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Abstract

Humans have the innate capability to answer diverse

questions, which is rooted in the natural ability to corre-

late different concepts based on their semantic relationships

and decompose difficult problems into sub-tasks. On the

contrary, existing visual reasoning methods assume train-

ing samples that capture every possible object and reason-

ing problem, and rely on black-boxed models that com-

monly exploit statistical priors. They have yet to develop

the capability to address novel objects or spurious biases

in real-world scenarios, and also fall short of interpret-

ing the rationales behind their decisions. Inspired by hu-

mans’ reasoning of the visual world, we tackle the afore-

mentioned challenges from a compositional perspective,

and propose an integral framework consisting of a princi-

pled object factorization method and a novel neural mod-

ule network. Our factorization method decomposes objects

based on their key characteristics, and automatically de-

rives prototypes that represent a wide range of objects. With

these prototypes encoding important semantics, the pro-

posed network then correlates objects by measuring their

similarity on a common semantic space and makes deci-

sions with a compositional reasoning process. It is ca-

pable of answering questions with diverse objects regard-

less of their availability during training, and overcoming

the issues of biased question-answer distributions. In addi-

tion to the enhanced generalizability, our framework also

provides an interpretable interface for understanding the

decision-making process of models. Our code is available

at https://github.com/szzexpoi/POEM .

1. Introduction

One of the fundamental goals in artificial intelligence is

to develop systems that are able to reason with the com-

plexity of real-world data to make decisions. Most existing

visual question answering (VQA) methods [2,13,28,29,33,

34, 38, 49, 57] assume a complete overlap between objects

involved in training and testing, and commonly rely on the

spurious distributions of questions and answers [39]. As

a result, they have limited generalizability toward real-life

visual reasoning, and also lack the ability to justify the rea-

soning process that leads to the answers.

ªAll mammals are animals. All elephants are mammals.

Therefore, all elephants are animals [5].º The wide ap-

plication of syllogistic logic reflects key characteristics of

the ways humans reason about the world. Unlike models

[2, 38, 49] that utilize implicit features and heavily exploit

statistical priors, humans correlate diverse objects from the

compositional perspective based on their shared character-

istics [26] and tackle problems with a structured reasoning

process, which is both generalizable and interpretable.

To address the complexity of real-world problems, this

study aims to develop object factorization and composi-

tional reasoning capabilities in models. As shown in Figure

1, our approach bridges diverse objects by projecting them

onto a common space formed by discriminative prototypes

(e.g., round shape, stuffed toy), and formulates the reason-

ing process with atomic steps [48] representing essential

reasoning skills (e.g., Find, Relate). The prototypes are de-

rived with object factorization, and they represent important

semantics of objects (e.g., honey jar → <round shape, con-

tainer ...>, teddy bear → <bear, stuffed toy ...>). With

an improved understanding of semantic relationships, our

framework correlates objects (e.g., honey jar and container,

stuffed toy and teddy bear) based on their commonalities in

characteristics, leading to enhanced robustness against the

diversity of objects and data biases. It also allows interpre-

tations of the model’s reasoning process consistent with the

ways humans describe their own thinking [8].

Compared to previous studies [2, 21, 33, 34, 48, 49], our

major distinction lies in (1) the composition in two impor-

tant dimensions of visual reasoning, i.e., objects and the

reasoning process, and (2) a tight coupling between them.

Instead of using black-boxed features or a direct mapping

between question and answer that is vulnerable to object di-
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Question: Do you see a
stuffed toy behind the honey

jar to the left of the sandwich?

