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Abstract

Despite the emergence of principled methods for
domain adaptation under label shift, their sensi-
tivity to shifts in class conditional distributions
is precariously under explored. Meanwhile, pop-
ular deep domain adaptation heuristics tend to
falter when faced with label proportions shifts.
While several papers modify these heuristics in
attempts to handle label proportions shifts, incon-
sistencies in evaluation standards, datasets, and
baselines make it difficult to gauge the current
best practices. In this paper, we introduce RLS-
BENCH, a large-scale benchmark for relaxed label
shift, consisting of >500 distribution shift pairs
spanning vision, tabular, and language modalities,
with varying label proportions. Unlike existing
benchmarks, which primarily focus on shifts in
class-conditional p(z|y), our benchmark also fo-
cuses on label marginal shifts. First, we assess
13 popular domain adaptation methods, demon-
strating more widespread failures under label pro-
portion shifts than were previously known. Next,
we develop an effective two-step meta-algorithm
that is compatible with most domain adaptation
heuristics: (i) pseudo-balance the data at each
epoch; and (ii) adjust the final classifier with target
label distribution estimate. The meta-algorithm
improves existing domain adaptation heuristics
under large label proportion shifts, often by 2—
10% accuracy points, while conferring minimal
effect (<0.5%) when label proportions do not
shift. We hope that these findings and the avail-
ability of RLSBENCH will encourage researchers
to rigorously evaluate proposed methods in re-
laxed label shift settings. Code is publicly avail-
ableathttps://github.com/acmi-lab/
RLSbench.
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1. Introduction

Real-world deployments of machine learning models are
typically characterized by distribution shift, where data en-
countered in production exhibits statistical differences from
the training data (Quinonero-Candela et al., 2008; Torralba
& Efros, 2011; Koh et al., 2021). Because continually la-
beling data can be prohibitively expensive, researchers have
focused on the unsupervised Domain Adaptation (DA) set-
ting, where only labeled data from the source distribution
and unlabeled from the farget distribution are available for
training. Absent further assumptions, the DA problem is
known to be underspecified (Ben-David et al., 2010b) and
thus no method is universally applicable.

Researchers have responded to these challenges in several
ways. One approach is to investigate structural assump-
tions under which DA problems are well-posed. Popular
examples include covariate shift and label shift, for which
identification strategies and principled methods exist when-
ever the source and target distributions have overlapping
support (Shimodaira, 2000; Scholkopf et al., 2012; Gretton
et al., 2009). For example, recent research on label shift has
produced effective methods that are applicable in deep learn-
ing regimes, yielding both consistent estimates of the target
label marginal and principled ways to update the resulting
classifier (Lipton et al., 2018; Alexandari et al., 2021; Aziz-
zadenesheli et al., 2019; Garg et al., 2020). However, such
assumptions are typically, to some degree, violated in prac-
tice. Even for archetypal cases like shift in disease preva-
lence, the label shift assumption can be violated. For exam-
ple, over the course of the COVID-19 epidemic, changes in
disease positivity coincided with shifts in treatment proto-
cols, the age distribution of the infected population, and the
genetic makeup of the virus itself.

A complementary line of research focuses on construct-
ing benchmark datasets, in the hopes of finding heuris-
tics for incorporating the unlabeled target data that result
in improvements on the kinds of problems that arise in
practice. Examples of such benchmarks include Office-
Home (Venkateswara et al., 2017), Domainnet (Peng et al.,
2019)), WILDS (Sagawa et al., 2021). However, most of
these benchmark datasets exhibit little shift in the label dis-
tribution p(y) (or none at all). Consequently, benchmark-
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Figure 1. Domain adaptation under Relaxed Label Shift. (a) Overview of RLSbench setup: Unlike existing benchmarks for which the
label marginal p(y) doesn’t shift, in RLSbench, p(y) can shift arbitrarily. The class conditionals p(x|y) shift in seemingly natural ways
following popular benchmarks. RLSbench draws on 14 multi-domain datasets spanning vision, NLP, and tabular modalities. (b) Key
results: As the severity of target label proportion increases, the performance of existing popular DA methods degrades, often dropping
below source-only classifiers. DA methods, when paired with our meta-algorithm, significantly improve over a source-only classifier.

driven research has produced a variety of heuristic methods
(Ganin et al., 2016; Sohn et al., 2020; Wang et al., 2021; Li
et al., 2016) that despite yielding gains in benchmark per-
formance tend to break when p(y) shifts. While this vul-
nerability has previously been demonstrated for domain-
adversarial methods (Wu et al., 2019; Zhao et al., 2019),
we show that this problem is more widespread than previ-
ously known. Several recent papers attempt to address shift
in label distribution compounded by natural variations in
p(z|y) (Tan et al., 2020; Tachet des Combes et al., 2020;
Prabhu et al., 2021). However, it can be hard to compare ex-
perimental results across papers, owing to discrepancies in
how shifts in p(y) are simulated and the choice of evalua-
tion metrics. Moreover, many methods violate the unsuper-
vised contract by peeking at target validation performance
during model selection and hyperparameter tuning (Wilson
& Cook, 2020; Saito et al., 2021). In short, there is a paucity
of comprehensive and fair comparisons between DA meth-
ods for settings with shifts in label distribution.

In this paper, we develop RLSBENCH, the first standard-
ized test bed of relaxed label shift settings, where p(y) can
shift arbitrarily and the class conditionals p(x|y) can shift
in seemingly natural ways (following the popular DA bench-
marks). While existing DA benchmarks typically focus on
shifts in p(x|y), our benchmarks additionally focuses on
shifts in label marginals p(y). We evaluate a collection
of popular DA methods based on domain-invariant repre-
sentation learning, self-training, and test-time adaptation
across 14 multi-domain datasets spanning vision, Natural
Language Processing (NLP), and tabular modalities. The
different domains in each dataset present a different shift in
p(z|y). Since these datasets exhibit minor to no shift in la-
bel marginal, we simulate shift in target label marginal via
stratified sampling with varying severity. Overall, we obtain

560 different source and target distribution shift pairs and
train > 30k models in our testbed.

Based on our experiments on RLSBENCH, we make sev-
eral findings. First, we observe that while popular DA meth-
ods often improve over a source-only classifier absent shift
in target label distribution, their performance tends to de-
grade, dropping below source-only classifiers under severe
shifts in target label marginal. Next, we develop a meta-
algorithm with two simple corrections: (i) re-sampling the
data to balance the source and pseudo-balance the target;
(ii) re-weighting the final classifier using an estimate of the
target label marginal. We observe that in these relaxed label
shift settings, the performance of existing DA methods (e.g.
CDANN, FixMatch, and BN-adapt), when paired with our
meta-algorithm, significantly improves over a source-only
classifier. On the other hand, existing methods specifically
proposed for relaxed label shift (e.g., IN-CDANN and SEN-
TRY), often fail to improve over a source-only classifier and
significantly underperform when compared to existing DA
methods paired with our meta-algorithm.

Overall, RLSbench provides a comprehensive and standard-
ized suite for label distributions shifts, bringing existing
benchmarks one step closer to exhibit the sort of diversity
that we should expect to encounter when deploying mod-
els in the wild. Our findings emphasize the effectiveness
of a simple, previously overlooked baseline. We hope that
the RLSBENCH and our meta-algorithm (that can be paired
with any DA method) provide a framework for rigorous and
reproducible future research in relaxed label shift scenarios.

2. Preliminaries and Prior Work

We first setup the notation and formally define the prob-
lem. Let X be the input space and YV = {1,2,...,k} the
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output space. Let P, Py : X x YV — [0, 1] be the source
and target distributions and let p; and p, denote the corre-
sponding probability density (or mass) functions. Unlike the
standard supervised setting, in unsupervised DA, we pos-
sess labeled source data {(x1,y1), (x2,¥2), - - (Tn,Yn)}
and unlabeled target data {x,, 11, Tpn+2,- .-, Tntm}. With
f: X — A*~! we denote a predictor function which pre-
dicts § = arg max,, f,(x) on an input x. For a vector v, we
use vy to access the element at index .

In the traditional label shift setting, one assumes that p(z|y)
does not change but that p(y) can. Under label shift, two
challenges arise: (i) estimate the target label marginal p; (y);
and (ii) train a classifier f to maximize the performance
on target domain. This paper focuses on the relaxed label
shift setting. In particular, we assume that the label distri-
bution can shift from source to target arbitrarily but that
p(zx|y) varies between source and target in some compar-
atively restrictive way (e.g., shifts arising naturally in the
real-world like ImageNet (Russakovsky et al., 2015) to Im-
ageNetV2 (Recht et al., 2019)). Mathematically, we as-
sume a divergence-based restriction on p(z|y). That is, for
some small ¢ > 0 and distributional distance D, we have
max, D(ps(x|y), p¢(z|y)) < € and allow an arbitrary shift
in the label marginal p(y). We discuss several precise in-
stantiations in App. G. However, in practice, it’s hard to em-
pirically verify these distribution distances for small enough
€ with finite samples. Moreover, we lack a rigorous charac-
terization of the sense in which those shifts arise in popular
DA benchmarks, and since, the focus of our work is on the
empirical evaluation with real-world datasets, we leave a
formal investigation for future work.

The goal in DA is to adapt a predictor from a source distri-
bution with labeled data to a target distribution from which
we only observe unlabeled examples. While prior work ad-
dressing relaxed label shift has primarily focused on classi-
fier performance, we also separately evaluate methods for
estimating the target label marginal. This can be beneficial
for two reasons. First, it can shed more light into how im-
proving the estimates of target class proportion improves
target performance. Second, understanding how the class
proportions are changing can be of independent interest.

2.1. Prior Work

Unsupervised domain adaption Two popular settings for
which DA is well-posed include (i) covariate shift (Zhang
et al., 2013; Zadrozny, 2004; Cortes et al., 2010; Cortes &
Mohri, 2014; Gretton et al., 2009) where p(z) can change
from source to target but p(y|x) remains invariant; and (ii)
label shift (Saerens et al., 2002; Lipton et al., 2018; Az-
izzadenesheli et al., 2019; Alexandari et al., 2021; Garg
et al., 2020; Zhang et al., 2021; Roberts et al., 2022) where
the label marginal p(y) can change but p(x|y) is shared

across source and target. Principled methods with strong
theoretical guarantees exists for adaptation under these set-
tings when target distribution’s support is a subset of the
source support. Ben-David et al. (2010b;a); Mansour et al.
(2009); Zhao et al. (2019); Wu et al. (2019); Johansson et al.
(2019) present theoretical analysis when the assumption of
contained co-variate support is violated. In another line
of work, Elkan & Noto (2008); Bekker & Davis (2020);
Garg et al. (2021; 2022a) extend the label shift setting to
problems where previously unseen classes may appear in
the target and p(x|y) remains invariant among seen classes.
More recently, a massive literature has emerged exploring
a benchmark-driven heuristic approach (Long et al., 2015;
2017; Sun & Saenko, 2016; Sun et al., 2017; Zhang et al.,
2019; 2018; Ganin et al., 2016; Sohn et al., 2020). However,
rigorous evaluation of DA methods is typically restricted to
these carefully curated benchmark datasets where their is
minor to no shift in label marginal from source to target.

Relaxed Label Shift Exploring the problem of shift in la-
bel marginal from source to target with natural variations
in p(x|y), a few papers highlighted theoretical and empir-
ical failures of DA methods based on domain-adversarial
neural network training (Yan et al., 2017; Wu et al., 2019;
Zhao et al., 2019; Johansson et al., 2019). Subsequently, sev-
eral papers attempted to handle these problems in domain-
adversarial training (Tachet et al., 2020; Prabhu et al., 2021;
Liu et al., 2021; Tan et al., 2020; Manders et al., 2019).
However, these methods often lack comparisons with other
prominent DA methods and are evaluated under different
datasets and model selection criteria. To this end, we per-
form a large scale rigorous comparison of popular represen-
tative DA methods in a standardized evaluation framework.

Domain generalization In domain generalization, the
model is given access to data from multiple different do-
mains and the goal is to generalize to a previously unseen
domain at test time (Blanchard et al., 2011; Muandet et al.,
2013). For a survey of different algorithms for domain gen-
eralization, we refer the reader to Gulrajani & Lopez-Paz
(2020). A crucial distinction here is that unlike the domain
generalization setting, in DA problems, we have access to
unlabeled examples from the test domain.

Distinction from previous distribution shift benchmark
studies Previous studies evaluating robustness under distri-
bution shift predominantly focuses on transfer learning and
domain generalization settings Wenzel et al. (2022); Gulra-
jani & Lopez-Paz (2020); Djolonga et al. (2021); Wiles et al.
(2021); Koh et al. (2021). Taori et al. (2020); Hendrycks
et al. (2021) studies the impact of robustness interventions
(e.g. data augmentation techniques, adversarial training) on
target (out of distribution) performance. Notably, Sagawa
et al. (2021) focused on evaluating DA methods on WILDS-
2.0. Our work is complementary to these studies, as we
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present the first extensive study of DA methods under shift
in p(y) and natural variations in p(z|y).

3. RLSBENCH: A Benchmark for Relaxed
Label Shift

In this section, we introduce RLSBENCH, a suite of datasets
and DA algorithms that are at the core of our study. Mo-
tivated by correction methods for the (stricter) label shift
setting (Saerens et al., 2002; Lipton et al., 2018) and learn-
ing under imbalanced datasets (Wei et al., 2021; Cao et al.,
2019a), we also present a meta-algorithm with simple cor-
rections compatible with almost any DA method.

3.1. Datasets

RLSBENCH builds on 14 multi-domain datasets for classifi-
cation, including tasks across applications in object classifi-
cation, satellite imagery, medicine, and toxicity detection.
Across these datasets, we obtain a total of 56 different source
and target pairs. More details about datasets are in App. D.

(i) CIFAR-10 which includes the original CIFAR-
10 (Krizhevsky & Hinton, 2009), CIFAR-10-C (Hendrycks
& Dietterich, 2019) and CIFAR-10v2 (Recht et al., 2018);
(i) CIFAR-100 including the original dataset and CIFAR-
100-C; (iii) all four BREEDs datasets (Santurkar et al.,
2021), i.e., Entityl3, Entity30, Nonliving26, Living17.
BREEDs leverages class hierarchy in ImageNet (Rus-
sakovsky et al., 2015) to repurpose original classes to be
the subpopulations and define a classification task on su-
perclasses. We consider subpopulation shift and natural
shifts induced due to differences in the data collection pro-
cess of ImageNet, i.e, ImageNetv2 (Recht et al., 2019) and
a combination of both. (iv) OfficeHome (Venkateswara
et al., 2017) which includes four domains: art, clipart, prod-
uct, and real; (v) DomainNet (Peng et al., 2019) where we
consider four domains: clipart, painting, real, sketch; (vi)
Visda (Peng et al., 2018; 2017) which contains three do-
mains: train, val and test; (vii) FMoW (Koh et al., 2021;
Christie et al., 2018) from WILDS benchmark which in-
cludes three domains: train, OOD val, and OOD test—with
satellite images taken in different geographical regions and
at different times; (viii) Camelyon (Bandi et al., 2018) from
WILDS benchmark which includes three domains: train,
OOD val, and OOD test, for tumor identification with do-
mains corresponding to different hospitals; (ix) Civilcom-
ments (Borkan et al., 2019) which includes three domains:
train, OOD val, and OOD test, for toxicity detection with
domains corresponding to different demographic subpopu-
lations; (x) Retiring Adults (Ding et al., 2021) where we
consider the ACSIncome prediction task with various do-
mains representing different states and time-period; and (xi)
Mimic Readmission (Johnson et al., 2020; PhysioBank,
2000) where the task is to predict readmission risk with var-

ious domains representing data from different time-period.

