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Abstract

Many recent developments in causal inference, and functional estimation problems
more generally, have been motivated by the fact that classical one-step (first-order) de-
biasing methods, or their more recent sample-split double machine-learning avatars, can
outperform plugin estimators under surprisingly weak conditions. These first-order cor-
rections improve on plugin estimators in a black-box fashion, and consequently are often
used in conjunction with powerful off-the-shelf estimation methods. On the other hand,
these first-order methods are provably suboptimal in a minimax sense for functional es-
timation when the nuisance functions live in Hölder-type function spaces. This subopti-
mality of first-order debiasing has motivated the development of “higher-order” debiasing
methods [3, 5, 39, 51]. The resulting estimators are, in some cases, provably optimal
over Hölder-type spaces, but in sharp contrast to first-order estimators, both the estima-
tors which are minimax-optimal and their analyses are crucially tied to properties of the
underlying function space. Along a similar vein, some work [2, 17, 49] has considered:
n-consistent estimation of causal effects under weaker conditions than those required

by first-order methods, once again relying on higher-order debiasing. More recent work
in this area has focused on attempting to weaken the dependence of these higher-order
estimators on the underlying nuisance function spaces, to make the resulting estimators
and theory more robust. A central focus has been to try to make higher-order methods
compatible with black-box nuisance estimators.

In this paper we investigate the fundamental limits of structure-agnostic functional
estimation, where relatively weak conditions are placed on the underlying nuisance func-
tions. We show that there is a strong sense in which existing first-order methods are

optimal. Particularly, we show that for several canonical integral functionals of interest it
is impossible to improve on first-order estimators without making further, strong struc-
tural assumptions. We achieve this goal by providing a formalization of the problem of
functional estimation with black-box nuisance function estimates, and deriving minimax
lower bounds for this problem. Our results highlight some clear tradeoffs in functional
estimation – if we wish to remain agnostic to the underlying nuisance function spaces, im-
pose only high-level rate conditions, and maintain compatibility with black-box nuisance
estimators then first-order methods are optimal. When we have a better understanding of
the structure of the underlying nuisance functions then carefully constructed higher-order
estimators can outperform first-order estimators.
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1 Introduction

Statistical modeling often begins by hypothesizing that the data at hand are sampled from a
potentially complex, high-dimensional distribution, and the goal in a variety of applications
is not to estimate the distribution itself, but rather to estimate some informative functional

of the sampling distribution. Such functional estimation problems arise naturally in causal
inference where under various identification assumptions, causal estimands are expressed as
functionals of the observed data generating distribution. One of the main challenges in causal
inference is to design statistically efficient functional estimates, while remaining as agnostic
as possible to the structure of the sampling distribution (the so-called nuisance component).
Beyond causal inference, functional estimation problems arise routinely in machine learning
[25, 44], information theory [24, 29, 35, 53], theoretical computer science [48] and other fields.

Recent research in machine learning has led to the development of powerful prediction
methods, which perform surprisingly well despite the complexity of the underlying predic-
tion tasks as well as the high-dimensionality of the covariates [31]. Consequently, a flurry
of research in causal inference [10, 12], has aimed to leverage these prediction methods to
estimate causal estimands. At the heart of these works is the observation that classical one-
step/first-order bias-corrected estimators of many important functionals can be constructed
to leverage essentially arbitrary initial estimates of the nuisance functions. These first-order
estimators interact with the nuisance function estimates in a black-box manner, improving
on naïve plugin estimates by shrinking their bias, but otherwise inheriting their structure-
agnostic strengths. Essentially, if we are able to construct nuisance function estimates with
small error (i.e. typically solve a prediction or density estimation problem well) then the
one-step estimator produces an accurate functional estimate. An important aspect of this
procedure is that we don’t need to be able to quantify the precise structure in the nuisance
functions that allows us to solve the nuisance function estimation problem well, we simply
inherit fast rates of convergence when we are able to do so. We refer to estimators of this
type as structure agnostic. Structure agnostic functional estimates are particularly powerful
because modern machine learning algorithms are in practice able to solve complex prediction
tasks with high-dimensional covariates with high accuracy, but we are still far from being able
to accurately quantify from a theoretical perspective the precise structures which enable this.
An important question, one which we aim to formalize and answer in this paper, is: what are

the fundamental limits of structure agnostic functional estimation?

In many cases, if we can further ensure that the nuisance estimates converge at a faster
than n1/4-rate the resulting one-step estimators achieve fast

:
n-rates of convergence, attain

semiparametric efficiency bounds, and allow for straightforward inference [4, 10, 26]. These
ideas are particularly powerful when used together with sample-splitting and cross-fitting,
where the nuisance functions are estimated on one half of the data, the functional is estimated
on the held-out data, and the roles are reversed and the two resulting estimates are averaged
to regain efficiency.

Despite their many strengths, one-step estimators are known to be far from minimax-
optimal for many non-parametric functional estimation problems over smoothness classes,
even when they are based on a minimax-optimal nuisance function estimate. This basic
observation dates back to at least the work of Bickel and Ritov [3] who constructed minimax-
optimal estimates of the integral of the square of a density by further debiasing the one-step
estimator. More generally, for estimating smooth integral functionals of a density Birgé and
Massart [5] proposed a general higher-order debiasing scheme, and developed complementary
lower bounds. Their scheme, in combination with ideas from the papers [28, 30, 45], yields
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minimax-optimal estimates for a broad class of smooth integral functionals. For more complex
functionals which arise in causal inference, the construction of higher-order estimators is more
involved, and is the main contribution of a more recent line of work [33, 39, 41, 51], with
complementary lower bounds appearing in the work of Robins et al. [40]. In these settings,
higher-order estimators improve on the one-step estimate in (very) low-regularity settings
when

:
n-rates are not achievable, and are also able to achieve

:
n-rates in a wider range of

(moderately) low-regularity settings. Inspired by this latter observation, some work [2, 17, 49]
has considered

:
n-consistent estimation of causal effects under weaker conditions than those

required by first-order methods, once again relying on higher-order debiasing. It is worth
noting that these higher-order estimators improve on first-order estimates, and are minimax-
optimal in certain settings, but are decidedly not structure agnostic in the same way that the
plugin and first-order functional estimates are1.

Our Contributions: With this background in place we can now briefly summarize our most
significant contributions:

1. In Section 3.1 we describe a formal minimax setup aimed at understanding the funda-
mental limits of black-box functional estimation. This minimax framework allows us to
frame the discussion of structure-agnostic versus structure-aware estimators, and study
their relative merits.

2. In Theorem 1, we develop consequences for estimating three canonical functionals – the
quadratic functional in the Gaussian sequence model, the quadratic functional in the non-
parametric density model, and a mixed bias causal functional (the expected conditional
covariance). Building on relatively well-understood techniques, in Theorem 2 we give
matching upper bounds. Taken together these results highlight the impossibility of
improving on first-order estimators without making additional structural assumptions.

3. We conclude in Section 4 with some discussion of our results, their implications, and
some important avenues for future research.

1.1 Related Work

Functional estimation problems have a rich history in many different fields and we refer the
reader to the works [4, 46, 47, 50] for a broader introduction to the subject. We focus in this
section on briefly reviewing some lines of work which provided most of the inspiration for our
work, and which study functional estimation problems in a minimax framework. In our work
we present concrete results for three canonical functional estimation problems: estimating a
non-linear functional in the Gaussian sequence model, estimating a non-linear integral func-
tional of a density, and estimating a causal functional (the expected conditional covariance).

Functional estimation in the Gaussian sequence model goes back to the work of Ibragimov
and Khas’ minskii [21] who initiated the study of linear functionals in this model. The work of
Cai and Low [7], Donoho and Nussbaum [15], Fan [18] have considered estimating non-linear
functionals in the Gaussian sequence model, over Sobolev ellipsoids, Besov bodies, 3p balls,
and hyperrectangles. More recent work, for instance that of Collier et al. [13], has focused on
estimating linear and non-linear functionals over sparsity classes.

1We note that we sometimes emphasize certain differences between certain classes of estimators, but the

classification of estimators and the boundaries between these classes can be blurry. Part of the motivation of

our work is to ground the discussion of the relative merits of different types of estimators in a rigorous minimax

framework.
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The estimation of smooth integral functionals of densities was considered by Bickel and
Ritov [3] who studied estimating the integral of the square of a smooth density. Bickel and
Ritov [3] showed that minimax rates for this functional exhibited an “elbow effect” – when
the smoothness of the density ³ > d/4 it is possible to attain parametric

:
n-rates but for

less smoothness the best achievable rate is non-parametric. Their work inspired further work
on estimating other smooth integral functionals of densities and regression functions over
non-parametric smoothness classes [5, 28, 30, 45] culminating in a relatively comprehensive
minimax theory for these functionals. The work on estimating integral functionals of a smooth
density foreshadowed many developments in causal inference: particularly identifying, the sub-
optimality of plugin estimates, the improved but minimax sub-optimal performance of one-
step corrected estimates, and finally minimax-optimal estimates constructed via higher-order
corrections. Departing from the minimax framework, there are numerous other frameworks in
which one could compare estimators. These results often provide a complementary picture. For
instance, the work of Cattaneo and Jansson [9] studies estimators of the quadratic functional
via the inferential lens of bootstrap consistency, highlighting other tradeoffs between some of
the estimators that we study.