Find (sandwich) Relate (honey jar, sandwich) Relate (teddy bear, honey jar)

Reasoning process

Semantic Prototypes

Answer: 
yes

Round shapeBread

Container

Bear

Stuffed toyBrown color

teddy bear

sandwichhoney jar

Figure 1. Overview of our method that represents objects with semantically meaningful prototypes and makes decisions via an explicit

reasoning process. Honey jar is a novel object unseen during training. Note that our prototypes are not limited to a set of manually defined

categories, but learned from factorizing objects to encode broader characteristics (e.g., shapes, colors, object categories).

versity or data biases, our method decomposes objects into

bases representing discriminative semantics, and develops

a prototypical neural module network to explicitly bridge

objects with a compositional reasoning paradigm. The pro-

posed method naturally approaches generalizability with its

compositional nature, handling novel objects and variable

data distributions. It also provides a transparent interface

for interpreting how models parse objects based on their

characteristics and incorporate them for visual reasoning.

To summarize, our major contributions are as follows:

1. We identify the significance of tightly coupling the

compositionality between objects and the reasoning

process, and for the first time investigate its effective-

ness in generalizable and interpretable reasoning.

2. We propose a principled method that automatically de-

rives prototypes with object factorization, which plays

a key role in encoding key characteristics of objects.

3. We develop a new neural module network that adap-

tively reasons on the commonalities of different ob-

jects along a structured decision-making process.

4. We perform extensive analyses to shed light on the

roles of compositionality in reasoning with novel ob-

jects and variable data distributions.

2. Related Works

Our study is most related to previous efforts on visual

question answering, zero-short learning for VQA, and VQA

with out-of-distribution (OOD) questions.

Visual question answering. With the diversity in lan-

guage and visual semantics, visual question answering has

become a popular task for studying models’ reasoning ca-

pability [16]. A large body of research develops datasets

[4,6,18,24,25,40,42,58] and models [2,3,21,22,28,33,34,

38,48,49] for VQA. Early datasets typically rely on crowd-

sourcing [4, 18, 58] to collect human-annotated questions.

Several recent studies [24, 25, 53] use functional programs

to automatically generate questions based on pre-defined

rules and enable more balanced data distributions. There is

also an increasing interest in investigating different types of

reasoning, e.g., scene text understanding [6], reasoning on

context [42], and knowledge-based reasoning [40]. These

data efforts lead to the development of methods that ad-

vance VQA models from different perspectives, including

multi-modal fusion [13,29,57], attention mechanism [2,28],

structured inference [21±23, 48], and vision-and-language

pretraining [33, 34, 38, 49]. The aforementioned studies as-

sume that every semantic in the test questions is well illus-

trated during training, and pay little attention to the mod-

els’ generalizability to real-world scenarios that inevitably

involve novel objects and diverse question-answer distribu-

tions. Our study aims to fill the gap with an integral frame-

work that develops generalizable decision making capabil-

ity with object factorization and compositional reasoning.

Zero-shot learning for VQA. Zero-shot VQA aims to

answer questions with novel objects. The pioneering work

[51] proposes the zero-shot setting for the VQA task, and

benchmarks several techniques for improving the models’

generalizability, including explicit object detector [2] and

pretrained word embeddings [43]. Ramakrishnan et al. [45]

leverage self-supervised pretraining to learn more general-

izable features with external data. Wang et al. [54] combine

visual models trained on different datasets with an attention

mechanism. Whitehead et al. [55] decompose VQA into

two sub-problems, i.e., concept grounding and skill match-

ing, and propose additional training objectives to address

unseen objects in the questions. Besides the above stud-
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Figure 2. Overview of our prototype learning paradigm based on object factorization.

ies concerning novel concepts in language, there are also

attempts [12, 52] that leverage exemplar-based methods to

address novel concepts in both visual and textual modali-

ties. While showing usefulness, these studies either lever-

age external data, which violates zero-shot assumption [32],

or require memorizing a vast amount of supporting samples.

As a result, they have yet to develop the capability of gener-

alizing toward real-world scenarios. The key differentiators

of our method lie in its ability to connect novel and known

objects and the use of an explicit reasoning process. By

bridging objects based on their commonalities and decom-

posing the decision-making process into atomic reasoning

steps, it improves the generalizability and interpretability

without relying on external data or memorizing samples.