Simulating a shift in target marginal The above datasets
present minor to no shift in label marginal. Hence, we
simulate such a shift by altering the target label marginal and
keeping the source target distribution fixed (to the original
source label distribution). Note that, unlike some previous
studies, we do not alter the source label marginal because,
in practice, we may have an option to carefully curate the
training distribution but might have little to no control over
the target label marginal.

For each target dataset, we have the true labels which al-
low us to vary the target label distribution. In particular,
we sample the target label marginal from a Dirichlet distri-
bution with a parameter « € {0.5, 1, 3.0, 10} multiplier to
the original target marginal. Specifically, p;(y) ~ Dir(8)
where 5, = a - pyo(y) and p; o(y) is the original target la-
bel marginal. The Dirichlet parameter « controls the sever-
ity of shift in target label marginal. Intuitively, as « de-
creases, the severity of the shift increases. For completeness,
we also include the target dataset with the original target la-
bel marginal. For ease of exposition, we denote the shifts as
NONE (no external shift) in the set of Dirichlet parameters,
i.e. the limiting distribution as & — 0. After simulating the
shift in the target label marginal (with two seeds for each «),
we obtain 560 pairs of different source and target datasets.

3.2. Domain Adaptation Methods

We implement the following algorithms (a more detailed
description of each method is included in App. L):

Source only As a baseline, we include model trained
with empirical risk minimization (Vapnik, 1999) with cross-
entropy loss on the source domain. We include source only
models trained with and without augmentations. We also
include adversarial robust models trained on source data
with augmentations (Source (adv)). In particular, we use
models adversarially trained against ¢>-perturbations.

Domain alignment methods These methods employ
domain-adversarial training schemes aimed to learn invari-
ant representations across different domains (Ganin et al.,
2016; Zhang et al., 2019; Tan et al., 2020). For our experi-
ments, we include the following five methods: Domain Ad-
versarial Neural Networks (DANN (Ganin et al., 2016)),
Conditional DANN (CDANN (Long et al., 2018), Maxi-
mum Classifier Discrepancy (MCD (Saito et al., 2018)),
Importance-reweighted DANN and CDANN (i.e. IW-
DANN & IW-CDANN Tachet des Combes et al. (2020)).

Self-training methods These methods “pseudo-label” un-
labeled examples with the model’s own predictions and
then train on them as if they were labeled examples. For
vision datasets, these methods often also use consistency
regularization, which encourages the model to make con-
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Algorithm 1 Meta algorithm to handle label marginal shift

input Source training and validation data: (Xg,Ys) and
(X%, Yg), unlabeled target training and validation data:
Xt and X/, classifier f, and DA algorithm A
1. X S, }75 <« SampleClassBalanced(X g, Ys)
>Balance source data
2: fori =1toT do
: Yr < argmax, f,(X7)
4: )Z'T <« SampleClassBalanced (X, }A/T)
> Pseudo-balance target data
5: Run an epoch of A to update f on balanced source
data { X g, Y5} and target data { X1}

6: end for
7: pi(y) < EstimateLabelMarginal( f, X¢, Y§, X/)
8 fi— ply=9) 4 forall j € Y

T Ykbiy=k) fx
> Re-weight classifier

output Target label marginal p;(y) and classifier f’

sistent predictions on augmented views of unlabeled exam-
ples (Lee et al., 2013; Xie et al., 2020b; Berthelot et al.,
2021). We include the following three algorithms: Fix-
Match (Sohn et al., 2020), Noisy Student (Xie et al.,
2020a), Selective Entropy Optimization via Committee Con-
sistency (SENTRY (Prabhu et al., 2021)). For NLP and tab-
ular dataset, where we do not have strong augmentations
defined, we consider PseudoLabel algorithm (Lee et al.,
2013).

Test-time adaptation methods These methods take a
source model and adapt a few parameters (e.g. batch norm
parameters, etc.) on the unlabeled target data with an aim
to improve target performance. We include: CORAL (Sun
etal.,2016) or Domain Adjusted Regression (DARE (Rosen-
feld et al., 2022)), BatchNorm adaptation (BN-adapt (Li
et al., 2016; Schneider et al., 2020)), Test entropy minimiza-
tion (TENT (Wang et al., 2021)).

3.3. Meta algorithm to handle target label marginal shift

Here we discuss two simple general-purpose corrections
that we implement in our framework. First, note that, as
the severity of shift in the target label marginal increases,
the performance of DA methods can falter as the training
is done over source and target datasets with different class
proportions. Indeed, failure of domain adversarial training
methods (one category of deep DA methods) has been theo-
retically and empirically shown in the literature (Wu et al.,
2019; Zhao et al., 2019). In our experiments, we show that
a failure due to a shift in label distribution is not limited to
domain adversarial training methods, but is common with
all the popular DA methods (Sec. 4).

Re-sampling To handle label imbalance in standard su-

pervised learning, re-sampling the data to balance the class
marginal is a known successful strategy (Chawla et al., 2002;
Buda et al., 2018; Cao et al., 2019b). In relaxed label shift,
we seek to handle the imbalance in the target data (with re-
spect to the source label marginal), where we do not have
access to true labels. We adopt an alternative strategy of
leveraging pseudolabels for target data to perform pseudo
class-balanced re—samplingl (Zou et al., 2018; Wei et al.,
2021). For relaxed label shift problems, (Prabhu et al.,
2021) employed this technique with their committee consis-
tency objective, SENTRY. However, they did not explore re-
sampling based correction for existing DA techniques. Since
this technique can be used in conjunction with any DA meth-
ods, we employ this re-sampling technique with existing
DA methods and find that re-sampling benefits all DA meth-
ods, often improving over SENTRY in our testbed (Sec. 4).

Re-weighting With re-sampling, we can hope to train the
classifier f on a mixture of balanced source and balanced
target datasets in an ideal case. However, this still leaves
open the problem of adapting the classifier f to the original
target label distribution which is not available. If we can es-
timate the target label marginal, we can post-hoc adapt the
classifier f with a simple re-weighting correction (Lipton
et al., 2018; Alexandari et al., 2021). To estimate the tar-
get label marginal, we turn to techniques developed under
the stricter label shift assumption (recall, the setting where
p(z]y) remains domain invariant). These approaches lever-
age off-the-shelf classifiers to estimate target marginal and
provide O(1/4/n) convergence rates under the label shift
condition with mild assumptions on the classifier (Lipton
et al., 2018; Azizzadenesheli et al., 2019; Garg et al., 2020).

While the relaxed label shift scenario violates the condi-
tions required for consistency of label shift estimation tech-
niques, we nonetheless employ these techniques and em-
pirically evaluate efficacy of these methods in our testbed.
In particular, to estimate the target label marginal, we ex-
periment with: (i) RLLS (Azizzadenesheli et al., 2019); (ii)
MLLS (Alexandari et al., 2021); and (iii) baseline estimator
that simply averages the prediction of a classifier f on un-
labeled target data. We provide precise details about these
methods in App. F. Since these methods leverage off-the-
shelf classifiers, classifiers obtained with any DA methods
can be used in conjunction with these estimation methods.

Summary Overall, in Algorithm 1, we illustrate how to in-
corporate the re-sampling and re-weighting correction with
existing DA techniques. Fig. 9 in App. E illustrates the
method. Algorithm .4 can be any DA method and in Step
7, we can use any of the three methods listed above to esti-
mate the target label marginal. We instantiate Algorithm 1

'A different strategy could be to re-sample target pseudolabel
marginal to match source label marginal. For simplicity, we choose
to balance source label marginal and target pseudolabel marginal.
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with several algorithms from Sec. 3.2 in App. L. Intuitively,
in an ideal scenario when the re-sampling step in our meta-
algorithm perfectly corrects for label imbalance between
source and target, we expect DA methods to adapt classi-
fier f to p(z|y) shift. The re-weighting step in our meta-
algorithm can then adapt the classifier f to the target label
marginal p;(y). We emphasize that in our work, we do not
claim to propose these corrections. But, to the best of our
knowledge, our work is the first to combine these two cor-
rections together and perform extensive experiments across
diverse datasets.

3.4. Other choices for realistic evaluation

For a fair evaluation and comparison across different
datasets and DA algorithms, we re-implemented all the algo-
rithms with consistent design choices whenever applicable.
We also make several additional implementation choices,
described below. We defer the additional details to App. M.

Model selection criteria and hyperparameters Given
that we lack validation i.i.d data from the target distribu-
tion, model selection in DA problems can not follow the
standard workflow used in supervised training. Prior works
often omit details on how to choose hyperparameters leav-
ing open a possibility of choosing hyperparameters using
the test set which can provide a false and unreliable sense
of improvement. Moreover, inconsistent hyperparameter
selection strategies can complicate fair evaluations mis-
associating the improvements to the algorithm under study.

In our work, we use source hold-out performance to pick
the best hyperparameters. First, for /5 regularization and
learning rate, we perform a sweep over random hyperparam-
eters to maximize the performance of source only model on
the hold-out source data. Then for each dataset, we keep
these hyperparameters fixed across DA algorithms. For DA
methods specific hyperparameters, we use the same hyper-
parameters across all the methods incorporating the sugges-
tions made in corresponding papers. Within a run, we use
hold out performance on the source to pick the early stop-
ping point. In appendices, we report oracle performance by
choosing the early stopping point with target accuracy.

Evaluation criteria To evaluate the target label marginal
estimation, we report ¢; error between the estimated label
distribution and true label distribution. To evaluate the clas-
sifier performance on target data, we report performance of
the (adapted) classifier on a hold-out partition of target data.

Architectural and pretraining details We experiment
with different architectures (e.g., DenseNet121, Resenet18,
Resnet50, DistilBERT, MLP and Transformer). We experi-
ment with randomly-initialized models and Imagenet, and
DistillBert pre-trained models. Given a dataset, we use the
same architecture across different DA algorithms.

Data augmentation Data augmentation is a standard in-
gredient to train vision models which can approximate some
of the variations between domains. Unless stated otherwise,
we train all the vision datasets using the standard strong aug-
mentation technique: random horizontal flips, random crops,
augmentation with Cutout (DeVries & Taylor, 2017), and
RandAugment (Cubuk et al., 2020). To understand help with
data augmentations alone, we also experiment with source-
only models trained without any data augmentation. For
tabular and NLP datasets, we do not use any augmentations.

4. Main Results

We present aggregated results on vision datasets in our
testbed in Fig. 2. In App. B, we present aggregated results
on NLP and tabular datasets. We include results on each
dataset in App. J. Note that we do not include RS results
with a source only model as it is trained only on source
data and we observed no differences with just balancing
the source data (as for most datasets source is already bal-
anced) in our experiments. Unless specified otherwise, we
use source validation performance as the early stopping cri-
terion. Based on running our entire RLSBENCH suite, we
distill our findings into the following takeaways.

Popular deep DA methods without any correction fal-
ter. While DA methods often improve over a source-only
classifier for cases when the target label marginal shift is ab-
sent or low, the performance of these methods (except Noisy
Student) drops below the performance of a source-only clas-
sifier when the shift in target label marginal is severe (i.e.,
when o = 0.5 in Fig. 2a, 5a, and 6a). On the other hand,
DA methods when paired with RS and RW correction, sig-
nificantly improve over a source-only model even when the
shift in target label marginal is severe (Fig. 2b, 5b, and 6b).

Re-sampling to pseudobalance target often helps all DA
methods across all modalities. When the shift in target la-
bel marginal is absent or very small (i.e., « € {NONE, 10.0}
in Fig. 2b, 5b, and 6b), we observe no (significant) differ-
ences in performance with re-sampling. However, as the
shift severity in target label marginal increases (i.e., o €
{3.0,1.0,0.5} in Fig. 2b, 5b, and 6b), we observe that re-
sampling typically improves all DA methods in our testbed.

Benefits of post-hoc re-weighting of the classifier depends
on shift severity and the underlying DA algorithm. For
domain alignment methods (i.e. DANN and CDANN) and
self-training methods, in particular FixMatch and PseudoLa-
bel, we observe that RW correction typically improves (over
no correction) significantly when the target label marginal
shift is severe (i.e., « € {3.0,1.0,0.5} in Fig. 2b, 5b, and
6b) and has no (significant) effect when the shift in target la-
bel marginal is absent or very small (i.e., & € {NONE, 10.0}
in Fig. 2b, 5b, and 6b). For BN-adapt, TENT, and NoisyS-
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(b) Performance of DA methods relative to source-only training when paired with our meta-algorithm (RS and RW corrections)

Figure 2. Performance of different DA methods relative to a source-only model across all distribution shift pairs in vision datasets grouped
by shift severity in label marginal. For each distribution shift pair and DA method, we plot the relative accuracy of the model trained
with that DA method by subtracting the accuracy of the source-only model. Hence, the black dotted line at O captures the performance
of the source-only model. Smaller the Dirichlet shift parameter, the more severe is the shift in target class proportion. (a) Shifts with
a = {NONE, 10.0, 3.0} have little to no impact on different DA methods whereas the performance of all DA methods degrades when
a € {1.0,0.5} often falling below the performance of a source-only classifier (except for Noisy Student). (b) RS and RW (in our meta-
algorithm) together significantly improve aggregate performance over no correction for all DA methods. While RS consistently helps
(over no correction) across different label marginal shift severities, RW hurts slightly for BN-adapt, TENT, and NoisyStudent when shift
severity is small. However, for severe shifts (« € {3.0,1.0,0.5}) RW significantly improves performance for all the methods. Parallel
results on tabular and language datasets in App. B. Detailed results with all methods on individual datasets in App. J. A more detailed
description of the plotting technique in App. A.

tudent, RW correction can slightly hurt when target label
marginal shift is absent or low (i.e., @ € {NONE, 10.0} in
Fig. 2b) but continues to improve significantly when the tar-
get label marginal shift is severe (i.e., « € {3.0,1.0,0.5} in

Fig. 2b). Additionally, we observe that in specific scenarios
of the real-world shift in p(z|y) (e.g., subpopulation shift in
BREEDs datasets, camelyon shifts, and replication study in
CIFAR-10 which are benign relative to other vision dataset
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Figure 3. Average accuracy of different DA methods aggregated across all distribution pairs in each modality. Parallel results with all

methods on individual datasets in App. J.
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Figure 4. Target label marginal estimation ({1) error and accuracy with RLLS and classifiers obtained with different DA methods. (Left)
Across all shift severities in vision datasets, RLLS with classifiers obtained with DA methods improves over RLLS with a source-only
classifier. (Right) For tabular datasets, RLLS with classifiers obtained with DA methods improves over RLLS with a source-only classifier
for severe target label marginal shifts. Plots for each DA method and all datasets are in App. H.

shifts in our testbed), RW correction does no harm to perfor-
mance for BN-adapt, TENT, and NoisyStudent even when
the target label marginal shift is less severe or absent (refer
to datasets in App. J).