Functionals which arise in causal inference typically exhibit more complex structure, often
depending on multiple nuisance functions. The work of Robins and Rotnitzky [37], Robins
et al. [38] highlighted the so-called double robustness phenomenon, where the one-step cor-
rected estimates exhibited (second-order) bias which depended on the product of the errors of
nuisance estimates. More recent work, highlights the benefits of sample-splitting and cross-
fitting when using first-order estimates [11], and attempts to characterize more precisely the
set of functionals for which the first-order estimate is doubly robust [12, 42]. Moving beyond
first-order estimates, the work on higher-order influence functions [39, 41] and the work on
complementary minimax lower bounds [40] has aimed to more completely develop the minimax
theory for various important functionals in causal inference, when the nuisance functions are
Hölder smooth.

1.2 Notation

We will use the notation .,& to denote inequalities which hold up to a universal positive
constant, and o to denote an equality which holds up to a universal positive constant.

Sobolev Ellipsoids: Some of our results will consider estimation of functionals in the
Gaussian sequence model. We will discuss, for instance, the case when Θ is a Sobolev ellipsoid,
i.e. for some constants M1,M2 > 0 our parameter »7 is in the set:

Θs(M1,M2) =

ù
ú
û» :

>∑

j=1

»2j j
2s/d fM1,

>∑

j=1

»2j fM2

ü
ý
þ . (1)

Hölder Functions: For a function f : Rd 7³ R, and a vector ³ * R
d
+ we define,

D³f =
"‖³‖1f

"x³1

1 . . . "x³d

d

.
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Then letting 3 = +s+ we define the Hölder function class:

Hs(L) =
{
f : f is 3 times differentiable,

max
³

|D³f(x)2D³f(y)| f L‖x2 y‖32s2 , "(x, y) * R
d, ‖³‖1 = s, ³ * N

d
}
.

We sometimes refer to both Hölder functions and Sobolev ellipsoids with the terminology
Hölder-type spaces.

2 Background

We begin by introducing some functional estimation problems. We then briefly introduce
classical one-step estimators for this problem emphasizing their structure-agnostic nature,
before discussing minimax-optimal higher-order estimators.

2.1 Functional Estimation Problems

Although our results have broader implications, we focus throughout on three important func-
tional estimation problems, for which minimax rates are relatively well-understood. In each
case, we briefly summarize some well-known results. We revisit some generalizations of our
results in Section 4, and highlight some potential avenues for further investigation.

Quadratic Functionals in the Gaussian Sequence Model: The main ideas of our work
are most clearly understood in the following classical infinite Gaussian sequence model. We
observe,

yj = »7j + ëj ,

where j * {1, 2, . . .}, each ëj is drawn independently with distribution N(0, 1/n) and our goal
is to estimate the quadratic functional:

Q(»7) =
>∑

j=1

»72j . (2)

This functional is a canonical example of a smooth functional and minimax rates for estimation
(over Sobolev ellipsoids) go back to a series of works [3, 15, 18, 30].

Smooth Integral Functionals: In this setting, we observe X1, . . . ,Xn > f7, and our goal
is to estimate an integral functional,

T (f7) =

∫
(f7(x))2dx. (3)

This can be generalized the estimation of T×(f
7) =

∫
×(f7(x))dx, for some × which has contin-

uous second derivative. Under suitable conditions, this general setup includes the estimation of
familiar information-theoretic quantities (like the entropy), and familiar quantities which arise
in non-parametric estimation (like 3pp norms). The estimation of the quadratic functional was
studied by Bickel and Ritov [3] and the more general problem of estimating smooth integral
functionals was considered by Birgé and Massart [5].
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Causal Functionals: To illustrate our ideas we focus on the expected conditional covariance.
This functional arises in biostatistics and epidemiology in the context of the estimation of the
causal effect of a binary treatment [40], and is an important functional in assessing conditional
independence. Concretely, we observe samples of the form {(Y1, A1,X1), . . . , (Yn, An,Xn)}
drawn i.i.d from a distribution P, where Xi * R

d, Ai * {0, 1}, Yi * {0, 1}. We refer to X as
the covariates, Y as the outcome, and A as the treatment. We denote the covariate density
pX , and define the regression function and propensity score:

µ7(x) = E[Y |X = x],

Ã7(x) = E[A|X = x].

Our goal is to estimate the functional:

Ëcov = E[cov(A,Y |X)] = E[AY ]2
∫
Ã7(x)µ7(x)pX(x). (4)

The first term is easy to estimate at fast
:
n-rates, and the focus is often on estimating the

second term. Even in our binary setup the joint distribution over triples (X,A, Y ) is not fully
specified by the nuisance functions (µ7, Ã7, pX). The joint distribution in the binary setup is
fully parametrized by quadruples (µ7, Ã7, ·7, pX) where we additionally define,

·7(x) = E(Y |X,A = 1)2 E(Y |X,A = 0).

Somewhat surprisingly minimax rates for estimating the expected conditional covariance are
not understood in full generality when the nuisance functions are Hölder smooth. In the more
restricted setting when the covariate density pX is either known or can be estimated at a
sufficiently fast rate, sharp minimax rates are better understood [39].

2.2 The Methodological Approach to Functional Estimation

The functional estimation problems introduced above are examples of semi-parametric infer-
ence problems, with non-parametric nuisance components. The first attempt to solve these
problems was based on the so-called plugin principle. Using the data we estimate the non-
parametric components and then plug them in to obtain estimates of the functional. For
instance, in the problem of estimating the expected conditional covariance, we regress the
outcome Y on the covariates X to obtain an estimate µ̂, and regress the treatment A on the
covariates X to obtain an estimate Ã̂ and construct the plugin estimate:

Ë̂cov
pi =

1

n

n∑

i=1

AiYi 2
1

n

n∑

i=1

Ã̂(Xi)µ̂(Xi). (5)

Similar plugin estimates can be constructed for functionals in the Gaussian sequence model,
and for density integral functionals. It is natural to expect that if our estimates µ̂ and Ã̂ are
accurate, then the resulting plugin estimate will also be accurate. It is worth emphasizing
the structure-agnostic nature of the plugin estimates, and particularly its compatibility with
black-box nuisance function estimates. One can use a powerful machine learning algorithm
(say a random forest, or a deep neural network) to construct estimates of the propensity score
and the regression function, and use these to construct accurate functional estimates.

One drawback of plugin estimates is that they inherit bias, and rates of convergence,
directly from their nuisance function estimates. This in turn can complicate inference, and
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has led to the development of powerful one-step correction methods which improve on plugin
estimates by reducing their bias, improving their rate of convergence, and allowing for valid:
n-rate inference, even when the nuisance function estimates converge at a slower than

:
n-

rate. These one-step corrections are at the heart of semi-parametric theory, and are particularly
powerful when used in conjunction with sample-splitting (and/or cross-fitting). To illustrate
the main idea, suppose we consider the expected conditional covariance, and consider the
following first-order estimator:

Ë̂cov
fo =

1

n

n∑

i=1

(Ai 2 Ã̂(Xi))(Yi 2 µ̂(Xi)), (6)

where now we suppose that Ã̂ and µ̂ are constructed on a separate sample. It is common
to construct two estimates (reversing the roles of the two samples) and average them. This
estimator can be viewed as arising from correcting the plugin estimator in (5) by adding to it
an estimate of the influence function of the target functional. To build some intuition for the
estimate Ë̂cov

fo one can observe that treating µ̂, Ã̂ as fixed (or estimated on a separate sample)

we can compute the bias (or conditional bias) of Ë̂cov
fo and observe that it is of second-order, i.e.

∣∣∣E[Ë̂cov
fo ]2 Ëcov

∣∣∣ =
∣∣∣∣
∫

(Ã7(x)2 Ã̂(x))(µ7(x)2 µ̂(x))pX(x)dx

∣∣∣∣ .

The estimator Ë̂cov
fo exhibits the so called double robustness property. Roughly, one can upper

bound the error of the estimate Ë̂cov
fo by a product of errors of the underlying nuisance estimates.

Once again, it is worth emphasizing the structure-agnostic nature of the first-order estimate.
As with the plugin estimate, the first-order estimate is agnostic to the nature of the underlying
nuisance function estimates. The guarantees for the first-order estimator rely on the accuracy
of the pilot estimates, but neither the estimator nor its guarantee are tailored to the structure
which enabled accurate pilot estimation. This enables us to use this functional estimate along
with black-box machine learning algorithms, which perform well in practice, but do so by
exploiting structural properties of the underlying nuisance functions that can be difficult to
describe mathematically.

2.3 Smoothness Classes and The Structural Approach to Functional Esti-

mation

Functional estimation problems are also studied from a minimax perspective in order to un-
derstand fundamental limits and to construct optimal estimators. Absent any structural as-
sumptions consistent functional estimation is impossible and it is classical to impose some
structure on the non-parametric components in the form of smoothness assumptions.

In the Gaussian sequence model this amounts to constraining the parameter space by
hypothesizing that »7 * Θ. Minimax rates for quadratic functional estimation are well-
understood for a large variety of constraint sets Θ. In our discussion, we will primarily focus
on the case when »7 is in the Sobolev ellipsoid Θs(M1,M2) in (1). In the case of integral
functionals of a density, it is common to hypothesize that the nuisance function (the sampling
density f) belongs to a Hölder space, i.e. that f * Hs(L), and that f specifies a valid density
f g 0,

∫
f(x)dx = 1. Finally, for the expected conditional covariance a typical assumption is

that Ã * H³(L1), 0 f Ã(x) f 1, and µ * H³(L2).
Given these structural assumptions, it is then natural to wonder: given a rate-optimal (say

in the 32-sense) nuisance function estimate, are the resulting plugin or first-order estimators
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minimax optimal? The answer to this question is often “no” and this in turn motivates higher-
order estimators.

