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Abstract

Humans have the innate capability to answer diverse
questions, which is rooted in the natural ability to corre-
late different concepts based on their semantic relationships
and decompose difficult problems into sub-tasks. On the
contrary, existing visual reasoning methods assume train-
ing samples that capture every possible object and reason-
ing problem, and rely on black-boxed models that com-
monly exploit statistical priors. They have yet to develop
the capability to address novel objects or spurious biases
in real-world scenarios, and also fall short of interpret-
ing the rationales behind their decisions. Inspired by hu-
mans’ reasoning of the visual world, we tackle the afore-
mentioned challenges from a compositional perspective,
and propose an integral framework consisting of a princi-
pled object factorization method and a novel neural mod-
ule network. Our factorization method decomposes objects
based on their key characteristics, and automatically de-
rives prototypes that represent a wide range of objects. With
these prototypes encoding important semantics, the pro-
posed network then correlates objects by measuring their
similarity on a common semantic space and makes deci-
sions with a compositional reasoning process. It is ca-
pable of answering questions with diverse objects regard-
less of their availability during training, and overcoming
the issues of biased question-answer distributions. In addi-
tion to the enhanced generalizability, our framework also
provides an interpretable interface for understanding the
decision-making process of models. Our code is available
at https://github.com/szzexpoi/POEM.

1. Introduction

One of the fundamental goals in artificial intelligence is
to develop systems that are able to reason with the com-
plexity of real-world data to make decisions. Most existing
visual question answering (VQA) methods [2, 13,28,29,33,

,38,49,57] assume a complete overlap between objects
involved in training and testing, and commonly rely on the
spurious distributions of questions and answers [39]. As
a result, they have limited generalizability toward real-life
visual reasoning, and also lack the ability to justify the rea-
soning process that leads to the answers.

“All mammals are animals. All elephants are mammals.
Therefore, all elephants are animals [5].” The wide ap-
plication of syllogistic logic reflects key characteristics of
the ways humans reason about the world. Unlike models
[2,38,49] that utilize implicit features and heavily exploit
statistical priors, humans correlate diverse objects from the
compositional perspective based on their shared character-
istics [26] and tackle problems with a structured reasoning
process, which is both generalizable and interpretable.

To address the complexity of real-world problems, this
study aims to develop object factorization and composi-
tional reasoning capabilities in models. As shown in Figure
1, our approach bridges diverse objects by projecting them
onto a common space formed by discriminative prototypes
(e.g., round shape, stuffed toy), and formulates the reason-
ing process with atomic steps [48] representing essential
reasoning skills (e.g., Find, Relate). The prototypes are de-
rived with object factorization, and they represent important
semantics of objects (e.g., honey jar — <round shape, con-
tainer ...>, teddy bear — <bear, stuffed toy ...>). With
an improved understanding of semantic relationships, our
framework correlates objects (e.g., honey jar and container,
stuffed toy and teddy bear) based on their commonalities in
characteristics, leading to enhanced robustness against the
diversity of objects and data biases. It also allows interpre-
tations of the model’s reasoning process consistent with the
ways humans describe their own thinking [8].

Compared to previous studies [2,2 1,33, 34,48,49], our
major distinction lies in (1) the composition in two impor-
tant dimensions of visual reasoning, i.e., objects and the
reasoning process, and (2) a tight coupling between them.
Instead of using black-boxed features or a direct mapping
between question and answer that is vulnerable to object di-
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Figure 1. Overview of our method that represents objects with semantically meaningful prototypes and makes decisions via an explicit
reasoning process. Honey jar is a novel object unseen during training. Note that our prototypes are not limited to a set of manually defined
categories, but learned from factorizing objects to encode broader characteristics (e.g., shapes, colors, object categories).

versity or data biases, our method decomposes objects into
bases representing discriminative semantics, and develops
a prototypical neural module network to explicitly bridge
objects with a compositional reasoning paradigm. The pro-
posed method naturally approaches generalizability with its
compositional nature, handling novel objects and variable
data distributions. It also provides a transparent interface
for interpreting how models parse objects based on their
characteristics and incorporate them for visual reasoning.
To summarize, our major contributions are as follows:

1. We identify the significance of tightly coupling the
compositionality between objects and the reasoning
process, and for the first time investigate its effective-
ness in generalizable and interpretable reasoning.

2. We propose a principled method that automatically de-
rives prototypes with object factorization, which plays
a key role in encoding key characteristics of objects.

3. We develop a new neural module network that adap-
tively reasons on the commonalities of different ob-
jects along a structured decision-making process.

4. We perform extensive analyses to shed light on the
roles of compositionality in reasoning with novel ob-
jects and variable data distributions.

2. Related Works

Our study is most related to previous efforts on visual
question answering, zero-short learning for VQA, and VQA
with out-of-distribution (OOD) questions.

Visual question answering. With the diversity in lan-
guage and visual semantics, visual question answering has
become a popular task for studying models’ reasoning ca-
pability [16]. A large body of research develops datasets

[4,6,18,24,25,40,42,58] and models [2,3,21,22,28,33

38,48,49] for VQA. Early datasets typically rely on crowd-
sourcing [4, 18, 58] to collect human-annotated questions.
Several recent studies [24, 25, 53] use functional programs
to automatically generate questions based on pre-defined
rules and enable more balanced data distributions. There is
also an increasing interest in investigating different types of
reasoning, e.g., scene text understanding [0], reasoning on
context [42], and knowledge-based reasoning [40]. These
data efforts lead to the development of methods that ad-
vance VQA models from different perspectives, including
multi-modal fusion [13,29,57], attention mechanism [2,28],
structured inference [21-23, 48], and vision-and-language
pretraining [33, 34, 38,49]. The aforementioned studies as-
sume that every semantic in the test questions is well illus-
trated during training, and pay little attention to the mod-
els’ generalizability to real-world scenarios that inevitably
involve novel objects and diverse question-answer distribu-
tions. Our study aims to fill the gap with an integral frame-
work that develops generalizable decision making capabil-
ity with object factorization and compositional reasoning.

