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Abstract

Offline or batch reinforcement learning seeks to

learn a near-optimal policy using history data

without active exploration of the environment.
To counter the insufficient coverage and sample
scarcity of many offline datasets, the principle of
pessimism has been recently introduced to miti-
gate high bias of the estimated values. While pes-
simistic variants of model-based algorithms (e.g.,
value iteration with lower confidence bounds)
have been theoretically investigated, their model-
free counterparts — which do not require explicit
model estimation — have not been adequately

studied, especially in terms of sample efficiency.
To address this inadequacy, we study a pessimistic
variant of Q-learning in the context of finite-
horizon Markov decision processes, and character-
ize its sample complexity under the single-policy

concentrability assumption which does not re-
quire the full coverage of the state-action space.

In addition, a variance-reduced pessimistic Q-
learning algorithm is proposed to achieve near-
optimal sample complexity. Altogether, this work

highlights the efficiency of model-free algorithms

in offline RL when used in conjunction with pes-
simism and variance reduction.

1. Introduction

Reinforcement Learning (RL) has achieved remarkable suc-
cess in recent years, including matching or surpassing hu-
man performance in robotics control and strategy games (Sil-
ver et al., 2017; Mnih et al., 2015). Nevertheless, these suc-
cess stories often come with nearly prohibitive cost, where
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an astronomical number of samples are required to train the
learning algorithm to a satisfactory level. Scaling up and
replicating the RL success in many real-world problems face
considerable challenges, due to limited access to large-scale
simulation data. In applications such as online advertising
and clinical trials, real-time data collection could be expen-
sive, time-consuming, or constrained in sample sizes as a
result of experimental limitations.

On the other hand, it is worth noting that tons of samples
might have already been accumulated and stored — albeit
not necessarily with the desired quality — during previous
data acquisition attempts. It is therefore natural to wonder
whether such history data can be leveraged to improve per-
formance in future deployments. In reality, the history data
was often obtained by executing some (possibly unknown)
behavior policy, which is typically not the desired policy.
This gives rise to the problem of offline RL or batch RL
(Lange et al., 2012; Levine et al., 2020),* namely, how to
make the best use of history data to learn an improved or
even optimal policy, without further exploring the environ-
ment. In stark contrast to online RL that relies on active
interaction with the environment, the performance of offline
RL depends critically not only on the quantity, but also the
quality of history data (e.g., coverage over the space-action
space), given that the agent is no longer collecting new sam-
ples for the purpose of exploring the unknown environment.

Recently, the principle of pessimism (or conservatism) —
namely, being conservative in Q-function estimation when
there are not enough samples — has been put forward as
an effective way to solve offline RL (Buckman et al., 2020;
Kumar et al., 2020). This principle has been implemented in,
for instance, a model-based offline value iteration algorithm,
which modifies classical value iteration (Azar et al., 2017)
by subtracting a penalty term in the estimated Q-values and
has been shown to achieve appealing sample efficiency (Jin
et al., 2021; Rashidinejad et al., 2021; Xie et al., 2021b). It
is noteworthy that the model-based approach is built upon
the construction of an empirical transition kernel, and there-
fore, requires specific representation of the environment
(see, e.g. Agarwal et al., 2020; Li et al., 2020). It remains

Throughout this paper, we will be using the term offline R L
(resp. dataset) or batch RL (resp. dataset) interchangeably.
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Algorithm Type Sample complexity
vi-Lce model-based Hisc?
(Xie et al., 2021b)
PEVI-Adv model-based Hisc’
(Xie et al., 2021b)
Q-LCB model-free H°sc?
(this work)
Q-LCB-AdV 4 ?
i H*scC
e model-free =
lower bound / Hesc?
(Xie et al., 2021b) n/a z

Table 1. Comparisons between our results and prior art for finding
an "-optimal policy in finite-horizon non-stationary MDPs. The
sample complexities included in the table are valid for sufficiently
small ", with all logarithmic factors omitted.

unknown whether the pessimism principle can be incorpo-
rated into model-free algorithms — another class of popular
algorithms that performs learning without model estimation
— in a provably effective fashion for offline RL.

