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Abstract

Despite the emergence of principled methods for

domain adaptation under label shift, their sensi-

tivity to shifts in class conditional distributions

is precariously under explored. Meanwhile, pop-

ular deep domain adaptation heuristics tend to

falter when faced with label proportions shifts.

While several papers modify these heuristics in

attempts to handle label proportions shifts, incon-

sistencies in evaluation standards, datasets, and

baselines make it difficult to gauge the current

best practices. In this paper, we introduce RLS-

BENCH, a large-scale benchmark for relaxed label

shift, consisting of ą500 distribution shift pairs

spanning vision, tabular, and language modalities,

with varying label proportions. Unlike existing

benchmarks, which primarily focus on shifts in

class-conditional ppx|yq, our benchmark also fo-

cuses on label marginal shifts. First, we assess

13 popular domain adaptation methods, demon-

strating more widespread failures under label pro-

portion shifts than were previously known. Next,

we develop an effective two-step meta-algorithm

that is compatible with most domain adaptation

heuristics: (i) pseudo-balance the data at each

epoch; and (ii) adjust the final classifier with target

label distribution estimate. The meta-algorithm

improves existing domain adaptation heuristics

under large label proportion shifts, often by 2–

10% accuracy points, while conferring minimal

effect (ă0.5%) when label proportions do not

shift. We hope that these findings and the avail-

ability of RLSBENCH will encourage researchers

to rigorously evaluate proposed methods in re-

laxed label shift settings. Code is publicly avail-

able at https://github.com/acmi-lab/

RLSbench.
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1. Introduction

Real-world deployments of machine learning models are

typically characterized by distribution shift, where data en-

countered in production exhibits statistical differences from

the training data (Quinonero-Candela et al., 2008; Torralba

& Efros, 2011; Koh et al., 2021). Because continually la-

beling data can be prohibitively expensive, researchers have

focused on the unsupervised Domain Adaptation (DA) set-

ting, where only labeled data from the source distribution

and unlabeled from the target distribution are available for

training. Absent further assumptions, the DA problem is

known to be underspecified (Ben-David et al., 2010b) and

thus no method is universally applicable.

Researchers have responded to these challenges in several

ways. One approach is to investigate structural assump-

tions under which DA problems are well-posed. Popular

examples include covariate shift and label shift, for which

identification strategies and principled methods exist when-

ever the source and target distributions have overlapping

support (Shimodaira, 2000; Schölkopf et al., 2012; Gretton

et al., 2009). For example, recent research on label shift has

produced effective methods that are applicable in deep learn-

ing regimes, yielding both consistent estimates of the target

label marginal and principled ways to update the resulting

classifier (Lipton et al., 2018; Alexandari et al., 2021; Aziz-

zadenesheli et al., 2019; Garg et al., 2020). However, such

assumptions are typically, to some degree, violated in prac-

tice. Even for archetypal cases like shift in disease preva-

lence, the label shift assumption can be violated. For exam-

ple, over the course of the COVID-19 epidemic, changes in

disease positivity coincided with shifts in treatment proto-

cols, the age distribution of the infected population, and the

genetic makeup of the virus itself.

A complementary line of research focuses on construct-

ing benchmark datasets, in the hopes of finding heuris-

tics for incorporating the unlabeled target data that result

in improvements on the kinds of problems that arise in

practice. Examples of such benchmarks include Office-

Home (Venkateswara et al., 2017), Domainnet (Peng et al.,

2019)), WILDS (Sagawa et al., 2021). However, most of

these benchmark datasets exhibit little shift in the label dis-

tribution ppyq (or none at all). Consequently, benchmark-
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output space. Let Ps,Pt : X ˆ Y Ñ r0, 1s be the source

and target distributions and let ps and pt denote the corre-

sponding probability density (or mass) functions. Unlike the

standard supervised setting, in unsupervised DA, we pos-

sess labeled source data tpx1, y1q, px2, y2q, . . . , pxn, ynqu
and unlabeled target data txn`1, xn`2, . . . , xn`mu. With

f : X Ñ ∆k´1, we denote a predictor function which pre-

dicts py < argmaxy fypxq on an input x. For a vector v, we

use vy to access the element at index y.

In the traditional label shift setting, one assumes that ppx|yq
does not change but that ppyq can. Under label shift, two

challenges arise: (i) estimate the target label marginal ptpyq;

and (ii) train a classifier f to maximize the performance

on target domain. This paper focuses on the relaxed label

shift setting. In particular, we assume that the label distri-

bution can shift from source to target arbitrarily but that

ppx|yq varies between source and target in some compar-

atively restrictive way (e.g., shifts arising naturally in the

real-world like ImageNet (Russakovsky et al., 2015) to Im-

ageNetV2 (Recht et al., 2019)). Mathematically, we as-

sume a divergence-based restriction on ppx|yq. That is, for

some small ϵ ą 0 and distributional distance D, we have

maxy Dppspx|yq, ptpx|yqq ď ϵ and allow an arbitrary shift

in the label marginal ppyq. We discuss several precise in-

stantiations in App. G. However, in practice, it’s hard to em-

pirically verify these distribution distances for small enough

ϵ with finite samples. Moreover, we lack a rigorous charac-

terization of the sense in which those shifts arise in popular

DA benchmarks, and since, the focus of our work is on the

empirical evaluation with real-world datasets, we leave a

formal investigation for future work.

The goal in DA is to adapt a predictor from a source distri-

bution with labeled data to a target distribution from which

we only observe unlabeled examples. While prior work ad-

dressing relaxed label shift has primarily focused on classi-

fier performance, we also separately evaluate methods for

estimating the target label marginal. This can be beneficial

for two reasons. First, it can shed more light into how im-

proving the estimates of target class proportion improves

target performance. Second, understanding how the class

proportions are changing can be of independent interest.

2.1. Prior Work

Unsupervised domain adaption Two popular settings for

which DA is well-posed include (i) covariate shift (Zhang

et al., 2013; Zadrozny, 2004; Cortes et al., 2010; Cortes &

Mohri, 2014; Gretton et al., 2009) where ppxq can change

from source to target but ppy|xq remains invariant; and (ii)

label shift (Saerens et al., 2002; Lipton et al., 2018; Az-

izzadenesheli et al., 2019; Alexandari et al., 2021; Garg

et al., 2020; Zhang et al., 2021; Roberts et al., 2022) where

the label marginal ppyq can change but ppx|yq is shared

across source and target. Principled methods with strong

theoretical guarantees exists for adaptation under these set-

tings when target distribution’s support is a subset of the

source support. Ben-David et al. (2010b;a); Mansour et al.

(2009); Zhao et al. (2019); Wu et al. (2019); Johansson et al.

(2019) present theoretical analysis when the assumption of

contained co-variate support is violated. In another line

of work, Elkan & Noto (2008); Bekker & Davis (2020);

Garg et al. (2021; 2022a) extend the label shift setting to

problems where previously unseen classes may appear in

the target and ppx|yq remains invariant among seen classes.

More recently, a massive literature has emerged exploring

a benchmark-driven heuristic approach (Long et al., 2015;

2017; Sun & Saenko, 2016; Sun et al., 2017; Zhang et al.,

2019; 2018; Ganin et al., 2016; Sohn et al., 2020). However,

rigorous evaluation of DA methods is typically restricted to

these carefully curated benchmark datasets where their is

minor to no shift in label marginal from source to target.

Relaxed Label Shift Exploring the problem of shift in la-

bel marginal from source to target with natural variations

in ppx|yq, a few papers highlighted theoretical and empir-

ical failures of DA methods based on domain-adversarial

neural network training (Yan et al., 2017; Wu et al., 2019;

Zhao et al., 2019; Johansson et al., 2019). Subsequently, sev-

eral papers attempted to handle these problems in domain-

adversarial training (Tachet et al., 2020; Prabhu et al., 2021;

Liu et al., 2021; Tan et al., 2020; Manders et al., 2019).

However, these methods often lack comparisons with other

prominent DA methods and are evaluated under different

datasets and model selection criteria. To this end, we per-

form a large scale rigorous comparison of popular represen-

tative DA methods in a standardized evaluation framework.

Domain generalization In domain generalization, the

model is given access to data from multiple different do-

mains and the goal is to generalize to a previously unseen

domain at test time (Blanchard et al., 2011; Muandet et al.,

2013). For a survey of different algorithms for domain gen-

eralization, we refer the reader to Gulrajani & Lopez-Paz

(2020). A crucial distinction here is that unlike the domain

generalization setting, in DA problems, we have access to

unlabeled examples from the test domain.

Distinction from previous distribution shift benchmark

studies Previous studies evaluating robustness under distri-

bution shift predominantly focuses on transfer learning and

domain generalization settings Wenzel et al. (2022); Gulra-

jani & Lopez-Paz (2020); Djolonga et al. (2021); Wiles et al.

(2021); Koh et al. (2021). Taori et al. (2020); Hendrycks

et al. (2021) studies the impact of robustness interventions

(e.g. data augmentation techniques, adversarial training) on

target (out of distribution) performance. Notably, Sagawa

et al. (2021) focused on evaluating DA methods on WILDS-

2.0. Our work is complementary to these studies, as we
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present the first extensive study of DA methods under shift

in ppyq and natural variations in ppx|yq.