VQA with OOD questions. To develop models that can

truly reason on the visual-textual inputs instead of relying

on statistical priors, VQA with out-of-distribution questions

has gained considerable attention. In particular, Agrawal et

al. [1] present the first VQA dataset with adversarial distri-

butions between the training and validation data. A more

recent study [27] analyzes models’ robustness against bi-

ases by differentiating evaluation questions based on their

question-answer distributions. To tackle the issues of harm-

ful biases, a series of studies make progresses by improving

visual attention [47, 56], reducing biases toward individual

modalities [7, 15, 44], and leveraging ensemble techniques

[11, 20]. There are also attempts [9, 17, 35] that use data

augmentation to increase accuracy on biased data. How-

ever, they alter the distributions of training samples with

additional data, and violate the original intent of the VQA

with OOD questions task [50]. Our study is complementary

to existing efforts, and it differentiates itself by investigat-

ing the usefulness of object factorization and compositional

reasoning for addressing biases. It does not balance train-

ing samples to remove data biases, but instead focuses on

enhancing models’ own reasoning capabilities.

3. Methodology

Visual reasoning would benefit from capabilities of cor-

relating objects based on their characteristics and decom-

posing problems into atomic steps [19]. This section

presents a new framework for improving the robustness

against questions with novel objects and diverse question-

answer distributions. It consists of two novel components:

(1) a principled method that automatically derives semanti-

cally plausible prototypes to represent different objects, and

(2) a neural module network that bridges objects by incor-

porating discriminative prototypes in an explicit reasoning

process. Besides the enhanced generalizability, the method

also provides an interpretable interface for elaborating on

the rationales behind the model’s decisions.

3.1. Bridging Diverse Objects with Factorization

Inspired by humans’ reasoning process that classifies ob-

jects based on their semantics similarity, a primary goal of

our study is to derive semantic prototypes that can repre-

sent a vast amount of objects. The prototypes encode dif-

ferent aspects of the objects, and augment models with the

capability to bridge diverse objects for more generalizable

reasoning. Unlike previous studies [14, 41] that construct

prototypes based on manually annotations and have diffi-

culties scaling to different scenarios, we propose to auto-

matically learn discriminative prototypes by factorizing var-

ious objects. Object factorization plays a key role in parsing

the fine-grained characteristics of objects (e.g., shapes, tex-

tures, and super-categories), which facilitates understanding

of the semantic relationships between objects.

As illustrated in Figure 2, our prototype learning method

leverages the multi-label classification task [10, 46, 59, 61]

to discover discriminative prototypes in a data-driven man-

ner. Given an input image, we train a deep neural network

that predicts all object categories in the visual scene. Dif-

ferent from conventional approaches that recognize objects

based on their visual features O, we decompose objects with

trainable prototypes P and utilize the combinations of their

matched prototypes for classification:

αp = δ(Oi · P ) (1)

Ci = Cls(

K∑

k=1

αk
pP

k) (2)
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Figure 3. Illustration of the proposed prototypical neural module network. ⊗ and ⊕ denote dot product and concatenation, respectively.

where αp ∈ R
1×K denotes relevance scores between the ith

object and K prototypes. Oi · P is the dot product between

features and prototypes, which corresponds to their cosine

similarity. δ is the sigmoid activation function for normal-

ization. Ci is the prediction for the current object and Cls is

the classification module. To facilitate optimization without

expensive instance-level annotations, we leverage an atten-

tion module Acls to dynamically aggregate instance-level

predictions into the image-wise prediction C:

αi
c = Acls(

K∑

k=1

αk
pP

k) (3)

C =
N∑

i=1

αi
cC

i (4)

where N is the number of objects. We train the network

with a standard binary cross-entropy loss, and select proto-

types P that provide the highest validation performance.

The aforementioned paradigm factorizes objects into a

set of bases formed by different prototypes. The prototypes

encode important semantics of objects (see Section 4.5),

and serve as critical components of our reasoning model,

as detailed in the next subsection.