First-order estimators can be viewed as a linear bias correction of a plugin estimate. These
first-order estimators have quadratic bias and higher-order estimators are constructed, roughly,
by subtracting an estimate of this quadratic bias from the first-order estimate. The estimate
of the bias takes the form of a higher-order U-statistic. In the Gaussian sequence model, one
second-order estimator for Q(»7) is a classical truncated series estimator. For a truncation
threshold T > 0 we construct the estimator:

Q̂»ho =
T∑

j=1

y1j y
2
j + 2

>∑

j=T+1

[
(y1j + y2j )»̂j

2
2 »̂2j

]
, (7)

where we assume for simplicity that we obtain two observations y1, y2 in the Gaussian sequence
model. When this is not the case, one can use the sample-splitting device described in [36],
and define:

y1j = yj +Φ21(Uj)/
:
n

y2j = yj 2 Φ21(Uj)/
:
n,

where Uj are independently drawn uniform random variables. The resulting y1j , y
2
j are now

independent, with means »7j and variance 2/n (i.e. their variances are inflated by a factor

of 2). When »̂ is 0, the estimate (7) is an unbiased estimate of
∑T

j=1 »
72
j . In this case, it is

well-known [15, 18, 30], that when the truncation parameter T is chosen to scale as n2d/(4s+d),
Q̂»ho is a minimax optimal estimate of Q(»7) over Θs and is semi-parametrically efficient when
s > d/4.

It is important to note that despite the fact the estimator was constructed as a second-
order correction to the plugin estimate, its minimaxity over the Sobolev ellipsoid is no longer
strongly dependent on the choice of the pilot estimate »̂, which could simply be taken to be 0.
Rather, the optimality of this estimator is closely related to properties, such as decay rate of
the coefficients »7j , of the underlying Sobolev ellipsoid. In a similar vein, higher-order estima-
tors have been constructed for integral functionals of a density in [5, 28, 45], and for causal
functionals like the expected conditional covariance in [39]. These estimators exhibit similar
properties to the estimator (7), the analysis which demonstrates their minimax-optimality (or
superiority over plugin or first-order estimates) often relies on carefully exploiting properties
of the underlying nuisance function space.

Comparing Higher-order Estimators and One-Step Corrections: To summarize
the discussion so far, it is worth once again contrasting first-order and higher-order estima-
tors to identify some common themes which hold across the canonical examples and more
broadly. First-order estimators are black-box corrections to plugin estimates. Under very
weak conditions they improve on plugin estimators, and their accuracy depends only on the
(squared) errors of the nuisance function estimates. This in turn enhances their compatibility
with black-box (machine learning) methods for nuisance function estimation. They are often
not minimax-optimal over Hölder-type function spaces, even when used in conjunction with
minimax-optimal nuisance function estimates. In contrast, minimax-optimal higher-order es-
timators are more carefully tailored to the underlying function space. They typically have a
weaker connection to the plugin estimates on which they are based. They are analyzed via a
more careful understanding of the bias-variance tradeoff in the underlying nuisance function
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space. They can in many cases yield minimax-optimal functional estimates over Hölder-type
spaces, even when used with trivial (zero) pilot nuisance function estimates.

3 Main Results

We begin with a description of the black-box minimax setup we will focus on. We then turn
our attention to minimax lower bounds in Section 3.2, and briefly provide complementary
upper bounds in Section 3.3.

3.1 Minimax Functional Estimation in the Black-Box Model

To fix ideas we first consider estimation of the quadratic functional in the Gaussian sequence
model (2). As we noted previously, with no structural assumptions placed on »7 consistent
functional estimation is impossible. Rather than impose smoothness assumptions, we model
the black-box setting where we construct a pilot estimate on a separate sample.

More formally, our goal is to estimate Q(»7) and our assumption on »7 is that the pilot
estimate »̂ is accurate in an 32 sense, i.e. that »7 * Θ(rn), where:

Θ(rn) :=
{
» : ‖» 2 »̂‖22 f rn

}
, (8)

where the accuracy of the pilot estimate rn is unknown to the statistician.
It is important to note that the assumption that the pilot estimate »̂ is rn-accurate, im-

poses an (implicit) structural assumption on »7. The strength of this structural assumption
depends on the (unknown) rate of convergence rn. It is precisely this structural condition that

plugin and first-order estimates are tailored to leverage. It is also worth contrasting this struc-
tural assumption with the smoothness assumptions in (1) – here the structural assumption
hypothesizes that our favorite nuisance function estimator returns an accurate pilot estimate,
but does not further constrain »7 to have a particular structure. Since rn is unknown to the
statistician, estimators constructed in this model are implicitly adaptive, i.e. this setting bears
similarities to the classical adaptive non-parametric estimation setting where functions are
hypothesized to be smooth but the smoothness parameter is unknown to the statistician.

Absent any additional smoothness assumptions, our goal is to construct a minimax rate-
optimal estimate, i.e. an estimate Q̂ such that:

sup
»∗*Θ(rn)

E(Q̂2Q(»7))2 o inf
Q̃

sup
»∗*Θ(rn)

E(Q̃2Q(»7))2 := M
»
n(Θ(rn)), (9)

and to study the minimax risk M
»
n(Θ(rn)).

In a similar vein, one can consider minimax estimation of the density functional T (f7)
in (3). We assume for simplicity that the densities under consideration are uniformly upper
bounded by some (large) constant M > 0. Our goal is to estimate T (f7) under the constraint
that f7 * F(rn):

F(rn) :=
{
f :

∫
(f(x)2 f̂(x))2dx f rn, f g 0,

∫
f(x)dx = 1, ‖f̂‖>, ‖f‖> fM

}
.

In this case we define the associated minimax risk as:

M
f
n(F(rn)) := inf

T̂
sup

f∗*F(rn)
E(T̂ 2 T (f7))2. (10)

9



For the expected conditional covariance we are given two pilot estimates µ̂ and Ã̂. In order
to construct higher-order estimators we might further assume that we are given a third pilot
estimate p̂X of the covariate density. To simplify our presentation of minimax lower bounds,
we consider the case when the covariate density pX is uniform on [0, 1]d. We also assume that
µ̂ and Ã̂ are bounded away from 0 and 1 on [0, 1]d. This latter restriction can be eliminated
via a perturbation argument similar to the one used in Appendix B.2 for the integral of the
squared density. Although these restrictions ease the construction of minimax lower bounds,
the upper bounds in Theorem 2 hold without these restrictions.

With this setup in place our goal is to estimate Ëcov in (4), under the following constraints
on (µ7, Ã7, ·7, p7X) * G(rn, sn):

G(rn, sn) :=
{
(µ, Ã, ·, pX ) : supp(X) = [0, 1]d, pX = unif[0, 1]d,

∫
(µ(x)2 µ̂(x))2pX(x)dx f rn,

∫
(Ã(x)2 Ã̂(x))2pX(x)dx f sn, 0 f Ã(x), µ(x) f 1, 1 2 · g Ã̂(x), µ̂(x) g · > 0, for x * [0, 1]d

}
.

We define the associated minimax risk as:

M
cov
n (G(rn, sn)) := inf

Ë̂
sup

(µ∗,Ã∗)*G(rn,sn)
E(Ë̂ 2 Ëcov)2. (11)

With this setup in place, our goal is to understand the fundamental limits on structure-agnostic
functional estimation by providing upper and lower bounds on the minimax risks in (9), (10)
and (11).

3.1.1 Interpreting the Minimax Setup

The minimax problems described in this section require some care to interpret. We describe
briefly some interpretations focusing again on the Gaussian sequence model:

Sample-Splitting and the Conditional Viewpoint: When analyzing black-box sample-
splitting based functional estimators, it is natural to take a conditional viewpoint to remain
judicious in the modeling assumptions we impose. In this viewpoint, we hypothesize that
for some function rn,· our nuisance estimates are rn-accurate with probability at least 1 2 ·,
and then proceed to analyze a functional estimate constructed on a separate sample. This
perspective is for instance explicitly adopted in the work [19], and is implicit in a long series
of past work [3, 4, 11, 12].

To complement this conditional viewpoint with minimax lower bounds, one can aim to
understand the fundamental limitations of the second stage of this two-stage estimator con-
struction (the first-stage corresponds to the well-studied problem of function estimation). This
problem is at the heart of our proposed minimax setup.

In contrast to the traditional setting, where »7 is fixed, and »̂ is random, in our lower
bounds we treat both as fixed. To model more closely the sample-splitting based functional
estimation paradigm, we might split the data into two sets D0 and D1, and construct a pilot
estimate »̂ on D0. We would then relax the constraint set in (8) to be the random set:

Θ(rn, ·) =

ù
ú
û

{
» : ‖» 2 »̂‖22 f rn

}
with probability 12 · independent of D1,{

» :
∑>

j=1 »
2
j fM2

}
otherwise,

where with probability · the nuisance parameter »7 is essentially unconstrained. Lower bounds
over this random constraint set, can directly be obtained from lower bounds over the set (8) at
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the cost of some additional notational burden. This is because when the nuisance parameter
is (essentially) unconstrained, functional estimation is impossible.

Unstructured Local Minimax Lower Bounds: An alternative way to interpret our
problem setting, is as a type of local minimax setup. The pilot estimate »̂, and the local
radius rn, define a local estimation problem via the constraints in (8). The minimax rates
we study are thus quantifying the difficulty of functional estimation, locally around the pilot
estimate, with an (otherwise) unconstrained nuisance parameter.