3. RLSBENCH: A Benchmark for Relaxed

Label Shift

In this section, we introduce RLSBENCH, a suite of datasets

and DA algorithms that are at the core of our study. Mo-

tivated by correction methods for the (stricter) label shift

setting (Saerens et al., 2002; Lipton et al., 2018) and learn-

ing under imbalanced datasets (Wei et al., 2021; Cao et al.,

2019a), we also present a meta-algorithm with simple cor-

rections compatible with almost any DA method.

3.1. Datasets

RLSBENCH builds on 14 multi-domain datasets for classifi-

cation, including tasks across applications in object classifi-

cation, satellite imagery, medicine, and toxicity detection.

Across these datasets, we obtain a total of 56 different source

and target pairs. More details about datasets are in App. D.

(i) CIFAR-10 which includes the original CIFAR-

10 (Krizhevsky & Hinton, 2009), CIFAR-10-C (Hendrycks

& Dietterich, 2019) and CIFAR-10v2 (Recht et al., 2018);

(ii) CIFAR-100 including the original dataset and CIFAR-

100-C; (iii) all four BREEDs datasets (Santurkar et al.,

2021), i.e., Entity13, Entity30, Nonliving26, Living17.

BREEDs leverages class hierarchy in ImageNet (Rus-

sakovsky et al., 2015) to repurpose original classes to be

the subpopulations and define a classification task on su-

perclasses. We consider subpopulation shift and natural

shifts induced due to differences in the data collection pro-

cess of ImageNet, i.e, ImageNetv2 (Recht et al., 2019) and

a combination of both. (iv) OfficeHome (Venkateswara

et al., 2017) which includes four domains: art, clipart, prod-

uct, and real; (v) DomainNet (Peng et al., 2019) where we

consider four domains: clipart, painting, real, sketch; (vi)

Visda (Peng et al., 2018; 2017) which contains three do-

mains: train, val and test; (vii) FMoW (Koh et al., 2021;

Christie et al., 2018) from WILDS benchmark which in-

cludes three domains: train, OOD val, and OOD test—with

satellite images taken in different geographical regions and

at different times; (viii) Camelyon (Bandi et al., 2018) from

WILDS benchmark which includes three domains: train,

OOD val, and OOD test, for tumor identification with do-

mains corresponding to different hospitals; (ix) Civilcom-

ments (Borkan et al., 2019) which includes three domains:

train, OOD val, and OOD test, for toxicity detection with

domains corresponding to different demographic subpopu-

lations; (x) Retiring Adults (Ding et al., 2021) where we

consider the ACSIncome prediction task with various do-

mains representing different states and time-period; and (xi)

Mimic Readmission (Johnson et al., 2020; PhysioBank,

2000) where the task is to predict readmission risk with var-

ious domains representing data from different time-period.

Simulating a shift in target marginal The above datasets

present minor to no shift in label marginal. Hence, we

simulate such a shift by altering the target label marginal and

keeping the source target distribution fixed (to the original

source label distribution). Note that, unlike some previous

studies, we do not alter the source label marginal because,

in practice, we may have an option to carefully curate the

training distribution but might have little to no control over

the target label marginal.

For each target dataset, we have the true labels which al-

low us to vary the target label distribution. In particular,

we sample the target label marginal from a Dirichlet distri-

bution with a parameter ³ P t0.5, 1, 3.0, 10u multiplier to

the original target marginal. Specifically, ptpyq > Dirp´q
where ´y < ³ ¨ pt,0pyq and pt,0pyq is the original target la-

bel marginal. The Dirichlet parameter ³ controls the sever-

ity of shift in target label marginal. Intuitively, as ³ de-

creases, the severity of the shift increases. For completeness,

we also include the target dataset with the original target la-

bel marginal. For ease of exposition, we denote the shifts as

NONE (no external shift) in the set of Dirichlet parameters,

i.e. the limiting distribution as ³ Ñ 8. After simulating the

shift in the target label marginal (with two seeds for each ³),

we obtain 560 pairs of different source and target datasets.

3.2. Domain Adaptation Methods

We implement the following algorithms (a more detailed

description of each method is included in App. L):

Source only As a baseline, we include model trained

with empirical risk minimization (Vapnik, 1999) with cross-

entropy loss on the source domain. We include source only

models trained with and without augmentations. We also

include adversarial robust models trained on source data

with augmentations (Source (adv)). In particular, we use

models adversarially trained against ℓ2-perturbations.

Domain alignment methods These methods employ

domain-adversarial training schemes aimed to learn invari-

ant representations across different domains (Ganin et al.,

2016; Zhang et al., 2019; Tan et al., 2020). For our experi-

ments, we include the following five methods: Domain Ad-

versarial Neural Networks (DANN (Ganin et al., 2016)),

Conditional DANN (CDANN (Long et al., 2018), Maxi-

mum Classifier Discrepancy (MCD (Saito et al., 2018)),

Importance-reweighted DANN and CDANN (i.e. IW-

DANN & IW-CDANN Tachet des Combes et al. (2020)).

Self-training methods These methods “pseudo-label” un-

labeled examples with the model’s own predictions and

then train on them as if they were labeled examples. For

vision datasets, these methods often also use consistency

regularization, which encourages the model to make con-
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Algorithm 1 Meta algorithm to handle label marginal shift

input Source training and validation data: pXS , YSq and

pX 1

S , Y
1

Sq, unlabeled target training and validation data:

XT and X 1

T , classifier f , and DA algorithm A

1: rXS , rYS Ð SampleClassBalancedpXS , YSq
z Balance source data

2: for t < 1 to T do

3: pYT Ð argmaxy fypXT q
4: rXT Ð SampleClassBalancedpXT , pYT q

z Pseudo-balance target data

5: Run an epoch of A to update f on balanced source

data t rXS , rYSu and target data t rXT u
6: end for

7: pptpyq Ð EstimateLabelMarginalpf,X 1

S , Y
1

S , X
1

T q
8: f 1

j Ð pptpy “ jq ¨ fjř
k pptpy “ kq ¨ fk

for all j P Y

z Re-weight classifier

output Target label marginal pptpyq and classifier f 1

sistent predictions on augmented views of unlabeled exam-

ples (Lee et al., 2013; Xie et al., 2020b; Berthelot et al.,

2021). We include the following three algorithms: Fix-

Match (Sohn et al., 2020), Noisy Student (Xie et al.,

2020a), Selective Entropy Optimization via Committee Con-

sistency (SENTRY (Prabhu et al., 2021)). For NLP and tab-

ular dataset, where we do not have strong augmentations

defined, we consider PseudoLabel algorithm (Lee et al.,

2013).

Test-time adaptation methods These methods take a

source model and adapt a few parameters (e.g. batch norm

parameters, etc.) on the unlabeled target data with an aim

to improve target performance. We include: CORAL (Sun

et al., 2016) or Domain Adjusted Regression (DARE (Rosen-

feld et al., 2022)), BatchNorm adaptation (BN-adapt (Li

et al., 2016; Schneider et al., 2020)), Test entropy minimiza-

tion (TENT (Wang et al., 2021)).

3.3. Meta algorithm to handle target label marginal shift

Here we discuss two simple general-purpose corrections

that we implement in our framework. First, note that, as

the severity of shift in the target label marginal increases,

the performance of DA methods can falter as the training

is done over source and target datasets with different class

proportions. Indeed, failure of domain adversarial training

methods (one category of deep DA methods) has been theo-

retically and empirically shown in the literature (Wu et al.,

2019; Zhao et al., 2019). In our experiments, we show that

a failure due to a shift in label distribution is not limited to

domain adversarial training methods, but is common with

all the popular DA methods (Sec. 4).

Re-sampling To handle label imbalance in standard su-

pervised learning, re-sampling the data to balance the class

marginal is a known successful strategy (Chawla et al., 2002;

Buda et al., 2018; Cao et al., 2019b). In relaxed label shift,

we seek to handle the imbalance in the target data (with re-

spect to the source label marginal), where we do not have

access to true labels. We adopt an alternative strategy of

leveraging pseudolabels for target data to perform pseudo

class-balanced re-sampling1 (Zou et al., 2018; Wei et al.,

2021). For relaxed label shift problems, (Prabhu et al.,

2021) employed this technique with their committee consis-

tency objective, SENTRY. However, they did not explore re-

sampling based correction for existing DA techniques. Since

this technique can be used in conjunction with any DA meth-

ods, we employ this re-sampling technique with existing

DA methods and find that re-sampling benefits all DA meth-

ods, often improving over SENTRY in our testbed (Sec. 4).

Re-weighting With re-sampling, we can hope to train the

classifier pf on a mixture of balanced source and balanced

target datasets in an ideal case. However, this still leaves

open the problem of adapting the classifier pf to the original

target label distribution which is not available. If we can es-

timate the target label marginal, we can post-hoc adapt the

classifier pf with a simple re-weighting correction (Lipton

et al., 2018; Alexandari et al., 2021). To estimate the tar-

get label marginal, we turn to techniques developed under

the stricter label shift assumption (recall, the setting where

ppx|yq remains domain invariant). These approaches lever-

age off-the-shelf classifiers to estimate target marginal and

provide Op1{?
nq convergence rates under the label shift

condition with mild assumptions on the classifier (Lipton

et al., 2018; Azizzadenesheli et al., 2019; Garg et al., 2020).