3.2. Prototypical Neural Module Network

With our prototypes constructing the common seman-

tic space for bridging diverse objects, we further propose

a novel prototypical neural module network to adaptively

incorporate the correlation between objects with a composi-

tional reasoning process. Compared to previous VQA meth-

ods [2,12,33,45,48,49,52,55], the advantages of our model

lie in (1) its capability to generalize to both known and novel

objects in the visual-textual domains, (2) the enhanced ro-

bustness against the spurious data biases, and (3) the inter-

pretability of the decision-making procedure.

Figure 3 provides an overview of the proposed neural

module network with prototype matching and a semantic

memory module. The principal idea behind our model is

to take advantage of semantic relationships encoded in our

learned prototypes (Section 3.1), and reason with a struc-

tured decision-making procedure. Neural module networks

[3,21,48] are a body of interpretable reasoning methods that

perform visual reasoning with two steps: (1) decomposing

the reasoning process into discrete reasoning steps, where

each step is associated with an atomic module (e.g., Find

module for locating regions of interest), and (2) sequen-

tially executing the modules on visual-textual inputs and

gathering information to predict the answer. In addition to

the use of an explicit reasoning process, our model utilizes

prototype matching to project features of diverse objects

onto the semantic space formed by prototypes, enabling it

to measure their semantic relationships and tightly couple

relevant objects. A semantic memory module is also pro-

posed to adaptively combine important semantics captured

at different reasoning steps, which facilitates joint reasoning

throughout the whole reasoning process.

Specifically, unlike conventional methods that rely on

raw visual features and pay little attention to semantic rela-

tionships between objects, our model leverages the learned

prototypes to parse different objects and correlate them

based on their fine-grained characteristics. At each tth rea-

soning step, our network computes the similarity between

visual features and prototypes, explicitly representing ob-

jects based on their corresponding characteristics, and uses

the similarity scores St ∈ R
N×K for decision making:

St
i = φ(Vi · P

t) (5)

where Vi ∈ R
1×D is D dimensional visual features for the

ith visual regions (N regions in total), and P t ∈ R
D×K

represents the K prototypes. Vi · P
t is the dot product be-

tween features and prototypes. φ is the hyperbolic tangent
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activation function for normalizing the scores. Upon ob-

taining the similarity scores, we then locate the regions of

interest for the current reasoning step:

αt = At(F t(St, qt)) (6)

where αt ∈ R
1×N is the attention map highlighting the im-

portant regions, F t and At are the multi-modal fusion and

attention module, respectively. qt is the query information

derived from the question.

Another key differentiator between our proposed model

and existing neural module networks [21, 48] is the incor-

poration of semantic memory. Instead of determining the

answer solely based on the question Q and attended visual

features V
′

, we further take into account the prototypes at-

tended over time pt = αt ·St, and bridge objects of interest

at different reasoning steps. Our semantic memory module

uses an attention mechanism to adaptively incorporate key

prototypes at different steps:

αs = As(Q) (7)

ŷ = Ans([V
′

;

T∑

t=1

αt
sp

t], Q) (8)

where αs ∈ R
1×T represents attention weights for T rea-

soning steps, and As is the module for attention computa-

tion. ŷ is the predicted answer, and Ans is the answer pre-

diction module. [; ] denotes the concatenation of features.

Our proposed model associates objects based on their

relationships with distinct prototypes, and adaptively com-

bines important prototypes captured throughout the reason-

ing process. It takes advantage of the compositionality in

both objects involved during visual reasoning (i.e., from ob-

jects to their characteristics) and the reasoning process (i.e.,

from questions to reasoning steps), which plays an essen-

tial role in addressing the diversity of objects and the spu-

rious data biases. The compositional nature of the model

also allows better interpretation of the underlying decision-

making procedure (Section 4.6).