Despite the similarity in spirit, the setup and goals are quite different from classical local
minimax problems. We don’t make strong assumptions on the sequence rn, the only constraints
in our problem are locality constraints as opposed to locality and smoothness constraints,
and we adopt a non-asymptotic view. The most significant difference is that we localize the
parameter space around the pilot estimate »̂ and not the true parameter »7 since our goal is
not to elicit local minimax rates in the neighborhood of the true parameter »7, but rather to
understand the fundamental limits of black-box functional estimation.

3.2 Lower Bounds

With the minimax setup introduced in the previous section we are now equipped to state our
lower bounds on the minimax risks in (9), (10) and (11).

Theorem 1. The minimax risks in (9), (10) and (11) are lower bounded as:

1. Quadratic Functional in the Gaussian Sequence Model:

M
»
n(Θ(rn)) & r2n + ‖»̂‖22 min

{
rn,

1

n

}
.

2. Quadratic Density Integral Functional:

M
f
n(F(rn)) & r2n +

[∫
f̂(x)3dx2

(∫
f̂(x)2

)2
dx

]
min

{
rn,

1

n

}
.

3. Expected Conditional Covariance:

M
cov
n (G(rn, sn)) & rn × sn +

1

n
.

We prove this result in Appendix B. Our proofs are based on a well-understood recipe. We
reduce the problem of lower bounding the minimax risk of functional estimation to lower
bounding the risk (the sum of Type I and II errors) in an appropriate hypothesis testing prob-
lem (roughly of distinguishing if the functional is large or small). If the null and alternate
are difficult to distinguish, we obtain a lower bound on the minimax risk. To lower bound
the minimax hypothesis testing error we carefully construct priors on the composite null and
composite alternate and show that the resulting mixture distributions are difficult to distin-
guish by lower bounding the error of the (optimal) likelihood ratio test. At a more technical
level, we use classical ideas from Ingster and Suslina [22] for the Gaussian sequence model,
from Balakrishnan and Wasserman [1] for the density integral functional, and from Robins
et al. [40] for the expected conditional covariance, in order to upper bound an appropriate
divergence measure between the two mixture distributions.
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It is interesting to first focus on the case when rn, sn k 1/n, since this is the typical
case. In this case, the second term in each of the lower bounds corresponds (in rate) to semi-
parametric efficiency lower bounds. These lower bounds are determined by the variance of the
estimated influence function, and decay to 0 at the standard parametric rate. A large fraction
of semi-parametric theory focuses on imposing conditions on the nuisance functions under
which the bias term (of order r2n or rn × sn) above decays to zero faster than the parametric
rate, at which point semi-parametric efficient estimation and inference are possible. On the
other hand, the more recent literature on higher-order estimators [2, 3, 5, 17, 39, 49, 51], has
aimed at reducing the bias term to either obtain

:
n-rates under weaker assumptions on the

nuisance functions, or in order to obtain (slower than
:
n) minimax-optimal rates when the

nuisance functions are Hölder smooth. The main import of Theorem 1 is that under only
the assumption that the pilot estimates are accurate in an 32 sense, and in the absence of
further smoothness assumptions, no further bias reduction is possible. As we explore further
in Theorem 2, first-order estimates are minimax-optimal, and achieve the limits of structure-
agnostic functional estimation.

When the condition that rn, sn k 1/n is violated the first-stage pilot estimates are super-
accurate, i.e. are more accurate than the (fixed-dimensional) parametric rate, and the plugin
functional estimate is already minimax optimal. We address this situation in more detail in
Appendix D, where we construct a functional estimate which adapts between the plugin and
first-order estimates paying only a small statistical price, and prove a matching lower bound
which highlights the fundamental limits of adaptivity in this setup.

3.3 Upper Bounds

In this section, we develop upper bounds on the minimax risk by analyzing plugin and first-
order estimators. Our analyses of these estimators are elementary, and plugin and first-order
estimators have been analyzed much more generally in past work, although often from an
asymptotic perspective [50]. Our simple non-asymptotic analysis enables a more direct com-
parison with lower bounds from Theorem 1.

To set the stage we first formally define the plugin and first-order estimates. The plugin
and first-order estimates for the quadratic functionals in the Gaussian sequence model and for
the density integral functional are:

Q̂»pi = ‖»̂‖22 T̂ f
pi =

∫
(f̂(x))2dx

Q̂»fo = 2〈y, »̂〉 2 ‖»̂‖22 T̂ f
fo =

2

n

n∑

i=1

f̂(Xi)2
∫

(f̂(x))2dx.

We also recall the definitions of the plug-in and first-order estimates of the expected conditional
covariance in (5) and (6), and the higher-order estimate in the Gaussian sequence model in (7).
Having introduced the plugin and first-order estimates of our three canonical functionals we
have the following theorem:

Theorem 2. The estimators described above have the following guarantees:
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1. Quadratic Functional in the Gaussian Sequence Model:

|Q̂»pi 2Q(»7)|2 . r2n + rn‖»̂‖22

E(Q̂»fo 2Q(»7))2 . r2n +
‖»̂‖22
n

E(Q̂»ho 2Q(»7))2 .

þ
ø

>∑

j=T+1

(»̂j 2 »7j )
2

ù
û
2

+
‖»̂‖22
n

+
T

n2
. r2n +

‖»̂‖22
n

+
T

n2
.

2. Quadratic Density Integral Functional:

|T̂ f
pi 2 T f(f7)|2 . r2n + rn

∫
f̂(x)2dx

E(T̂ f
fo 2 T f(f7))2 . r2n +

var(f̂(X))

n
.

3. Expected Conditional Covariance:

E(Ë̂cov
pi 2 Ëcov)2 . rn × sn + rn + sn +

1

n

E(Ë̂cov
fo 2 Ëcov)2 . rn × sn +

1

n
.

Once again we initially focus our discussion on the case when rn, sn k 1
n , which is the typical

setting, in which case the first-order estimates outperform the plugin estimates. We design an
adaptive estimate for the quadratic functional in the sequence model, which selects between
the plugin and first-order estimate in a data-driven manner, and achieves close to the oracle
risk, in Appendix D. For each of our functionals, focusing on terms which only depend on n
and rn, sn, the first-order estimate achieves a maximum risk which matches the minimax lower
bounds of Theorem 1, i.e. the first-order estimates are minimax optimal in our setting.

The higher-order estimator in the Gaussian sequence model depends on a truncation pa-
rameter T . The higher-order estimator can have smaller bias than the first-order estima-
tor since it unbiasedly estimates

∑T
j=1 »

72
j , and combines this with a first-order estimator of∑>

j=T+1 »
72
j . When T is set small relative to n, then this estimator incurs only a modest

amount of additional variance. To achieve minimax-optimality over a Sobolev ellipsoid in the
low-regularity regime when s < d/4, the truncation parameter T needs to be chosen larger
than n, in a careful way, to balance the reduction in bias with the inflation in variance relative
to the first-order estimator. In our structure-agnostic model, it is impossible to guarantee
that the higher-order estimator has meaningfully lower bias than the first-order estimator,
and consequently it is impossible to guarantee that the higher-order estimator improves on
the first-order estimator. Higher-order estimators for the quadratic density functional and
for the expected conditional covariance are more involved to describe [5, 39] but share the
same qualitative features. This in turn highlights that in our formalization of the black-box,
structure-agnostic functional estimation problem, where we are unwilling to assume more than
access to a potentially accurate black-box prediction algorithm, it is impossible to improve on
first-order estimators in a minimax sense. Higher-order estimates can only improve on first-
order estimates when additional structural assumptions are imposed and exploited.

We note in passing that there are some slight differences between the constant factors in
the upper and lower bounds for the quadratic density functional. This is due to the mismatch
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between the 322 distance and the squared Hellinger distance. Intuitively these terms of the
lower bound are determined by the modulus of continuity of the quadratic functional over
a squared Hellinger neighborhood around f̂ [14]. On the other hand, the upper bounds are
determined by the modulus of continuity over an 322 neighborhood. These coincide when we
assume that the densities under consideration are both upper and lower bounded by universal
constants, but can otherwise differ.

Finally, for the expected conditional covariance, we observe that under our conditions the
plugin estimator is strictly dominated by the first-order estimator. The first-order estimator
is minimax-optimal for any choice of rn, sn. This is because even when our pilot estimates are
super accurate, i.e. for instance the true Ã7 and µ7 are known, we still need to estimate the
term E[AY ] to construct our functional estimate. This in turn leads to an unavoidable O(1/n)
term in the MSE. In contrast, for the quadratic density and sequence functionals the plugin es-
timator is a deterministic function of the nuisance estimates and incurs no additional variance,
and can dominate the first-order estimator when the pilot estimates are super-accurate.

4 Discussion and Extensions

In this work, we introduced a minimax framework for reasoning about two-stage structure-
agnostic functional estimation methods. We developed consequences for estimating three
canonical functionals – the quadratic functional in the Gaussian sequence model, the quadratic
functional in the non-parametric density model, and a mixed bias causal functional (the ex-
pected conditional covariance).

By focusing on concrete examples, we have given results for particular estimators which are
canonical plug-in and first-order estimators, but have avoided giving precise general definitions
for these classes of estimators. This is by design, as we noted in Footnote 1 the distinctions
between these classes of estimators can be blurry. For instance, the work of Newey and
Robins [34] and Giné and Nickl [20] show that certain carefully undersmoothed plugin-type
estimators can perform similarly to higher-order estimators, and inherit both their strengths
and weaknesses.