While the relaxed label shift scenario violates the condi-

tions required for consistency of label shift estimation tech-

niques, we nonetheless employ these techniques and em-

pirically evaluate efficacy of these methods in our testbed.

In particular, to estimate the target label marginal, we ex-

periment with: (i) RLLS (Azizzadenesheli et al., 2019); (ii)

MLLS (Alexandari et al., 2021); and (iii) baseline estimator

that simply averages the prediction of a classifier f on un-

labeled target data. We provide precise details about these

methods in App. F. Since these methods leverage off-the-

shelf classifiers, classifiers obtained with any DA methods

can be used in conjunction with these estimation methods.

Summary Overall, in Algorithm 1, we illustrate how to in-

corporate the re-sampling and re-weighting correction with

existing DA techniques. Fig. 9 in App. E illustrates the

method. Algorithm A can be any DA method and in Step

7, we can use any of the three methods listed above to esti-

mate the target label marginal. We instantiate Algorithm 1

1A different strategy could be to re-sample target pseudolabel
marginal to match source label marginal. For simplicity, we choose
to balance source label marginal and target pseudolabel marginal.
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with several algorithms from Sec. 3.2 in App. L. Intuitively,

in an ideal scenario when the re-sampling step in our meta-

algorithm perfectly corrects for label imbalance between

source and target, we expect DA methods to adapt classi-

fier f to ppx|yq shift. The re-weighting step in our meta-

algorithm can then adapt the classifier f to the target label

marginal ptpyq. We emphasize that in our work, we do not

claim to propose these corrections. But, to the best of our

knowledge, our work is the first to combine these two cor-

rections together and perform extensive experiments across

diverse datasets.

3.4. Other choices for realistic evaluation

For a fair evaluation and comparison across different

datasets and DA algorithms, we re-implemented all the algo-

rithms with consistent design choices whenever applicable.

We also make several additional implementation choices,

described below. We defer the additional details to App. M.

Model selection criteria and hyperparameters Given

that we lack validation i.i.d data from the target distribu-

tion, model selection in DA problems can not follow the

standard workflow used in supervised training. Prior works

often omit details on how to choose hyperparameters leav-

ing open a possibility of choosing hyperparameters using

the test set which can provide a false and unreliable sense

of improvement. Moreover, inconsistent hyperparameter

selection strategies can complicate fair evaluations mis-

associating the improvements to the algorithm under study.

In our work, we use source hold-out performance to pick

the best hyperparameters. First, for ℓ2 regularization and

learning rate, we perform a sweep over random hyperparam-

eters to maximize the performance of source only model on

the hold-out source data. Then for each dataset, we keep

these hyperparameters fixed across DA algorithms. For DA

methods specific hyperparameters, we use the same hyper-

parameters across all the methods incorporating the sugges-

tions made in corresponding papers. Within a run, we use

hold out performance on the source to pick the early stop-

ping point. In appendices, we report oracle performance by

choosing the early stopping point with target accuracy.

Evaluation criteria To evaluate the target label marginal

estimation, we report ℓ1 error between the estimated label

distribution and true label distribution. To evaluate the clas-

sifier performance on target data, we report performance of

the (adapted) classifier on a hold-out partition of target data.

Architectural and pretraining details We experiment

with different architectures (e.g., DenseNet121, Resenet18,

Resnet50, DistilBERT, MLP and Transformer). We experi-

ment with randomly-initialized models and Imagenet, and

DistillBert pre-trained models. Given a dataset, we use the

same architecture across different DA algorithms.

Data augmentation Data augmentation is a standard in-

gredient to train vision models which can approximate some

of the variations between domains. Unless stated otherwise,

we train all the vision datasets using the standard strong aug-

mentation technique: random horizontal flips, random crops,

augmentation with Cutout (DeVries & Taylor, 2017), and

RandAugment (Cubuk et al., 2020). To understand help with

data augmentations alone, we also experiment with source-

only models trained without any data augmentation. For

tabular and NLP datasets, we do not use any augmentations.

4. Main Results

We present aggregated results on vision datasets in our

testbed in Fig. 2. In App. B, we present aggregated results

on NLP and tabular datasets. We include results on each

dataset in App. J. Note that we do not include RS results

with a source only model as it is trained only on source

data and we observed no differences with just balancing

the source data (as for most datasets source is already bal-

anced) in our experiments. Unless specified otherwise, we

use source validation performance as the early stopping cri-

terion. Based on running our entire RLSBENCH suite, we

distill our findings into the following takeaways.

Popular deep DA methods without any correction fal-

ter. While DA methods often improve over a source-only

classifier for cases when the target label marginal shift is ab-

sent or low, the performance of these methods (except Noisy

Student) drops below the performance of a source-only clas-

sifier when the shift in target label marginal is severe (i.e.,

when ³ < 0.5 in Fig. 2a, 5a, and 6a). On the other hand,

DA methods when paired with RS and RW correction, sig-

nificantly improve over a source-only model even when the

shift in target label marginal is severe (Fig. 2b, 5b, and 6b).

Re-sampling to pseudobalance target often helps all DA

methods across all modalities. When the shift in target la-

bel marginal is absent or very small (i.e., ³ P tNONE, 10.0u
in Fig. 2b, 5b, and 6b), we observe no (significant) differ-

ences in performance with re-sampling. However, as the

shift severity in target label marginal increases (i.e., ³ P
t3.0, 1.0, 0.5u in Fig. 2b, 5b, and 6b), we observe that re-

sampling typically improves all DA methods in our testbed.

Benefits of post-hoc re-weighting of the classifier depends

on shift severity and the underlying DA algorithm. For

domain alignment methods (i.e. DANN and CDANN) and

self-training methods, in particular FixMatch and PseudoLa-

bel, we observe that RW correction typically improves (over

no correction) significantly when the target label marginal

shift is severe (i.e., ³ P t3.0, 1.0, 0.5u in Fig. 2b, 5b, and

6b) and has no (significant) effect when the shift in target la-

bel marginal is absent or very small (i.e., ³ P tNONE, 10.0u
in Fig. 2b, 5b, and 6b). For BN-adapt, TENT, and NoisyS-
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re-weighting, than source-only classifiers. Recall that we

experiment with target label marginal estimation methods

that leverage off-the-shelf classifiers to obtain an estimate.

We observe that estimators leveraging DA classifiers tend

to perform better than using source-only classifiers for tabu-

lar and vision datasets (Fig. 4). For NLP, we observe that

DA classifier and source-only classifier have performance

(with source-only often performing slightly better). Cor-

respondingly, as one might expect, better estimation yields

greater accuracy improvements when applying our RW cor-

rection. In particular, RW correction with DA methods im-

proves over the source-only classifier for vision and tabular

datasets and vice-versa for NLP datasets. (Fig. 4).

Early stopping criterion matters. We observe a consis-

tent «2% and «8% accuracy difference on vision and tab-

ular datasets respectively with all methods (Fig. 14). On

NLP datasets, while the early stopping criteria have «2%

accuracy difference when RW and RS corrections are not

employed, the difference becomes negligible when these

corrections are employed (Fig. 14). These results highlight

that subsequent works should describe the early stopping

criteria used within their evaluations.

Data augmentation helps. Corroborating findings from

previous studies in other settings (Gulrajani & Lopez-Paz,

2020; Sagawa et al., 2021), we observe that data augmenta-

tion can improve the performance of a source-only model

on vision datasets in relaxed label shift scenarios (refer to

result on each dataset in App. J). Thus, whenever applica-

ble, subsequent methods should use data augmentations.

5. Conclusion

Our work is the first large-scale study investigating methods

under the relaxed label shift scenario. Relative to works op-

erating strictly under the label shift assumption, RLSBENCH

provides an opportunity for sensitivity analysis, allowing re-

searchers to measure the robustness of their methods under

various sorts of perturbations to the class-conditional dis-

tributions. Relative to the benchmark-driven deep domain

adaptation literature, our work provides a comprehensive

and standardized suite for evaluating under shifts in label

distributions, bringing these benchmarks one step closer to

exhibit the sort of diversity that we should expect to en-

counter when deploying models in the wild. On one hand,

the consistent improvements observed from label shift ad-

justments are promising. At the same time, given the un-

derspecified nature of the problem, practitioners must re-

main vigilant and take performance on any benchmark with

a grain of salt, considering the various ways that it might (or

might not) be representative of the sorts of situations that

might arise in their application of interest.

In the future, we hope to extend RLSBENCH to datasets

from real applications in consequential domains such as

healthcare and self-driving, where label marginals and class

conditionals can be expected to shift across locations and

over time. We also hope to incorporate self-supervised

methods that learn representations by training on a union

of unlabeled data from source and target via proxy tasks

like reconstruction (Gidaris et al., 2018; He et al., 2022) and

contrastive learning (Caron et al., 2020; Chen et al., 2020).

While re-weighting predictions using estimates of the target

label distribution yields significant gains, the remaining gap

between our results and oracle performance should motivate

future work geared towards improved estimators. Also, we

observe that the success of target label marginal estimation

techniques depends on the nature of the shifts in ppx|yq.

Mathematically characterizing the behavior of label shift

estimation techniques when the label shift assumption is

violated would be an important contribution.