4. Experiments

This section presents implementation details (Section

4.1) and experiments to analyze the proposed method. We

experiment with two different settings of VQA, includ-

ing zero-shot VQA (Section 4.2) and VQA with out-of-

distribution questions (Section 4.3), to validate the robust-

ness of our method. We also provide an ablation study with

different prototypes (Section 4.4) to demonstrate the advan-

tages of object factorization. Besides examining the effec-

tiveness of our method, we perform extensive analyses to

shed light on the following questions: (1) What do proto-

types learn? Do they encode common characteristics among

objects? (Section 4.5); and (2) How do models reason to an-

swer diverse questions? (Section 4.6)

4.1. Implementations

Datasets. The primary goal of our experiments is to

study models’ generalizability to tackle real-world prob-

lems. We experiment with two different settings, each

representing a common type of generalization: (1) Zero-

shot VQA estimates models’ generalizability toward both

known and novel objects. Three popular datasets are used

in our experiments, including VQA [18], GQA [24] and the

recently introduced Novel-VQA [55]. Following [45, 55],

for the VQA and GQA datasets, we reconstruct their train-

ing and validation sets to have a disjoint set of objects. For

each dataset, we randomly select ten objects from the ob-

ject pools and use them as novel objects unavailable dur-

ing training. Similar to [12, 45, 51], we exclude all training

questions that either contain words related to the selected

objects or use images with the objects, and divide the orig-

inal validation sets into Known and Novel splits based on

objects required for reasoning. For the Novel-VQA dataset,

we adopt the original training and test sets [55], which

only considers novel objects in the questions (Novel-Q);

(2) VQA with OOD questions focuses on evaluating mod-

els’ generalizability to data with diverse question-answer

distributions. We experiment with two popular datasets,

including VQA-CP [1] with adversarial distributions be-

tween training and evaluation, and GQA-OOD [27] that uti-

lizes balanced training questions but differentiates evalua-

tion questions based on their question-answer distributions.

Evaluation. We evaluate models with common metrics

for visual question answering. For the VQA, Novel-VQA,

and VQA-CP datasets, we adopt VQA accuracy [4] as the

evaluation metric, which considers multiple candidate an-

swers. For the GQA and GQA-OOD datasets, we use the

standard accuracy since each question has an unique an-

swer. We also follow [27] and consider differences in accu-

racy when answering in-distribution and out-of-distribution

questions (i.e., △) on the GQA-OOD dataset.

Model specification. We use the state-of-the-art neural

module network XNM [48] as our baseline, which provides

competitive performance on multiple datasets without loss

of interpretability. We follow [60] and replace the Trans-

form module with the Relate module to improve attention

propagation. Following [34, 49, 55], we adopt the UpDown

features [2] that capture 36 semantically meaningful regions

(i.e., N=36) as the visual inputs. To enable understanding of

unseen vocabulary, we follow [51, 55] and use Glove vec-

tors [43] to initialize the word embeddings. Other settings,

e.g., network specification and training configuration, are

the same as those defined in the original papers [48, 60]

without tuning. The aforementioned baseline is incorpo-

rated with our method discussed in Section 3.2 to enable

object factorization and compositional reasoning.

Prototype learning. We derive our prototypes with the

multi-label classification task [59, 61], which aims to pre-
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Table 1. Comparative results on zero-shot VQA.

VQA GQA Novel-VQA

Known Novel Known Novel Novel-Q

UpDown [2] 55.65 48.53 52.73 51.35 51.40

VisualBert [33] - - 59.85 58.80 -

Skill-Concept [55] - - - - 59.80

XNM [48] 62.05 52.81 59.39 57.54 57.54

XNM+POEM 63.80 54.82 60.60 59.71 60.73

dict all object categories that exist in an image. The image-

wise ground truth is constructed with object detection labels

(VQA, VQA-CP and Novel-VQA) or scene graphs (GQA

and GQA-OOD). UpDown features are used as inputs to the

classification network, which encode semantic information

of different objects. For zero-shot VQA, we train the model

on each dataset with training images that do not contain the

selected novel objects, and evaluate it on validation images

with only known objects. For VQA with OOD questions,

we use the original training and validation sets without ex-

cluding samples. We set the number of prototypes in our

experiments to 1000 (i.e., K = 1000), which is comparable

to the number of fine-grained objects in GQA (i.e., ∼ 1000
object categories). The network is trained with Adam [30]

optimizer for 60 epochs, the learning rate and batch size are

set to 4 × 10−4 and 128, respectively. Prototypes with the

best validation performance are used in our VQA model.