DA methods paired with our meta-algorithm often im-
prove over source-only classifier but no one method con-
sistently performs the best. First, we observe that our
source-only numbers are better than previously published
results. Similar to previous studies (Gulrajani & Lopez-Paz,
2020), this can be attributed to improved design choices
(e.g. data augmentation, hyperparameters) which we make
consistent across all methods. While there is no consistent
method that does the best across datasets, overall, FixMatch
with RS and RW (our meta-algorithm) performs the best
for vision datasets. For NLP datasets, source-only with RW
(our meta-algorithm) performs the best overall. For tabular
datasets, CDANN with RS and RW (our meta-algorithm)
performs the best overall (Fig. 3).

Existing DA methods when paired with our meta-
algorithm significantly outperform other DA methods
specifically proposed for relaxed label shift. We observe
that, with consistent experimental design across different

methods, existing DA methods with RS and RW corrections
often improve over previously proposed methods specifi-
cally aimed to tackle relaxed label shift, i.e., IW-CDANN,
IW-DANN, and SENTRY (Fig. 7). For severe target la-
bel marginal shifts, the performance of IW-DANN, IW-
CDANN, and SENTRY often falls below that of the source-
only model. Moreover, while the importance weighting (i.e.,
IW-CDANN and IW-DANN) improves over CDANN and
DANN resp. (Fig. 2a, 5a and 6a), RS and RW corrections
significantly outweigh those improvements (Fig. 7).

BN-adapt and TENT with our meta-algorithm are sim-
ple and strong baselines. For models with batch norm
parameters, BN-adapt (and TENT) with RS and RW steps
is a computationally efficient and strong baseline. We ob-
serve that while the performance of BN-adapt (and TENT)
can drop substantially when the target label marginal shifts
(i.e., @« € {1.0,0.5} in Fig. 2(a)), RS and RW correction
improves the performance often improving BN-adapt (and
TENT) over all other DA methods when the shift in target
label marginal is extreme (i.e., & = 0.5 in Fig. 2(b)).

DA methods yield better target label marginal esti-
mates, and hence larger accuracy improvements with
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re-weighting, than source-only classifiers. Recall that we
experiment with target label marginal estimation methods
that leverage off-the-shelf classifiers to obtain an estimate.
We observe that estimators leveraging DA classifiers tend
to perform better than using source-only classifiers for tabu-
lar and vision datasets (Fig. 4). For NLP, we observe that
DA classifier and source-only classifier have performance
(with source-only often performing slightly better). Cor-
respondingly, as one might expect, better estimation yields
greater accuracy improvements when applying our RW cor-
rection. In particular, RW correction with DA methods im-
proves over the source-only classifier for vision and tabular
datasets and vice-versa for NLP datasets. (Fig. 4).

Early stopping criterion matters. We observe a consis-
tent ~2% and ~8% accuracy difference on vision and tab-
ular datasets respectively with all methods (Fig. 14). On
NLP datasets, while the early stopping criteria have ~2%
accuracy difference when RW and RS corrections are not
employed, the difference becomes negligible when these
corrections are employed (Fig. 14). These results highlight
that subsequent works should describe the early stopping
criteria used within their evaluations.

Data augmentation helps. Corroborating findings from
previous studies in other settings (Gulrajani & Lopez-Paz,
2020; Sagawa et al., 2021), we observe that data augmenta-
tion can improve the performance of a source-only model
on vision datasets in relaxed label shift scenarios (refer to
result on each dataset in App. J). Thus, whenever applica-
ble, subsequent methods should use data augmentations.

5. Conclusion

Our work is the first large-scale study investigating methods
under the relaxed label shift scenario. Relative to works op-
erating strictly under the label shift assumption, RLSBENCH
provides an opportunity for sensitivity analysis, allowing re-
searchers to measure the robustness of their methods under
various sorts of perturbations to the class-conditional dis-
tributions. Relative to the benchmark-driven deep domain
adaptation literature, our work provides a comprehensive
and standardized suite for evaluating under shifts in label
distributions, bringing these benchmarks one step closer to
exhibit the sort of diversity that we should expect to en-
counter when deploying models in the wild. On one hand,
the consistent improvements observed from label shift ad-
justments are promising. At the same time, given the un-
derspecified nature of the problem, practitioners must re-
main vigilant and take performance on any benchmark with
a grain of salt, considering the various ways that it might (or
might not) be representative of the sorts of situations that
might arise in their application of interest.

In the future, we hope to extend RLSBENCH to datasets

from real applications in consequential domains such as
healthcare and self-driving, where label marginals and class
conditionals can be expected to shift across locations and
over time. We also hope to incorporate self-supervised
methods that learn representations by training on a union
of unlabeled data from source and target via proxy tasks
like reconstruction (Gidaris et al., 2018; He et al., 2022) and
contrastive learning (Caron et al., 2020; Chen et al., 2020).
While re-weighting predictions using estimates of the target
label distribution yields significant gains, the remaining gap
between our results and oracle performance should motivate
future work geared towards improved estimators. Also, we
observe that the success of target label marginal estimation
techniques depends on the nature of the shifts in p(z|y).
Mathematically characterizing the behavior of label shift
estimation techniques when the label shift assumption is
violated would be an important contribution.

Reproducibility Statement

Our code with all the results will be released on github.
https://github.com/acmi-lab/RLSbench. We
implement our RLSBENCH library in PyTorch (Paszke et al.,
2017) and provide an infrastructure to run all the experi-
ments to generate corresponding results. We have stored
all models and logged all hyperparameters to facilitate re-
producibility. In our appendices, we provide additional de-
tails on datasets and experiments. In App. D, we describe
datasets and in App. M, we provide hyperparameter details.

Acknowledgments

We thank Amrith Setlur, Pratyush Maini, and Aditi Raghu-
nathan for providing feedback on an earlier draft of RLS-
bench. We also thank Xingjian Shi and Weisu Yin for their
initial help with running the large-scale experiments. SG ac-
knowledges Amazon Graduate Fellowship and JP Morgan
Al Ph.D. Fellowship for their support.

References

Amr Alexandari, Anshul Kundaje, and Avanti Shrikumar.
Adapting to label shift with bias-corrected calibration. In
International Conference on Machine Learning (ICML),
2021.

Jing An, Lexing Ying, and Yuhua Zhu. Why resampling out-
performs reweighting for correcting sampling bias with
stochastic gradients. arXiv preprint arXiv:2009.13447,
2020.

Kamyar Azizzadenesheli, Anqi Liu, Fanny Yang, and Ani-
mashree Anandkumar. Regularized learning for domain
adaptation under label shifts. In International Conference
on Learning Representations (ICLR), 2019.



RLSbench: Domain Adaptation Under Relaxed Label Shift

Christina Baek, Yiding Jiang, Aditi Raghunathan, and Zico
Kolter. Agreement-on-the-line: Predicting the perfor-
mance of neural networks under distribution shift. arXiv
preprint arXiv:2206.13089, 2022.

Peter Bandi, Oscar Geessink, Quirine Manson, Mar-
cory Van Dijk, Maschenka Balkenhol, Meyke Hermsen,
Babak Ehteshami Bejnordi, Byungjae Lee, Kyunghyun
Paeng, Aoxiao Zhong, et al. From detection of individual
metastases to classification of lymph node status at the
patient level: the camelyonl7 challenge. IEEE Transac-
tions on Medical Imaging, 2018.

Jessa Bekker and Jesse Davis. Learning from posi-
tive and unlabeled data: a survey. Machine Learn-
ing, 2020. URL https://doi.org/10.1007%
2Fs10994-020-05877-5.

Shai Ben-David, John Blitzer, Koby Crammer, Alex
Kulesza, Fernando Pereira, and Jennifer Wortman
Vaughan. A theory of learning from different domains.
Machine learning, 79(1-2), 2010a.

Shai Ben-David, Tyler Lu, Teresa Luu, and David Pal. Im-
possibility Theorems for Domain Adaptation. In Interna-
tional Conference on Artificial Intelligence and Statistics

(AISTATS), 2010b.

David Berthelot, Rebecca Roelofs, Kihyuk Sohn, Nicholas
Carlini, and Alex Kurakin. Adamatch: A unified ap-
proach to semi-supervised learning and domain adapta-
tion. arXiv preprint arXiv:2106.04732, 2021.

Gilles Blanchard, Gyemin Lee, and Clayton Scott. Gener-
alizing from several related classification tasks to a new
unlabeled sample. Advances in neural information pro-
cessing systems, 24, 2011.

Daniel Borkan, Lucas Dixon, Jeffrey Sorensen, Nithum
Thain, and Lucy Vasserman. Nuanced metrics for mea-
suring unintended bias with real data for text classifica-
tion. In Companion Proceedings of The 2019 World Wide
Web Conference, 2019.

Mateusz Buda, Atsuto Maki, and Maciej A Mazurowski.
A systematic study of the class imbalance problem in
convolutional neural networks. Neural networks, 106:
249-259, 2018.

Jonathon Byrd and Zachary C Lipton. What is the effect of
importance weighting in deep learning? In International
Conference on Machine Learning (ICML), 2019.

Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga, and
Tengyu Ma. Learning imbalanced datasets with label-
distribution-aware margin loss. In Advances in Neural
Information Processing Systems, volume 32, 2019a.

10

Zhangjie Cao, Kaichao You, Mingsheng Long, Jianmin
Wang, and Qiang Yang. Learning to transfer examples
for partial domain adaptation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 2985-2994, 2019b.

Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Pi-
otr Bojanowski, and Armand Joulin. Unsupervised learn-
ing of visual features by contrasting cluster assignments.
Advances in Neural Information Processing Systems, 33:
9912-9924, 2020.

Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and
W Philip Kegelmeyer. Smote: synthetic minority over-
sampling technique. Journal of artificial intelligence
research, 16:321-357, 2002.

Jiefeng Chen, Frederick Liu, Besim Avci, Xi Wu, Yingyu
Liang, and Somesh Jha. Detecting errors and estimating
accuracy on unlabeled data with self-training ensembles.
Advances in Neural Information Processing Systems, 34:

14980-14992, 2021.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey Hinton. A simple framework for contrastive learn-
ing of visual representations. In International conference
on machine learning, pp. 1597-1607. PMLR, 2020.

Gordon Christie, Neil Fendley, James Wilson, and Ryan
Mukherjee. Functional map of the world. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018.

Corinna Cortes and Mehryar Mohri. Domain adaptation and
sample bias correction theory and algorithm for regres-
sion. Theoretical Computer Science, 519, 2014.

Corinna Cortes, Yishay Mansour, and Mehryar Mobhri.
Learning Bounds for Importance Weighting. In Advances
in Neural Information Processing Systems (NIPS), 2010.

Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V
Le. Randaugment: Practical automated data augmenta-
tion with a reduced search space. In Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition workshops, pp. 702-703, 2020.

Weijian Deng and Liang Zheng. Are labels always necessary
for classifier accuracy evaluation? In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 15069-15078, 2021.

Terrance DeVries and Graham W Taylor. Improved regu-
larization of convolutional neural networks with cutout.
arXiv preprint arXiv:1708.04552, 2017.

Frances Ding, Moritz Hardt, John Miller, and Ludwig
Schmidt. Retiring adult: New datasets for fair machine



RLSbench: Domain Adaptation Under Relaxed Label Shift

learning. Advances in Neural Information Processing
Systems, 34:6478-6490, 2021.

Josip Djolonga, Jessica Yung, Michael Tschannen, Rob
Romijnders, Lucas Beyer, Alexander Kolesnikov, Joan
Puigcerver, Matthias Minderer, Alexander D’ Amour, Dan
Moldovan, et al. On robustness and transferability of
convolutional neural networks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 16458-16468, 2021.

Charles Elkan and Keith Noto. Learning classifiers from
only positive and unlabeled data. In International Con-
ference Knowledge Discovery and Data Mining (KDD),
pp- 213-220, 2008.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal
Germain, Hugo Larochelle, Frangois Laviolette, Mario
Marchand, and Victor Lempitsky. Domain-adversarial
training of neural networks. The journal of machine
learning research, 2016.

Jacob Gardner, Geoff Pleiss, Kilian Q Weinberger, David
Bindel, and Andrew G Wilson. Gpytorch: Blackbox
matrix-matrix gaussian process inference with gpu accel-
eration. In Advances in Neural Information Processing
Systems (NeurIPS), 2018.

Saurabh Garg, Yifan Wu, Sivaraman Balakrishnan, and
Zachary Lipton. A unified view of label shift estimation.
In Advances in Neural Information Processing Systems
(NeurlPS), 2020.

Saurabh Garg, Yifan Wu, Alex Smola, Sivaraman Balakrish-
nan, and Zachary Lipton. Mixture proportion estimation
and PU learning: A modern approach. In Advances in
Neural Information Processing Systems (NeurIPS), 2021.

Saurabh Garg, Sivaraman Balakrishnan, and Zachary Lip-
ton. Domain adaptation under open set label shift. In
Advances in Neural Information Processing Systems
(NeurlIPS), 2022a.

Saurabh Garg, Sivaraman Balakrishnan, Zachary Lipton,
Behnam Neyshabur, and Hanie Sedghi. Leveraging unla-
beled data to predict out-of-distribution performance. In
International Conference on Learning Representations
(ICLR), 2022b.

Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Un-
supervised representation learning by predicting image
rotations. arXiv preprint arXiv:1803.07728, 2018.

Arthur Gretton, Alexander J Smola, Jiayuan Huang, Mar-
cel Schmittfull, Karsten M Borgwardt, and Bernhard
Scholkopf. Covariate Shift by Kernel Mean Matching.
Journal of Machine Learning Research (JMLR), 2009.

11

Devin Guillory, Vaishaal Shankar, Sayna Ebrahimi, Trevor
Darrell, and Ludwig Schmidt. Predicting with confidence
on unseen distributions. arXiv preprint arXiv:2107.03315,
2021.

Ishaan Gulrajani and David Lopez-Paz. In search of lost
domain generalization. arXiv preprint arXiv:2007.01434,
2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep Residual Learning for Image Recognition. In Com-
puter Vision and Pattern Recognition (CVPR), 2016.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr
Dollar, and Ross Girshick. Masked autoencoders are
scalable vision learners. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp. 16000-16009, 2022.

Dan Hendrycks and Thomas Dietterich. Benchmarking
neural network robustness to common corruptions and
perturbations. arXiv preprint arXiv:1903.12261, 2019.