Reproducibility Statement

Our code with all the results will be released on github.

https://github.com/acmi-lab/RLSbench. We

implement our RLSBENCH library in PyTorch (Paszke et al.,

2017) and provide an infrastructure to run all the experi-

ments to generate corresponding results. We have stored

all models and logged all hyperparameters to facilitate re-

producibility. In our appendices, we provide additional de-

tails on datasets and experiments. In App. D, we describe

datasets and in App. M, we provide hyperparameter details.
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Dataset Source Target

CIFAR10 CIFAR10v1
CIFAR10v1, CIFAR10v2, CIFAR10C-Frost (severity 4),

CIFAR10C-Pixelate (severity 5), CIFAR10-C Saturate (severity 5)

CIFAR100 CIFAR100

CIFAR100, CIFAR100C-Fog (severity 4),
CIFAR100C-Motion Blur (severity 2), CIFAR100C-Contrast (severity 4),

CIFAR100C-spatter (severity 2)

Camelyon
Camelyon

(Hospital 1–3)
Camelyon (Hospital 1–3), Camelyon (Hospital 4), Camelyon (Hospital 5)

FMoW FMoW (2002–’13) FMoW (2002–’13), FMoW (2013–’16), FMoW (2016–’18)

Entity13

Entity13
(ImageNetv1

sub-population 1)

Entity13 (ImageNetv1 sub-population 1),
Entity13 (ImageNetv1 sub-population 2),
Entity13 (ImageNetv2 sub-population 1),
Entity13 (ImageNetv2 sub-population 2)

Entity30

Entity30
(ImageNetv1

sub-population 1)

Entity30 (ImageNetv1 sub-population 1),
Entity30 (ImageNetv1 sub-population 2),
Entity30 (ImageNetv2 sub-population 1),
Entity30 (ImageNetv2 sub-population 2)

Living17

Living17
(ImageNetv1

sub-population 1)

Living17 (ImageNetv1 sub-population 1),
Living17 (ImageNetv1 sub-population 2),
Living17 (ImageNetv2 sub-population 1),
Living17 (ImageNetv2 sub-population 2)

Nonliving26

Nonliving26
(ImageNetv1

sub-population 1)

Nonliving26 (ImageNetv1 sub-population 1),
Nonliving26 (ImageNetv1 sub-population 2),
Nonliving26 (ImageNetv2 sub-population 1),
Nonliving26 (ImageNetv2 sub-population 2)

Officehome Product Product, Art, ClipArt, Real

DomainNet Real Real, Painiting, Sketch, ClipArt

Visda

Synthetic
(originally referred

to as train)

Synthetic, Real-1 (originally referred to as val),
Real-2 (originally referred to as test)

Civilcomments Train Train, Val and Test (all formed by disjoint partitions of online articles)

Mimic Readmissions
Mimic Readmissions

(year: 2008)

Mimic Readmissions (year: 2008), Mimic Readmissions (year: 2009),
Mimic Readmissions (year: 2010), Mimic Readmissions (year: 2011),
Mimic Readmissions (year: 2012), Mimic Readmissions (year: 2013)

Retiring Adults

Retiring Adults
(year: 2014

states: [’MD’, ’NJ’, ’MA’])

Retiring Adults (year: 2015; states: [’MD’, ’NJ’, ’MA’]),
Retiring Adults (year: 2016; states: [’MD’, ’NJ’, ’MA’]),
Retiring Adults (year: 2017; states: [’MD’, ’NJ’, ’MA’]),
Retiring Adults (year: 2018; states: [’MD’, ’NJ’, ’MA’])

Table 1. Details of the datasets considered in our RLSBENCH.

• BREEDs We also consider BREEDs benchmark (Santurkar et al., 2021) in our setup to assess robustness to subpopulation

shifts. BREEDs leverage class hierarchy in ImageNet to re-purpose original classes to be the subpopulations and defines a

classification task on superclasses. We consider distribution shift due to subpopulation shift which is induced by directly

making the subpopulations present in the training and test distributions disjoint. BREEDs benchmark contains 4 datasets

Entity-13, Entity-30, Living-17, and Non-living-26, each focusing on different subtrees and levels in the hierarchy. We

also consider natural shifts due to differences in the data collection process of ImageNet (Russakovsky et al., 2015), e.g,

ImageNetv2 (Recht et al., 2019) and a combination of both. Overall, for each of the 4 BREEDs datasets (i.e., Entity-13,

Entity-30, Living-17, and Non-living-26), we obtain four different domains. We refer to them as follows: BREEDsv1

sub-population 1 (sampled from ImageNetv1), BREEDsv1 sub-population 2 (sampled from ImageNetv1), BREEDsv2

sub-population 1 (sampled from ImageNetv2), BREEDsv2 sub-population 2 (sampled from ImageNetv2). For each

BREEDs dataset, we use BREEDsv1 sub-population A as source and the other three as target domains.

• OfficeHome We use four domains (art, clipart, product and real) from OfficeHome dataset (Venkateswara et al., 2017).

We use the product domain as source and the other domains as target.
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• DomainNet We use four domains (clipart, painting, real, sketch) from the Domainnet dataset (Peng et al., 2019). We use

real domain as the source and the other domains as target.

• Visda We use three domains (train, val and test) from the Visda dataset (Peng et al., 2018). While ‘train’ domain contains

synthetic renditions of the objects, ‘val’ and ‘test’ domains contain real world images. To avoid confusing, the domain

names with their roles as splits, we rename them as ‘synthetic’, ‘Real-1’ and ‘Real-2’. We use the synthetic (original train

set) as the source domain and use the other domains as target.

• Civilcomments (Borkan et al., 2019) from the wilds benchmark which includes three domains: train, OOD val, and

OOD test, for toxicity detection with domains corresponding to different demographic subpopulations. The dataset

has subpopulation shift across different demographic groups as the dataset in each domain is collected from a different

partition of online articles.

• Retiring Adults (Ding et al., 2021) where we consider the ACSIncome prediction task with various domains representing

different states and time-period; We randomly select three states and consider dataset due to shifting time across those

states. Details about precise time-periods and states are in Table 1.

• Mimic Readmission (Johnson et al., 2020; PhysioBank, 2000) where the task is to predict readmission risk with various

domains representing data from different time-period. Details about precise time-periods are in Table 1.

We provide scripts to setup these datasets with single command in our code. To investigate the performance of different

methods under the stricter label shift setting, we also include a hold-out partition of source domain in the set of target

domains. For these distribution shift pairs where source and target domains are i.i.d. partitions, we obtain the stricter label

shift problem. We summarize the information about source and target domains in Table 1.

Train-test splits We partition each source and target dataset into 80% and 20% i.i.d. splits. We use 80% splits for training

and 20% splits for evaluation (or validation). We throw away labels for the 80% target split and only use labels in the 20%

target split for final evaluation. The rationale behind splitting the target data is to use a completely unseen batch of data

for evaluation. This avoids evaluating on examples where a model potentially could have overfit. over-fitting to unlabeled

examples for evaluation. In practice, if the aim is to make predictions on all the target data (i.e., transduction), we can simply

use the (full) target set for training and evaluation.

E. Illustration of Our Proposed Meta=algorithm

DA 

Algorithm

Sample 

Class 

balanced
Predict 

with �

�

Target 

Marginal 

Estimation

�

Re-weight 

classifier

�

�

Figure 9. (left) Illustration of RS method at every iteration. (right) Illustration of post-hoc reweighting of the classifier with RW method.

F. Methods to estimate target marginal under the stricter label shift assumption

In this section, we describe the methods proposed to estimate the target label marginal under the stricter label shift

assumption. Recall that under the label shift assumption, pspyq can differ from ptpyq but the class conditional stays the

same, i.e., ptpx|yq < pspx|yq. We focus our discussion on recent methods that leverage off-the-shelf classifier to yield

consistent estimates under mild assumptions (Lipton et al., 2018; Azizzadenesheli et al., 2019; Alexandari et al., 2021; Garg

et al., 2020). For simplicity, we assume we possess labeled source data tpx1, y1q, px2, y2q, . . . , pxn, ynqu and unlabeled

target data txn`1, xn`2, . . . , xn`mu.

RLLS First, we discuss Regularized Learning under Label Shift (RLLS) (Azizzadenesheli et al., 2019) (a variant of Black

Box Shift Estimation (BBSE, Lipton et al. (2018))): moment-matching based estimators that leverage (possibly biased,
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uncalibrated, or inaccurate) predictions to estimate the shift. RLLS solves the following optimization problem to estimate

the importance weights wtpyq < ptpyq
pspyq as:

pwRLLS
t < argmin

wPW

ˇ̌
ˇ
ˇ̌
ˇ pCfw ´ pµf

ˇ̌
ˇ
ˇ̌
ˇ
2

` ¼RLLS ||w ´ 1||2 . (1)

where W < tw P R
d|

ř
y wpyqpspyq < 1 and @y P Y wpyq ą 0u. pCf is empirical confusion matrix of the classifier f on

source data and rµf is the empirical average of predictions of the classifier f on unlabeled target data. With labeled source

data data, the empirical confusion matrix can be computed as:

r pCf si,j <
1

n

nÿ

k“1

fipxkq ¨ I ryk < js .

To estimate target label marginal, we can multiple the estimated importance weights with the source label marginal (we can

estimate source label marginal simply from labeled source data).