1.1. Main contributions

In this paper, we consider finite-horizon non-stationary
Markov decision processes (MDPs) with S states, A ac-
tions, and horizon length H. The focal point is to pin down
the sample efficiency for pessimistic variants of model-free
algorithms, under the mild single-policy concentrability
assumption (cf. Assumption 2.1) of the batch dataset intro-
duced in Rashidinejad et al. (2021); Xie et al. (2021b) (in
short, this assumption captures how close the batch dataset is
to an expert dataset, and will be formally introduced in Sec-
tion 2.2). Given K episodes of history data each of length H
(which amounts to a total number of T = K H samples), our
main contributions are summarized as follows.

We first study a natural pessimistic variant of the Q-
learning algorithm, which simply modifies the classical
Q-learning update rule by subtracting a penalty term
(via certain lower confidence bounds). We prove that
pessimistic Q-learning finds an "-optimal policy as
soon as the sample size T exceeds the order of (up to
log factor)

HésC?

n ’
where C? denotes the single-policy concentrability co-
efficient of the batch dataset. In comparison to the

minimax lower bound
H%sc?

[p2

developed in Xie et al. (2021b), the
sample complexity of pessimistic Q-learning is at
most a factor of H? from optimal (modulo some
log factor).

To further improve the sample efficiency of pessimistic
model-free algorithms, we introduce a variance-
reduced variant of pessimistic Q-learning. This al-
gorithm is guaranteed to find an "-optimal policy as
long as the sample size T is above the order of

Hfsc? H°sc?
ny n

up to some log factor. In particular, this sample

complexity is minimax-optimal (namely, as low as
Hisc " up to log factor) for small enough " (namely,
(0; 1=H]). The "-range that enjoys near-optimality is
much larger compared to " 0; 1=H?"> estab-

lished in Xie et al. (2021b) for model-based algorithms.

Both of the proposed algorithms achieve low computa-
tion cost (i.e., O(T)) and low memory complexities (i.e.,
O(minfT; SAHg)). Additionally, more complete compar-
isons with prior sample complexities of pessimistic model-
based algorithms (Xie et al., 2021b) are provided in Table 1.
In comparison with model-based algorithms, model-free
algorithms require drastically different technical tools to
handle the complicated statistical dependency between the
estimated Q-values at different time steps.

1.2. Related works

In this section, we discuss several lines of works which are
related to ours, with an emphasis on value-based algorithms
for tabular settings with finite state and action spaces.

Offline RL. One of the key challenges in offline RL lies
in the insufficient coverage of the batch dataset, due to lack
of interaction with the environment (Levine et al., 2020;
Liu et al., 2020). To address this challenge, most of the
recent works can be divided into two lines: 1) regularizing
the policy to avoid visiting under-covered state and action
pairs (Fujimoto et al., 2019; Dadashi et al., 2021); 2) penal-
izing the estimated values of the under-covered state-action
pairs (Buckman et al., 2020; Kumar et al., 2020). Our work
follows the latter line (also known as the principle of pes-
simism), which has garnered significant attention recently.
In fact, pessimism has been incorporated into recent develop-
ment of various offline RL approaches, such as policy-based
approaches (Rezaeifar et al., 2021; Xie et al., 2021a; Zanette
et al., 2021), model-based approaches (Rashidinejad et al.,
2021; Uehara & Sun, 2021; Jin et al., 2021; Yu et al., 2020;
Kidambi et al., 2020; Xie et al., 2021b; Yin & Wang, 2021;
Uehara et al., 2021; Yan et al., 2022b; Yu et al., 2021b;
Yin et al., 2022), and model-free approaches (Kumar et
al., 2020; Yu et al., 2021a; Yan et al., 2022a).