There are several possible extensions of our results. Minimax theory is well-understood
for more general smooth functionals in both the density model and in the Gaussian sequence
model, and this theory mirrors closely results for the quadratic functionals in these models. We
expect our main results will continue to hold for more general smooth functionals. For causal
functionals, beyond the expected conditional covariance, minimax lower bounds are known
only in a few problems [40] and we expect our results will extend to cover these functionals as
well. A more ambitious extension would aim to cover larger classes of functionals for which
first-order estimators are well-understood to have desirable properties [12, 42]. However, the
likelihood structure in each of these statistical models is quite different, which poses some
challenges to developing a unified theory of lower bounds. Minimax rates, over appropriate
smoothness classes, have also been studied for certain local integral functionals which arise
in causal inference and in non-parametric regression [8, 27, 43, 52], and it would be also
be interesting to understand the fundamental limits of structure-agnostic estimation in these
problems.

Finally, it is worth emphasizing that our lower bounds do not preclude estimators which
improve in some restricted ways on first-order estimators. For instance, it is possible in some
cases to construct adaptive estimators which perform nearly as well as the first-order estimator
in the absence of any additional structure, but improve on the first-order estimator when the
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nuisance functions have additional smoothness structure. Such estimates are developed, for
instance, in a testing context in the work of Liu et al. [32]. On the other hand, our results
do show that if one aims to improve on first-order estimators in a general minimax sense,
this improvement is only possible at the expense of adding further assumptions, i.e. there
are limits to what can be achieved by higher-order estimators without additional structural
assumptions. Developing a comprehensive understanding of adaptive estimators, which adapt
between smoothness classes and structure-agnosticity, and understanding their fundamental
limitations, could be an interesting avenue for future research.
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A Lower Bound Preliminaries

In this section, we collect some well-known technical facts that will aid the proof of Theorem 1.
Suppose that our goal is to estimate a functional T (P ), given samples from P * P. We first
recall a standard construction (see for instance Theorem 2.14 in [47]) for obtaining lower
bounds in functional estimation problems.

We construct two prior distributions, Ã0 and Ã1 on P, which induce two distributions Q0

and Q1 where for any measurable set A:

Q0(A) =

∫
Pn(A)dÃ0(P ), and Q1(A) =

∫
Pn(A)dÃ1(P ).

We further ensure that our functional takes sufficiently different values under each of the prior
distributions, i.e.:

Ã0({P : T (P ) f c}) = 1, Ã1({P : T (P ) g c+ 2s}) = 1.

Then we have the following result:

Lemma 1. Suppose that Ç2(Q0, Q1) f ³ <>, then

inf
T̂

sup
P*P

E(T̂ 2 T (P ))2 g s2 max
(1
4
exp(2³), 12

√
³/2

2

)
.

If H2(Q0, Q1) f ³ < 2, then:

inf
T̂

sup
P*P

E(T̂ 2 T (P ))2 g s2
12

√
³(12 ³/4)

2
.
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The proof of this lemma follows immediately from Theorem 2.15 in [47], and an application
of Markov’s inequality to obtain in-expectation bounds. The main takeaway is simply that
if we can construct Q0, Q1 as above, ensuring that the functional is separated by at least 2s,
and ensuring that Q0 and Q1 have Ç2 divergence or Hellinger distance upper bounded by a
sufficiently small constant, then we obtain lower bounds on the minimax risk of order s2.

We frequently use the following well-known fact.

Fact 1. Given two measures p, q, the squared Hellinger distance between their n-fold products

can be upper bounded as:

H2(pn, qn) f nH2(p, q).

Suppose we consider the Gaussian sequence model and let Q0 = N(», 1/n). We then define
Q1 in the following way. We select any d coordinates, let I denote the selected indices. Fix
an ë > 0. Let N := 2d and let {u1, . . . , uN} denote the collection of all vectors with entries
{+ë,2ë}. For any v * R

d we denote by »v the vector which perturbs » by adding v to the
indices in I . Define Që1 to be the following mixture:

Që1 =
1

N

N∑

i=1

N(»ui , 1/n).

The mixture distribution Q1 is obtained by perturbing the coordinates in I by ±ë uniformly
at random. The following result is well-known:

Lemma 2. For any », and I, suppose ë f 1/n, then:

Ç2(Q0, Q
ë
1) f exp(dn2ë4)2 1.

Furthermore, if dn2ë4 f 1, then,

Ç2(Q0, Q
ë
1) f 2dn2ë4.

We include a short proof for completeness in Appendix A.1. We also note the following simple
bound on the Ç2 distance between two Gaussians.

Lemma 3. Suppose P = N(», I/n), Q = N(»̃, I/n), then

Ç2(P,Q) = exp(n‖» 2 »̃‖22)2 1.

Furthermore, if n‖» 2 »̃‖22 f 1, then,

Ç2(P,Q) f 2n‖» 2 »̃‖22.
We will use the following constrained risk inequality as a consequence of Theorem 1 of

Brown and Low [6]. Though we only need a result for the squared loss, the form we use is
most directly deduced from Corollary 2 of [16]. This inequality is a useful tool for proving
lower bounds for adaptive estimators.

Lemma 4. Fix any », and define D1 := N(», I/n) and D2 := N((1 + ³/‖»‖2)», I/n). Let

P1 denote either D1 or D2, and let P2 denote the other distribution. Suppose we have an

estimator Q̂ for which,

EP1
(Q̂2Q(P1))

2 f ³2,

then

EP2
(Q̂2Q(P2))

2 g
[
³2 + 2³‖»‖2 2 ³ exp(n³2/2)

]2
+
.
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A.1 Proof of Lemma 2

The proof follows from a direct computation. We note that,

Ç2(Q0, Q
ë
1) = EQ0

(
Që1
Q0

)2

2 1

= EQ0

d∏

i=1

þ
ø

1
2

[
exp

(
2n (yi2»i2ë)2

2

)
+ exp

(
2n (yi2»i+ë)2

2

)]

exp(2n(yi 2 »i)2/2)

ù
û
2

2 1

(i)
= EQ0

d∏

i=1

1

4
exp(2në2)

[
exp(2

:
nëZi) + exp(22

:
nëZi) + 1

]
2 1

(ii)
=

d∏

i=1

1

2

[
exp(në2) + exp(2në2)

]
2 1

(iii)

f
d∏

i=1

exp(n2ë4)2 1

= exp(dn2ë4)2 1.

In (i), Zi denotes a standard Gaussian random variable, (ii) uses the fact that E(exp(tZi)) =
exp(t2/2), and (iii) uses the fact cosh(x) f 1 + x2 f exp(x2) for x * [0, 1].

B Proof of Theorem 1

We prove each of the three lower bounds in turn.

B.1 Lower Bounds for Quadratic Functional in the Gaussian Sequence

Model

Our goal is to prove minimax lower bounds for estimating the quadratic functional in the
GSM. In particular, we’d like to understand lower bounds on:

inf
Q̂

sup
»:‖»2»̂‖2

2
frn

E(Q̂2Q(»))2.

Our lower bounds will be a consequence of Lemma 1 with various choices of the priors.

LB 1: rn g 1
n , r

2
n .

‖»̂‖2
2

n . In this case, we construct Q0 = N(»̂, I/n) and Q1 = N((1 2
¿)»̂, I/n) where 0 f ¿ f 1. Then by Lemma 3, we have that Ç2(Q1, Q0) f ³ if 2n¿2‖»̂‖22 f ³,
so we select

¿2 =
³

2n‖»̂‖22
,

to ensure this. Since r2n . ‖»̂‖22/n, and rn g 1/n, we observe that ¿ < 1. The distance,

‖»̂2(12¿)»̂‖22 = ¿2‖»̂‖22 = ³/2n f 1/n so the two priors are supported on the set ‖»̂2»‖22 f rn
as desired.
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The functional separation under the two priors is:

2s := ‖»̂‖22 2 (12 ¿)2‖»̂‖22
= (2¿ 2 ¿2)‖»̂‖22
g ¿‖»̂‖22.

So the minimax rate is at least ¿2‖»̂‖42, i.e.
‖»̂‖2

2

n as desired.

LB 2: rn f 1
n . In this case, we use the pair of distributions, Q0 = N(»̂, I/n) and Q1 =

N(»̂ +
:
rn»̂/‖»̂‖2, I/n). By Lemma 3, we have that Ç2(Q1, Q0) f ³ if 2nrn f ³.

The functional separation in this case:

2s := ‖»̂‖22

(
1 +

:
rn

‖»̂‖2

)2

2 ‖»̂‖22

= rn + 2
:
rn‖»̂‖2

g 2
:
rn‖»̂‖2.

So the minimax rate is at least rn‖»̂‖22 as desired.
LB 3: Finally we show that r2n is a lower bound. To see this we observe that without loss of
generality we can assume that »̂ has finite norm since if it did not have finite norm we have
already shown that the minimax rate is infinite. As a consequence, for any ë > 0, and for any
finite integer d > 0, we can find d indices, denoted as I , such that |»̂j | f ë/4, for j * I .

We construct two mixtures Q0 and Që1 in the following way: we set Q0 = N(»̂, I/n) and
Që1 as described in the setup to Lemma 2, by perturbing each coordinate in I by ±ë uniformly
at random. Lemma 2 shows that the Ç2 distance is at most dn2ë4. On the other hand the
functional separation is,

2s :=

þ
ø‖»̂‖22 2

∑

j*I

»̂2j +
∑

j*I

(»̂j ± ë)2

ù
û2 ‖»̂‖22

=
∑

j*I

ë2 ± 2»̂jë

g 1

2

∑

j*I

ë2 =
dë2

2
.