In our relaxed label shift problem, we use validation source data to compute the confusion matrix and use hold portion

of target unlabeled data to compute µf . Unless specified otherwise, we use RLLS to estimate the target label marginal

throughout the paper. We choose ¼RLLS as suggested in the original paper (Azizzadenesheli et al., 2019).

MLLS Next, we discuss Maximum Likelihood Label Shift (MLLS) (Saerens et al., 2002; Alexandari et al., 2021): an

Expectation Maximization (EM) algorithm that maximize the likelihood of observed unlabeled target data to estimate target

label marginal assuming access to a classifier that outputs the source calibrated probabilities. In particular, MLLS uses the

following objective:

pwMLLS
t < argmin

wPW

1

m

ÿ

i“1

logpwT fpxi`nqq , (2)

where f is the classifier trained on source and W is the same constrained set defined above. We can again estimate the target

label marginal by simply multiplying the estimated importance weights with the source label marginal.

Baseline estimator Given a classifier f , we can estimate the target label marginal as simply the average of the classifier

output on unlabeled target data, i.e.,

ppbaseline
t <

1

m

ÿ

i“1

fpxi`nq . (3)

Note that all of the methods discussed before leverage an off-the-shelf classifier f . Hence, we experiment with classifiers

obtained with various deep domain adaptation heuristics to estimate the target label marginal.

Having obtained an estimate of target label marginal, we can simply re-weight the classifier with ppt as f 1
j <

pptpy “ jq ¨ fjř
k pptpy “ kq ¨ fk

for all j P Y . Note that, if we train f on a non-uniform source class-balance (and without re-balancing as in Step 1 of

Algorithm 1), then we can re-weight the classifier with importance-weights pwt as f 1
j <

pwtpy “ jq ¨ fjř
k pwtpy “ kq ¨ fk

for all j P Y .

G. Theoretical Definition for Relaxed Label Shift

Domain adaptation problems are, in general, ill-posed (Ben-David et al., 2010b). Several attempts have been made to

investigate additional assumptions that render the problem well-posed. One such example includes the label-shift setting,

where ppx|yq does not change but that ppyq can. Under label shift, two challenges arise: (i) estimate the target label marginal

ptpyq; and (ii) train a classifier f to maximize the performance on the target domain. However, these assumptions are

typically, to some degree, violated in practice. This paper aims to relax this assumption and focuses on relaxed label

shift setting. In particular, we assume that the label distribution can shift from source to target arbitrarily but that ppx|yq
varies between source and target in some comparatively restrictive way (e.g., shifts arising naturally in the real world like

ImageNet (Russakovsky et al., 2015) to ImageNetV2 (Recht et al., 2019)).

Mathematically, we assume a divergence-based restriction on ppx|yq, i.e., for some small ϵ ą 0 and distributional distance

D, we have maxy Dpptpx|yq, ptpx|yqq ď ϵ but allowing an arbitrary shift in the label marginal ppyq. Previous works have

defined these constraints in different ways (Wu et al., 2019; Tachet des Combes et al., 2020; Kumar et al., 2020).
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In particular, we can use Wasserstein-infinity distance to define our constraint. First, we define Wasserstein given probability

measures p, q on X :

W8pp, qq < inft sup
xPRd

||fpxq ´ x||2 : f : Rd Ñ R
d, f#p < qu,

where # denotes the push forward of a measure, i.e., for every set S Ď R
d, ppSq < ppf´1pSqq. Intuitively, W8 moves points

from the distribution p to q by distance at most ϵ to match the distributions. Hence, our D :< maxy W8ppspx|yq, ptpx|yqq ď
ϵ. Similarly, we can define our distribution constraint in KL or TV distances. We can define our constraint in a representation

space Z obtained by projection inputs x P X with a function h : X Ñ Z . Intuitively, we want to define the distribution

distance with some h that captures all the required information for predicting the label of interest but satisfies a small

distributional divergence in the projected space. However, in practice, it’s hard to empirically verify these distribution

distances for small enough ϵ with finite samples. Moreover, we lack a rigorous characterization of the sense in which those

shifts arise in popular DA benchmarks, and since, the focus of our work is on the empirical evaluation with real-world

datasets, we leave a formal investigation for future work. .

H. Target Marginal Estimation and its Effect on Accuracy

H.1. Vision Datasets
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K. Aggregate Accuracy with Different DA methods on Each Dataset

Dataset Source DANN IW-DANN CDANN IW-CDANN PseudoLabel

Civilcomments 86.85 86.62 86.95 86.91 87.16 87.4

Dataset

Source DANN CDANN PseudoLabel

None RW None RW RS
RS+
RW

None RW RS
RS+
RW

None RW RS
RS+
RW

Civilcomments 86.8 89.1 86.6 88.8 87.1 88.8 86.9 89.0 86.9 88.9 87.4 89.3 86.9 88.6

Table 2. Results with different DA methods on NLP datasets aggregated across target label marginal shifts.

Dataset Source DANN IW-DANN CDANN IW-CDANN PseudoLabel

Retiring Adult 77.44 77.17 77.35 78.15 78.44 78.30

Mimic Readmission 57.57 56.36 56.48 56.67 56.71 57.35

Dataset

Source DANN CDANN PseudoLabel

None RW None RW RS
RS+
RW

None RW RS
RS+
RW

None RW RS
RS+
RW

Retiring Adults 77.4 80.0 77.2 79.5 77.4 79.4 78.1 80.5 78.1 80.4 78.3 80.8 78.5 80.8

Mimic Readmissions 57.6 59.0 56.4 55.1 57.3 59.2 56.7 56.8 57.4 59.9 57.4 57.7 57.7 57.9

Table 3. Results with different DA methods on tabular datasets aggregated across target label marginal shifts.

Dataset
Source

(wo
aug)

Source
(w aug)

BN-
adapt

TENT DANN
IW-

DAN
CDAN

IW-
CDAN

Fix-
Match

Noisy-
Student

Sentry

CIFAR-10 89.69 89.14 89.21 89.20 90.86 90.78 90.00 89.93 91.87 90.72 91.83

CIFAR-100 65.99 76.69 77.57 77.58 74.80 74.81 74.57 74.66 79.03 77.60 74.74

FMoW 64.00 68.99 65.52 66.55 60.11 60.33 60.79 61.05 68.37 68.90 51.06

Camelyon 77.42 76.95 85.70 82.48 86.66 85.89 85.45 84.27 86.29 79.29 86.81

Domainnet 52.37 50.50 50.66 51.12 51.91 52.05 54.40 54.29 57.96 51.49 55.16

Entity13 76.93 80.07 77.99 78.04 78.26 78.75 79.74 79.28 80.25 80.37 73.58

Entity30 62.61 69.83 68.09 68.09 67.90 68.36 68.51 69.34 69.95 69.10 58.51

Living17 64.13 69.30 68.84 68.82 72.12 69.87 70.72 70.65 72.86 72.16 53.44

Nonliving26 54.75 63.95 62.60 63.02 61.69 61.99 62.53 64.51 62.98 63.60 44.82

Officehome 59.89 59.45 60.59 60.82 66.05 65.79 66.19 66.15 65.48 60.47 65.37

Visda 58.47 53.41 59.98 60.96 69.69 69.79 72.55 72.80 72.02 53.51 72.23

Avg 66.02 68.94 69.70 69.70 70.92 70.77 71.40 71.54 73.37 69.75 66.14

Table 4. Results with different DA methods on vision datasets aggregated across target label marginal shifts. While no single DA method

performs consistently across different datasets, FixMatch seems to provide the highest aggregate improvement over a source-only classifier

in our testbed.
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Dataset

Source BN-adapt CDANN FixMatch

None RW None RW RS
RS+
RW

None RW RS
RS+
RW

None RW RS
RS+
RW

CIFAR-10 89.1 89.4 89.2 91.4 92.1 92.9 90.0 91.3 91.4 92.5 91.9 93.1 93.6 94.1

CIFAR-100 76.7 77.5 77.6 78.8 77.9 79.0 74.6 75.8 74.1 75.3 79.0 79.6 79.1 79.8

FMoW 69.0 70.3 65.5 67.2 66.2 65.6 60.8 61.9 57.0 55.2 68.4 69.4 64.9 66.7

Camelyon 77.0 77.9 85.7 85.9 88.5 89.3 85.5 85.8 87.9 88.5 86.3 87.0 86.6 86.8

Domainnet 50.5 48.2 50.7 50.1 51.4 49.8 54.4 54.2 54.7 54.3 58.0 57.5 58.4 57.8

Entity13 80.1 80.9 78.0 79.4 79.8 80.7 79.7 80.2 80.6 81.4 80.3 81.9 81.4 82.4

Entity30 69.8 70.1 68.1 69.2 69.1 70.0 68.5 69.6 69.4 70.5 70.0 71.6 70.1 71.2

Living17 69.3 69.9 68.8 69.7 69.6 70.1 70.7 71.3 72.9 72.7 72.9 72.8 72.3 71.9

Nonliving26 63.9 64.5 62.6 63.0 63.7 63.9 62.5 62.9 63.8 64.0 63.0 64.7 63.9 64.8