Zero-shot learning for VQA. Zero-shot VQA aims to
answer questions with novel objects. The pioneering work
[51] proposes the zero-shot setting for the VQA task, and
benchmarks several techniques for improving the models’
generalizability, including explicit object detector [2] and
pretrained word embeddings [43]. Ramakrishnan et al. [45]
leverage self-supervised pretraining to learn more general-
izable features with external data. Wang et al. [54] combine
visual models trained on different datasets with an attention
mechanism. Whitehead et al. [55] decompose VQA into
two sub-problems, i.e., concept grounding and skill match-
ing, and propose additional training objectives to address
unseen objects in the questions. Besides the above stud-
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Figure 2. Overview of our prototype learning paradigm based on object factorization.

ies concerning novel concepts in language, there are also
attempts [12, 52] that leverage exemplar-based methods to
address novel concepts in both visual and textual modali-
ties. While showing usefulness, these studies either lever-
age external data, which violates zero-shot assumption [32],
or require memorizing a vast amount of supporting samples.
As aresult, they have yet to develop the capability of gener-
alizing toward real-world scenarios. The key differentiators
of our method lie in its ability to connect novel and known
objects and the use of an explicit reasoning process. By
bridging objects based on their commonalities and decom-
posing the decision-making process into atomic reasoning
steps, it improves the generalizability and interpretability
without relying on external data or memorizing samples.

VQA with OOD questions. To develop models that can
truly reason on the visual-textual inputs instead of relying
on statistical priors, VQA with out-of-distribution questions
has gained considerable attention. In particular, Agrawal et
al. [1] present the first VQA dataset with adversarial distri-
butions between the training and validation data. A more
recent study [27] analyzes models’ robustness against bi-
ases by differentiating evaluation questions based on their
question-answer distributions. To tackle the issues of harm-
ful biases, a series of studies make progresses by improving
visual attention [47, 56], reducing biases toward individual
modalities [7, |5, 44], and leveraging ensemble techniques
[11,20]. There are also attempts [9, 17, 35] that use data
augmentation to increase accuracy on biased data. How-
ever, they alter the distributions of training samples with
additional data, and violate the original intent of the VQA
with OOD questions task [50]. Our study is complementary
to existing efforts, and it differentiates itself by investigat-
ing the usefulness of object factorization and compositional
reasoning for addressing biases. It does not balance train-
ing samples to remove data biases, but instead focuses on
enhancing models’ own reasoning capabilities.

3. Methodology

Visual reasoning would benefit from capabilities of cor-
relating objects based on their characteristics and decom-

posing problems into atomic steps [19]. This section
presents a new framework for improving the robustness
against questions with novel objects and diverse question-
answer distributions. It consists of two novel components:
(1) a principled method that automatically derives semanti-
cally plausible prototypes to represent different objects, and
(2) a neural module network that bridges objects by incor-
porating discriminative prototypes in an explicit reasoning
process. Besides the enhanced generalizability, the method
also provides an interpretable interface for elaborating on
the rationales behind the model’s decisions.

3.1. Bridging Diverse Objects with Factorization

Inspired by humans’ reasoning process that classifies ob-
jects based on their semantics similarity, a primary goal of
our study is to derive semantic prototypes that can repre-
sent a vast amount of objects. The prototypes encode dif-
ferent aspects of the objects, and augment models with the
capability to bridge diverse objects for more generalizable
reasoning. Unlike previous studies [14, 41] that construct
prototypes based on manually annotations and have diffi-
culties scaling to different scenarios, we propose to auto-
matically learn discriminative prototypes by factorizing var-
ious objects. Object factorization plays a key role in parsing
the fine-grained characteristics of objects (e.g., shapes, tex-
tures, and super-categories), which facilitates understanding
of the semantic relationships between objects.

As illustrated in Figure 2, our prototype learning method
leverages the multi-label classification task [10, 46, 59,61]
to discover discriminative prototypes in a data-driven man-
ner. Given an input image, we train a deep neural network
that predicts all object categories in the visual scene. Dif-
ferent from conventional approaches that recognize objects
based on their visual features O, we decompose objects with
trainable prototypes P and utilize the combinations of their
matched prototypes for classification:

o, =6(0; - P) (1)
K

C' = Cls()_akPh) Q)
k=1
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Figure 3. [lustration of the proposed prototypical neural module network. ® and & denote dot product and concatenation, respectively.

where a;, € R'X denotes relevance scores between the "
object and K prototypes. O; - P is the dot product between
features and prototypes, which corresponds to their cosine
similarity. § is the sigmoid activation function for normal-
ization. C" is the prediction for the current object and Cls is
the classification module. To facilitate optimization without
expensive instance-level annotations, we leverage an atten-
tion module A5 to dynamically aggregate instance-level
predictions into the image-wise prediction C"

K
al = Aas(d_ akPY) 3)
k=1
N
C=> aiC’ (4)
i=1

where IV is the number of objects. We train the network
with a standard binary cross-entropy loss, and select proto-
types P that provide the highest validation performance.