Dan Hendrycks, Steven Basart, Norman Mu, Saurav Ka-
davath, Frank Wang, Evan Dorundo, Rahul Desai, Tyler
Zhu, Samyak Parajuli, Mike Guo, et al. The many faces
of robustness: A critical analysis of out-of-distribution
generalization. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pp. 8340-8349,
2021.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and
Kilian Q Weinberger. Densely connected convolutional
networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4700-4708,
2017.

Badr Youbi Idrissi, Martin Arjovsky, Mohammad Pezeshki,
and David Lopez-Paz. Simple data balancing achieves
competitive worst-group-accuracy. In Conference on
Causal Learning and Reasoning, pp. 336-351. PMLR,
2022.

Junguang Jiang, Yang Shu, Jianmin Wang, and Mingsheng
Long. Transferability in deep learning: A survey, 2022.

Yiding Jiang, Vaishnavh Nagarajan, Christina Baek, and
J Zico Kolter. Assessing generalization of sgd via dis-
agreement. arXiv preprint arXiv:2106.13799, 2021.

Fredrik D. Johansson, David Sontag, and Rajesh Ranganath.
Support and invertibility in domain-invariant representa-
tions. In Kamalika Chaudhuri and Masashi Sugiyama
(eds.), Proceedings of the Twenty-Second International
Conference on Artificial Intelligence and Statistics, Pro-
ceedings of Machine Learning Research. PMLR, 2019.



RLSbench: Domain Adaptation Under Relaxed Label Shift

Alistair Johnson, Lucas Bulgarelli, Tom Pollard, Steven
Horng, Leo Anthony Celi, and Roger Mark. Mimic-
iv. PhysioNet. Available online at: https://physionet.
org/content/mimiciv/1.0/(accessed August 23, 2021),
2020.

Pang Wei Koh, Shiori Sagawa, Henrik Marklund,
Sang Michael Xie, Marvin Zhang, Akshay Balsubramani,
Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips,
Irena Gao, Tony Lee, Etienne David, Ian Stavness, Wei
Guo, Berton A. Earnshaw, Imran S. Haque, Sara Beery,
Jure Leskovec, Anshul Kundaje, Emma Pierson, Sergey
Levine, Chelsea Finn, and Percy Liang. WILDS: A bench-
mark of in-the-wild distribution shifts. In International
Conference on Machine Learning (ICML), 2021.

Alex Krizhevsky and Geoffrey Hinton. Learning Multiple
Layers of Features from Tiny Images. Technical report,
Citeseer, 2009.

Ananya Kumar, Tengyu Ma, and Percy Liang. Understand-
ing self-training for gradual domain adaptation. In In-

ternational Conference on Machine Learning, pp. 5468—
5479. PMLR, 2020.

Dong-Hyun Lee et al. Pseudo-label: The simple and effi-
cient semi-supervised learning method for deep neural
networks. In Workshop on challenges in representation
learning, ICML, volume 3, pp. 896, 2013.

Yanghao Li, Naiyan Wang, Jianping Shi, Jiaying Liu, and
Xiaodi Hou. Revisiting batch normalization for practical
domain adaptation. arXiv preprint arXiv:1603.04779,
2016.

Zachary C Lipton, Yu-Xiang Wang, and Alex Smola. Detect-
ing and Correcting for Label Shift with Black Box Predic-
tors. In International Conference on Machine Learning
(ICML), 2018.

Xiaofeng Liu, Zhenhua Guo, Site Li, Fangxu Xing, Jane
You, C.-C. Jay Kuo, Georges El Fakhri, and Jonghye
Woo. Adversarial Unsupervised Domain Adaptation with
Conditional and Label Shift: Infer, Align and Iterate.
In 2021 IEEE/CVF International Conference on Com-
puter Vision (ICCV), pp. 10347-10356, Montreal, QC,
Canada, October 2021. IEEE. ISBN 978-1-66542-812-5.
doi: 10.1109/ICCV48922.2021.01020. URL https://
ieeexplore.ieee.org/document/9710205/.

Mingsheng Long, Yue Cao, Jianmin Wang, and Michael Jor-
dan. Learning transferable features with deep adaptation
networks. In International conference on machine learn-
ing, pp. 97-105. PMLR, 2015.

12

Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I
Jordan. Deep transfer learning with joint adaptation net-

works. In International conference on machine learning.
PMLR, 2017.

Mingsheng Long, Zhangjie Cao, Jianmin Wang, and
Michael I Jordan. Conditional adversarial domain adapta-

tion. Advances in neural information processing systems,
31, 2018.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,
Dimitris Tsipras, and Adrian Vladu. Towards deep learn-
ing models resistant to adversarial attacks. arXiv preprint
arXiv:1706.06083, 2017.

Jeroen Manders, Twan van Laarhoven, and Elena Mar-
chiori. Adversarial Alignment of Class Prediction Un-
certainties for Domain Adaptation, January 2019. URL
http://arxiv.org/abs/1804.04448. Number:
arXiv:1804.04448 arXiv:1804.04448 [cs, stat].

Yishay Mansour, Mehryar Mohri, and Afshin Rostamizadeh.
Domain adaptation: Learning bounds and algorithms.
arXiv preprint arXiv:0902.3430, 2009.

John P Miller, Rohan Taori, Aditi Raghunathan, Shiori
Sagawa, Pang Wei Koh, Vaishaal Shankar, Percy Liang,
Yair Carmon, and Ludwig Schmidt. Accuracy on the line:
on the strong correlation between out-of-distribution and
in-distribution generalization. In International Confer-
ence on Machine Learning. PMLR, 2021.

Krikamol Muandet, David Balduzzi, and Bernhard
Scholkopf. Domain generalization via invariant feature
representation. In International Conference on Machine
Learning, pp. 10-18. PMLR, 2013.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-
ban Desmaison, Luca Antiga, and Adam Lerer. Auto-
matic differentiation in pytorch. 2017.

Xingchao Peng, Ben Usman, Neela Kaushik, Judy Hoffman,
Dequan Wang, and Kate Saenko. Visda: The visual
domain adaptation challenge, 2017.

Xingchao Peng, Ben Usman, Kuniaki Saito, Neela Kaushik,
Judy Hoffman, and Kate Saenko. Syn2real: A new bench-
mark forsynthetic-to-real visual domain adaptation. arXiv
preprint arXiv:1806.09755, 2018.

Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang,
Kate Saenko, and Bo Wang. Moment matching for
multi-source domain adaptation. In Proceedings of the
IEEE/CVF international conference on computer vision,
pp. 1406-1415, 2019.



RLSbench: Domain Adaptation Under Relaxed Label Shift

PhysioToolkit PhysioBank. Physionet: components of a
new research resource for complex physiologic signals.
Circulation, 101(23):e215—-220, 2000.

Viraj Prabhu, Shivam Khare, Deeksha Kartik, and Judy
Hoffman. Sentry: Selective entropy optimization via com-
mittee consistency for unsupervised domain adaptation.
In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pp. 8558-8567, 2021.

Joaquin Quinonero-Candela, Masashi Sugiyama, Anton
Schwaighofer, and Neil D Lawrence. Dataset shift in ma-
chine learning. Mit Press, 2008.

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and
Vaishaal Shankar. Do cifar-10 classifiers generalize to
cifar-10? arXiv preprint arXiv:1806.00451, 2018.

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and
Vaishaal Shankar. Do imagenet classifiers generalize
to imagenet? In International Conference on Machine
Learning, pp. 5389-5400. PMLR, 2019.

Manley Roberts, Pranav Mani, Saurabh Garg, and Zachary
Lipton. Unsupervised learning under latent label shift.
In Advances in Neural Information Processing Systems
(NeurlPS), 2022.

Elan Rosenfeld, Pradeep Ravikumar, and Andrej Risteski.
Domain-adjusted regression or: Erm may already learn
features sufficient for out-of-distribution generalization.
arXiv preprint arXiv:2202.06856, 2022.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpa-
thy, Aditya Khosla, Michael Bernstein, et al. Imagenet
large scale visual recognition challenge. International
Jjournal of computer vision, 115(3):211-252, 2015.

Marco Saerens, Patrice Latinne, and Christine Decaestecker.
Adjusting the Outputs of a Classifier to New a Priori
Probabilities: A Simple Procedure. Neural Computation,
2002.

Shiori Sagawa, Pang Wei Koh, Tony Lee, Irena Gao,
Sang Michael Xie, Kendrick Shen, Ananya Kumar, Wei-
hua Hu, Michihiro Yasunaga, Henrik Marklund, Sara
Beery, Etienne David, Ian Stavness, Wei Guo, Jure
Leskovec, Kate Saenko, Tatsunori Hashimoto, Sergey
Levine, Chelsea Finn, and Percy Liang. Extending the
wilds benchmark for unsupervised adaptation. In NeurlPS
Workshop on Distribution Shifts, 2021.

Kuniaki Saito, Kohei Watanabe, Yoshitaka Ushiku, and Tat-
suya Harada. Maximum classifier discrepancy for unsu-
pervised domain adaptation. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
2018.

13

Kuniaki Saito, Donghyun Kim, Piotr Teterwak, Stan
Sclaroff, Trevor Darrell, and Kate Saenko. Tune it the
right way: Unsupervised validation of domain adapta-
tion via soft neighborhood density. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pp. 9184-9193, 2021.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter. ArXiv,
abs/1910.01108, 2019.

Shibani Santurkar, Dimitris Tsipras, and Aleksander Madry.
Breeds: Benchmarks for subpopulation shift. In Interna-
tional Conference on Learning Representations (ICLR),
2021.

Steffen Schneider, Evgenia Rusak, Luisa Eck, Oliver Bring-
mann, Wieland Brendel, and Matthias Bethge. Improv-
ing robustness against common corruptions by covariate
shift adaptation. arXiv preprint arXiv:2006.16971, 2020.

Bernhard Scholkopf, Dominik Janzing, Jonas Peters, Eleni
Sgouritsa, Kun Zhang, and Joris Mooij. On Causal and
Anticausal Learning. In International Conference on
Machine Learning (ICML), 2012.

Hidetoshi Shimodaira. Improving Predictive Inference Un-
der Covariate Shift by Weighting the Log-Likelihood
Function. Journal of Statistical Planning and Inference,
2000.

Kihyuk Sohn, David Berthelot, Nicholas Carlini, Zizhao
Zhang, Han Zhang, Colin A Raffel, Ekin Dogus Cubuk,
Alexey Kurakin, and Chun-Liang Li. Fixmatch: Simpli-
fying semi-supervised learning with consistency and con-

fidence. Advances in Neural Information Processing Sys-
tems, 33, 2020.

Baochen Sun and Kate Saenko. Deep coral: Correlation
alignment for deep domain adaptation. In European con-
ference on computer vision. Springer, 2016.

Baochen Sun, Jiashi Feng, and Kate Saenko. Return of
frustratingly easy domain adaptation. In Proceedings of
the AAAI Conference on Artificial Intelligence, 2016.

Baochen Sun, Jiashi Feng, and Kate Saenko. Correla-
tion alignment for unsupervised domain adaptation. In
Domain Adaptation in Computer Vision Applications.
Springer, 2017.

Remi Tachet, Han Zhao, Yu-Xiang Wang, and Geoff Gordon.
Domain Adaptation with Conditional Distribution Match-
ing and Generalized Label Shift. arXiv:2003.04475 [cs,
stat], December 2020. URL http://arxiv.org/
abs/2003.04475. arXiv: 2003.04475.



RLSbench: Domain Adaptation Under Relaxed Label Shift

Remi Tachet des Combes, Han Zhao, Yu-Xiang Wang, and
Geoffrey J Gordon. Domain adaptation with conditional
distribution matching and generalized label shift. Ad-
vances in Neural Information Processing Systems, 33,
2020.

Shuhan Tan, Xingchao Peng, and Kate Saenko. Class-
imbalanced domain adaptation: An empirical odyssey. In
European Conference on Computer Vision, pp. 585-602.
Springer, 2020.

Rohan Taori, Achal Dave, Vaishaal Shankar, Nicholas Car-
lini, Benjamin Recht, and Ludwig Schmidt. Measuring
robustness to natural distribution shifts in image classifi-

cation. Advances in Neural Information Processing Sys-
tems, 33:18583-18599, 2020.

Antonio Torralba and Alexei A Efros. Unbiased look at
dataset bias. In CVPR 2011, pp. 1521-1528. IEEE, 2011.

Antonio Torralba, Rob Fergus, and William T. Freeman.
80 million tiny images: A large data set for nonparamet-
ric object and scene recognition. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 30(11):1958-
1970, 2008.

Vladimir N Vapnik. An overview of statistical learning
theory. IEEE transactions on neural networks, 10(5):988—
999, 1999.

Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty,
and Sethuraman Panchanathan. Deep hashing network
for unsupervised domain adaptation. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 5018-5027, 2017.

Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Ol-
shausen, and Trevor Darrell. Tent: Fully test-time adap-
tation by entropy minimization. In International Confer-
ence on Learning Representations, 2021. URL https:
//openreview.net/forum?id=uX13bZLkr3c.

Chen Wei, Kihyuk Sohn, Clayton Mellina, Alan Yuille,
and Fan Yang. Crest: A class-rebalancing self-training
framework for imbalanced semi-supervised learning. In
Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 10857-10866, 2021.

Florian Wenzel, Andrea Dittadi, Peter Vincent Gehler,
Carl-Johann Simon-Gabriel, Max Horn, Dominik Ziet-
low, David Kernert, Chris Russell, Thomas Brox, Bernt
Schiele, et al. Assaying out-of-distribution generalization
in transfer learning. arXiv preprint arXiv:2207.09239,
2022.

Olivia Wiles, Sven Gowal, Florian Stimberg, Sylvestre
Alvise-Rebuffi, Ira Ktena, Taylan Cemgil, et al. A fine-
grained analysis on distribution shift. arXiv preprint
arXiv:2110.11328,2021.

14

Garrett Wilson and Diane J Cook. A survey of unsupervised
deep domain adaptation. ACM Transactions on Intelligent
Systems and Technology (TIST), 2020.

Yifan Wu, Ezra Winston, Divyansh Kaushik, and Zachary
Lipton. Domain adaptation with asymmetrically-relaxed
distribution alignment. In International Conference on
Machine Learning (ICML), 2019.

Qizhe Xie, Minh-Thang Luong, Eduard Hovy, and Quoc V
Le. Self-training with noisy student improves imagenet
classification. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp.
10687-10698, 2020a.

Xinpeng Xie, Jiawei Chen, Yuexiang Li, Linlin Shen, Kai
Ma, and Yefeng Zheng. Self-supervised cyclegan for
object-preserving image-to-image domain adaptation. In
Computer Vision—-ECCV 2020: 16th European Confer-
ence, Glasgow, UK, August 23-28, 2020, Proceedings,
Part XX 16, pp. 498-513. Springer, 2020b.

Da Xu, Yuting Ye, and Chuanwei Ruan. Understanding the
role of importance weighting for deep learning. arXiv
preprint arXiv:2103.15209, 2021.