Officehome 59.4 57.9 60.6 60.5 60.9 60.4 66.2 66.3 66.1 65.1 65.5 64.9 66.5 66.1

Visda 53.4 52.1 60.0 60.6 59.5 58.8 72.6 72.6 75.3 75.3 72.0 72.5 73.5 73.8

Avg 68.9 69.0 69.7 70.5 70.8 70.9 71.4 72.0 72.1 72.3 73.4 74.1 73.7 74.1

Dataset

TENT DANN NoisyStudent

None RW RS
RS+
RW

None RW RS
RS+
RW

None RW RS
RS+
RW

CIFAR-10 89.2 91.4 92.1 92.9 90.9 92.3 91.5 92.6 90.7 90.8 90.6 90.7

CIFAR-100 77.6 78.8 78.0 79.0 74.8 75.9 74.8 76.1 77.6 78.0 77.9 78.0

FMoW 66.6 67.4 66.7 66.1 60.1 61.6 56.4 54.5 68.9 69.8 67.1 68.0

Camelyon 82.5 82.7 87.8 88.9 86.7 87.3 88.4 88.8 79.3 79.1 79.2 79.3

Domainnet 51.1 50.6 51.8 50.3 51.9 52.1 53.6 53.5 51.5 49.8 51.3 49.5

Entity13 78.0 79.5 79.8 80.8 78.3 79.4 79.7 80.8 80.4 81.5 80.6 81.7

Entity30 68.1 69.2 69.1 70.1 67.9 69.2 69.0 69.8 69.1 70.1 69.3 70.3

Living17 68.8 69.7 69.6 70.1 72.1 73.0 71.8 72.3 72.2 71.1 69.3 69.4

Nonliving26 63.0 63.4 63.3 63.8 61.7 62.4 63.1 63.0 63.6 64.3 63.2 64.8

Officehome 60.8 60.4 60.9 60.4 66.1 66.1 66.5 65.3 60.5 59.5 60.8 59.5

Visda 61.0 61.5 60.3 59.6 69.7 69.9 73.1 73.2 53.5 51.5 55.7 54.3

Avg 69.7 70.4 70.8 71.1 70.9 71.7 71.6 71.8 69.7 69.6 69.5 69.6

Table 5. Results with DA methods paired with re-sampling (RS) and re-weighting (RW) correction (with RLLS estimate) aggregated across

target label marginal shifts for vision datasets. RS and RW seem to help for all datasets and they both together significantly improve

aggregate performance over no correction for all DA methods.
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L. Description of Deep Domain Adaptation Methods

In this section, we summarize deep DA methods compared in our RLSBENCH testbed. We also discuss how each method

combines with our meta-algorithm to handle shift in class proportion.

L.1. Source only training

We consider empirical risk minimization on the labeled source data as a baseline. Since this simply ignores the unlabeled

target data, we call this as source only training. As mentioned in the main paper, we perform source only training with and

without data augmentations. Formally, we minimize the following ERM loss:

Lsource onlypfq <
1

n

nÿ

i“1

ℓpfpT pxiq, yiqq , (4)

where T is the stochastic data augmentation operation for vision datasets and ℓ is a loss function. For NLP and tabular

datasets, T is the identity function. Throughout the paper, we use cross-entropy loss minimization. Unless specified

otherwise, we use strong augmentations as the data augmentation technique for vision datasets. For NLP and tabular datasets,

we do not use any data augmentation.

As mentioned in the main paper, we do not include re-sampling results with a source only model as it is trained only on

source data and we observed no differences with just balancing the source data (as for most datasets source is already

balanced) in our experiments. After obtaining a classifier f , we can first estimate the target label marginal and then adjust

the classifier f with post-hoc re-weighting with importance ratios wtpyq < pptpyq{ppspyq.

Adversarial training of a source only model Along with standard training of a source only model with data augmentation,

we experiment with adversarially robust models (Madry et al., 2017). To train adversarially robust models, we replace the

standard ERM objective with a robust risk minimization objective:

Lsource only (adv)pfq <
1

n

nÿ

i“1

ℓpRpT pxiq, yiq, yiq , (5)

where Rp¨q performs the adversarial augmentation. In our paper, we use targeted Projected Gradient Descent (PGD) attacks

with ℓ2 perturbation model.

L.2. Domain-adversarial training methods

Domain-adversarial trianing methods aim to learn domain invariant feature representations. These methods aimed at practical

problems with non-overlapping support and are motivated by theoretical results showing that the gap between in- and

out-of-distribution performance depends on some measure of divergence between the source and target distributions (Ben-

David et al., 2010a; Ganin et al., 2016). While simultaneously minimizing the source error, these methods align the

representations between source and target distribution. To perform alignment, these methods penalize divergence between

feature representations across domains, encouraging the model to produce feature representations that are similar across

domain.

Before describing these methods, we first define some notation. Consider a model f < g ˝ h, where h : X Ñ R
d is the

featurizer that maps the inputs to some d dimensional feature space, and the head g : Rd Ñ ∆k´1 maps the features to the

prediction space. Following Sagawa et al. (2021), with all of our domain invariant methods, we use strong augmentations

with source and target data for vision datasets. For NLP and tabular datasets, we do not use any data augmentation.

DANN DANN was proposed in Ganin et al. (2016). DANN approximates the divergence between feature representations

of source and target domain by leveraging a domain discriminator classifier. Domain discriminator fd aims to discriminate

between source and target domains. Given a batch of inputs from source and target, this deep network fd classifies whether

the examples are from the source data or target data. In particular, the following loss function is used:

Ldomain disc.pfdq <
1

n

nÿ

i“1

ℓpfdphpT pxiqqq, 0q `
1

m

n`mÿ

i“n`1

ℓpfdphpT pxiqqq, 1q , (6)
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where tx1, x2, . . . , xnu are n source examples and txn`1, . . . , xm`nu are m target examples. Overall, the following loss

function is used to optimize models with DANN:

LDANNph, g, fdq < Lsource onlypg ˝ hq ´ ¼Ldomain disc.pfdq . (7)

LDANNph, g, fdq is maximized with respect to the domain discriminator classifier and LDANNph, g, fdq minimized with

respect to the underlying featurize and the source classifier. This is achieved by gradient reversal layer in practice. To train,

three networks, we use three different learning rate ¸f , ¸g, and ¸fd . We discuss these hyperparameter details in App. M. We

adapted our DANN implementation from Sagawa et al. (2021) and Transfer learning library (Jiang et al., 2022).

CDANN Conditional Domain adversarial neural network is a variant of DANN (Long et al., 2018). Here the domain

discriminator is conditioned on the classifier g’s prediction. In particular, instead of training the domain discriminator on

the representation output of h, these methods operate on the outer product between the feature presentation hpxq at an

input x and the classifier’s probabilistic prediction f < g ˝ hpxq (i.e., hpxq b fpxq). Thus instead of training the domain

discriminator classifier fd on the d dimensional input space, they train it on d ˆ k dimensional space. In particular, the

following loss function is used:

LCDAN domain disc.pfd, g, hq <
1

n

nÿ

i“1

ℓpfdpf b hpT pxiqqq, 0q `
1

n

n`mÿ

i“n`1

ℓpfdpf b hpT pxiqqq, 1q , (8)

where tx1, x2, . . . , xnu are n source examples and txn`1, . . . , xm`nu are m target examples. The overall loss is the same

as DANN where Ldomain disc.pfdq is replaced with LCDAN domain disc.pfd, g, hq.

We adapted our implementation for CDANN from Transfer learning library (Jiang et al., 2022).

To adapt DANN and CDANN to our meta algorithm, at each epoch we can perform re-balancing of source and target data as

in Step 1 and 4 of Algorithm 1. After obtaining the classifier f , we can use this classifier to first obtain an estimate of the

target label marginal and then perform re-weighting adjustment with the obtained estimate.

IW-DANN and IW-CDANN Tachet et al. (2020) proposed training with importance re-weighting correction with DANN

and CDANN objectives to accommodate for the shift in the target label proportion. In particular, at every epoch of training

they first estimate the importance ratio pwt (with BBSE on training source and training target data) and then re-weight the

domain discriminator objective and ERM objective. In particular, the domain discriminator loss for IW-DANN can be

written as:

L pw
domain disc.pfdq <

1

n

nÿ

i“1

pwpyiqℓpfdphpT pxiqqq, 0q `
1

n

n`mÿ

i“n`1

ℓpfdphpT pxiqqq, 1q , (9)

where we multiply the source loss with importance weights. Similarly, we can re-write the source only training objective

with importance re-weighting as follows:

L pw
source onlypfq <

1

n

nÿ

i“1

pwpyiqℓpfpT pxiq, yiqq . (10)

Overall, the following objective is used to optimize models with IW-DANN:

LIW-DANNph, g, fdq < L pw
source onlypg ˝ hq ´ ¼L pw

domain disc.pfdq , (11)

where the importance weights are updated after every epoch with classifier obtained in previous step. Similarly, with using

importance re-weights with the CDANN objective, we obtain IW-CDANN objective.

In population, IW-CDANN and IW-DANN correction matches the correction with our meta-algorithm for DANN and

CDANN. However, the behavior this importance re-weighting correction can be different from our meta-algorithm for over-

parameterized models with finite data (Byrd & Lipton, 2019). Recent empirical and theoretical findings have highlighted

that importance re-weighting have minor to no effect on overparameterized models when trained for several epochs (Byrd &

45



RLSbench: Domain Adaptation Under Relaxed Label Shift

Lipton, 2019; Xu et al., 2021). On the other hand, with finite samples, re-sampling (when class labels are available) has

shown different and promising empirical behavior (An et al., 2020; Idrissi et al., 2022). This may highlight the differences

in the behavior of IW-CDANN (or IW-DANN) with our meta algorithm on CDANN (or DANN).