On the other hand, the distribution Që1 is supported on parameters »̃ such that, ‖»̂2 »̃‖22 = dë2.
It remains to prescribe choices for d, ë to ensure that our constraints are satisfied. We choose
ë =

:
³min{1/(nrn), 1/n}, and d = rn/ë

2. This ensures that the Ç2 distance is at most ³,
and as a consequence of Lemma 1 we obtain a minimax lower bound of order r2n as desired.

B.2 Lower Bounds for the Integral of the Squared Density

We prove lower bounds corresponding to each term in our bound separately.

B.2.1 Lower Bound when rn & 1/n

We use Le Cam’s two-point method. Define, p1 := f̂ and for a sufficiently small · > 0 define,

p2(x) := p1(x) (1 + ·p1(x)2 ·») ,
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where » :=
∫
f̂(x)2dx. Since, the densities under consideration are bounded by M > 0, we

observe that for sufficiently small · > 0, p2 is a valid density. Now, we observe that the
Hellinger distance between these densities,

H2(p1, p2) f
∫

(p1(x)2 p2(x))
2

p1(x)
dx =

∫
·2p1(x)(p1(x)2 »)2dx = ·2(

∫
p1(x)

3dx2 »2) := ·2³.

On the other hand, the functional separation is,

∫
p22(x)dx2

∫
p21(x)dx = 2·(

∫
p1(x)

3dx2 »2) + ·2
∫

(p21(x)2 »p1(x))
2dx

g 2·(

∫
p1(x)

3dx2 »2) = 2·³.

Finally, we note that the 322 distance is upper bounded as,

∫
(p1(x)2 p2(x))

2dx =

∫
·2p21(x)(p1(x)2 »)2dx . ·2³,

using the fact that ‖p1‖> f M . Now, we set, · such that, ·2³ = ³/n, for a sufficiently
small constant ³ > 0. We note that this construction is valid since rn & 1/n. Then the
squared Hellinger distance between the n-fold product measures is at most ³ using Fact 1,
and Lemma 1 yields a lower bound of order ³/n as claimed.

B.2.2 Lower Bound when rn . 1/n

In this case, we follow the same construction as above except we choose · such that, ·2³ = ³rn,
for a sufficiently small constant ³ > 0. Then Lemma 1 yields a lower bound of order ³rn as
claimed.

B.2.3 Lower Bound of Order r2n

To set the stage we derive a result on the chi-squared distance between a density, and a
perturbed counterpart. Our result and proof are largely inspired by the proof of Lemma 4.4
in Balakrishnan and Wasserman [1], which in turn generalizes a result of Ingster [23].

For a given m, suppose that we divide S into 2m disjoint sets of equal volume, and pair
these sets together into m (disjoint) pairs {(A1, B1), . . . , (Am, Bm)}. Now, suppose that we
construct:

p»(x) = p0(x) +
h√

vol(A1)

m∑

j=1

[»j [I(x * Aj)2 I(x * Bj)]] ,

where 0 f h/
√

vol(A1) f infx*S p0(x), will be chosen appropriately in the sequel, »j *
{21,+1} will be chosen uniformly at random, and vol(A) denotes the Lebesgue measure of
the set A. We note that by our choice of h, p» is a valid density, i.e. is positive everywhere
and integrates to 1. We then have the following result:

Lemma 5. Define Q to be the mixture obtained from choosing » uniformly at random from

{21,+1}m. If we satisfy the conditions:

1. h/
√

vol(A1) f infx*S p0(x)
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2. nh2/(infx*S p0(x)) f 1

3. mn2h4

(infx∈S p0(x))2
f ln(1 + ³),

then we have that,

Ç2(Pn0 , Q
n) f ³

Taking this result as given we can now complete the proof of our result. By our assumption,
‖f̂‖> fM , so we have that

∫
f̂2 < M . Given an arbitrary pilot density f̂ , and any ë > 0 we

can find a set S of volume 1 such that, f̂(x) f ë/4 on S. We choose ë = min{:rn/4
:
1 +M, 1}.

Now, we construct an intermediate density p̃ = (12 ë)f̂ + ëpU , where pU is the density of
the uniform distribution on S. Now, we note that,

∫
(p̃(x)2 f̂(x))2dx = ë2

∫
(f̂ 2 pU )

2dx f ë2 + ë2
∫
f̂(x)2dx,

so for our choice of ë we obtain that,
∫
(p̃(x)2 f̂(x))2dx f rn/4. We also note that ‖p̃‖> fM ,

since ‖p̃‖> f max{‖f̂‖>, 5ë/4}. Now, on the set S, p̃ is lower bounded as infx p̃(x) g ë.
We construct perturbations p» as described above centered around the density p̃, with

h = ë/
:
2m (for an m we will choose in the sequel). We use Lemma 5 with h = ë/

:
2m,

and choose m large enough to ensure that, në/m f 1, and n2ë2

m f ln(1 + ³). Each of the
densities p» are uniformly upper bounded by a similar argument to the one for p̃. Then as a
consequence, we obtain that Ç2(P̃n, Qn) f ³. We note that,

∫
(p» 2 f̂)2dx f 2

∫
(p» 2 p̃)2dx+ 2

∫
(p̃2 f̂)2dx f 2ë2 + rn/2 f rn.

Finally, the functional separation is:
∫
p2» 2

∫
p̃2 =

∫

S
p2» 2

∫
p̃2 g 1

2
(2ë)2 2 25

16
ë2 g 7

16
ë2 & min{rn/(1 +M), 1},

as desired.

B.2.4 Proof of Lemma 5

We first bound the expected squared likelihood ratio, which in turn implies a bound on the
chi-squared distance. Let us denote h̃ := h/

√
vol(A1). Suppose that we observe {Z1, . . . , Zn},

then the likelihood ratio:

Wn(Z1, . . . , Zn) =
1

2m

∑

»*{21,+1}m

n∏

i=1

p»(Zi)

p0(Zi)
,

and

W 2
n(Z1, . . . , Zn) =

1

22m

∑

»*{21,+1}m

∑

¿*{21,+1}m

n∏

i=1

p»(Zi)p¿(Zi)

p20(Zi)

=
1

22m

∑

»*{21,+1}m

∑

¿*{21,+1}m

n∏

i=1

(
1 +

h̃
∑m

j=1 [»j [I(Zi * Aj)2 I(Zi * Bj)]]
p0(Zi)

)
×

(
1 +

h̃
∑m

j=1 [¿j [I(Zi * Aj)2 I(Zi * Bj)]]

p0(Zi)

)
.
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Using the fact that the supports of the sets {(A1, B1), . . . , (Am, Bm)} are all disjoint, taking
the expected value over Z1, . . . , Zn and using their independence we obtain,

E[W 2
n(Z1, . . . , Zn)] =

1

22m

∑

»*{21,+1}m

∑

¿*{21,+1}m

û
ý1 + h̃2

m∑

j=1

»j¿jaj

þ
ø
n

,

where

aj =

∫

Aj*Bj

1

p0(x)
dx.

From this we can write,

E[W 2
n(Z1, . . . , Zn)] f E»,¿ exp(nh̃

2
m∑

j=1

»j¿jaj) =

m∏

j=1

cosh(nh̃2aj).

Now, using the fact that cosh(x) f 1 + x2 f exp(x2) for x f 1, we obtain that,

E[W 2
n(Z1, . . . , Zn)] f exp(n2h̃4

m∑

j=1

a2j ) f exp

(
mn2h4

(infx*S p0(x))2

)
,

provided that, nh̃2aj f 1 for j * {1, . . . ,m}. Finally, we note that the Ç2 distance is simply,
E[W 2

n(Z1, . . . , Zn)]2 1, and so,

Ç2(Pn0 , Q
n) f ³,

when mn2h4/(infx*S p0(x))
2 f ln(1 + ³), as claimed.

B.3 Lower Bounds for the Expected Conditional Covariance

Now, we turn our attention to the expected conditional covariance. Our proof in this case
is inspired by that of Theorem 4.1 of Robins et al. [40]. Following their work, we construct
our lower bound in the case when Y * {0, 1}. In this binary setup the joint distribution over
triples (X,A, Y ) can be parametrized by quadruples (µ, Ã, ·, pX ). Recall our statistical model,

G(rn, sn) :=
{
(µ, Ã, ·, pX ) : supp(X) = [0, 1]d, pX = unif[0, 1]d,

∫
(µ(x)2 µ̂(x))2pX(x)dx f rn,

∫
(Ã(x)2 Ã̂(x))2pX(x)dx f sn, 0 f Ã(x), µ(x) f 1, 1 2 · g Ã̂(x), µ̂(x) g · > 0, for x * [0, 1]d

}
.

In our proof, we will often suppress dependence on the (universal) constant · > 0.

Case 1: To begin with we show a lower bound of order 1/n, even when the nuisance functions
Ã, µ are known exactly, i.e. when rn = sn = 0. The likelihood in our model is given as:

p(X,A, Y ) = pX(X)Ã(X)A(12 Ã(X))12A(µ(X) + (12 Ã(X))·(X))AY (µ(X)2 Ã(X)·(X))(12A)Y ×
(12 µ(X)2 (12 Ã(X))·(X))A(12Y )(12 µ(X) + Ã(X)·(X))(12A)(12Y ).