4.2. Results on Zero-shot VQA

We first demonstrate the effectiveness of our prototyp-

ical neural module (POEM) network on answering ques-

tions with both known and novel objects. We compare it

with four approaches, including (1) UpDown [2] that does

not explicitly model the reasoning process, (2) Our baseline

XNM [48] with an explicitly reasoning process, (3) Visu-

alBert [33] that utilizes vision-and-language pretraining on

external data containing the novel objects (i.e., MSCOCO

[36]), and (4) Skill-Concept [55] that is the current state-

of-the-art on Novel-VQA dataset, which explicitly exploits

novel objects in images with around 97% of them covered in

a handcrafted reference training set. All of the models are

trained with UpDown visual features and initialized with

pretrained word embeddings.

We draw three key observations from the results in Ta-

ble 1: (1) While Updown and XNM show similar accu-

racy under the standard VQA setting [2, 48], the latter pro-

vides stronger performance on zero-shot VQA. The results

indicate that the compositional reasoning process is not

only helpful in interpretability, but also important for model

performance and generalizability; (2) By leveraging exter-

nal data, VisualBert provides better performance than both

aforementioned models. However, it violates the original

Table 2. Comparative results on VQA with OOD questions.

VQA-CP GQA-OOD

acc ↑ acc-tail ↑ △ ↓

Bias Product [11] 39.93 30.8 12.0

AdvReg [44] 41.17 - -

Hint [47] 46.73 - -

RUBi [7] 47.11 35.7 14.3

SCR [56] 49.45 - -

LMH [11] 52.05 32.2 11.5

LMH+Entropies [15] 54.55 - -

XNM [48] 51.54 46.14 14.4

XNM+POEM 53.99 46.89 10.7

intent of zero-shot VQA with novel objects actually covered

in the external data, making them impractical for real-world

scenarios with unseen objects; and (3) Differently, with our

prototypes bridging different objects and the reasoning pro-

cess, the proposed method improves the performance of

the XNM baseline without relying on external data, and

achieves overall the best results in answering questions with

both known and novel objects in the visual-textual data. It

also outperforms Skill-Concept on the Novel-VQA dataset

that only considers novel objects in the questions. Note that

Skill-Concept assumes the availability of novel objects in

training images and is not applicable to zero-shot setting on

VQA and GQA datasets, while our method has the capabil-

ity to generalize toward broader scenarios.

4.3. Results on VQA with OOD Questions

Next, we investigate the robustness of our method

against spurious data biases. We compare our method with

eight approaches that do not exploit additional data, in-

cluding Bias Product [11], AdvReg [44], RUBi [7], and

LMH+Entropies [15] for reducing single-modal biases,

Hint [47] and SCR [56] for boosting visual attention, LMH

[11] for learning the residual of biases, and our baseline

XNM. Following [11, 15, 20], when experimenting on the

VQA-CP dataset [1], both XNM and our model incorporate

the learned mixed-in module [11] to address known biases.

Results in Table 2 show that our method is able to im-

prove the XNM baseline by a considerable margin. With

object factorization and compositional reasoning, it not

only improves the robustness against adversarial distribu-

tions (i.e., VQA-CP), but also reduces the performance gap

between answering in-distribution and out-of-distribution

questions (i.e., △ for GQA-OOD). Compared to existing

methods that introduce additional regularization and have

difficulties generalizing to different datasets [7, 11, 15], our

method augments models’ reasoning capability without im-
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Table 3. Comparative results for different prototypes.