The aforementioned paradigm factorizes objects into a
set of bases formed by different prototypes. The prototypes
encode important semantics of objects (see Section 4.5),
and serve as critical components of our reasoning model,
as detailed in the next subsection.

3.2. Prototypical Neural Module Network

With our prototypes constructing the common seman-
tic space for bridging diverse objects, we further propose
a novel prototypical neural module network to adaptively
incorporate the correlation between objects with a composi-
tional reasoning process. Compared to previous VQA meth-
ods [2,12,33,45,48,49,52,55], the advantages of our model
lie in (1) its capability to generalize to both known and novel
objects in the visual-textual domains, (2) the enhanced ro-
bustness against the spurious data biases, and (3) the inter-
pretability of the decision-making procedure.

Figure 3 provides an overview of the proposed neural
module network with prototype matching and a semantic
memory module. The principal idea behind our model is
to take advantage of semantic relationships encoded in our
learned prototypes (Section 3.1), and reason with a struc-
tured decision-making procedure. Neural module networks
[3,21,48] are a body of interpretable reasoning methods that
perform visual reasoning with two steps: (1) decomposing
the reasoning process into discrete reasoning steps, where
each step is associated with an atomic module (e.g., Find
module for locating regions of interest), and (2) sequen-
tially executing the modules on visual-textual inputs and
gathering information to predict the answer. In addition to
the use of an explicit reasoning process, our model utilizes
prototype matching to project features of diverse objects
onto the semantic space formed by prototypes, enabling it
to measure their semantic relationships and tightly couple
relevant objects. A semantic memory module is also pro-
posed to adaptively combine important semantics captured
at different reasoning steps, which facilitates joint reasoning
throughout the whole reasoning process.

Specifically, unlike conventional methods that rely on
raw visual features and pay little attention to semantic rela-
tionships between objects, our model leverages the learned
prototypes to parse different objects and correlate them
based on their fine-grained characteristics. At each t*" rea-
soning step, our network computes the similarity between
visual features and prototypes, explicitly representing ob-
jects based on their corresponding characteristics, and uses
the similarity scores St € RV *¥ for decision making:

St=o¢(V;- P )

where V; € R™P is D dimensional visual features for the
it" visual regions (IV regions in total), and Pt € RP*K
represents the K prototypes. V; - Pt is the dot product be-
tween features and prototypes. ¢ is the hyperbolic tangent
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activation function for normalizing the scores. Upon ob-
taining the similarity scores, we then locate the regions of
interest for the current reasoning step:

Oét — At(Ft(St7qt)) (6)

where a! € R is the attention map highlighting the im-
portant regions, F* and A? are the multi-modal fusion and
attention module, respectively. ¢* is the query information
derived from the question.

Another key differentiator between our proposed model
and existing neural module networks [21, 48] is the incor-
poration of semantic memory. Instead of determining the
answer solely based on the question ) and attended visual
features V', we further take into account the prototypes at-
tended over time p¢ = ' - S*, and bridge objects of interest
at different reasoning steps. Our semantic memory module
uses an attention mechanism to adaptively incorporate key
prototypes at different steps:

as = A:(Q) (7)
, T

= Ans([V'; )Y alp'],Q) 8)
t=1

where a; € RY*7 represents attention weights for 7" rea-
soning steps, and A; is the module for attention computa-
tion. g is the predicted answer, and Ans is the answer pre-
diction module. [;] denotes the concatenation of features.

Our proposed model associates objects based on their
relationships with distinct prototypes, and adaptively com-
bines important prototypes captured throughout the reason-
ing process. It takes advantage of the compositionality in
both objects involved during visual reasoning (i.e., from ob-
jects to their characteristics) and the reasoning process (i.e.,
from questions to reasoning steps), which plays an essen-
tial role in addressing the diversity of objects and the spu-
rious data biases. The compositional nature of the model
also allows better interpretation of the underlying decision-
making procedure (Section 4.6).

4. Experiments

This section presents implementation details (Section
4.1) and experiments to analyze the proposed method. We
experiment with two different settings of VQA, includ-
ing zero-shot VQA (Section 4.2) and VQA with out-of-
distribution questions (Section 4.3), to validate the robust-
ness of our method. We also provide an ablation study with
different prototypes (Section 4.4) to demonstrate the advan-
tages of object factorization. Besides examining the effec-
tiveness of our method, we perform extensive analyses to
shed light on the following questions: (1) What do proto-
types learn? Do they encode common characteristics among
objects? (Section 4.5); and (2) How do models reason to an-
swer diverse questions? (Section 4.6)

4.1. Implementations

Datasets. The primary goal of our experiments is to
study models’ generalizability to tackle real-world prob-
lems. We experiment with two different settings, each
representing a common type of generalization: (1) Zero-
shot VQA estimates models’ generalizability toward both
known and novel objects. Three popular datasets are used
in our experiments, including VQA [18], GQA [24] and the
recently introduced Novel-VQA [55]. Following [45, 55],
for the VQA and GQA datasets, we reconstruct their train-
ing and validation sets to have a disjoint set of objects. For
each dataset, we randomly select ten objects from the ob-
ject pools and use them as novel objects unavailable dur-
ing training. Similar to [12,45,51], we exclude all training
questions that either contain words related to the selected
objects or use images with the objects, and divide the orig-
inal validation sets into Known and Novel splits based on
objects required for reasoning. For the Novel-VQA dataset,
we adopt the original training and test sets [55], which
only considers novel objects in the questions (Novel-Q);
(2) VQA with OOD questions focuses on evaluating mod-
els’ generalizability to data with diverse question-answer
distributions. We experiment with two popular datasets,
including VQA-CP [1] with adversarial distributions be-
tween training and evaluation, and GQA-OOD [27] that uti-
lizes balanced training questions but differentiates evalua-
tion questions based on their question-answer distributions.