We define a pair of distributions p1, p2, defined by quadruples (µ̂, Ã̂, 0, 1) and (µ̂, Ã̂, ·, 1), for
some sufficiently small · > 0. In particular, we will choose · f ·/2. It is straighforward to
verify that the functional separation between these distributions is,

Ëcov(p1)2 Ëcov(p2) = ·E[Ã̂2(X)] & ·.
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On the other hand, the Hellinger distance between p1 and p2 can be calculated by noting:

p1(X,A, Y ) = Ã̂(X)A(12 Ã̂(X))12Aµ̂(X)Y (12 µ̂(X))12Y ,

p2(X,A, Y ) = Ã̂(X)A(12 Ã̂(X))12A(µ̂(X) + (12 Ã̂(X))·)AY (µ̂(X)2 Ã̂(X)·)(12A)Y ×
(12 µ̂(X)2 (12 Ã̂(X))·)A(12Y )(12 µ̂(X) + Ã̂(X)·)(12A)(12Y ).

For any (X,A, Y ) we note that, p1(X,A, Y ) & ·2, and |p1(X,A, Y ) 2 p2(X,A, Y )| . · from
which we obtain that, the squared Hellinger distance,

H2(p1, p2) . ·2.

Choosing · . 1/
:
n, using Fact 1 and applying Lemma 1 then yields a lower bound of order

1/n as desired.

The remainder of the analysis is devoted to proving a lower bound of order rn × sn.
We remark that in our setup this lower bound is simpler to derive that lower bounds for the
expected conditional covariance under smoothness conditions [40], since we are not constrained
by potentially different smoothnesses of the propensity score and outcome regression function.
At a more technical level, it is not necessary in our setup to construct mixtures under both
the null and alternate, and the bound on the Hellinger distance we need is essentially due to
Birgé and Massart [5]. It is also not necessary to use different constructions depending on
which of the propensity score or outcome regression is more difficult to estimate.

Case 2: In this case, we are aiming for a lower bound of rn × sn, in the setting when
rn × sn & 1/n. Consequently, we focus on lower bounds for the estimation of

Ë =

∫
Ã(x)µ(x)pX(x)dx,

since as we noted earlier the remaining term in the expected conditional covariance can be
estimated at fast

:
n-rates.

Fix an integer 2m, and denote by B1, . . . , B2m be 2m translates of the cube (2m)21/d[0, 1/2]d

which are disjoint, and contained in [0, 1]d, and let the bottom left corners of these cubes be
x1, . . . , x2m.

We now define,

Ã»(x) = Ã̂(x) +
h1√

vol(B1)µ̂(x)

m∑

j=1

»j [I(x * B2j(x))2 I(x * B2j21(x))],

µ»(x) = µ̂(x) +
h2√

vol(B1)Ã̂(x)

m∑

j=1

»j [I(x * B2j(x))2 I(x * B2j21(x))],

where »1, . . . , »m will be chosen to be uniformly distributed on {21,+1}, and h1, h2 will be
chosen to ensure that ·/2 f Ã», µ» f 12 ·/2. We will set,

·»(x) =
µ̂(x)2 µ»(x)

12 Ã»(x)
.

Now, we take a point null which we denote by p, to be defined by the quadruple (µ̂, Ã̂, 0, 1).
The functional under the null takes the value,

∫
Ã̂µ̂pXdx =

∫
Ã̂µ̂.
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Under the alternate, which we denote by q» we consider the mixture defined by the quadruple
(µ», Ã», ·», 1), and note that the functional takes value,

∫
Ã»µ»pXdx g

∫
Ã̂µ̂+mh1h2,

where we use the facts that the different bumps I(x * Bj(x)) do not overlap, and that
∫
I(x *

Bj(x))
2dx = vol(Bj).

By construction,
∫
(Ã̂(X)2Ã»(X))2pX(x)dx . h21/vol(B1), and

∫
(µ̂(X)2µ»(X))2pX(x)dx .

h22vol(B1). So we can choose, h1 =
√

vol(B1)min{:rn, ·/2}, h2 =
√

vol(B1)min{:sn, ·/2},
to ensure that all the resulting nuisance functions are valid, and belong to G(rn, sn).

It remains to bound the Hellinger distance for which we will use the main result of Robins
et al. [40]. In particular, we focus on upper bounding the terms a, b, d, pj , j * {1, . . . ,m},
in the preamble to their Theorem 2.1, which in turn yields a bound on the squared Hellinger
distance. We follow their notation closely. The sample space is given by [0, 1]d×{0, 1}×{0, 1}
which we partition into the sets Xj which are {0, 1} × {0, 1} ×Bj *Bj+1, and so the terms pj
are simply each equal to 1/m. Under the null, we have that,

p(X,A, Y ) = µ̂(X)Y (12 µ̂(X))12Y Ã̂(X)A(12 Ã̂(X))12A.

On the other hand, under the alternate we have that,

q»(X,A, Y ) = Ã»(X)Aµ̂(X)AY (12 µ̂(X))A(12Y )(µ»(X)2 Ã»(X)µ̂(X))(12A)Y ×
(12 Ã»(X)2 µ»(X) + Ã»(X)µ̂(X))(12A)(12Y ).

It is easy to verify that if we denote q = E»(p»), then p = q, so the term d of Robins et al.
[40] is 0. Since we do not use a mixture under the null the term a is also 0, so it only remains
to bound the term b. We have that,

p2 q» = (12A)× (21)Y (µ» 2 µ̂) + (21)Aµ̂Y (12 µ̂)12Y (Ã» 2 Ã̂).

Since, ·/2 f Ã» f 12 ·/2 we obtain that p > 0. A direct calculation then gives that, the term
b of Robins et al. [40] is upper bounded upto constants by m(h21+h

2
2). Theorem 2.1 of Robins

et al. [40] then yields a bound on the Hellinger distance between the product measures:

H2(pn,E»(q
n
»)) . mn2(h41 + h42) .

n2

m
(r2n + s2n).

So taking m sufficiently large, we obtain that H2(pn,E»(q
n
»)) f ³, and via Lemma 1 we obtain

a lower bound of order m2h21h
2
2 & rn × sn as desired.

C Proof of Theorem 2

The analysis of the plugin and first-order estimators in the Gaussian sequence model follow
directly from Lemma 6 of the next section. We focus first on analyzing the higher-order
estimator in (7) before turning our attention to the integral of the squared density and the
expected conditional covariance.
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C.1 Upper Bounds for the Quadratic Functional in the Gaussian Sequence

Model

We assume for simplicity that y1 and y2 are independent observations from the Gaussian
sequence model. Observe that,

E|Q̂»ho 2Q(»7)|2 = |EQ̂»ho 2Q(»7)|2 + E(Q̂»ho 2 EQ̂»ho)
2

=

þ
ø

>∑

j=T+1

(»̂j 2 »7j )
2

ù
û
2

+
4
∑>

j=T+1 »
72
j

n
+

4
∑T

j=1 »
72
j

n
+
T

n2

. r2n +
‖»̂‖22
n

+
T

n2
,

as claimed.

C.2 Upper Bounds for the Integral of the Squared Density

We first analyze the plugin estimator.

|T̂ f
pi 2 T f(f7)|2 =

∣∣∣∣
∫
f̂2 2

∫
f72

∣∣∣∣
2

=

∣∣∣∣
∫

(f̂ 2 f7)(f̂ + f7)

∣∣∣∣
2

f
∣∣∣∣
∫

(f̂ 2 f7)2
∣∣∣∣
∣∣∣∣
∫

(2f̂ + (f7 2 f̂))2
∣∣∣∣

.

∣∣∣∣
∫

(f̂ 2 f7)2
∣∣∣∣
(∫

f̂2 +

∫
(f7 2 f̂))2

)

f r2n + rn

∫
f̂2,

as claimed. For the first-order estimator we see that,

E|T̂ f
fo 2 T f(f7)|2 = |ET̂ f

fo 2 T f(f7)|2 + E(T̂ f
fo 2 ET̂ f

fo)
2

=
∣∣∣
∫

(f̂ 2 f7)2
∣∣∣
2
+ 4

var(f̂(X))

n

. r2n +
var(f̂(X))

n
.

C.3 Upper Bounds for the Expected Conditional Covariance

Once again, we first analyze the plugin estimator. We observe that,

E|Ë̂cov
pi 2 Ëcov|2 = |EË̂cov

pi 2 Ëcov|2 + E(Ë̂cov
pi 2 EË̂cov

pi )2

=

∣∣∣∣
∫
Ã̂µ̂pX 2

∫
Ã7µ7pX

∣∣∣∣
2

+
var(AY 2 Ã̂(X)µ̂(X))

n
.
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For the first term we observe that,

∣∣∣∣
∫
Ã̂µ̂pX 2

∫
Ã7µ7pX

∣∣∣∣
2

.

∣∣∣∣
∫

(µ̂ 2 µ7)Ã̂pX

∣∣∣∣
2

+

∣∣∣∣
∫

(Ã̂ 2 Ã7)µ7pX

∣∣∣∣
2

.

(∫
(µ̂2 µ7)2pX

)(∫
Ã̂2pX

)
+

(∫
(Ã̂ 2 Ã7)2pX

)(∫
µ72pX

)

. rn

(∫
Ã̂2pX

)
+ sn

(∫
(µ̂2 + (µ̂2 µ7)2)pX

)

. rn × sn + rn

(∫
Ã̂2pX

)
+ sn

(∫
µ̂2pX

)
,

as desired. For the first-order estimator we have,

E|Ë̂cov
fo 2 Ëcov|2 = |EË̂cov

fo 2 Ëcov|2 + E(Ë̂cov
fo 2 EË̂cov

pi )2

=

∣∣∣∣
∫

(Ã7 2 Ã̂)(µ7 2 µ̂)pX

∣∣∣∣
2

+
var((A2 Ã̂(X))(Y 2 µ̂(X)))

n

f
(∫

(Ã7 2 Ã̂)2pX

)(∫
(µ7 2 µ̂)2pX

)
+

var((A2 Ã̂(X))(Y 2 µ̂(X)))

n

f rn × sn +
var((A2 Ã̂(X))(Y 2 µ̂(X)))

n
,

as claimed.