Hongliang Yan, Yukang Ding, Peihua Li, Qilong Wang,
Yong Xu, and Wangmeng Zuo. Mind the class weight
bias: Weighted maximum mean discrepancy for unsuper-
vised domain adaptation. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pp.
2272-2281, 2017.

Huaxiu Yao, Caroline Choi, Bochuan Cao, Yoonho
Lee, Pang Wei Koh, and Chelsea Finn. Wild-time:
A benchmark of in-the-wild distribution shift over
time. In Thirty-sixth Conference on Neural Informa-
tion Processing Systems Datasets and Benchmarks Track,
2022. URL https://openreview.net/forum?
1d=F9ENmZABRO.

Bianca Zadrozny. Learning and Evaluating Classifiers Un-
der Sample Selection Bias. In International Conference
on Machine Learning (ICML), 2004.

Jingzhao Zhang, Aditya Menon, Andreas Veit, Srinadh Bho-
janapalli, Sanjiv Kumar, and Suvrit Sra. Coping with
label shift via distributionally robust optimisation. In

International Conference on Learning Representations
(ICLR), 2021.

Kun Zhang, Bernhard Scholkopf, Krikamol Muandet, and
Zhikun Wang. Domain Adaptation Under Target and Con-
ditional Shift. In International Conference on Machine
Learning (ICML), 2013.

Richard Zhang. Making convolutional networks shift-
invariant again. In /ICML, 2019.



RLSbench: Domain Adaptation Under Relaxed Label Shift

Weichen Zhang, Wanli Ouyang, Wen Li, and Dong Xu. Col-
laborative and adversarial network for unsupervised do-
main adaptation. In Proceedings of the IEEE conference
on computer vision and pattern recognition, 2018.

Yuchen Zhang, Tianle Liu, Mingsheng Long, and Michael
Jordan. Bridging theory and algorithm for domain adap-
tation. In International Conference on Machine Learning.
PMLR, 2019.

Han Zhao, Remi Tachet Des Combes, Kun Zhang, and
Geoffrey Gordon. On learning invariant representations
for domain adaptation. In International Conference on
Machine Learning, pp. 7523-7532. PMLR, 2019.

Yang Zou, Zhiding Yu, BVK Kumar, and Jinsong Wang.
Unsupervised domain adaptation for semantic segmenta-
tion via class-balanced self-training. In Proceedings of
the European conference on computer vision (ECCV), pp.
289-305, 2018.

15



RLSbench: Domain Adaptation Under Relaxed Label Shift

Appendix
A. Description of Plots

For each plot in Fig. 2, we obtain all the distribution shift pairs with a specific alpha (i.e., the value on the x-axis). Then for
each distribution shift pair (with a specific alpha value), we obtain relative performance by subtracting the performance of a
source-only model trained on the source dataset of that distribution shift pair from the performance of the model trained
on that distribution shift pair with the DA algorithm of interest. Thus for each alpha and each DA method, we obtain 112
relative performance values. We draw the box plot and the mean of these relative performance values.

For (similar-looking) plots, we use the same technique throughout the paper. The only thing that changes is the group of
points over which aggregation is performed.

B. Tabular and NLP Results Omitted from the Main Paper
B.1. Tabular Datasets

: Domain alignment methods Self-training methods
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(a) Performance of DA methods relative to source-only training with increasing target label marginal shift
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(b) Relative performance of DA methods when paired with our meta-algorithm (RS and RW corrections)

Figure 5. Performance of different DA methods relative to a source-only model across all distribution shift pairs in tabular datasets
grouped by shift severity in label marginal. For each distribution shift pair and DA method, we plot the relative accuracy of the model
trained with that DA method by subtracting the accuracy of the source-only model. Hence, the black dotted line at O captures the
performance of the source-only model. Smaller the Dirichlet shift parameter, the more severe is the shift in target class proportion.
(a) Shifts with & = {NONE, 10.0, 3.0} have little to no impact on different DA methods whereas the performance of all DA methods
degrades when « € {1.0, 0.5} often falling below the performance of a source-only classifier. (b) RS and RW (in our meta-algorithm)
together significantly improve aggregate performance over no correction for all DA methods. While RS consistently helps (over no
correction) across different label marginal shift severities, RW hurts slightly when shift severity is small. However, for severe shifts
(o € {3.0,1.0,0.5}) RW significantly improves performance for all the methods. Results with all methods on individual datasets in App. J.
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B.2. NLP Datasets
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(b) Relative performance of DA methods when paired with our meta-algorithm (RS and RW corrections)

Figure 6. Performance of different DA methods relative to a source-only model across all distribution shift pairs in NLP datasets grouped
by shift severity in label marginal. For each distribution shift pair and DA method, we plot the relative accuracy of the model trained with
that DA method by subtracting the accuracy of the source-only model. Hence, the black dotted line at O captures the performance of
the source-only model. Smaller the Dirichlet shift parameter, the more severe is the shift in target class proportion. (a) Performance of
DANN and IW-DANN methods degrades with increasing severity of target label marginal shift often falling below the performance of a
source-only classifier (except for Noisy Student). Performance of PsuedoLabel, CDANN, and IW-CDANN show less susceptibility to
increasing severity in target marginal shift. (b) RS and RW (in our meta-algorithm) together significantly improve aggregate performance
over no correction for all DA methods. While RS consistently helps (over no correction) across different label marginal shift severities,
RW hurts slightly for BN-adapt, TENT, and NoisyStudent when shift severity is small. However, for severe shifts (« € {3.0,1.0,0.5})
RW significantly improves performance for all the methods. Detailed results with all methods on individual datasets in App. J.

C. Comparison between IW-CDANN, IW-DANN, and SENTRY with Existing DA methods
paired with our Meta-Algorithm

Fig. 7 shows the relevant comparison.

Note. On Officechome dataset, we observe a slight discrepancy between SENTRY results with our runs and numbers
originally reported in the paper (Prabhu et al., 2021). We find that this is due to differences in batch size used in original
work versus in our runs (which we kept the same for all the algorithms). In App. N, we report SENTRY results with the
updated batch size. With the new batch size, we reconcile SENTRY results but also observe a significant improvement in
FixMatch results. We refer reader to App. N for a more detailed discussion.

D. Dataset Details

In this section, we provide additional details about the datasets used in our benchmark study.
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Figure 7. Comparison of existing DA methods paired with our RS and RW correction and DA methods specifically proposed for relaxed label
shift problems. Across vision and tabular datasets, we observe the susceptibility of IW-DAN, IW-CDAN, and SENTRY with increasing
severity of target label marginal shifts. In particular, for severe target label marginal shifts, the performance of IW-DAN, IW-CDAN,
and SENTRY often falls below that of the source-only model. However, existing DA techniques when paired with RS + RW correction
significantly improve over the source-only model. For NLP, datasets we observe similar behavior but with relatively less intensity.

e CIFAR10 We use the original CIFAR10 dataset (Krizhevsky & Hinton, 2009) as the source dataset. For target domains,
we consider (i) synthetic shifts (CIFAR10-C) due to common corruptions (Hendrycks & Dietterich, 2019); and (ii)
natural distribution shift, i.e., CIFAR10v2 (Recht et al., 2018; Torralba et al., 2008) due to differences in data collection
strategy. We randomly sample 3 set of CIFAR-10-C datasets. Overall, we obtain 5 datasets (i.e., CIFAR10v1, CIFAR10v2,
CIFAR10C-Frost (severity 4), CIFAR10C-Pixelate (severity 5), CIFAR10-C Saturate (severity 5)).

e CIFAR100 Similar to CIFAR10, we use the original CIFAR100 set as the source dataset. For target domains we consider
synthetic shifts (CIFAR100-C) due to common corruptions. We sample 4 CIFAR100-C datasets, overall obtaining 5
domains (i.e., CIFAR100, CIFAR100C-Fog (severity 4), CIFAR100C-Motion Blur (severity 2), CIFAR 100C-Contrast
(severity 4), CIFAR100C-spatter (severity 2) ).

e FMoW In order to consider distribution shifts faced in the wild, we consider FMoW-WILDs (Koh et al., 2021; Christie
et al., 2018) from WILDS benchmark, which contains satellite images taken in different geographical regions and at
different times. We use the original train as source and OOD val and OOD test splits as target domains as they are
collected over different time-period. Overall, we obtain 3 different domains.

e Camelyonl7 Similar to FMoW, we consider tumor identification dataset from the wilds benchmark (Bandi et al., 2018).

We use the default train as source and OOD val and OOD test splits as target domains as they are collected across different
hospitals. Overall, we obtain 3 different domains.

18



RLSbench: Domain Adaptation Under Relaxed Label Shift

Dataset Domains
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Figure 8. Examples from all the domains in each vision dataset.
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Dataset Source Target

CIFAR10v1, CIFAR10v2, CIFAR10C-Frost (severity 4),
CIFAR10C-Pixelate (severity 5), CIFAR10-C Saturate (severity 5)

CIFAR100, CIFAR100C-Fog (severity 4),
CIFAR100 CIFAR100 CIFAR100C-Motion Blur (severity 2), CIFAR100C-Contrast (severity 4),
CIFAR100C-spatter (severity 2)

CIFAR10 CIFAR10v1

Camelyon (Hc(j)zg}fg(l)f’g’) Camelyon (Hospital 1-3), Camelyon (Hospital 4), Camelyon (Hospital 5)

FMoW FMoW (2002-"13) FMoW (2002-"13), FMoW (2013-"16), FMoW (2016-"18)
Entity13 Er&gty g (ImageNetv1 sub:populat@on 1),

Entity13 (ImageNetv1 y13 (ImageNetv1 sub-population 2),

Entity13 (ImageNetv2 sub-population 1),

sub-population 1) Entity13 (ImageNetv2 sub-population 2)

Entity30 Entity30 (ImageNetv1 sub-population 1),

Entity30 (ImageNetv 1 Ent?ty30 (ImageNetv1 sub-population 2),
sub-population 1) Entity30 (ImageNetv2 sub-population 1),

’ Entity30 (ImageNetv2 sub-population 2)

Living17 (ImageNetv1 sub-population 1),
Living17 (ImageNetv1 sub-population 2),
Living17 (ImageNetv2 sub-population 1),
Living17 (ImageNetv2 sub-population 2)

Living17
Living17 (ImageNetvl
sub-population 1)

Nonliving26 (ImageNetv1 sub-population 1),
Nonliving26 (ImageNetv1 sub-population 2),
Nonliving26 (ImageNetv2 sub-population 1),
Nonliving26 (ImageNetv2 sub-population 2)

Nonliving26
Nonliving26 (ImageNetv1
sub-population 1)

Officehome Product Product, Art, ClipArt, Real
DomainNet Real Real, Painiting, Sketch, ClipArt
Synthetic

Synthetic, Real-1 (originally referred to as val),

Visda (originally referred Real-2 (originally referred to as test)

to as train)
Civilcomments Train Train, Val and Test (all formed by disjoint partitions of online articles)

Mimic Readmissions (year: 2008), Mimic Readmissions (year: 2009),
Mimic Readmissions (year: 2010), Mimic Readmissions (year: 2011),
Mimic Readmissions (year: 2012), Mimic Readmissions (year: 2013)

.. .. Mimic Readmissions
Mimic Readmissions (year: 2008)
Retiring Adults (year: 2015; states: ['[MD’, ’NJ’, "MA’]),
Retiring Adults (year: 2016; states: ['MD’, "NJ’, "MA’]),
Retiring Adults (year: 2017; states: ['MD’, "NJ’, "MA’]),
Retiring Adults (year: 2018; states: ['MD’, ’NJ’, "MA’])

Retiring Adults
Retiring Adults (year: 2014
states: ['MD’, °NJ’, "MA’])

Table 1. Details of the datasets considered in our RLSBENCH.

* BREEDs We also consider BREEDs benchmark (Santurkar et al., 2021) in our setup to assess robustness to subpopulation
shifts. BREEDs leverage class hierarchy in ImageNet to re-purpose original classes to be the subpopulations and defines a
classification task on superclasses. We consider distribution shift due to subpopulation shift which is induced by directly
making the subpopulations present in the training and test distributions disjoint. BREEDs benchmark contains 4 datasets
Entity-13, Entity-30, Living-17, and Non-living-26, each focusing on different subtrees and levels in the hierarchy. We
also consider natural shifts due to differences in the data collection process of ImageNet (Russakovsky et al., 2015), e.g,
ImageNetv2 (Recht et al., 2019) and a combination of both. Overall, for each of the 4 BREEDs datasets (i.e., Entity-13,
Entity-30, Living-17, and Non-living-26), we obtain four different domains. We refer to them as follows: BREEDsv1
sub-population 1 (sampled from ImageNetv1), BREEDsv1 sub-population 2 (sampled from ImageNetv1), BREEDsv2
sub-population 1 (sampled from ImageNetv2), BREEDsv2 sub-population 2 (sampled from ImageNetv2). For each
BREEDs dataset, we use BREEDsv1 sub-population A as source and the other three as target domains.

* OfficecHome We use four domains (art, clipart, product and real) from OfficeHome dataset (Venkateswara et al., 2017).
We use the product domain as source and the other domains as target.
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* DomainNet We use four domains (clipart, painting, real, sketch) from the Domainnet dataset (Peng et al., 2019). We use
real domain as the source and the other domains as target.

* Visda We use three domains (train, val and test) from the Visda dataset (Peng et al., 2018). While ‘train’ domain contains
synthetic renditions of the objects, ‘val’ and ‘test’ domains contain real world images. To avoid confusing, the domain
names with their roles as splits, we rename them as ‘synthetic’, ‘Real-1’ and ‘Real-2’. We use the synthetic (original train
set) as the source domain and use the other domains as target.

¢ Civilcomments (Borkan et al., 2019) from the wilds benchmark which includes three domains: train, OOD val, and
OOD test, for toxicity detection with domains corresponding to different demographic subpopulations. The dataset
has subpopulation shift across different demographic groups as the dataset in each domain is collected from a different
partition of online articles.

* Retiring Adults (Ding et al., 2021) where we consider the ACSIncome prediction task with various domains representing
different states and time-period; We randomly select three states and consider dataset due to shifting time across those
states. Details about precise time-periods and states are in Table 1.

* Mimic Readmission (Johnson et al., 2020; PhysioBank, 2000) where the task is to predict readmission risk with various
domains representing data from different time-period. Details about precise time-periods are in Table 1.

We provide scripts to setup these datasets with single command in our code. To investigate the performance of different
methods under the stricter label shift setting, we also include a hold-out partition of source domain in the set of target
domains. For these distribution shift pairs where source and target domains are i.i.d. partitions, we obtain the stricter label
shift problem. We summarize the information about source and target domains in Table 1.

Train-test splits We partition each source and target dataset into 80% and 20% i.i.d. splits. We use 80% splits for training
and 20% splits for evaluation (or validation). We throw away labels for the 80% target split and only use labels in the 20%
target split for final evaluation. The rationale behind splitting the target data is to use a completely unseen batch of data
for evaluation. This avoids evaluating on examples where a model potentially could have overfit. over-fitting to unlabeled
examples for evaluation. In practice, if the aim is to make predictions on all the target data (i.e., transduction), we can simply
use the (full) target set for training and evaluation.