VQA GQA Novel-VQA VQA-CP

Known Novel Known Novel Novel-Q OOD

Scratch 62.66 53.66 58.87 57.69 59.48 50.39

Object 62.56 53.23 60.48 59.46 56.67 52.23

Textual 60.61 52.33 55.31 53.22 59.17 51.09

Ours 63.80 54.82 60.60 59.71 60.73 53.99

posing data-specific constrains and thus enjoys better gen-

eralizability. The aforementioned observations suggest the

significance of explicitly bridging objects with their fine-

grained characteristics for overcoming data biases.

4.4. Ablation Study on Object Factorization

A key component of our framework is the proposed

method for learning discriminative prototypes with object

factorization. In this section, we perform an ablation study

to investigate the usefulness of different prototypes (see

our supplementary materials for additional ablation stud-

ies on model design). Specifically, we consider three

types of alternative prototypes: (1) Prototypes that are ran-

domly initialized and learned from scratch on the VQA task

(Scratch); (2) Prototypes specific to manually defined ob-

jects (Object), which are learned with the same multi-label

classification task as our approach but without object fac-

torization; and (3) Prototypes derived from Glove [43] word

embeddings of concepts covered in the Visual Genome [31]

dataset (Textual), including objects, attributes, and relation-

ships.

We made three observations from results in Table 3:

(1) Randomly initialized prototypes lead to inferior per-

formance among all datasets, indicating the significance

of explicitly learning semantically plausible prototypes;

(2) While object-based prototypes show reasonable perfor-

mance on the GQA dataset with detailed annotations (i.e.,

∼ 1000 object categories), they have negligible improve-

ments on the VQA, Novel-VQA, and VQA-CP datasets

with abstract-level annotations (i.e., 80 object categories).

The large gap in performance gain across datasets demon-

strates the advantages of fine-grained categorization, and

more importantly, highlights the need to learn discrimina-

tive prototypes without relying on extensive annotations.

For this, our method utilizes object factorization to auto-

matically decompose objects into more elaborated seman-

tics, and brings considerable improvements among datasets

with both abstract and detailed object annotations; (3) Tex-

tual prototypes result in a visible drop in accuracy, despite

the consideration of various concepts. This is likely caused

by the difficulty of correlating objects across the visual and

textual domains. Differently, our method directly captures

diverse characteristics of objects from visual data and does

Figure 4. Examples of semantics encoded in diverse prototypes.

not suffer from the discrepancies between modalities.

4.5. What Do Prototypes Learn? Do They Encode
Common Characteristics among Objects?

Results in the previous sections demonstrate that our

method learns discriminative prototypes to represent a va-

riety of objects and bring enhanced generalizability across

various settings. This section further demonstrates its effec-

tiveness by investigating how our prototypes correlate dif-

ferent objects.

We first study what each individual prototype learns. In

Figure 4, we visualize instances (regions inside bounding

boxes) most relevant to the prototypes (measured with their

relevance scores on different prototypes, i.e., αk
p in Equa-

tion 2, k denotes the indices of prototypes). The results

show that our prototypes learn to represent a diverse pool

of semantics. They not only capture low-level visual cues,

such as shapes (e.g., round objects in the 1st row), textures

(e.g., objects with jagged texture in the 2nd row), and pat-

terns (e.g., objects with stripes in the 3rd row), but also en-

code high-level semantics including object categories (e.g.,

wheels in the 4th row) and commonalities in semantics

(e.g., all objects in the 5th row are displaying text).

With our prototypes encoding abundant semantics, we

further analyze their effectiveness in correlating relevant ob-

jects based on their characteristics. Specifically, we calcu-

late the average relevance scores αp (see Equation 1) be-

tween objects in the GQA dataset and all prototypes, and

then apply k-means algorithm [37] (k=30) to cluster objects

using the scores. As shown in Table 4, by representing ob-

jects based on the prototypes, we can correlate objects that

belong to similar categories (e.g., drinks and utensils in the

1st and 2nd rows), commonly appear in the same scenarios

(e.g., baseball games and bedrooms in the 3rd and 4th rows)
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Table 4. Different groups of objects that are clustered based on

their relevance to prototypes. Please refer to our supplementary

materials for the complete results with 30 groups.

