon the coexistence of IDLE stream as t ′1, . . . , t

′
n.

We first prove ∀i ∈ [1,n−1], t ′i ≤ (ti+∆t)→ t ′i+1 ≤ (ti+1+
∆t). The case for preemptive scheduling is trivially true. We
focus on the case of non-preemptive scheduling.

Base case with p1: the worst case delay of the transmission
is when right at t1, an IDLE packet is scheduled to transmit
and with strict priority p1 is scheduled right next to it. Hence
t ′1 ≤ (t1 +∆t).

For the inductive step, given the new schedule of pi satis-
fying t ′i ≤ (ti +∆t), we need to show that t ′i+1 ≤ (ti+1 +∆t).
There are three cases for the next packet pi+1:

• ti+1 > (ti + ∆ti + ∆t): at ti+1, the previous packet has
finished transmission in the new schedule since ti+1 >
(ti +∆ti +∆t) ≥ t ′i +∆ti. The worst case delay is when
IDLE packet is scheduled right at ti+1 and the transmission
is delayed by ∆t, i.e., t ′i+1 ≤ (ti+1 +∆t) holds.

• t ′i +∆ti ≤ ti+1 ≤ (ti +∆ti +∆t): at ti+1, pi finishes trans-
mitting in the new schedule, similar to the previous case,
the worst case is ∆t when right at ti+1, IDLE packet gets
scheduled, hence t ′i+1 ≤ (ti+1 +∆t) holds.

• ti +∆ti ≤ ti+1 < t ′i +∆ti: pi+1 has been queued since pi is
still transmitting until t ′i +∆ti in the new schedule. With
strict priority, pi+1 will start transmission right at t ′i +∆ti
ignoring the IDLE packet. Hence, t ′i+1 = t ′i +∆ti ≤ ti+∆t+
∆ti ≤ (ti+1 +∆t).

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1211

Configuration SRAM TCAM Metadata Tbls Regs

16×100 Gbps 80 KB 1.28 KB 85 b 3 1
32×25 Gbps 80 KB 1.28 KB 53 b 3 1

Table 3: Additional data plane resources for OrbWeaver’s
weaved stream generation over an L2 forwarding switch.
Ports are binned into groups of 2 and 4, and only 256 multicast
groups reserved.

By induction, we have t ′n ≤ (tn+∆t), that is, the latency im-
pact is tightly bounded by ∆t for an arbitrary user packet
and won’t accumulate across packets. Given such fixed
workload, consider the impact of the IDLE stream over the
original transmission time T = tn +∆tn− t1. For the new
transmission time window [t ′1, t

′
n +∆tn], the duration T ′ =

t ′n +∆tn− t ′1 ≤ max(t ′n)+∆tn−min(t ′1) ≤ tn +∆t +∆tn− t1.
Hence, T ′− T ≤ ∆t. Since T � ∆t, the throughput of the
high priority user packet stream is not impacted.

E Probability of Notification in Use Case #1

We can formally express the probability that a notification is
sent before the flow is evicted. Consider the case where there
is a drop in flow f and user packets are all MTU-sized, i.e.,
there is one packet per period, τ. Assume that the flow cache
holds N records and 3 can be packed in each IDLE.

P(notified) =
P(IDLE contains f)

P(IDLE contains f)+P(new f ′ replaces f)

=
3
N P(IDLE)

3
N P(IDLE)+ 1

N (1−P(IDLE))P(new flow)

=
P(IDLE)

P(IDLE)+(1−P(IDLE))P(new flow)/3

where P(IDLE) is the probability that an IDLE packet was
sent during a given period τ, and P(new flow) is the proba-
bility that a user packet’s flow cannot be found in the cache.
Smaller packets multiply the second term in the denominator;
a larger N decreases it by improving cache hit rates. The
probability that a flow record is evicted before it is sent (i.e.,
that we miss the loss) is 1 less the above value.

F OrbWeaver Data Plane Resource Overhead

Section 3 details the overhead of OrbWeaver’s weaved stream
generation on user traffic and energy usage. We note that
OrbWeaver also uses data plane resources for IDLE seed
packet filtering and replication, as shown in Table 3. For each
category, OrbWeaver only occupies a small fraction of the
total switch resources (for instance < 1% of both SRAM and
TCAM).

1212 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

	Introduction
	Motivating Weaved Streams
	Generating a Weaved Stream
	Mechanism Overview
	Evaluating the Weaved Stream
	Can OrbWeaver Inject at Rate T?
	Can OrbWeaver Bound Packet Gaps?
	Do IDLE Packets Affect External Traffic?
	Does Injection Affect Power Usage?

	Use Cases
	Use Case #1: Fast Failure Detection
	An OrbWeaver Redesign
	Evaluation

	Use Case #2: Time Synchronization
	An OrbWeaver Redesign
	Evaluation

	Use Case #3: Congestion Feedback
	An OrbWeaver Redesign
	Evaluation

	Related Work
	Conclusion
	Applications of OrbWeaver
	Balancing Multiple Applications
	Preventing Starvation

	Generalization to Other Platforms
	Energy-Efficient Ethernet (EEE)
	Proof of Priority-effect on User Traffic
	Probability of Notification in Use Case #1
	OrbWeaver Data Plane Resource Overhead