D An Adaptive Estimate of the Quadratic Functional

Throughout our paper we focused our discussion on the case when the error of the pilot
estimate was larger than the variance of the first-order estimator. This situation is typical. In
this section, we briefly investigate the setting where the pilot may be super-accurate.

D.1 Upper Bounds

For any · > 0, consider the following adaptive estimate:

Q̂»ad =

{
Q̂»pi if |Q̂»pi 2 Q̂»fo| f 4‖»̂‖2

√
4 log(2/·)

n

Q̂»fo otherwise.

The estimate is similar to a Lepski-style adaptive estimator which chooses between the plugin
and first-order estimate. The following result then holds:

Theorem 3. For any · > 0, the risk of Q̂»ad is upper bounded as:

E[(Q̂»ad 2Q(»7))2] . r2n +min

{
rn‖»̂‖22 +

·‖»̂‖22
n

,
‖»̂‖22 log(1/·)

n

}
.

Remarks:

1. Suppose that ignored the terms which depend on ·, then the estimator Q̂»ad is (fully)
adaptive, i.e. it achieves the same performance as an oracle which always picked the
estimate with lower risk.
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2. More generally, there is a small price to pay to adapt between these estimates. This
price is closely related to the standard Hodges superefficiency phenomenon in estimating
a Gaussian mean. We develop this further in Appendix D.2.

Proof. Let us define ‖»̂2»7‖22 := R. We first note the following error bounds on our estimates:

Lemma 6. We have the following bounds:

|Q̂»pi 2Q(»7)|2 . R2 +R‖»̂‖22

E|Q̂»fo 2Q(»7)|2 . R2 +
‖»̂‖22
n

√
E|Q̂»fo 2Q(»7)|4 . R2 +

‖»̂‖22
n

.

Taking this result as given we can complete the proof. Recall, that we observe y = »7 + ë.
We define the event E to be the event on which,

|〈ë, »̂〉| f ‖»̂‖2
√

4 log(2/·)

n
,

which happens with probability at least 12 ·2, by applying a standard Gaussian tail bound.
Now observe that when R f 4 log(2/·)

n , and on the event E:

|Q̂»pi 2 Q̂»fo| = |2(‖»̂‖22 2 〈y, »̂〉)| f 2‖»̂‖2
√

4 log(2/·)

n
+ 2|〈»̂, »7 2 »̂〉|

f 2‖»̂‖2
√

4 log(2/·)

n
+ 2

:
R‖»̂‖2 f 4‖»̂‖2

√
4 log(2/·)

n
,

so our selection rule picks the estimate Q̂»pi.
Now, we are in a position to analyze our selection rule. Let us denote an index j which

takes value 1 when Q̂»ad = Q̂»pi and 2 otherwise. We consider two cases, when R f
√

4 log(2/·)
n

and when R >

√
4 log(2/·)

n . In the first case,

E[(Q̂»ad 2Q(»7))2] = E[(Q̂»ad 2Q(»7))2I[j = 1]] + E[(Q̂»ad 2Q(»7))2I[j = 2]]

. R2 +R‖»̂‖22 + ·

√
E[(Q̂»ad 2Q(»7))4

. R2 +R‖»̂‖22 + ·

[
R2 +

‖»̂‖22
n

]

. R2 +R‖»̂‖22 +
·‖»̂‖22
n

.

In the second case,

E[(Q̂»ad 2Q(»7))2] = E[(Q̂»ad 2Q(»7))2I[j = 1]] + E[(Q̂»ad 2Q(»7))2I[j = 2]]

= E[(Q̂»pi 2Q(»7))2I[j = 1]] + E[(Q̂»fo 2Q(»7))2I[j = 2]]

. E[(Q̂»pi 2 Q̂»fo)
2
I[j = 1]] + E[(Q̂»fo 2Q(»7))2]

. R2 +
‖»̂‖22 log(1/·)

n
.

Putting these together we obtain the desired theorem.
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Proof of Lemma 6: We prove each of the three claims in turn. Observe that,

|Q̂»pi 2Q(»7)|2 = |‖»̂‖22 2 ‖»7‖22|2

= |(»̂ 2 »7)T (»̂ + »7)|2

. R(‖»̂‖22 +R),

as desired. Now, we see that,

E|Q̂»fo 2Q(»7)|2 = (E(Q̂»fo)2Q(»7))2 + E(E(Q̂»fo)2 Q̂»fo)
2

= ‖»̂ 2 »7‖42 +
4‖»̂‖22
n

. R2 +
‖»̂‖22
n

,

where the bounds on the bias and variance follow from a direct calculation. Finally,

√
E|Q̂»fo 2Q(»7)|4 .

√
(E(Q̂»fo)2Q(»7))4 + E(E(Q̂»fo)2 Q̂»fo)

4

. R2 +
‖»̂‖22
n

,

where to bound the second term, we simply use the fact that the fourth moment of a mean
zero Gaussian random variable is 3Ã4.

D.2 An Adaptivity Lower Bound

In this section, we prove the following complementary lower bound which shows a sense in
which our adaptive estimator is unimprovable. We denote the risk of our adaptive estimate
Q̂»ad as:

f·(r) = r2 +min

{
r‖»̂‖22 +

·‖»̂‖22
n

,
log(1/·)‖»̂‖22

n

}
,

where · > 0 is chosen to be sufficiently small.

Lemma 7. Suppose that we have an estimate Q̂ such that for some r1 g 0, and for a suffi-

ciently small · > 0,

sup
»∗*Θ(r1)

E(Q̂2Q(»7))2 . ·f·(r1)

then there exists an r2, such that,

sup
»∗*Θ(r2)

E(Q̂2Q(»7))2 &
log(1/(··))

log(1/·)
f·(r2),

so long as ‖»̂‖22 g log2(1/(ë·))/(n log(1/·)).

This result captures the fact that there is a strong sense in which Theorem 3 achieves the
limits of adaptation. In particular, if an estimator has a (very) small risk relative to Q̂»ad
for some value of the unknown radius r1, then this must come at the expense of a worse
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performance at a different value r2. Our lower bound follows the well-trodden route of using
the constrained risk inequality in Lemma 4 to argue that achieving a (very) small risk at a
point in the parameter space comes at the expense of a larger risk in the neighborhood of that
point.

We note the (mild) restriction that ‖»̂‖22 g log2(1/(ë·))/(n log(1/·)). When this assump-
tion does not hold, the adaptation picture is different. This can be seen by observing that
when ‖»̂‖2 = 0, the estimate Q̂ = 0 is adaptively optimal for any r, and there is no price to
pay for adaptation.

Proof. We consider two cases, when r1 f log(1/·)/n and when r1 g log(1/·)/n.

Case 1: When r1 f log(1/·)/n we can write,

f·(r1) f r21 + r1‖»̂‖22 +
·‖»̂‖22
n

,

since · > 0 is sufficiently small to ensure that · f log(1/·). Now, this implies that Q̂ satisfies,

sup
»∗*Θ(r1)

E(Q̂2Q(»7))2 . ·

(
r21 + r1‖»̂‖22 +

·‖»̂‖22
n

)
. (12)

The lower bounds in Appendix B.1 already show that,

sup
»∗*Θ(r1)

E(Q̂2Q(»7))2 & r21 + r1‖»̂‖22,

so the claimed improvement is only possible if the final term in (12) dominates. In this case
we have that,

sup
»∗*Θ(r1)

E(Q̂2Q(»7))2 .
··‖»̂‖22
n

.

We now apply Lemma 4 with the choices, » := »̂, ³ :=
:
··‖»̂‖2/

:
n, and ³ :=

√
log(1/(··))/n,

to conclude that,

sup
»∗*Θ(³2)

E(Q̂2Q(»7))2 & ³4 +
log(1/(··))‖»̂‖22

n
&

log(1/(··))‖»̂‖22
n

.

On the other hand, we have that the risk of Q̂»ad is upper bounded as:

f·(³
2) f ³4 +

log(1/·)‖»̂‖22
n

.
log(1/·)‖»̂‖22

n
,

using our assumed lower bound on ‖»̂‖2. This in turn establishes the non-adaptivity claim.

Case 2: We now consider the case when r1 g log(1/·)/n. The lower bounds in Appendix B.1
already show that

sup
»∗*Θ(r1)

E(Q̂2Q(»7))2 & r21 +
‖»̂‖22
n

,
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so once again the claimed improvement is only possible if the second term dominates and we
have,

sup
»∗*Θ(r1)

E(Q̂2Q(»7))2 .
· log(1/·)‖»̂‖22

n
.

Now, once again we apply Lemma 4 with the choices, » := »̂, ³ :=
√
· log(1/·)‖»̂‖2/

:
n, and

³ :=
√

log(1/(· log(1/·))/n. To obtain that,

sup
»∗*Θ(0)

E(Q̂2Q(»7))2 &
log(1/(· log(1/·)))‖»̂‖22

n
.

On the other hand, the estimator Q̂»ad achieves the guarantee,

sup
»∗*Θ(0)

E(Q̂»ad 2Q(»7))2 .
·‖»̂‖22
n

.

So we obtain that, taking r2 = 0,

sup
»∗*Θ(r2)

E(Q̂2Q(»7))2 &
log(1/(· log(1/·)))

·
f·(r2) &

log(1/(··))

log(1/·)
f·(r2).

These two facts taken together yield the non-adaptivity claim of the theorem.
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