Group Objects

1
cup, saucer, glass, beer, mug,

juice, beverage, liquid, smoothie, coffee

2
fork, spoon, knife, silverware, utensil,

ladle, chopstick, tongs, spatula, butter knife

3
spectator, umpire, batter, catcher, crowd,

net, player, baseball, stadium, bleachers

4
bed, sofa, pillow, bedspread, headboard,

comforter, couch, sheet, ottoman, mattress

5
sticker, newspaper, paper, sign, book,

tape, drawing, CD, letter, label

6
water, sand, sea, rock, ocean,

boulders, lake, beach, shore, river

or share similar characteristics (e.g., objects related to text

and landscape in the 5th and 6th rows). The results demon-

strate the effectiveness of our prototypes in parsing objects

based on their commonalities in the semantic space.

4.6. How Do Models Reason to Answer Questions?

Besides improving the generalizability, our method also

enables interpretation of the decision-making process by vi-

sualizing the regions of interest (ROIs) at each reasoning

step and prototypes matched with the observations. In this

section, we provide qualitative examples to study the under-

lying rationales behind the derivation of answers.

Figure 5 shows the reasoning process of our method.

For each question, we visualize the reasoning steps repre-

sented by neural modules (top), attention maps highlighting

the ROIs (middle, αt in Equation 6), and images associated

to prototypes matched with the observations (bottom). It

shows that our method can correlate objects based on vari-

ous characteristics and locate those important ones. In the

1st example, while the apples are not explicitly mentioned

in the question, our model correlates them with prototypes

for different fruits (ªfruitº is a keyword in the question) and

pays focused attention in the Find step. Besides capturing

semantic relationships about object categories, prototypes

also help identify the cat based on its attribute (i.e., brown

color) within the Filter step, and enable the model to reason

on the relative position between objects (i.e., Relate step).

In the 2nd example, our model not only highlights the cor-

rect objects in the first two Find steps (i.e., the banana and

the mat), but also identifies the key characteristics that con-

tribute to reasoning (i.e., matching observations with proto-

types related to colors instead of object categories or other

attributes). In the 3rd example, woman in the question is

an unseen object during training. With object factorization,

Question: How is the
fruit to the right of the
brown animal called? 
Answer: Apple 

Filter

Question: Are both the
banana and the place
mat the same color? 

Answer: no 

Relate

Question: Do you see a
woman near the water
bottle in the bottom? 

Answer: yes 

Find

Find

Find

Find

Relate

Filter Relate

Figure 5. Illustrations of the reasoning process. From left to right

are the input images together with questions and predicted an-

swers, and sequences of reasoning steps.

our model successfully associates it to known objects (i.e.,

men) based on the similarity in clothing, and progressively

shifts the attention from both women (i.e., Find step) to the

one lying next to the bottle (i.e., Filter and Relate steps).

5. Conclusion

This study is an effort toward generalizable and inter-

pretable AI systems for real-world applications. It draws

inspiration from the ways humans reason with the visual

world, and investigates the effectiveness of integrating the

compositionality of objects and the reasoning process. Our

work distinguishes itself with a principled method for au-

tomatically factorizing objects into fine-grained semantics,

bridging novel and known objects, and a new neural mod-

ule network with a compositional decision-making process.

The compositionality in both dimensions addresses object

diversity and spurious data biases, enhancing model gen-

eralizability toward a broad range of scenarios. It also en-

ables interpretation of the rationales behind the model’s de-

cisions. Experimental results demonstrate the advantages of

our method under diverse settings, and provide insights on

how our model reasons with the visual-textual inputs. We

hope that this study can be useful for future developments of

trustworthy visual reasoning models with more human-like

intelligence and generalizability.
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