We refer to the implementation provided by the authors (Tachet et al., 2020).

L.3. Self-training methods

Self-training methods leverage unlabeled data by ‘pseudo-labeling’ unlabeled examples with the classifier’s own predictions

and training on them as if they were labeled examples. Recent self-training methods also often make use of consistency

regularization, for example, encouraging the model to make similar predictions on augmented versions of unlabeled example.

In our work, we experiment with the following methods:

PseudoLabel (Lee et al., 2013) proposed PseudoLabel that leverages unlabeled examples with classifier’s own prediction.

This algorithm dynamically generates psuedolabels and overfits on them in each batch. In particular, while pseudolabels are

generated on unlabeled examples, the loss is computed with respect to the same label. PseudoLabel only overfits to the

assigned label if the confidence of the prediction is greater than some threshold Ä .

Refer to T as the data-augmentation technique (i.e., identity for NLP and tabular datasets and strong augmentation for vision

datasets). Then, PseudoLabel uses the following loss function:

LPseudoLabelpfq <
1

n

nÿ

i“1

ℓpfpT pxiq, yiqq `
¼t

m

m`nÿ

i“n`1

ℓpfpT pxiq, ryiqq ¨ I

>
max

y
fypT pxiqq ě Ä

ȷ
,

where ryi < argmaxy fypT pxiqq. PseudoLabel increases ¼t between labeled and unlabeled losses over epochs, initially

placing 0 weight on unlabeled loss and then linearly increasing the unlabeled loss weight until it reaches the full value of

hyperparameter ¼ at some threshold step. We fix the step at which ¼t reaches its maximum value ¼ be 40% of the total

number of training steps, matching the implementation to (Sohn et al., 2020; Sagawa et al., 2021).

FixMatch Sohn et al. (2020) proposed FixMatch as a variant of the simpler Pseudo-label method (Lee et al., 2013).

This algorithm dynamically generates psuedolabels and overfits on them in each batch. FixMatch employs consistency

regularization on the unlabeled data. In particular, while pseudolabels are generated on a weakly augmented view of

the unlabeled examples, the loss is computed with respect to predictions on a strongly augmented view. The intuition

behind such an update is to encourage a model to make predictions on weakly augmented data consistent with the strongly

augmented example. Moreover, FixMatch only overfits to the assigned labeled with weak augmentation if the confidence of

the prediction with strong augmentation is greater than some threshold Ä .

Refer to Tweak as the weak-augmentation and Tstrong as the strong-augmentation function. Then, FixMatch uses the following

loss function:

LFixMatchpfq <
1

n

nÿ

i“1

ℓpfpTstrongpxiq, yiqq

`
¼

m

m`nÿ

i“n`1

ℓpfpTstrongpxiq, ryiqq ¨ I

>
max

y
fypTstrongpxiqq ě Ä

ȷ
,

where ryi < argmaxy fypTweakpxiqq. We adapted our implementation from Sagawa et al. (2021) which matches the

implementation of Sohn et al. (2020) except for one detail. While Sohn et al. (2020) augments labeled examples with weak

augmentation, Sagawa et al. (2021) proposed to strongly augment the labeled source examples.

NoisyStudent Xie et al. (2020b) proposed a different variant of Pseudo-labeling. Noisy Student generates pseudolabels,

fixes them, and then trains the model (from scratch) until convergence before generating new pseudolabels. Contrast it with

FixMatch and PseudoLabel which dynamically generate pseudolabels. The first set of pseudolabels are obtained by training

an initial teacher model only on the source labeled data. Then in each iteration, randomly initialized models fit the labeled

source data and pseudolabeled target data with pseudolabels assigned by the converged model in the previous iteration.

Noisy student objective can be summarized as:
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LNoisyStudentpf
N q <

1

n

nÿ

i“1

ℓpfN pTstrongpxiq, yiqq `
1

m

m`nÿ

i“n`1

ℓpfN pTstrongpxiq, ryiqq ,

where ryi < argmaxy f
N´1

y pTweakpxiqq is computed with the classifier obtained at N ´ 1 step. Note that the randomly

initialized model at each iteration uses a dropout of p < 0.5 in the penultimate layer. We adopted our implementation of

NoisyStudent to Sagawa et al. (2021). To initialize the initial teacher model, we use the source-only model trained with

strong augmentations without dropout.

SENTRY Prabhu et al. (2021) proposed a different variant of pseudolabeling method. This method is aimed to tackle DA

under relaxed label shift scenario. a SENTRY incorporates a target instance based on its predictive consistency under a

committee of strong image transformations. In particular, SENTRY makes N strong augmentations of an unlabeled target

example and makes a prediction on those. If the majority of the committee matches the prediction on the sample example

with weak-augmentation then entropy is minimized on that example, otherwise the entropy is maximized. Moreover, the

authors employ an ’information-entropy’ objective aimed to match the prediction at every example with the estimated target

label marginal. Overall the SENTRY objective is defined as follows:

LSENTRYpfq <
1

n

nÿ

i“1

ℓpfpTstrongpxiq, yiqq `
1

m

m`nÿ

i“n`1

kÿ

j“1

fkpy < j|xiq logprptpy < jqq

` ¼unsup

1

m

m`nÿ

i“n`1

kÿ

j“1

´fkpy < j|xiq logpfkpy < j|xiqq ¨ p2lpxq ´ 1q ,

where lpxq P t0, 1u is majority vote output of the committee consistency. For more details, we refer the reader to Prabhu

et al. (2021). Additionally, at each training epoch, SENTRY balances the source data and pseudo-balances the target data.

We adopted our implementation with the official implementation in Prabhu et al. (2021) with minor differences. In particular,

to keep the implementation consistent with all the other DA methods, we train with the objective above from scratch instead

of training sequentially after a initialization with source-only classifier as in the original paper (Prabhu et al., 2021).

Since Fix-Match, NoisyStuent, and Sentry use strong data-augmentations in their implementation, the applicability of these

algorithms is restricted to vision datasets. For NLP and tabular datasets, we only train models with PseudoLabel as it doesn’t

rely on any augmentation technique.

L.4. Test-time training methods

These take an already trained source model and adapt a few parameters (e.g. batch norm parameters, batch norm statistics)

on the unlabeled target data with an aim to improve target performance. Hence, we restrict these methods to vision datasets

with architectures that use batch norm. These methods are computationally cheaper than other DA methods in the suite as

they adapt a classifier on-the-fly. We include the following methods in our experimental suite:

BN-adapt Li et al. (2016) proposed batch norm adaptation. More recently, Schneider et al. (2020) showed gains with BN-

adapt on common corruptions benchmark. Batch norm adaptation is applicable for deep models with batch norm parameters.

With this method we simply adapt the Batchnorm statistics, in particular, mean and std of each batch norm layer.

TENT Wang et al. (2021) proposed optimizing batch norm parameters to minimize the entropy of the predictor on the

unlabeled target data. In our implementation of TENT, we perform BN-adapt before learning batch norm parameters.

CORAL Sun et al. (2016) proposed CORAL to adapt a model trained on the source to target by whitening the feature

representations. In particular, say pΣs is the empirical covariance of the target data representations and Σs is the empirical

covariance of the source data representations, CORAL adjusts a linear layer g on target by re-training the final layer on

the outputs: Σ
1{2
t Σ

´1{2
s hpxq. DARE (Rosenfeld et al., 2022) simplified the procedure and showed that this is equivalent

to training a linear head h on Σ
´1{2
s hpxq and whitening target data representations with Σ

´1{2
t hpxq before input to the

classifier. We choose to implement the latter procedure as it is cheap to train a single classifier in multi-domain datasets.

With our meta-algorithm, before adapting the source-only classifier with test time adaptation methods, we use it to perform

the re-sampling correction. After obtaining the adapted classifier, we estimate target label marginal and use it to adjust the

classifier with re-weighting.
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M. Hyperparameter and Architecture Details

M.1. Architecture and Pretraining Details

For all datasets, we used the same architecture across different algorithms:

• CIFAR-10: Resnet-18 (He et al., 2016) pretrained on Imagenet

• CIFAR-100: Resnet-18 (He et al., 2016) pretrained on Imagenet

• Camelyon: Densenet-121 (Huang et al., 2017) not pretrained on Imagenet as per the suggestion made in (Koh et al.,

2021)

• FMoW: Densenet-121 (Huang et al., 2017) pretrained on Imagenet

• BREEDs (Entity13, Entity30, Living17, Nonliving26): Resnet-18 (He et al., 2016) not pretrained on Imagenet as per

the suggestion in (Santurkar et al., 2021). The main rationale is to avoid pre-training on the superset dataset where we

are simulating sub-population shift.