E. Illustration of Our Proposed Meta=algorithm

(Xs,Ys) o o X5, YS Re-weight
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Figure 9. (left) Illustration of RS method at every iteration. (right) Illustration of post-hoc reweighting of the classifier with RW method.

F. Methods to estimate target marginal under the stricter label shift assumption

In this section, we describe the methods proposed to estimate the target label marginal under the stricter label shift
assumption. Recall that under the label shift assumption, p,(y) can differ from p;(y) but the class conditional stays the
same, i.e., p:(z|y) = ps(x|y). We focus our discussion on recent methods that leverage off-the-shelf classifier to yield
consistent estimates under mild assumptions (Lipton et al., 2018; Azizzadenesheli et al., 2019; Alexandari et al., 2021; Garg
et al., 2020). For simplicity, we assume we possess labeled source data {(z1,y1), (z2,¥2),- - -, (Zn,yn)} and unlabeled
target data {z,,+1, Tn42,- - Trtm}-

RLLS First, we discuss Regularized Learning under Label Shift (RLLS) (Azizzadenesheli et al., 2019) (a variant of Black
Box Shift Estimation (BBSE, Lipton et al. (2018))): moment-matching based estimators that leverage (possibly biased,
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uncalibrated, or inaccurate) predictions to estimate the shift. RLLS solves the following optimization problem to estimate

the importance weights w;(y) = % as:
@?LLS :argmin Hwa—ﬂf” +)\RLLS Hw— 1”2 . (1)
wew 2

where W = {w € RY| 2, w(yps(y) =landVyed w(y) > 0}. éf is empirical confusion matrix of the classifier f on
source data and /iy is the empirical average of predictions of the classifier f on unlabeled target data. With labeled source
data data, the empirical confusion matrix can be computed as:

[Crleg =+ 3. fulew) Tl = 51
k=1

To estimate target label marginal, we can multiple the estimated importance weights with the source label marginal (we can
estimate source label marginal simply from labeled source data).

In our relaxed label shift problem, we use validation source data to compute the confusion matrix and use hold portion
of target unlabeled data to compute yy. Unless specified otherwise, we use RLLS to estimate the target label marginal
throughout the paper. We choose gy s as suggested in the original paper (Azizzadenesheli et al., 2019).

MLLS Next, we discuss Maximum Likelihood Label Shift (MLLS) (Saerens et al., 2002; Alexandari et al., 2021): an
Expectation Maximization (EM) algorithm that maximize the likelihood of observed unlabeled target data to estimate target
label marginal assuming access to a classifier that outputs the source calibrated probabilities. In particular, MLLS uses the
following objective:

N .1

oM = arg min — Z log(wT f(xs44)), 2)
wew M i1

where f is the classifier trained on source and W is the same constrained set defined above. We can again estimate the target

label marginal by simply multiplying the estimated importance weights with the source label marginal.

Baseline estimator Given a classifier f, we can estimate the target label marginal as simply the average of the classifier
output on unlabeled target data, i.e.,

~baseline __

P =S fin) 3)
1=1

t m “

Note that all of the methods discussed before leverage an off-the-shelf classifier f. Hence, we experiment with classifiers
obtained with various deep domain adaptation heuristics to estimate the target label marginal.

Having obtained an estimate of target label marginal, we can simply re-weight the classifier with p; as f; = %
- K Pt = Jk
for all j € ). Note that, if we train f on a non-uniform source class-balance (and without re-balancing as in Step 1 of

Algorithm 1), then we can re-weight the classifier with importance-weights @, as f; = % forall j € Y.
| Wt = Jk

G. Theoretical Definition for Relaxed Label Shift

Domain adaptation problems are, in general, ill-posed (Ben-David et al., 2010b). Several attempts have been made to
investigate additional assumptions that render the problem well-posed. One such example includes the label-shift setting,
where p(z|y) does not change but that p(y) can. Under label shift, two challenges arise: (i) estimate the target label marginal
p+(y); and (ii) train a classifier f to maximize the performance on the target domain. However, these assumptions are
typically, to some degree, violated in practice. This paper aims to relax this assumption and focuses on relaxed label
shift setting. In particular, we assume that the label distribution can shift from source to target arbitrarily but that p(z|y)
varies between source and target in some comparatively restrictive way (e.g., shifts arising naturally in the real world like
ImageNet (Russakovsky et al., 2015) to ImageNetV2 (Recht et al., 2019)).

Mathematically, we assume a divergence-based restriction on p(z|y), i.e., for some small ¢ > 0 and distributional distance
D, we have max, D(p;(z|y), p+(z|y)) < € but allowing an arbitrary shift in the label marginal p(y). Previous works have
defined these constraints in different ways (Wu et al., 2019; Tachet des Combes et al., 2020; Kumar et al., 2020).
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In particular, we can use Wasserstein-infinity distance to define our constraint. First, we define Wasserstein given probability
measures p, g on X':

W (p, q) = inf{ sug [f(z) —x|y: f: RY — Rd,f#p = q},
xeR

where # denotes the push forward of a measure, i.e., for every set S < R% p(S) = p(f~1(S)). Intuitively, ., moves points
from the distribution p to ¢ by distance at most e to match the distributions. Hence, our D := max, Wy, (ps(z|y), pi(x]y)) <
€. Similarly, we can define our distribution constraint in KL or TV distances. We can define our constraint in a representation
space Z obtained by projection inputs x € X with a function h : X — Z. Intuitively, we want to define the distribution
distance with some h that captures all the required information for predicting the label of interest but satisfies a small
distributional divergence in the projected space. However, in practice, it’s hard to empirically verify these distribution
distances for small enough € with finite samples. Moreover, we lack a rigorous characterization of the sense in which those
shifts arise in popular DA benchmarks, and since, the focus of our work is on the empirical evaluation with real-world
datasets, we leave a formal investigation for future work. .

H. Target Marginal Estimation and its Effect on Accuracy

H.1. Vision Datasets
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H.2. Tabular Datasets

Tabular Datasets
12 e source
EEE DANN (None)

I DANN (RS)

1.0

»

Estimation Error
Estimation Error

1L
T
None

Ll =
10.0 3.0 1.0
Dirichlet Shift (alpha)

Tabular Datasets
I Source
I CDANN (None)
EEE CDANN (RS)

—
L

Sl
0.5

Tl =L 11
10.0 3.0 10
Dirichlet Shift (alpha)

i

None

(a) Target label marginal estimation (¢1) error with RLLS and classifiers

Tabular Datasets

107 107

10" 10!

Relative Accuracy
Relative Accuracy

l I
-Sourc;(RW) _—DANN (RS + RW) J_ v
I DANN (RW)

100 30
Dirichlet Shift (alpha)

None 10 05

Tabular Datasets

B Source (RW)  EEBICDANN (RS + RW) l .
I CDANN (RW)

None 10.0 10 05

30
Dirichlet Shift (alpha)

Tabular Datasets
1

12 - Source

10 BN PsecudoLabel (None)
: B PseudoLabel (RS)
0.8 :

Estimation Error

T L

None

P R
10.0 3.0 1.0
Dirichlet Shift (alpha)

<

obtained with different DA methods

Tabular Datasets
107

10!
10°

0
10°

Relative Accuracy

I PscudoLabel (RS + RW)
) 0
10

. Source (RW)
I PseudoLabel (RW'

—10'

-10?

None 10.0 30 05

Dirichlet Shift (alpha)

(b) Relative performance of DA methods when paired with RW corrections

Figure 11.

Target label marginal estimation (£1) error and relative performance with RLLS and classifiers obtained with different DA

methods. For tabular datasets, RLLS with classifiers obtained with DA methods improves over RLLS with a source-only classifier for
severe target label marginal shifts. Correspondingly for severe target label marginal shifts, we see improved performance with post-hoc
RW correction applied to classifiers trained with DA methods as compared to when applied to source-only models.

H.3. NLP Datasets
a0 Language Datasets a0
- Source
0.25 B DANN (None) 0.25
N BN DANN (RS) N
£0.20 £ 0.20
& &
S 1 §
2015 T T 2015
£ E
F010 - T 7010
1 . -
005 T == 0.05
. = "1 1 1
000 L = SRS 0.00
None  10.0 30 10 05

Dirichlet Shift (alpha)

(a) Target label marginal estimation (¢1)

Language Datasets -
0?

Relative Accuracy

I Source (RW) EEEEDANN (RS + RW)
I DANN (RW)

None 100 10

30
Dirichlet Shift (alpha)

Language Datasets
W Source
EEE CDANN (None)
EEE CDANN (RS)

T oy
Il 7T L Il
Nome  10.0 30 10 05

Dirichlet Shift (alpha)

error with RLLS and classifiers

Language Datasets

I Source (RW)
I CDANN (RW)

I CDANN (RS + RW)

None 100 10 05

30
Dirichlet Shift (alpha)

Language Datasets
B Source

0.30

025 B PscudoLabel (None)
N BN PscudoLabel (RS)
20.20
&
s
S0.15
: 015 T 'l'
7010 ! T
T
005 T = — =
T‘ 1 LT L J. JI_ e L
o000 L + =T 4 Ll
Nome  10.0 30 10 05

Dirichlet Shift (alpha)

obtained with different DA methods

Language Datasets

Relative Accuracy

N Source (RW)
B PseudoLabel (RW)

I PseudoLabel (RS + RW)

10.0 3.0 1.0

Dirichlet Shift (alpha)

None

(b) Relative performance of DA methods when paired with RW corrections

Figure 12. Target label marginal estimation (£1) error and relative performance with RLLS and classifiers obtained with different DA
methods. For NLP datasets, RLLS with source-only classifiers performs better than RLLS with classifiers obtained with DA methods.
Correspondingly, we see improved performance with post-hoc RW correction applied to source-only models over classifiers trained with

DA methods.
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Figure 10. Target label marginal estimation ({1) error and relative performance with RLLS and classifiers obtained with different DA

methods. Across all shift severities (except for o =

0.5) in vision datasets, RLLS with classifiers obtained with DA methods improves

over RLLS with a source-only classifier. Correspondingly, we see significantly improved performance with post-hoc RW correction
applied to classifiers trained with DA methods as compared to when applied to source-only models.
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H.4. Comparison of different target label marginal estimation methods
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Figure 13. Comparison of different target label marginal estimation methods. We plot estimation errors with different methods with the
source-only classifier. For all modalities, we observe a trade-off between estimation error with the baseline method and RLLS (or MLLS)
method with severity in target marginal shift.

I. Results with Oracle Early Stopping Criterion

In this section, we report results with oracle early stopping criterion. On vision and tabular datasets, we observe differences
in performance when using target performance versus source hold-out performance for model selection. This highlights a
more nuanced behavior than the accuracy-on-the-line phenomena (Miller et al., 2021; Recht et al., 2019). We hope to study

this contrasting behavior in more detail in future work.
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Figure 14. Average accuracy of different DA methods aggregated across all distribution pairs in each modality. We compare the
performance with early stopping point obtained with source validation performance and target validation performance.
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Figure 15. Accuracy difference between using source and target performance as early stopping criteria for different DA methods aggregated
across all distribution shift pairs in vision datasets. We observe that as the shift severity increases (i.e., as o decreases), the accuracy
difference increases for all the methods.
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Figure 17. Accuracy difference between using source and target performance as early stopping criteria for different DA methods aggregated
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J. Results on Individual Datasets
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18. CIFAR10. Relative performance and accuracy plots for different DA algorithms across various shift pairs in CIFAR10.
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Figure 19. CIFAR100. Relative performance and accuracy plots for different DA algorithms across various shift pairs in CIFAR100.
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Figure 20. Camelyon. Relative performance and accuracy plots for different DA algorithms across various shift pairs in Camelyon.
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Figure 21. FMoW. Relative performance and accuracy plots for different DA algorithms across various shift pairs in FMoW.
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Figure 22. Entity13. Relative performance and accuracy plots for different DA algorithms across various shift pairs in Entity13.
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Figure 23. Entity30. Relative performance and accuracy plots for different DA algorithms across various shift pairs in Entity30.
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Figure 24. Living 17. Relative performance and accuracy plots for different DA algorithms across various shift pairs in Living17.
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Figure 25. Nonliving 26. Relative performance and accuracy plots for different DA algorithms across various shift pairs in Nonliving26.
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Figure 26. DomainNet. Relative performance and accuracy plots for different DA algorithms across various shift pairs in DomainNet.
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Figure 27. Officehome. Relative performance and accuracy plots for different DA algorithms across various shift pairs in Officehome.
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Figure 28. Visda. Relative performance and accuracy plots for different DA algorithms across various shift pairs in Visda.
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Figure 29. Civilcomments. Relative performance and accuracy plots for different DA algorithms across various shift pairs in Civilcom-
ments.

39



RLSbench: Domain Adaptation Under Relaxed Label Shift

retiring_adult

84
> 82
O
©
s
=1
3 80 I
<
.78
a0
&
76
74
= = — = < = — — — —
a0
$ 2 § 2 3 %z 2 & ¢ ¢z
—
[a) [a) 3 [a) <] [a) + g + +
1 (@) e} (U] wn [%9] 9]
= z 3 0 & ¥ o x
= = Q ; ~ 3 ~ ~
o] o - =2 o = ©
= = = = Q
=3 ; ©
o < = < 4
(2] o > [ o
o o =
2
3 &
A o
EE None . RW B RS I RS + RW
Source (w/o au DANN CDANN
10% (w/ g) 107 10?
10" 10" 10"
> > >
8 8 8
5 w0 ER U 5o
3 o} 3
< 0 < 0 < 0
g g g
5 100 & —10° B 100
] S ]
o ['4 o
~10" ~10' ~10'
—10? —10? —10?
None 10.0 30 10 05 None 100 3.0 10 05 None 10.0 3.0 10 05
Dirichlet Shift (alpha) Dirichlet Shift (alpha) Dirichlet Shift (alpha)
IW-DANN ) IW-CDANN PseudoLabel
10? 10° 10°
10" 10"
g — g . " g
[ . I — o J— e
5 10/ I :(E 10 ; —o= :(E
s O B —— SN s 0 o g
10 = 2 -0 = 10 :
& 2 & T
-10" -10! -10!
—10? —10? —10?
None 100 3.0 1.0 05 None 100 3.0 10 05 None 10.0 3.0 1.0 05
Dirichlet Shift (alpha) Dirichlet Shift (alpha) Dirichlet Shift (alpha)

Figure 30. Retiring Adults. Relative performance and accuracy plots for different DA algorithms across various shift pairs in Retiring
Adults.
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Figure 31. Mimic Readmissions. Relative performance and accuracy plots for different DA algorithms across various shift pairs in Mimic
Readmissions.
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K. Aggregate Accuracy with Different DA methods on Each Dataset

Dataset Source DANN IW-DANN CDANN IW-CDANN PseudoLabel
Civilcomments 86.85 86.62 86.95 86.91 87.16 87.4
Source DANN CDANN PseudoLabel
Dataset RS+ RS+ RS+
None RW  None RW RS RW None RW RS RW None RW RS RW

Civilcomments 86.8 89.1 86.6 838.8 87.1 88.8 869 89.0 869 889 874 89.3 869 88.6

Table 2. Results with different DA methods on NLP datasets aggregated across target label marginal shifts.