Evaluation. We evaluate models with common metrics
for visual question answering. For the VQA, Novel-VQA,
and VQA-CP datasets, we adopt VQA accuracy [4] as the
evaluation metric, which considers multiple candidate an-
swers. For the GQA and GQA-OOD datasets, we use the
standard accuracy since each question has an unique an-
swer. We also follow [27] and consider differences in accu-
racy when answering in-distribution and out-of-distribution
questions (i.e., 2A) on the GQA-OOD dataset.

Model specification. We use the state-of-the-art neural
module network XNM [48] as our baseline, which provides
competitive performance on multiple datasets without loss
of interpretability. We follow [60] and replace the Trans-
form module with the Relate module to improve attention
propagation. Following [34,49,55], we adopt the UpDown
features [2] that capture 36 semantically meaningful regions
(i.e., N=36) as the visual inputs. To enable understanding of
unseen vocabulary, we follow [51, 55] and use Glove vec-
tors [43] to initialize the word embeddings. Other settings,
e.g., network specification and training configuration, are
the same as those defined in the original papers [48, 60]
without tuning. The aforementioned baseline is incorpo-
rated with our method discussed in Section 3.2 to enable
object factorization and compositional reasoning.

Prototype learning. We derive our prototypes with the
multi-label classification task [59, 61], which aims to pre-
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Table 1. Comparative results on zero-shot VQA.

VQA GQA Novel-VQA
Known Novel Known Novel Novel-Q
UpDown [2] 55.65 4853 5273  51.35 51.40
VisualBert [33] - - 59.85 58.80
Skill-Concept [55] - - - - 59.80
XNM [48] 62.05  52.81 59.39 5754 57.54
XNM+POEM 63.80 54.82 60.60 59.71 60.73

dict all object categories that exist in an image. The image-
wise ground truth is constructed with object detection labels
(VQA, VQA-CP and Novel-VQA) or scene graphs (GQA
and GQA-OOD). UpDown features are used as inputs to the
classification network, which encode semantic information
of different objects. For zero-shot VQA, we train the model
on each dataset with training images that do not contain the
selected novel objects, and evaluate it on validation images
with only known objects. For VQA with OOD questions,
we use the original training and validation sets without ex-
cluding samples. We set the number of prototypes in our
experiments to 1000 (i.e., K = 1000), which is comparable
to the number of fine-grained objects in GQA (i.e., ~ 1000
object categories). The network is trained with Adam [30]
optimizer for 60 epochs, the learning rate and batch size are
set to 4 x 10~% and 128, respectively. Prototypes with the
best validation performance are used in our VQA model.

4.2. Results on Zero-shot VQA

We first demonstrate the effectiveness of our prototyp-
ical neural module (POEM) network on answering ques-
tions with both known and novel objects. We compare it
with four approaches, including (1) UpDown [2] that does
not explicitly model the reasoning process, (2) Our baseline
XNM [48] with an explicitly reasoning process, (3) Visu-
alBert [33] that utilizes vision-and-language pretraining on
external data containing the novel objects (i.e., MSCOCO
[36]), and (4) Skill-Concept [55] that is the current state-
of-the-art on Novel-VQA dataset, which explicitly exploits
novel objects in images with around 97% of them covered in
a handcrafted reference training set. All of the models are
trained with UpDown visual features and initialized with
pretrained word embeddings.

We draw three key observations from the results in Ta-
ble 1: (1) While Updown and XNM show similar accu-
racy under the standard VQA setting [2, 48], the latter pro-
vides stronger performance on zero-shot VQA. The results
indicate that the compositional reasoning process is not
only helpful in interpretability, but also important for model
performance and generalizability; (2) By leveraging exter-
nal data, VisualBert provides better performance than both
aforementioned models. However, it violates the original

Table 2. Comparative results on VQA with OOD questions.

VQA-CP GQA-OOD
acc T acc-tailT A
Bias Product [11] 39.93 30.8 12.0
AdvReg [44] 41.17 - -
Hint [47] 46.73 - -
RUBI [7] 47.11 35.7 14.3
SCR [56] 49.45 - -
LMH [11] 52.05 322 11.5
LMH-+Entropies [15] 54.55 - -
XNM [48] 51.54 46.14 14.4
XNM+POEM 53.99 46.89 10.7

intent of zero-shot VQA with novel objects actually covered
in the external data, making them impractical for real-world
scenarios with unseen objects; and (3) Differently, with our
prototypes bridging different objects and the reasoning pro-
cess, the proposed method improves the performance of
the XNM baseline without relying on external data, and
achieves overall the best results in answering questions with
both known and novel objects in the visual-textual data. It
also outperforms Skill-Concept on the Novel-VQA dataset
that only considers novel objects in the questions. Note that
Skill-Concept assumes the availability of novel objects in
training images and is not applicable to zero-shot setting on
VQA and GQA datasets, while our method has the capabil-
ity to generalize toward broader scenarios.