Finite-sample guarantees for pessimistic approaches.
While model-free approaches with pessimism (Kumar et al.,
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2020; Yu et al., 2021a) have achieved considerable empir-
ical successes in offline RL, prior theoretical guarantees
of pessimistic schemes have been confined almost exclu-
sively to model-based approaches. Under the same single-
policy concentrability assumption used in prior analyses
of model-based approaches (Rashidinejad et al., 2021; Xie
et al., 2021b; Yin et al., 2021b), the current paper provides
the first finite-sample guarantees for model-free approaches
with pessimism in the tabular case without explicit model
construction. In addition, Yin & Wang (2021) directly em-
ployed the occupancy distributions of the behavior policy
and the optimal policy in bounding the performance of a
model-based approach, rather than the worst-case upper
bound of their ratios as done under the single-policy con-
centrability assumption.

Non-asymptotic guarantees for variants of Q-learning.
Q-learning, which is among the most famous model-free RL

algorithms (Watkins, 1989; Jaakkola et al., 1994; Watkins

& Dayan, 1992), has been adapted in a multitude of ways
to deal with different RL settings. Theoretical analyses for

Q-learning and its variants have been established in, for

example, the online setting via regret analysis (Jin et al.,

2018; Bai et al., 2019; Zhang et al., 2020b; Li et al., 2021b;

Dong et al., 2019; Zhang et al., 2020a;c; Jafarnia-Jahromi

et al., 2020; Yang et al., 2021), and the simulator setting via

probably approximately correct (PAC) bounds (Chen et al.,

2020; Wainwright, 2019; Li et al., 2021a). The variant that

is most closely related to ours is asynchronous Q-learning,
which aims to find the optimal Q-function from Markovian
trajectories following some behavior policy (Even-Dar &

Mansour, 2003; Beck & Srikant, 2012; Qu & Wierman,
2020; Li et al., 2021c; Yin et al., 2021a;b). Different from

ours, these works typically require full coverage of the state-
action space by the behavior policy, a much stronger as-
sumption than the single-policy concentrability assumed in

our offline RL setting.

Variance reductionin RL.  Variance reduction, originally
proposed to accelerate stochastic optimization (e.g., the
SVRG algorithm proposed by Johnson & Zhang (2013)),
has been successfully leveraged to improve the sample effi-
ciency of various RL algorithms, including but not limited
to policy evaluation (Du et al., 2017; Wai et al., 2019; Xu et
al., 2019; Khamaru et al., 2020), planning (Sidford et al.,
2018a;b), Q-learning and its variants (Wainwright, 2019;
Zhang et al., 2020b; Li et al., 2021b;c; Yan et al., 2022a),
and offline RL (Xie et al., 2021b; Yin et al., 2021b).

1.3. Notation and paper organization

Let us introduce a set of notation that will be used through-
out. We denote by (S) the probability simplex over a set S,
and introduce the notation [N] := f1; ; Ng for any

integer N > 0. For any vectorx 2 RS (resp.x 2 R%) that

constitutes certain values for each of the state-action pairs

(resp. state), we shall often use x(s; a) (resp. x(s)) to denote
the entry associated with the (s; a) pair (resp. state s). Sim-
ilarly, we shall denote by x = fxngnnj the set composed

of certain vectors for each of the time step h 2 [H]. We

let e; represent the i-th standard basis vector, with the only

non-zero element being in the i-th entry.

Let X = (S;A;H;T). The notation f(X) g(X)
(resp. f (X ) & g(X)) means that there exists a universal con-
stant Co > 0 such that jf(X)j Cojg(X)j (resp. jf(X)j
Cojg(X)j). In addition, we often overload scalar functions
and expressions to take vector-valued arguments, with the
interpretation that they are applied in an entrywise man-
ner. For example, for a vector x = [Xi]1in, We have x? =
[x?]1in. For any two vectors x = [xi]1in andy = [yil1in,
the notation x y (resp. x y) means x; yi (resp. x; yi) for
alll i n.