• Officehome: Resnet-50 (He et al., 2016) pretrained on Imagenet

• Domainnet: Resnet-50 (He et al., 2016) pretrained on Imagenet

• Visda: Resnet-50 (He et al., 2016) pretrained on Imagenet

• Civilcomments: Pre-trained DistilBERT-base-uncased (Sanh et al., 2019)

• Retiring Adults: We use an MLP with 2 hidden layers and 100 hidden units in both of the hidden layer

• Mimic Readmissions: We use the transformer architecture described in Yao et al. (2022)2

Except for Resnets on CIFAR datasets, we used the standard pytorch implementation (Gardner et al., 2018). For Resnet

on cifar, we refer to the implementation here: https://github.com/kuangliu/pytorch-cifar. For all the

architectures, whenever applicable, we add antialiasing (Zhang, 2019). We use the official library released with the paper.

For imagenet-pretrained models with standard architectures, we use the publicly available models here: https://

pytorch.org/vision/stable/models.html. For imagenet-pretrained models on the reduced input size images

(e.g. CIFAR-10), we train a model on Imagenet on reduced input size from scratch. We include the model with our publicly

available repository. For bert-based models, we use the publicly available models here: https://huggingface.co/

docs/transformers/.

M.2. Hyperparameters

First, we tune learning rate and ℓ2 regularization parameter by fixing batch size for each dataset that correspond to maximum

we can fit to 15GB GPU memory. We set the number of epochs for training as per the suggestions of the authors of respective

benchmarks. Note that we define the number of epochs as a full pass over the labeled training source data. We summarize

learning rate, batch size, number of epochs, and ℓ2 regularization parameter used in our study in Table 6.

For each algorithm, we use the hyperparameters reported in the initial papers. For domain-adversarial methods (DANN and

CDANN), we refer to the suggestions made in Transfer Learning Library (Jiang et al., 2022). We tabulate hyperparameters

for each algorithm next:

• DANN, CDANN, IW-CDANN and IW-DANN As per Transfer Learning Library suggestion, we use a learning

rate multiplier of 0.1 for the featurizer when initializing with a pre-trained network and 1.0 otherwise. We default to a

penalty weight of 1.0 for all datasets with pre-trained initialization.

• FixMatch We use the lambda is 1.0 and use threshold Ä as 0.9.

2https://github.com/huaxiuyao/Wild-Time/.
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Dataset Epoch Batch size ℓ2 regularization Learning rate

CIFAR10 50 200 0.0001 (chosen from t0.0001, 0.001,1e-5, 0.0u) 0.01 (chosen from t0.001, 0.01, 0.0001u)

CIFAR100 50 200 0.0001 (chosen from t0.0001, 0.001,1e-5, 0.0u) 0.01 (chosen from t0.001, 0.01, 0.0001u)

Camelyon 10 96 0.01 (chosen from t0.01, 0.001, 0.0001, 0.0u) 0.03 (chosen from t0.003, 0.3, 0.0003, 0.03u)

FMoW 30 64 0.0 (chosen from t0.0001, 0.001,1e-5,0.0u) 0.0001 (chosen from t0.001, 0.01, 0.0001u)

Entity13 40 256 5e-5 (chosen from t5e-5, 5e-4, 1e-4, 1e-5u) 0.2 (chosen from t0.1, 0.5, 0.2, 0.01, 0.0u)

Entity30 40 256 5e-5 (chosen from t5e-5, 5e-4, 1e-4, 1e-5u) 0.2 (chosen from t0.1, 0.5, 0.2, 0.01, 0.0u)

Living17 40 256 5e-5 (chosen from t5e-5, 5e-4, 1e-4, 1e-5u) 0.2 (chosen from t0.1, 0.5, 0.2, 0.01, 0.0u)

Nonliving26 40 256 0 5e-5 (chosen from t5e-5, 5e-4, 1e-4, 1e-5u) 0.2 (chosen from t0.1, 0.5, 0.2, 0.01, 0.0u)

Officehome 50 96 0.0001 (chosen from t0.0001, 0.001,1e-5, 0.0u) 0.01 (chosen from t0.001, 0.01, 0.0001u)

DomainNet 15 96 0.0001 (chosen from t0.0001, 0.001,1e-5, 0.0u) 0.01 (chosen from t0.001, 0.01, 0.0001u)

Visda 10 96 0.0001 (chosen from t0.0001, 0.001,1e-5, 0.0u) 0.01 (chosen from t0.001, 0.01, 0.0001u)

Civilcomments 5 32 0.01 (chosen from t0.01, 0.001, 0.0001, 0.0u) 2e-5 (chosen from t2e ´ 4, 2e ´ 5u)

Retiring Adults 50 200 0.0001 (chosen from t0.01, 0.001, 0.0001, 0.0u) 0.01 (chosen from t0.001, 0.01, 0.0001u)

Mimic Readmissions 100 128 0.0 (chosen from t0.01, 0.001, 0.0001, 0.0u) 5e-4 (chosen from t0.005, 0.00010.0005u)

Table 6. Details of the learning rate and batch size considered in our RLSBENCH

• NoisyStudent We repeat the procedure for 2 iterations and use a drop level of p < 0.5.

• SENTRY We use ¼src < 1.0, ¼ent < 1.0, and ¼unsup < 0.1. We use a committee of size 3.

• PsuedoLabel We use the lambda is 1.0 and use threshold Ä as 0.9.

Recent works (Deng & Zheng, 2021; Guillory et al., 2021; Chen et al., 2021; Jiang et al., 2021; Baek et al., 2022; Garg

et al., 2022b) have proposed numerous heuristics to predict classifier performance under distribution shift. Analyzing the

usefulness of these heuristics for hyperparameter selection is an interesting avenue for future work.

M.3. Compute Infrastructure

Our experiments were performed across a combination of Nvidia T4, A6000, P100 and V100 GPUs. Overall, to run the

entire RLSBENCH suite on a T4 GPU machine with 8 CPU cores we would approximately need 70k GPU hours of compute.

M.4. Data Augmentation

In our experiments, we leverage data augmentation techniques that encourage robustness to some variations between

domains for vision datasets.

For weak augmentation, we leverage random horizontal flips and random crops of pre-defined size. For strong augmentation,

we apply the following transformations sequentially: random horizontal flips, random crops of pre-defined size, augmen-

tation with Cutout (DeVries & Taylor, 2017), and RandAugment (Cubuk et al., 2020). For the exact implementation of

RandAugment, we directly use the implementation of Sohn et al. (2020). The pool of operations includes: autocontrast,

brightness, color jitter, contrast, equalize, posterize, rotation, sharpness, horizontal and vertical shearing, solarize, and hori-

zontal and vertical translations. We apply N = 2 random operations for all experiments.

N. Comparison with SENTRY on officehome dataset with different hyperparameters

In this section, we shed more light on the discrepancy observed between SENTRY results reported in the original pa-

per (Prabhu et al., 2021) and our implementation.

We note that for the main experiments on Officehome dataset, we used a batch size of 96 for all methods including SENTRY.

However, SENTRY reported results with a batch size of 16 in their work. Hence, we re-run the SENTRY algorithm with

a batch size of 16. To investigate the impact of the decreased batch size, we make a comparison with FixMatch (the best

algorithm on Officehome in our runs) by re-running it with the decreased batch size.
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In Table 7 we report results on individual shift pairs in officehome. We observe that SENTRY improves over FixMatch for

the default minor shift in the label distribution in the officehome dataset. However, as the shift severity increases we observe

that SENTRY performance degrades. Overall, we observe that RS-FixMatch performs similar or superior to SENTRY on 3

out of 4 shift pairs in officehome.

Algorithm Alpha = None Alpha = 10.0 Alpha = 3.0 Alpha = 1.0 Alpha = 0.5 Avg

FixMatch 92.5 95.2 98.0 100.0 100.0 97.1

RS-FixMatch 92.5 96.4 98.0 100.0 100.0 97.4

SENTRY 93.0 94.0 98.0 83.3 87.5 91.2

(a) Product to Product (in-distribution)

Algorithm Alpha = None Alpha = 10.0 Alpha = 3.0 Alpha = 1.0 Alpha = 0.5 Avg

FixMatch 71.4 71.5 70.7 73.1 75.5 72.4

RS-FixMatch 74.7 74.0 72.1 73.1 70.4 72.9

SENTRY 78.1 78.0 75.1 71.7 65.3 73.6

(b) Product to Real

Algorithm Alpha = None Alpha = 10.0 Alpha = 3.0 Alpha = 1.0 Alpha = 0.5 Avg

FixMatch 41.5 44.0 44.2 48.4 39.4 43.5

RS-FixMatch 45.5 44.8 43.6 50.0 37.4 44.2

SENTRY 45.8 46.5 41.4 40.3 27.3 40.3

(c) Product to ClipArt

Algorithm Alpha = None Alpha = 10.0 Alpha = 3.0 Alpha = 1.0 Alpha = 0.5 Avg

FixMatch 54.4 51.3 54.7 57.3 55.9 54.7

RS-FixMatch 57.2 53.6 55.9 57.3 58.8 56.6

SENTRY 63.7 62.0 62.1 65.3 55.9 61.8

(d) Product to Art

Table 7. Officehome results with batch size 16 instead of 96 used throughout our experiments.

More generally, across our runs, we also observed model training with SENTRY to be unstable. Investigating further, we

observe that the maximization objective to enforce consistency cause instabilities. This behavior is specifically prevalent for

experiments where we don’t use initiale the underlying model with pre-trained weights (for example, in BREEDs datasets).
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