4.3. Results on VQA with OOD Questions

Next, we investigate the robustness of our method
against spurious data biases. We compare our method with
eight approaches that do not exploit additional data, in-
cluding Bias Product [11], AdvReg [44], RUBIi [7], and
LMH-+Entropies [15] for reducing single-modal biases,
Hint [47] and SCR [56] for boosting visual attention, LMH
[11] for learning the residual of biases, and our baseline
XNM. Following [11, 15,20], when experimenting on the
VQA-CP dataset [ 1], both XNM and our model incorporate
the learned mixed-in module [1 1] to address known biases.

Results in Table 2 show that our method is able to im-
prove the XNM baseline by a considerable margin. With
object factorization and compositional reasoning, it not
only improves the robustness against adversarial distribu-
tions (i.e., VQA-CP), but also reduces the performance gap
between answering in-distribution and out-of-distribution
questions (i.e., A for GQA-OOD). Compared to existing
methods that introduce additional regularization and have
difficulties generalizing to different datasets [7, | |, 5], our
method augments models’ reasoning capability without im-
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Table 3. Comparative results for different prototypes.

VQA GQA Novel-VQA  VQA-CP
Known Novel Known Novel Novel-Q 00D
Scratch  62.66  53.66  58.87  57.69 59.48 50.39
Object  62.56  53.23 6048  59.46 56.67 52.23
Textual  60.61  52.33  55.31 53.22 59.17 51.09
Ours 63.80 5482  60.60 59.71 60.73 53.99

posing data-specific constrains and thus enjoys better gen-
eralizability. The aforementioned observations suggest the
significance of explicitly bridging objects with their fine-
grained characteristics for overcoming data biases.

4.4. Ablation Study on Object Factorization

A key component of our framework is the proposed
method for learning discriminative prototypes with object
factorization. In this section, we perform an ablation study
to investigate the usefulness of different prototypes (see
our supplementary materials for additional ablation stud-
ies on model design). Specifically, we consider three
types of alternative prototypes: (1) Prototypes that are ran-
domly initialized and learned from scratch on the VQA task
(Scratch); (2) Prototypes specific to manually defined ob-
jects (Object), which are learned with the same multi-label
classification task as our approach but without object fac-
torization; and (3) Prototypes derived from Glove [43] word
embeddings of concepts covered in the Visual Genome [3 1]
dataset (Textual), including objects, attributes, and relation-
ships.

We made three observations from results in Table 3:
(1) Randomly initialized prototypes lead to inferior per-
formance among all datasets, indicating the significance
of explicitly learning semantically plausible prototypes;
(2) While object-based prototypes show reasonable perfor-
mance on the GQA dataset with detailed annotations (i.e.,
~ 1000 object categories), they have negligible improve-
ments on the VQA, Novel-VQA, and VQA-CP datasets
with abstract-level annotations (i.e., 80 object categories).
The large gap in performance gain across datasets demon-
strates the advantages of fine-grained categorization, and
more importantly, highlights the need to learn discrimina-
tive prototypes without relying on extensive annotations.
For this, our method utilizes object factorization to auto-
matically decompose objects into more elaborated seman-
tics, and brings considerable improvements among datasets
with both abstract and detailed object annotations; (3) Tex-
tual prototypes result in a visible drop in accuracy, despite
the consideration of various concepts. This is likely caused
by the difficulty of correlating objects across the visual and
textual domains. Differently, our method directly captures
diverse characteristics of objects from visual data and does

Figure 4. Examples of semantics encoded in diverse prototypes.

not suffer from the discrepancies between modalities.

4.5. What Do Prototypes Learn? Do They Encode
Common Characteristics among Objects?

Results in the previous sections demonstrate that our
method learns discriminative prototypes to represent a va-
riety of objects and bring enhanced generalizability across
various settings. This section further demonstrates its effec-
tiveness by investigating how our prototypes correlate dif-
ferent objects.

We first study what each individual prototype learns. In
Figure 4, we visualize instances (regions inside bounding
boxes) most relevant to the prototypes (measured with their
relevance scores on different prototypes, i.e., a’; in Equa-
tion 2, k denotes the indices of prototypes). The results
show that our prototypes learn to represent a diverse pool
of semantics. They not only capture low-level visual cues,
such as shapes (e.g., round objects in the 1%% row), textures
(e.g., objects with jagged texture in the 2"¢ row), and pat-
terns (e.g., objects with stripes in the 3"¢ row), but also en-
code high-level semantics including object categories (e.g.,
wheels in the 4" row) and commonalities in semantics
(e.g., all objects in the 5" row are displaying text).

With our prototypes encoding abundant semantics, we
further analyze their effectiveness in correlating relevant ob-
jects based on their characteristics. Specifically, we calcu-
late the average relevance scores «y, (see Equation 1) be-
tween objects in the GQA dataset and all prototypes, and
then apply k-means algorithm [37] (k=30) to cluster objects
using the scores. As shown in Table 4, by representing ob-
jects based on the prototypes, we can correlate objects that
belong to similar categories (e.g., drinks and utensils in the
1% and 2" rows), commonly appear in the same scenarios
(e.g., baseball games and bedrooms in the 37% and 4*" rows)
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Table 4. Different groups of objects that are clustered based on
their relevance to prototypes. Please refer to our supplementary
materials for the complete results with 30 groups.

Group Objects
cup, saucer, glass, beer, mug,
1 .. o .
juice, beverage, liquid, smoothie, coffee
5 fork, spoon, knife, silverware, utensil,
ladle, chopstick, tongs, spatula, butter knife
3 spectator, umpire, batter, catcher, crowd,
net, player, baseball, stadium, bleachers
4 bed, sofa, pillow, bedspread, headboard,
comforter, couch, sheet, ottoman, mattress
5 sticker, newspaper, paper, sign, book,
tape, drawing, CD, letter, label
6 water, sand, sea, rock, ocean,
boulders, lake, beach, shore, river

or share similar characteristics (e.g., objects related to text
and landscape in the 5! and 6'" rows). The results demon-
strate the effectiveness of our prototypes in parsing objects
based on their commonalities in the semantic space.