Paper organization. The rest of this paper is organized
as follows. Section 2 introduces the backgrounds on finite-
horizon MDPs and formulates the offline RL problem. Sec-
tion 3 starts by introducing a natural pessimistic variant of
Q-learning along with its sample complexity bound, and fur-
ther enhances the sample efficiency via variance reduction
in Section 4. Section A presents the proof outline and key
lemmas. Finally, we conclude in Section 5 with a discussion
and defer the proof details to the supplementary material.

2. Background and problem formulation
2.1. Tabular finite-horizon MDPs

Basics. This work focuses on an episodic finite-horizon
MDP as represented by
M = S;A;H; fPhgy-1;frogy-1;

where H is the horizon length, S is a finite state space of
cardinality S, A is a finite action space of cardinality A, and
Ph :SA ! (S) (resp.rn : S A ! [0;1]) represents the
probability transition kernel (resp. reward function) at the
h-th time step (1 h H). Throughout this paper, we shall
adopt the following convenient notation

Phis;a = Pn(is;a) 2 [0;1]"; (1)

which stands for the transition probability vector given the
current state-action pair (s; a) at time step h. The parame-
ters S, A and H can all be quite large, allowing one to cap-
ture the challenges arising in MDPs with large state/action
space and long horizon.

A policy (or action selection rule) of an agent is represented
by = fhg"'h=1 , Where , : S | (A) specifies the
associated selection probability over the action space at
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time step h (or more precisely, we let ,(a j s) represent the
probability of selecting action a in state s at step h). When is
a deterministic policy, we abuse the notation and let h(s)
denote the action selected by policy in state s at step h.
In each episode, the agent generates an initial state s1 2 S
drawn from an initial state distribution 2 (S), and rolls out
a trajectory over the MDP by executing a policy as
follows:

. . H — . . e . . .
fsh;an; rngho1 = fs1; a1; r1; 1i:;su; au; rug;  (2)

where at time step h, an n(j sn) indicates the action
selected in state sh, rn = rn(sh; an) denotes the determin-
istic immediate reward, and sh+1 denotes the next state
drawn from the transition probability vector Ph;s .a =
Ph(jsh; an). In addition, let d(s) and d(s; a) dedoté
respectively the occupancy distribltion inducéd by at time
step h 2 [H], namely,

d(s) = P(sh = sjs1 ;);
dn(s;a) = P(sh = sjs1 ;)n(ajs); (3)

here and throughout, we denote [H] = f1; ; Hg. Given that
the initial state s1 is drawn from, the above definition gives

d(s) = (s) for any policy : (4)
Value function, Q-function, and optimal policy. The
value function V, (s) of policy in state s at step h is
defined as the expected cumulative rewards when this policy
is executed starting from state s at step h, i.e.,

n #

ft S;at Sh=S ; (5)
t=h

Vp(s) = E

where the expectation is taken over the randomness of the
trajectory (2) induced by the policy as well as the MDP
transitions. Similarly, the Q-function Q(;) of a policy at
step h is defined as

Qy(s;a) = rh(s";a)
+E X

t=h+1

#
; (6)

re(st;at)snh = s;an = a

where the expectation is again over the randomness induced
by and the MDP except that the state-action pair at step h
is now conditioned to be (s;a). By convention, we shall
also set

Vius1(s) = Qusa(s;a) = 0 forany and(s;a) 2 SA:
(7)
A policy 7 = f?g" | _is said to be an optimal policy if it
maximizes the value function (resp. Q-function) simul-
taneously for all states (resp. state-action pairs) among all

policies, whose existence is always guaranteed (Puterman,
2014). The resulting optimal value functionV? = fv gf_,
and optimal Q-functions Q7 = fQ;gf'., are denoted re-
spectively by

Vi (s) = Vy, (s)= maxVy (s);

Qi(s;a) = Qy (s;a) = maxQy(s; a)

for any (s;a;h) 2 S A [H]. Throughout this paper, we
assume that ’ is a deterministic optimal policy, which
always exists (Puterman, 2014).