Dataset Source DANN IW-DANN CDANN IW-CDANN PseudoLabel
Retiring Adult 7744 7717 77.35 78.15 78.44 78.30
Mimic Readmission 57.57 56.36 56.48 56.67 56.71 57.35
Source DANN CDANN PseudoLabel
Dataset RS+ RS+ RS+
None RW  None RW RS RW None RW RS RW None RW RS RW
Retiring Adults 774 80.0 77.2 795 774 794 78.1 80.5 78.1 80.4 78.3 80.8 78.5 80.8

Mimic Readmissions  57.6 59.0 56.4 55.1 573 59.2 56.7 56.8 57.4 599 57.4 577 57.7 579

Table 3. Results with different DA methods on tabular datasets aggregated across target label marginal shifts.

Source . .
Source  BN- IW- Iw- Fix-  Noisy-
Sent
Dataset ;Vlg’) (waug) adapt TENT DANN b G CDAN' cDAN Match Student ~o™™

CIFAR-10  89.69 89.14 89.21 89.20 90.86 90.78 90.00 89.93 91.87 90.72 91.83
CIFAR-100 65.99 76.69 77.57 77.58 74.80 7481 7457 7466 79.03 77.60 74.74
FMoW 64.00 6899 6552 6655 60.11 6033 60.79 61.05 6837 6890 51.06
Camelyon 7742 7695 85.70 8248 86.66 85.890 8545 8427 8629 79.29 86.81
Domainnet 52.37 50.50 50.66 51.12 5191 52.05 5440 5429 5796 5149 55.16
Entity13 76.93 80.07 7799 78.04 7826 78775 79.74 79.28 80.25 80.37 73.58
Entity30 62.61 69.83 68.09 68.09 6790 6836 6851 6934 6995 69.10 58.51
Living17 64.13 6930 68.84 6882 72.12 69.87 70.72 70.65 72.86 72.16 53.44
Nonliving26 54.75 63.95 62.60 63.02 61.69 61.99 6253 6451 6298 63.60 44.82
Officchome 59.89 59.45 60.59 6082 66.05 6579 6619 66.15 6548 6047 6537
Visda 5847 5341 5998 6096 69.69 69.79 7255 7280 72.02 5351 72.23

Avg 66.02 6894 69.70 69.70 70.92 70.77 7140 7154 7337 69.75 66.14

Table 4. Results with different DA methods on vision datasets aggregated across target label marginal shifts. While no single DA method
performs consistently across different datasets, FixMatch seems to provide the highest aggregate improvement over a source-only classifier
in our testbed.
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Source BN-adapt CDANN FixMatch

Dataset RS+ RS+ RS+
None RW None RW RS RW None RW RS RW None RW RS RW

CIFAR-10 89.1 894 892 914 921 929 90.0 913 914 925 919 93.1 93.6 94.1
CIFAR-100  76.7 77,5 77.6 78.8 779 79.0 746 758 741 753 79.0 79.6 79.1 79.8
FMoW 69.0 703 655 672 662 656 60.8 619 57.0 552 684 694 649 66.7
Camelyon 710 779 857 859 885 893 855 858 879 885 863 87.0 86.6 86.8
Domainnet 50.5 482 50.7 50.1 51.4 49.8 544 542 5477 543 58.0 57.5 584 57.8

Entity13 80.1 809 78.0 794 79.8 80.7 79.7 80.2 80.6 81.4 80.3 819 81.4 824
Entity30 69.8 70.1 68.1 69.2 69.1 70.0 685 69.6 694 705 70.0 71.6 70.1 71.2
Living17 69.3 699 68.8 69.7 69.6 70.1 70.7 713 729 727 729 728 723 719

Nonliving26 639 645 62.6 63.0 63.7 639 625 629 63.8 640 630 647 639 64.8
Officchome 594 579 60.6 60.5 609 604 662 663 66.1 65.1 655 649 66.5 66.1

Visda 534 521 600 60.6 59.5 58.8 72.6 726 753 753 72.0 725 73.5 73.8
Avg 689 69.0 69.7 705 708 709 714 720 72.1 723 734 74.1 73.7 74.1
TENT DANN NoisyStudent
Dataset RS+ RS+ RS+
None RW RS RW None RW RS RW None RW RS RW

CIFAR-10 89.2 914 9211 929 909 923 915 92.6 90.7 90.8 90.6 90.7
CIFAR-100 77.6 788 78.0 79.0 748 759 748 76.1 77.6 78.0 77.9 78.0
FMoW 66.6 674 667 66.1 60.1 61.6 56.4 545 689 69.8 67.1 68.0
Camelyon 82.5 827 87.8 889 86.7 87.3 884 888 793 79.1 79.2 793
Domainnet 51.1 50.6 51.8 503 519 521 53.6 535 515 49.8 513 495

Entity13 78.0 79.5 79.8 80.8 783 79.4 79.7 80.8 80.4 815 80.6 81.7
Entity30 68.1 69.2 69.1 70.1 679 69.2 69.0 69.8 69.1 70.1 693 70.3
Living17 68.8 69.7 69.6 70.1 721 73.0 71.8 723 722 71.1 693 69.4

Nonliving26  63.0 634 633 63.8 61.7 624 63.1 630 63.6 643 632 64.8
Officchome  60.8 60.4 609 604 66.1 66.1 665 653 60.5 59.5 60.8 59.5
Visda 61.0 615 603 59.6 69.7 699 73.1 732 535 515 557 543

Avg 69.7 704 708 71.1 709 71.7 71.6 71.8 69.7 69.6 69.5 69.6

Table 5. Results with DA methods paired with re-sampling (RS) and re-weighting (RW) correction (with RLLS estimate) aggregated across
target label marginal shifts for vision datasets. RS and RW seem to help for all datasets and they both together significantly improve
aggregate performance over no correction for all DA methods.
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L. Description of Deep Domain Adaptation Methods

In this section, we summarize deep DA methods compared in our RLSBENCH testbed. We also discuss how each method
combines with our meta-algorithm to handle shift in class proportion.

L.1. Source only training

We consider empirical risk minimization on the labeled source data as a baseline. Since this simply ignores the unlabeled
target data, we call this as source only training. As mentioned in the main paper, we perform source only training with and
without data augmentations. Formally, we minimize the following ERM loss:

Luoweans (1) = = D €7 (T ), o) @
i=1

where T is the stochastic data augmentation operation for vision datasets and / is a loss function. For NLP and tabular
datasets, T is the identity function. Throughout the paper, we use cross-entropy loss minimization. Unless specified
otherwise, we use strong augmentations as the data augmentation technique for vision datasets. For NLP and tabular datasets,
we do not use any data augmentation.

As mentioned in the main paper, we do not include re-sampling results with a source only model as it is trained only on
source data and we observed no differences with just balancing the source data (as for most datasets source is already
balanced) in our experiments. After obtaining a classifier f, we can first estimate the target label marginal and then adjust
the classifier f with post-hoc re-weighting with importance ratios w;(y) = p¢(y)/Ds(y)-

Adversarial training of a source only model Along with standard training of a source only model with data augmentation,
we experiment with adversarially robust models (Madry et al., 2017). To train adversarially robust models, we replace the
standard ERM objective with a robust risk minimization objective:

1 n
Lsource only (adv)(f) = E Z K(R(T(l‘zL yi)» yi) s ©)

i=1

where R(-) performs the adversarial augmentation. In our paper, we use targeted Projected Gradient Descent (PGD) attacks
with {5 perturbation model.

L.2. Domain-adversarial training methods

Domain-adversarial trianing methods aim to learn domain invariant feature representations. These methods aimed at practical
problems with non-overlapping support and are motivated by theoretical results showing that the gap between in- and
out-of-distribution performance depends on some measure of divergence between the source and target distributions (Ben-
David et al., 2010a; Ganin et al., 2016). While simultaneously minimizing the source error, these methods align the
representations between source and target distribution. To perform alignment, these methods penalize divergence between
feature representations across domains, encouraging the model to produce feature representations that are similar across
domain.

Before describing these methods, we first define some notation. Consider a model f = g o h, where h : X — R? is the
featurizer that maps the inputs to some d dimensional feature space, and the head g : R? — AF~! maps the features to the
prediction space. Following Sagawa et al. (2021), with all of our domain invariant methods, we use strong augmentations
with source and target data for vision datasets. For NLP and tabular datasets, we do not use any data augmentation.

DANN DANN was proposed in Ganin et al. (2016). DANN approximates the divergence between feature representations
of source and target domain by leveraging a domain discriminator classifier. Domain discriminator f; aims to discriminate
between source and target domains. Given a batch of inputs from source and target, this deep network f, classifies whether
the examples are from the source data or target data. In particular, the following loss function is used:

n n+m
Lamain e (Fa) = = 3 LCLa(h(T())),0) + 1 W fal (T (), 1), ©)
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where {x1, 9, ...,x,} are n source examples and {11, ..., Tm+n} are m target examples. Overall, the following loss
function is used to optimize models with DANN:

LDANN(h7 g, fd) = Lsource only(g o h) — ALdomain disc.(fd) . @)

Lpann(h, g, fa) is maximized with respect to the domain discriminator classifier and Lpann(h, g, fq) minimized with
respect to the underlying featurize and the source classifier. This is achieved by gradient reversal layer in practice. To train,
three networks, we use three different learning rate 75,74, and 77,. We discuss these hyperparameter details in App. M. We
adapted our DANN implementation from Sagawa et al. (2021) and Transfer learning library (Jiang et al., 2022).

CDANN Conditional Domain adversarial neural network is a variant of DANN (Long et al., 2018). Here the domain
discriminator is conditioned on the classifier ¢g’s prediction. In particular, instead of training the domain discriminator on
the representation output of h, these methods operate on the outer product between the feature presentation h(x) at an
input 2 and the classifier’s probabilistic prediction f = g o h(x) (i.e., h(z) ® f(x)). Thus instead of training the domain
discriminator classifier f; on the d dimensional input space, they train it on d x k£ dimensional space. In particular, the
following loss function is used:

1 n 1 n+m
LCDANdomdmdlsc fdagv EZ fd f®h ( )) +7 Z gfd f®h( ( ))) )7 (8)
i=1 i=n+1
where {x1, o, ..., z,} are n source examples and {x,, 11, ..., Tmin} are m target examples. The overall loss is the same

as DANN where Lqomain dise.(fa) is replaced with Lepan domain dise. (fa, 95 7).
We adapted our implementation for CDANN from Transfer learning library (Jiang et al., 2022).

To adapt DANN and CDANN to our meta algorithm, at each epoch we can perform re-balancing of source and target data as
in Step 1 and 4 of Algorithm 1. After obtaining the classifier f, we can use this classifier to first obtain an estimate of the
target label marginal and then perform re-weighting adjustment with the obtained estimate.

IW-DANN and IW-CDANN Tachet et al. (2020) proposed training with importance re-weighting correction with DANN
and CDANN objectives to accommodate for the shift in the target label proportion. In particular, at every epoch of training
they first estimate the importance ratio w; (with BBSE on training source and training target data) and then re-weight the
domain discriminator objective and ERM objective. In particular, the domain discriminator loss for IW-DANN can be
written as:

n+m

Z@yz (T (i +f DT U(fa(h(T(x:))), 1), ©)

1=n+1

3\’—‘

Ldomam disc. fd

where we multiply the source loss with importance weights. Similarly, we can re-write the source only training objective
with importance re-weighting as follows:

w

1 < i
source only E Z w yl xl)a yl)) . (10)

Overall, the following objective is used to optimize models with IW-DANN:

LIW-DANN<ha 9, fd) = Lg}urce only(g © h) - )‘Lgé)main disc(fd) ’ (11)

where the importance weights are updated after every epoch with classifier obtained in previous step. Similarly, with using
importance re-weights with the CDANN objective, we obtain IW-CDANN objective.

In population, IW-CDANN and IW-DANN correction matches the correction with our meta-algorithm for DANN and
CDANN. However, the behavior this importance re-weighting correction can be different from our meta-algorithm for over-
parameterized models with finite data (Byrd & Lipton, 2019). Recent empirical and theoretical findings have highlighted
that importance re-weighting have minor to no effect on overparameterized models when trained for several epochs (Byrd &
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Lipton, 2019; Xu et al., 2021). On the other hand, with finite samples, re-sampling (when class labels are available) has
shown different and promising empirical behavior (An et al., 2020; Idrissi et al., 2022). This may highlight the differences
in the behavior of IW-CDANN (or IW-DANN) with our meta algorithm on CDANN (or DANN).

We refer to the implementation provided by the authors (Tachet et al., 2020).

L.3. Self-training methods

Self-training methods leverage unlabeled data by ‘pseudo-labeling’ unlabeled examples with the classifier’s own predictions
and training on them as if they were labeled examples. Recent self-training methods also often make use of consistency
regularization, for example, encouraging the model to make similar predictions on augmented versions of unlabeled example.
In our work, we experiment with the following methods:

PseudoLabel (Lee et al., 2013) proposed PseudoLabel that leverages unlabeled examples with classifier’s own prediction.
This algorithm dynamically generates psuedolabels and overfits on them in each batch. In particular, while pseudolabels are
generated on unlabeled examples, the loss is computed with respect to the same label. PseudoLabel only overfits to the
assigned label if the confidence of the prediction is greater than some threshold 7.

Refer to T as the data-augmentation technique (i.e., identity for NLP and tabular datasets and strong augmentation for vision
datasets). Then, PseudoLabel uses the following loss function:

m+n

Z 2 o f 7i)) - I m;ixfy(T(xi)) > T] ,

i=n+1

LPseudoLabel

SM—‘

where y; = argmax, f,(T'(z;)). PseudoLabel increases \; between labeled and unlabeled losses over epochs, initially
placing O weight on unlabeled loss and then linearly increasing the unlabeled loss weight until it reaches the full value of
hyperparameter A at some threshold step. We fix the step at which \; reaches its maximum value A be 40% of the total
number of training steps, matching the implementation to (Sohn et al., 2020; Sagawa et al., 2021).

FixMatch Sohn et al. (2020) proposed FixMatch as a variant of the simpler Pseudo-label method (Lee et al., 2013).
This algorithm dynamically generates psuedolabels and overfits on them in each batch. FixMatch employs consistency
regularization on the unlabeled data. In particular, while pseudolabels are generated on a weakly augmented view of
the unlabeled examples, the loss is computed with respect to predictions on a strongly augmented view. The intuition
behind such an update is to encourage a model to make predictions on weakly augmented data consistent with the strongly
augmented example. Moreover, FixMatch only overfits to the assigned labeled with weak augmentation if the confidence of
the prediction with strong augmentation is greater than some threshold 7.