4.6. How Do Models Reason to Answer Questions?

Besides improving the generalizability, our method also
enables interpretation of the decision-making process by vi-
sualizing the regions of interest (ROIs) at each reasoning
step and prototypes matched with the observations. In this
section, we provide qualitative examples to study the under-
lying rationales behind the derivation of answers.

Figure 5 shows the reasoning process of our method.
For each question, we visualize the reasoning steps repre-
sented by neural modules (top), attention maps highlighting
the ROIs (middle, o in Equation 6), and images associated
to prototypes matched with the observations (bottom). It
shows that our method can correlate objects based on vari-
ous characteristics and locate those important ones. In the
1% example, while the apples are not explicitly mentioned
in the question, our model correlates them with prototypes
for different fruits (“fruit” is a keyword in the question) and
pays focused attention in the Find step. Besides capturing
semantic relationships about object categories, prototypes
also help identify the cat based on its attribute (i.e., brown
color) within the Filter step, and enable the model to reason
on the relative position between objects (i.e., Relate step).
In the 2" example, our model not only highlights the cor-
rect objects in the first two Find steps (i.e., the banana and
the mat), but also identifies the key characteristics that con-
tribute to reasoning (i.e., matching observations with proto-
types related to colors instead of object categories or other
attributes). In the 3" example, woman in the question is
an unseen object during training. With object factorization,

Find Filter Relate

Question: How is the

fruit to the right of the

brown animal called?
Answer: Apple

Question: Are both the

banana and the place

mat the same color?
Answer: no

Find Filter Relate

———
Question: Do you see a
woman near the water
bottle in the bottom?
Answer: yes

Figure 5. Illustrations of the reasoning process. From left to right
are the input images together with questions and predicted an-
swers, and sequences of reasoning steps.

our model successfully associates it to known objects (i.e.,
men) based on the similarity in clothing, and progressively
shifts the attention from both women (i.e., Find step) to the
one lying next to the bottle (i.e., Filter and Relate steps).

5. Conclusion

This study is an effort toward generalizable and inter-
pretable Al systems for real-world applications. It draws
inspiration from the ways humans reason with the visual
world, and investigates the effectiveness of integrating the
compositionality of objects and the reasoning process. Our
work distinguishes itself with a principled method for au-
tomatically factorizing objects into fine-grained semantics,
bridging novel and known objects, and a new neural mod-
ule network with a compositional decision-making process.
The compositionality in both dimensions addresses object
diversity and spurious data biases, enhancing model gen-
eralizability toward a broad range of scenarios. It also en-
ables interpretation of the rationales behind the model’s de-
cisions. Experimental results demonstrate the advantages of
our method under diverse settings, and provide insights on
how our model reasons with the visual-textual inputs. We
hope that this study can be useful for future developments of
trustworthy visual reasoning models with more human-like
intelligence and generalizability.

Acknowledgements

This work is supported by NSF Grants 2143197 and
2227450.

6743



References

(1]

(2]

(3]

[4]

(3]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

(13]

[14]

[15]

Aishwarya Agrawal, Dhruv Batra, Devi Parikh, and Anirud-
dha Kembhavi. Don’t just assume; look and answer: Over-
coming priors for visual question answering. In CVPR, pages
4971-4980, 2018. 3, 5,6

Peter Anderson, Xiaodong He, Chris Buehler, Damien
Teney, Mark Johnson, Stephen Gould, and Lei Zhang.
Bottom-up and top-down attention for image captioning and
visual question answering. In CVPR, pages 6077-6086,
2018. 1,2,4,5,6

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan
Klein. Neural module networks. In CVPR, pages 3948,
2016. 2,4

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret
Mitchell, Dhruv Batra, C. Lawrence Zitnick, and Devi
Parikh. VQA: Visual Question Answering. In ICCV, pages
2425-2433, 2015. 2,5

Aristotle. Aristotle’s Prior Analytics.
Press, 1989. 1

Ali Furkan Biten, Ruben Tito, Andres Mafla, Lluis Gomez,
Marcal Rusinol, Ernest Valveny, C.V. Jawahar, and Dimos-
thenis Karatzas. Scene text visual question answering. In
ICCV, pages 4290-4300, 2019. 2

Remi Cadene, Corentin Dancette, Matthieu Cord, Devi
Parikh, et al. Rubi: Reducing unimodal biases for visual
question answering. NeurlPS, pages 841-852, 2019. 3, 6
Chaofan Chen, Oscar Li, Chaofan Tao, Alina Jade Barnett,
Jonathan Su, and Cynthia Rudin. This looks like that: Deep
learning for interpretable image recognition. In NeurIPS,
page 8930-8941, 2019. 1

Long Chen, Xin Yan, Jun Xiao, Hanwang Zhang, Shiliang
Pu, and Yueting Zhuang. Counterfactual samples synthesiz-
ing for robust visual question answering. In CVPR, pages
10797-10806, 2020. 3

Zhao-Min Chen, Xiu-Shen Wei, Peng Wang, and Yanwen
Guo. Multi-label image recognition with graph convolu-
tional networks. In CVPR, pages 5172-5181, 2019. 3
Christopher Clark, Mark Yatskar, and Luke Zettlemoyer.
Don'’t take the easy way out: Ensemble based methods for
avoiding known dataset biases. In EMNLP, pages 4069—
4082, 2019. 3,6