Additionally, when the initial state is drawn from a given
distribution , the expected value of a given policy and that
of the optimal policy at the initial step are defined
respectively by

V() =.

A E V(ls )}1

£ V(s 8

S1

v/ =

Bellman equations. The Bellman equations play a fun-
damental role in dynamic programming (Bertsekas, 2017).
Specifically, the value function and the Q-function of any
policy satisfy the following Bellman consistency equation:

Qu(s;a) = ra(s;a)+  E  Vpea(s®) (9)

<op h;s;a
for all (s;a;h) 2 S A[H]. Moreover, the optimal value
function and the optimal Q-function satisfy the Bellman

optimality equation:

Q/(s;a)=r (s;a)+ g V' (s (10)
forall (s;a;h)2 S A [H].

2.2. Offline RL under single-policy concentrability

Offline RL assumes the availability of a history dataset D
containing K episodes each of length H. These episodes
are independently generated based on a certain policy =
fhgyH, — called the behavior policy, resulting in a dataset
n o
R

= ke ko pke oo ok o gk
D = S1;,a1, M1, +i; Sy, ap, Iy

k=0
Here, the initial states fsi‘gKk=1 are independently drawn
from 2 (S) such that s* '1 ,”iﬁj/hile the remaining states

and actions are generated by the MDP induced by the
behavior policy . The total number of samples is thus given

by
T=KH:

With the notation (8) in place, the goal of offline RL amounts
to finding an "-optimal policy b = fbhg!_, satisfying

Vl?() Vbl() n
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with as few samples as possible, and ideally, in a computa-
tionally fast and memory-efficient manner.

Obviously, efficient offline RL cannot be accomplished with-
out imposing proper assumptions on the behavior policy,
which also provide means to gauge the difficulty of the
offline RL task through the quality of the history dataset.
Following the recent works Rashidinejad et al. (2021); Xie
et al. (2021b), we assume that the behavior policy satisfies
the following property called single-policy concentrability.

Assumption 2.1 (single-policy concentrability). The single-
policy concentrability coefficient C? 2 [1; 1) of a behavior
policy is defined to be the smallest quantity that satisfies
d (s;a
max h-( - ) C?;
(h;s;a)2[H]SA dy(s;a)

(11)

where we adopt the convention 0=0 = 0.

Intuitively, the single-policy concentrability coefficient mea-
sures the discrepancy between the optimal policy ° and
the behavior policy in terms of the resulting density ratio of
the respective occupancy distributions. It is noteworthy
that a finite C° does not necessarily require to cover the
entire state-action space; instead, it can be attainable when
its coverage subsumes that of the optimal policy 7. This is
in stark contrast to, and in fact much weaker than, other
assumptions that require either full coverage of the behav-
ior policy (i.e., min(n;s;a)2tHysa d(s;a) > 0 (Li et al,
2021c; Yin et al., 2021a;b)), or uniform concentrability over
all possible policies (Chen & Jiang, 2019). Additionally,
the single-policy concentrability coefficient is minimized
(i.e., C? = 1) when the behavior policy coincides with the
optimal policy °, a scenario closely related to imitation

learning or behavior cloning (Rajaraman et al., 2020).

3. Pessimistic Q-learning: algorithms and
theory

In the current paper, we present two model-free algorithms
— namely, LCB-Q and LCB-Q-Advantage — for offline
RL, along with their respective theoretical guarantees. The
first algorithm can be viewed as a pessimistic variant of the
classical Q-learning algorithm, while the second one further
leverages the idea of variance reduction to boost the sample
efficiency. In this section, we begin by introducing LCB-Q.