Refer to Tiyeak as the weak-augmentation and 7ione as the strong-augmentation function. Then, FixMatch uses the following
loss function:

n

1
LFixMalch E Z strong xz yz))
m+n
+ — Z ( strong fz) gz)) l [maxfy( strong(mz)) =T|,
i=n+1

where 3j; = argmax fy( Tweak (7). We adapted our implementation from Sagawa et al. (2021) which matches the
implementation of Sohn et al. (2020) except for one detail. While Sohn et al. (2020) augments labeled examples with weak
augmentation, Sagawa et al. (2021) proposed to strongly augment the labeled source examples.

NoisyStudent Xie et al. (2020b) proposed a different variant of Pseudo-labeling. Noisy Student generates pseudolabels,
fixes them, and then trains the model (from scratch) until convergence before generating new pseudolabels. Contrast it with
FixMatch and PseudoLabel which dynamically generate pseudolabels. The first set of pseudolabels are obtained by training
an initial teacher model only on the source labeled data. Then in each iteration, randomly initialized models fit the labeled
source data and pseudolabeled target data with pseudolabels assigned by the converged model in the previous iteration.
Noisy student objective can be summarized as:
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m+n

n
Z strong xz z Z e strong(xz) 371))7

i=n+1

LNoisyStudent

:\'—‘

where g; = arg max, fév “1(Tyeak ()) is computed with the classifier obtained at N — 1 step. Note that the randomly
initialized model at each iteration uses a dropout of p = 0.5 in the penultimate layer. We adopted our implementation of
NoisyStudent to Sagawa et al. (2021). To initialize the initial teacher model, we use the source-only model trained with
strong augmentations without dropout.

SENTRY Prabhu et al. (2021) proposed a different variant of pseudolabeling method. This method is aimed to tackle DA
under relaxed label shift scenario. a SENTRY incorporates a target instance based on its predictive consistency under a
committee of strong image transformations. In particular, SENTRY makes N strong augmentations of an unlabeled target
example and makes a prediction on those. If the majority of the committee matches the prediction on the sample example
with weak-augmentation then entropy is minimized on that example, otherwise the entropy is maximized. Moreover, the
authors employ an ’information-entropy’ objective aimed to match the prediction at every example with the estimated target
label marginal. Overall the SENTRY objective is defined as follows:

1 n m+n
Lsentry (f) = — Z Tirong (T4) Yi) Z Z Jily = jlzi)log(De(y = j))
n i=1 i=n+1j=1
1 m+n k
+ A unsup Z Z fk _]|x7,)10g(fk( _j‘xl)) ( ()_1)3
i=n+1j=1

where [(x) € {0, 1} is majority vote output of the committee consistency. For more details, we refer the reader to Prabhu
et al. (2021). Additionally, at each training epoch, SENTRY balances the source data and pseudo-balances the target data.
We adopted our implementation with the official implementation in Prabhu et al. (2021) with minor differences. In particular,
to keep the implementation consistent with all the other DA methods, we train with the objective above from scratch instead
of training sequentially after a initialization with source-only classifier as in the original paper (Prabhu et al., 2021).

Since Fix-Match, NoisyStuent, and Sentry use strong data-augmentations in their implementation, the applicability of these
algorithms is restricted to vision datasets. For NLP and tabular datasets, we only train models with PseudoLabel as it doesn’t
rely on any augmentation technique.

L.4. Test-time training methods

These take an already trained source model and adapt a few parameters (e.g. batch norm parameters, batch norm statistics)
on the unlabeled target data with an aim to improve target performance. Hence, we restrict these methods to vision datasets
with architectures that use batch norm. These methods are computationally cheaper than other DA methods in the suite as
they adapt a classifier on-the-fly. We include the following methods in our experimental suite:

BN-adapt Li et al. (2016) proposed batch norm adaptation. More recently, Schneider et al. (2020) showed gains with BN-
adapt on common corruptions benchmark. Batch norm adaptation is applicable for deep models with batch norm parameters.
With this method we simply adapt the Batchnorm statistics, in particular, mean and std of each batch norm layer.

TENT Wang et al. (2021) proposed optimizing batch norm parameters to minimize the entropy of the predictor on the
unlabeled target data. In our implementation of TENT, we perform BN-adapt before learning batch norm parameters.

CORAL  Sun et al. (2016) proposed CORAL to adapt a model trained on the source to target by whitening the feature
representations. In particular, say Y5 is the empirical covariance of the target data representations and X is the empirical
covariance of the source data representations, CORAL adjusts a linear layer g on target by re-training the final layer on
2y 1/ 2h(a:). DARE (Rosenfeld et al., 2022) simplified the procedure and showed that this is equivalent
to training a linear head honx;" 2h(x) and whitening target data representations with X, Y 2h(ac) before input to the
classifier. We choose to implement the latter procedure as it is cheap to train a single classifier in multi-domain datasets.

the outputs: X,

With our meta-algorithm, before adapting the source-only classifier with test time adaptation methods, we use it to perform
the re-sampling correction. After obtaining the adapted classifier, we estimate target label marginal and use it to adjust the
classifier with re-weighting.
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M. Hyperparameter and Architecture Details
M.1. Architecture and Pretraining Details

For all datasets, we used the same architecture across different algorithms:

CIFAR-10: Resnet-18 (He et al., 2016) pretrained on Imagenet
* CIFAR-100: Resnet-18 (He et al., 2016) pretrained on Imagenet

e Camelyon: Densenet-121 (Huang et al., 2017) not pretrained on Imagenet as per the suggestion made in (Koh et al.,
2021)

e FMoW: Densenet-121 (Huang et al., 2017) pretrained on Imagenet

* BREEDs (Entity13, Entity30, Living17, Nonliving26): Resnet-18 (He et al., 2016) not pretrained on Imagenet as per
the suggestion in (Santurkar et al., 2021). The main rationale is to avoid pre-training on the superset dataset where we
are simulating sub-population shift.

* Officehome: Resnet-50 (He et al., 2016) pretrained on Imagenet

* Domainnet: Resnet-50 (He et al., 2016) pretrained on Imagenet

* Visda: Resnet-50 (He et al., 2016) pretrained on Imagenet

¢ Civilcomments: Pre-trained DistilBERT-base-uncased (Sanh et al., 2019)

» Retiring Adults: We use an MLP with 2 hidden layers and 100 hidden units in both of the hidden layer

» Mimic Readmissions: We use the transformer architecture described in Yao et al. (2022)?

Except for Resnets on CIFAR datasets, we used the standard pytorch implementation (Gardner et al., 2018). For Resnet
on cifar, we refer to the implementation here: https://github.com/kuangliu/pytorch-cifar. For all the
architectures, whenever applicable, we add antialiasing (Zhang, 2019). We use the official library released with the paper.

For imagenet-pretrained models with standard architectures, we use the publicly available models here: https://
pytorch.org/vision/stable/models.html. For imagenet-pretrained models on the reduced input size images
(e.g. CIFAR-10), we train a model on Imagenet on reduced input size from scratch. We include the model with our publicly
available repository. For bert-based models, we use the publicly available models here: https://huggingface.co/
docs/transformers/.

M.2. Hyperparameters

First, we tune learning rate and ¢ regularization parameter by fixing batch size for each dataset that correspond to maximum
we can fit to 15GB GPU memory. We set the number of epochs for training as per the suggestions of the authors of respective
benchmarks. Note that we define the number of epochs as a full pass over the labeled training source data. We summarize
learning rate, batch size, number of epochs, and /5 regularization parameter used in our study in Table 6.

For each algorithm, we use the hyperparameters reported in the initial papers. For domain-adversarial methods (DANN and
CDANN), we refer to the suggestions made in Transfer Learning Library (Jiang et al., 2022). We tabulate hyperparameters
for each algorithm next:

* DANN, CDANN, IW-CDANN and IW-DANN As per Transfer Learning Library suggestion, we use a learning
rate multiplier of 0.1 for the featurizer when initializing with a pre-trained network and 1.0 otherwise. We default to a
penalty weight of 1.0 for all datasets with pre-trained initialization.

¢ FixMatch We use the lambda is 1.0 and use threshold 7 as 0.9.
*https://github.com/huaxiuyao/Wild-Time/.
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Dataset Epoch  Batch size {5 regularization Learning rate

CIFAR10 50 200 0.0001 (chosen from {0.0001, 0.001,1e-5,0.0}) 0.01 (chosen from {0.001,0.01,0.0001})
CIFAR100 50 200 0.0001 (chosen from {0.0001, 0.001,1e-5,0.0}) 0.01 (chosen from {0.001, 0.01,0.0001})
Camelyon 10 96 0.01 (chosen from {0.01,0.001,0.0001, 0.0}) 0.03 (chosen from {0.003, 0.3,0.0003, 0.03})
FMoW 30 64 0.0 (chosen from {0.0001, 0.001,1e-5,0.0}) 0.0001 (chosen from {0.001,0.01,0.0001})
Entity13 40 256 5e-5 (chosen from {5e-5, 5e-4, le-4, le-5}) 0.2 (chosen from {0.1,0.5,0.2,0.01,0.0})
Entity30 40 256 5e-5 (chosen from {5e-5, 5e-4, le-4, le-5}) 0.2 (chosen from {0.1,0.5,0.2,0.01,0.0})
Living17 40 256 5e-5 (chosen from {5e-5, 5e-4, le-4, le-5}) 0.2 (chosen from {0.1,0.5,0.2,0.01,0.0})
Nonliving26 40 256 0 5e-5 (chosen from {5e-5, 5e-4, le-4, le-5}) 0.2 (chosen from {0.1,0.5,0.2,0.01,0.0})
Officehome 50 96 0.0001 (chosen from {0.0001, 0.001,1e-5,0.0}) 0.01 (chosen from {0.001,0.01,0.0001})
DomainNet 15 96 0.0001 (chosen from {0.0001, 0.001,1e-5,0.0}) 0.01 (chosen from {0.001,0.01,0.0001})
Visda 10 96 0.0001 (chosen from {0.0001, 0.001,1e-5,0.0}) 0.01 (chosen from {0.001, 0.01,0.0001})
Civilcomments 5 32 0.01 (chosen from {0.01, 0.001,0.0001, 0.0}) 2e-5 (chosen from {2e — 4,2e — 5})
Retiring Adults 50 200 0.0001 (chosen from {0.01,0.001, 0.0001, 0.0}) 0.01 (chosen from {0.001,0.01,0.0001})
Mimic Readmissions 100 128 0.0 (chosen from {0.01,0.001,0.0001, 0.0}) Se-4 (chosen from {0.005, 0.00010.0005})

Table 6. Details of the learning rate and batch size considered in our RLSBENCH

* NoisyStudent We repeat the procedure for 2 iterations and use a drop level of p = 0.5.
* SENTRY We use Agc = 1.0, Aeye = 1.0, and Aypsyp = 0.1. We use a committee of size 3.
¢ PsuedoLabel We use the lambda is 1.0 and use threshold 7 as 0.9.

Recent works (Deng & Zheng, 2021; Guillory et al., 2021; Chen et al., 2021; Jiang et al., 2021; Baek et al., 2022; Garg
et al., 2022b) have proposed numerous heuristics to predict classifier performance under distribution shift. Analyzing the
usefulness of these heuristics for hyperparameter selection is an interesting avenue for future work.

M.3. Compute Infrastructure

Our experiments were performed across a combination of Nvidia T4, A6000, P100 and V100 GPUs. Overall, to run the
entire RLSBENCH suite on a T4 GPU machine with 8§ CPU cores we would approximately need 70k GPU hours of compute.

M.4. Data Augmentation

In our experiments, we leverage data augmentation techniques that encourage robustness to some variations between
domains for vision datasets.

For weak augmentation, we leverage random horizontal flips and random crops of pre-defined size. For strong augmentation,
we apply the following transformations sequentially: random horizontal flips, random crops of pre-defined size, augmen-
tation with Cutout (DeVries & Taylor, 2017), and RandAugment (Cubuk et al., 2020). For the exact implementation of
RandAugment, we directly use the implementation of Sohn et al. (2020). The pool of operations includes: autocontrast,
brightness, color jitter, contrast, equalize, posterize, rotation, sharpness, horizontal and vertical shearing, solarize, and hori-
zontal and vertical translations. We apply N = 2 random operations for all experiments.

N. Comparison with SENTRY on officehome dataset with different hyperparameters

In this section, we shed more light on the discrepancy observed between SENTRY results reported in the original pa-
per (Prabhu et al., 2021) and our implementation.

We note that for the main experiments on Officehome dataset, we used a batch size of 96 for all methods including SENTRY.
However, SENTRY reported results with a batch size of 16 in their work. Hence, we re-run the SENTRY algorithm with
a batch size of 16. To investigate the impact of the decreased batch size, we make a comparison with FixMatch (the best
algorithm on Officehome in our runs) by re-running it with the decreased batch size.
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In Table 7 we report results on individual shift pairs in officchome. We observe that SENTRY improves over FixMatch for
the default minor shift in the label distribution in the officehome dataset. However, as the shift severity increases we observe
that SENTRY performance degrades. Overall, we observe that RS-FixMatch performs similar or superior to SENTRY on 3
out of 4 shift pairs in officehome.

Algorithm Alpha=None Alpha=10.0 Alpha=3.0 Alpha=1.0 Alpha=0.5 Avg

FixMatch 92.5 95.2 98.0 100.0 100.0 97.1
RS-FixMatch 92.5 96.4 98.0 100.0 100.0 97.4
SENTRY 93.0 94.0 98.0 83.3 87.5 91.2

(a) Product to Product (in-distribution)

Algorithm Alpha=None Alpha=10.0 Alpha=3.0 Alpha=1.0 Alpha=0.5 Avg

FixMatch 71.4 71.5 70.7 73.1 755 724

RS-FixMatch 74.7 74.0 72.1 73.1 704 729

SENTRY 78.1 78.0 75.1 71.7 65.3 73.6
(b) Product to Real

Algorithm Alpha=None Alpha=10.0 Alpha=3.0 Alpha=1.0 Alpha=0.5 Avg

FixMatch 41.5 44.0 44.2 48.4 39.4 435

RS-FixMatch 45.5 44.8 43.6 50.0 374 442

SENTRY 45.8 46.5 41.4 40.3 27.3 40.3
(c) Product to ClipArt

Algorithm Alpha=None Alpha=10.0 Alpha=3.0 Alpha=1.0 Alpha=0.5 Avg

FixMatch 54.4 51.3 54.7 57.3 55.9 547

RS-FixMatch 57.2 53.6 55.9 57.3 58.8 56.6

SENTRY 63.7 62.0 62.1 65.3 559 61.8
(d) Product to Art

Table 7. Officehome results with batch size 16 instead of 96 used throughout our experiments.
More generally, across our runs, we also observed model training with SENTRY to be unstable. Investigating further, we

observe that the maximization objective to enforce consistency cause instabilities. This behavior is specifically prevalent for
experiments where we don’t use initiale the underlying model with pre-trained weights (for example, in BREEDs datasets).
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