Moshiur R. Farazi, Salman H. Khan, and Nick Barnes. From
known to the unknown: Transferring knowledge to answer
questions about novel visual and semantic concepts. In /m-
age and Vision Computing, volume 103, page 103985, 2020.
3,4,5

Akira Fukui, Dong Huk Park, Daylen Yang, Anna Rohrbach,
Trevor Darrell, and Marcus Rohrbach. Multimodal com-
pact bilinear pooling for visual question answering and vi-
sual grounding. In EMNLP, pages 457-468, 2016. 1, 2
Tianyu Gao, Xu Han, Zhiyuan Liu, and Maosong Sun. Hy-
brid attention-based prototypical networks for noisy few-
shot relation classification. In AAAI, page 6407-6414, 2019.
3

Itai Gat, Idan Schwartz, Alexander Schwing, and Tamir
Hazan. Removing bias in multi-modal classifiers: Regu-

Oxford University

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

[25]

(26]

(27]

(28]

(29]

(30]

(31]

6744

larization by maximizing functional entropies. In NeurIPS,
pages 3197-3208, 2020. 3, 6

Donald Geman, Stuart Geman, Neil Hallonquist, and Lau-
rent Younes. Visual turing test for computer vision sys-
tems. Proceedings of the National Academy of Sciences,
112(12):3618-3623, 2015. 2

Tejas Gokhale, Pratyay Banerjee, Chitta Baral, and Yezhou
Yang. MUTANT: A training paradigm for out-of-distribution
generalization in visual question answering. In EMNLP,
pages 878-892, 2020. 3

Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Ba-
tra, and Devi Parikh. Making the V in VQA matter: Ele-
vating the role of image understanding in Visual Question
Answering. In CVPR, pages 6325-6334, 2017. 2, 5

Klaus Greff, Sjoerd van Steenkiste, and Jiirgen Schmidhuber.
On the binding problem in artificial neural networks. Arxiv,
2020. 3

Xinzhe Han, Shuhui Wang, Chi Su, Qingming Huang, and
Qi Tian. Greedy gradient ensemble for robust visual question
answering. In ICCV, pages 1564-1573, 2021. 3,6
Ronghang Hu, Jacob Andreas, Trevor Darrell, and Kate
Saenko. Explainable neural computation via stack neural
module networks. In ECCV, pages 55-71, 2018. 1, 2, 4,
5

Drew Hudson and Christopher D Manning. Learning by ab-
straction: The neural state machine. In NeurIPS, volume 32,
2019. 2

Drew Arad Hudson and Christopher D. Manning. Compo-
sitional attention networks for machine reasoning. In /CLR,
2018. 2

Drew A. Hudson and Christopher D. Manning. GQA: a new
dataset for real-world visual reasoning and compositional
question answering. In CVPR, pages 6693-6702, 2019. 2, 5
Justin Johnson, Bharath Hariharan, Laurens van der Maaten,
Li Fei-Fei, C. Lawrence Zitnick, and Ross Girshick.
CLEVR: A diagnostic dataset for compositional language
and elementary visual reasoning. In CVPR, pages 1988—
1997, 2017. 2

P. N. Johnson-Laird. Deductive reasoning. Annual Review of
Psychology, 50(1):109-135, 1999. 1

Corentin Kervadec, Grigory Antipov, Moez Baccouche, and
Christian Wolf. Roses are red, violets are blue... but should
vqa expect them to? In CVPR, pages 2776-2785, 2021. 3, 5
Jin-Hwa Kim, Jaehyun Jun, and Byoung-Tak Zhang. Bilin-
ear attention networks. In NeurIPS, pages 1571-1581, 2018.
1,2

Jin-Hwa Kim, Kyoung Woon On, Woosang Lim, Jeonghee
Kim, Jung-Woo Ha, and Byoung-Tak Zhang. Hadamard
product for low-rank bilinear pooling. In ICLR, 2017. 1,
2

Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In /CLR, 2015. 6

Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson,
Kenji Hata, Joshua Kravitz, Stephanie Chen, Yannis Kalan-
ditis, Li-Jia Li, David A Shamma, Michael Bernstein, and Li
Fei-Fei. Visual genome: Connecting language and vision us-
ing crowdsourced dense image annotations. In ZJCV, volume
123, pages 32-73,2017. 7



(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

(42]

[43]

[44]

[45]

[40]

Hugo Larochelle, Dumitru Erhan, and Y. Bengio. Zero-data
learning of new tasks. In AAAI, volume 2, pages 646-651,
2008. 3

Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh,
and Kai-Wei Chang. What does BERT with vision look at?
In ACL, pages 5265-5275, 2020. 1,2,4, 6

Xiujun Li, Xi Yin, Chunyuan Li, Pengchuan Zhang, Xi-
aowei Hu, Lei Zhang, Lijuan Wang, Houdong Hu, Li Dong,
Furu Wei, Yejin Choi, and Jianfeng Gao. Oscar: Object-
semantics aligned pre-training for vision-language tasks. In
Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-
Michael Frahm, editors, ECCV, pages 121-137, 2020. 1,
2,5

Zujie Liang, Weitao Jiang, Haifeng Hu, and Jiaying Zhu.
Learning to contrast the counterfactual samples for robust
visual question answering. In EMNLP, pages 3285-3292,
2020. 3

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollar, and C. Lawrence
Zitnick. Microsoft coco: Common objects in context. In
ECCV, pages 740-755, 2014. 6