3.1. LCB-Q: a natural pessimistic variant of Q-learning

Before proceeding, we find it convenient to first review the
classical Q-learning algorithm (Watkins, 1989; Watkins &
Dayan, 1992), which can be regarded as a stochastic approx-
imation scheme to solve the Bellman optimality equation
(10). Upon receiving a sample transition (sh; an; rn; Sh+1)
at time step h, Q-learning updates the corresponding entry

in the Q-estimate as follows
Qn(sh; an) (1 )Qn(sh;an)
n (o]

+ rh(sh;an) + Vhs1(sh+1) ; (12)

where Qp (resp. Vh) indicates the running estimate of Q?h
(resp. Vh?), and 0 < < 1 is the learning rate. In com-
parison to model-based algorithms that require estimating
the probability transition kernel based on all the samples,
Q-learning, as a popular kind of model-free algorithms, is

simpler and enjoys more flexibility without explicitly con-
structing the model of the environment. The wide applicabil-
ity of Q-learning motivates one to adapt it to accommodate

offline RL.

Inspired by recent advances in incorporating the pessimism
principle for offline RL (Rashidinejad et al., 2021; Jin et al.,
2021), we study a pessimistic variant of Q-learning called
LCB-Q, which modifies the Q-learning update rule as fol-
lows

Qn(sh; an) (1 n)Qnlsh;an) (13)
n (o]

+ n rh(sh;an) + Vher(Sh+1) bn ;

where ,, is the learning rate depending on the number of
times n that the state-action pair (sn; an) has been visited
at step h, and the penalty term b, > 0 (cf. line 9 of Al-
gorithm 1) reflects the uncertainty of the corresponding
Q-estimate and implements pessimism in the face of uncer-
tainty. The entire algorithm, which is a single-pass algo-
rithm that only requires reading the offline dataset once, is
summarized in Algorithm 1.

3.2. Theoretical guarantees for LCB-Q

The proposed LCB-Q algorithm manages to achieve an
appealing sample complexity as formalized by the following
theorem.
Theorem 3.1. Consider any 2 (0; 1). Suppose that the be-
havior policy satisfies Assumption 2.1 with single-policy
concentrability coefficient C* 1. Letc 3 O be some suf-
ficiently large constant, and take = log 32T . Assume
that T > SC?, then the policy b returned by Algorithm 1
satisfies
r

673
v bl() Ca H Scf
, Where c; > 0 is some univer-

?

Vi)

with probability at least 1
sal constant.

(14)

As asserted by Theorem 3.1, the LCB-Q algorithm is guar-

anteed to find an "-optimal policy with high probability, as

long as the total sample size T = K H exceeds
HésC?

@ i

n

(15)
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Algorithm 1 LCB-Q for offline RL
1: Parameters: some constant ¢, > O, target success
probability 1 2 (0;1), and = log AT
2: Initialize: Qn(s; a) 0; Nn(s;a) 0 for all
(s;a;h) 2 S A [H]; Vh(s) 0 for all (s; h) 2
S [H+ 1];bs.t.bn(s)= 1forall(h;s)2 [H]S.
3: for Episode k = 1to K do

4:  //sampling from batch dataset
Sample a trajectory fsy; an; rhg,:'=1 from D.
5 for Steph= 1toH do
6: // update the counter
7: Nn(sh;an)  Nn(sn;an)+ 1,n Nn(sh;an).
8: n % // update the learning rate
9: bn cp M 3nz . // update the bonus term
10: // update the Q-estimates with LCB |
11: Qn(sh; an) Qn(sh;an) + n ru(sn;an) +
o
Vh+1(snh+1)  Qn(sn;an) bn
12: // update the Va|LﬁE estimates o
13: Vi(sh)  max Vi(sn); maxa Qn(sn;a)
14: If Vh(sh) = maxaQn(sn;a): update bn(s)
argmaxa Qn(s; a).
15:  end for
16: end for

17: Output: the policy b.

where @() hides logarithmic dependencies. When the be-
havior policy is close to the optimal policy, the single-policy
concentrability coefficient C? is closer to 1; if this is the
case, then our bound indicates that the sample complexity
does not depend on the size A of the action space, which
can be a huge saving when the action space is enormous.