S. Lloyd. Least squares quantization in pcm. In /[EEE Trans-
actions on Information Theory, volume 28, pages 129-137,
1982. 7

Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee. Vilbert:
Pretraining task-agnostic visiolinguistic representations for
vision-and-language tasks. In NeurIPS, volume 32, pages
13-23,2019. 1,2

Varun Manjunatha, Nirat Saini, and Larry S. Davis. Ex-
plicit bias discovery in visual question answering models. In
CVPR, pages 9554-9563, 2019. 1

Kenneth Marino, Mohammad Rastegari, Ali Farhadi, and
Roozbeh Mottaghi. Ok-vga: A visual question answering
benchmark requiring external knowledge. In CVPR, pages
3190-3199, 2019. 2

Yingwei Pan, Ting Yao, Yehao Li, Yu Wang, Chong-Wah
Ngo, and Tao Mei. Transferrable prototypical networks for
unsupervised domain adaptation. In CVPR, pages 2234-
2242,2019. 3

Jae Sung Park, Chandra Bhagavatula, Roozbeh Mottaghi, Ali
Farhadi, and Yejin Choi. Visualcomet: Reasoning about the
dynamic context of a still image. In ECCV, pages 508-524,
2020. 2

Jeffrey Pennington, Richard Socher, and Christopher D Man-
ning. Glove: Global vectors for word representation. In
EMNLP, volume 14, pages 1532-1543, 2014. 2, 5,7
Sainandan Ramakrishnan, Aishwarya Agrawal, and Stefan
Lee. Overcoming language priors in visual question answer-
ing with adversarial regularization. In NeurIPS, pages 1548—
1558, 2018. 3,6

Santhosh K. Ramakrishnan, Ambar Pal, Gaurav Sharma, and
Anurag Mittal. An empirical evaluation of visual question
answering for novel objects. In CVPR, pages 7312-7321,
2017. 2,4,5

Tal Ridnik, Emanuel Ben-Baruch, Nadav Zamir, Asaf Noy,
Itamar Friedman, Matan Protter, and Lihi Zelnik-Manor.
Asymmetric loss for multi-label classification. In ICCV,
pages 82-91, 2021. 3

[47]

(48]

(49]

(501

(51]

(52]

(53]

[54]

[55]

[56]

(571

(58]

(591

(60]

[61]

6745

Ramprasaath R. Selvaraju, Stefan Lee, Yilin Shen, Hongxia
Jin, Shalini Ghosh, Larry Heck, Dhruv Batra, and Devi
Parikh. Taking a HINT: Leveraging explanations to make
vision and language models more grounded. In ICCV, pages
2591-2600, 2019. 3,6

Jiaxin Shi, Hanwang Zhang, and Juanzi Li. Explainable and
explicit visual reasoning over scene graphs. In CVPR, pages
8368-8376,2019. 1,2,4,5,6

Hao Tan and Mohit Bansal. LXMERT: Learning cross-
modality encoder representations from transformers. In
EMNLP, pages 5100-5111,2019. 1,2,4,5

Damien Teney, Ehsan Abbasnejad, Kushal Kafle, Robik
Shrestha, Christopher Kanan, and Anton van den Hengel.
On the value of out-of-distribution testing: An example of
goodhart's law. In NeurlPS, pages 407-417, 2020. 3
Damien Teney and Anton van den Hengel. Zero-shot visual
question answering. Arxiv, 2016. 2, 5

Damien Teney and Anton van den Hengel. Visual question
answering as a meta learning task. In ECCV, pages 229-245,
2018. 3,4

Harm De Vries, Dzmitry Bahdanau, Shikhar Murty,
Aaron C. Courville, and Philippe Beaudoin. CLOSURE:
assessing systematic generalization of CLEVR models. In
NeurlPS Workshop, 2019. 2

Peng Wang, Qi Wu, Chunhua Shen, and Anton van den Hen-
gel. The vqa-machine: Learning how to use existing vision
algorithms to answer new questions. In CVPR, pages 3909—
3918, 2017. 2

Spencer Whitehead, Hui Wu, Heng Ji, Rogerio Feris, and
Kate Saenko. Separating skills and concepts for novel visual
question answering. In CVPR, pages 5628-5637, 2021. 2, 4,
5,6

Jialin Wu and Raymond J. Mooney. Self-critical reason-
ing for robust visual question answering. In NeurlIPS, page
8604-8614, 2019. 3,6

Zhou Yu, Jun Yu, Jianping Fan, and Dacheng Tao. Multi-
modal factorized bilinear pooling with co-attention learning
for visual question answering. In ICCV, pages 1839-1848,
2017. 1,2

Rowan Zellers, Yonatan Bisk, Ali Farhadi, and Yejin Choi.
From recognition to cognition: Visual commonsense reason-
ing. In CVPR, pages 6713-6724, 2019. 2

Min-Ling Zhang and Zhi-Hua Zhou. A review on multi-label
learning algorithms. IEEE Transactions on Knowledge and
Data Engineering, 26(8):1819-1837, 2014. 3,5

Yifeng Zhang, Ming Jiang, and Qi Zhao. Explicit knowledge
incorporation for visual reasoning. In CVPR, pages 1356—
1365, 2021. 5

Feng Zhu, Hongsheng Li, Wanli Ouyang, Nenghai Yu, and
Xiaogang Wang. Learning spatial regularization with image-
level supervisions for multi-label image classification. In
CVPR, pages 2027-2036, 2017. 3, 5