Comparison with model-based pessimistic approaches.
A model-based approach — called Value Iteration with
Lower Confidence Bounds (VI-LCB) — has been recently

proposed for offline RL (Rashidinejad et al., 2021; Xie et al.,

2021b). In the finite-horizon case, VI-LCB incorporates an

additional LCB penalty into the classical value iteration

algorithm, and updates all the entries in the Q-estimate

simultaneously as follows

Qn(s;a)  rn(s;a)+ Mh;aVher  ba(s;a);  (16)

with the aim of tuning down the confidence on those state-
action pairs that have only been visited infrequently. Here,
Ph.s.a represents the empirical estimation of the transition
kernel Ph.s:a, and bh(s; a) > 0 is chosen to capture the un-
certainty level of (Bh;s;a  Ph;s;a)Vh+1. Working backward,
the algorithm estimates the Q-value Qy, recursively over the
time stepsh = H; H 1; ;1. In comparison with VI-
LCB, our sample complexity bound for LCB-Q matches the
bound developed for VI-LCB by Xie et al. (2021b), while
enjoying enhanced flexibility without the need of specifying

> > >

L I | z )

epochm= 1 epochm= 2 epochm= 3

| > update reference V, r update Q-estimate Q |

Figure 1. An illustration of the epoch-based LCB-Q-Advantage
algorithm.

the transition kernel of the environment (as model estima-
tion might potentially incur a higher memory burden).

4. LCB-Q-Advantage for near-optimal offline
RL: algorithm and theory

The careful reader might notice that the sample complexity
(15) derived for LCB-Q remains a factor of H? away from
the minimax lower bound (see Table 1). To further close the
gap and improve the sample complexity, we propose a new
variant called LCB-Q-Advantage, which leverages the idea
of variance reduction to accelerate convergence (Johnson &
Zhang, 2013; Sidford et al., 2018b; Wainwright, 2019;
Zhang et al., 2020b; Xie et al., 2021b; Li et al., 2021c;b).

Inspired by the reference-advantage decomposition adopted
in (Zhang et al., 2020b; Li et al., 2021b) for online Q-
learning, LCB-Q-Advantage maintains a collection of ref-
erence values fV y, gnH: 1 » Which serve as running proxy for
the optimal values th?th=1 and allow for reduced vari-
ability in each iteration. To be more specific, the LCB-
Q-Advantage algorithm (cf. Algorithm 2 as well as the
subroutines in Algorithm 3 that closely resemble Li et al.
(2021b)) proceeds in an epoch-based style (the m-th epoch
consists of L, = 2™ episodes of samples), where the ref-
erence values are updated at the end of each epoch to be
used in the next epoch, and the Q-estimates are iteratively
updated during the remaining time of each epoch. By main-
taining two auxiliary sequences of pessimistic Q-estimates
— thatis, Q'°® constructed by the pessimistic Q-learning
update, and Q constructed by the pessimistic Q-learning
update based on the reference-advantage decomposition —
the Q-estimate is updated by taking the maximum over the
three candidates (cf. line 19 of Algorithm 2)

Qn(s;a)  maxfQ;®(s; a); Qu(s; a); Qnls;a)g (17)

when the state-action pair (s; a) is visited at the step h. We
now take a moment to discuss the key ingredients of the
proposed algorithm in further detail.

Updating the references V, and—,. At the end of each
epoch, the reference values fV j, th= .0 as well as the associ-

ated running average fhg::l, are determined using what
happens during the current epoch. More specifically, the
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Algorithm 2 Offline LCB-Q-Advantage RL

Algorithm 3 Auxiliary functions

1: Parameters: number of epochs M, universal constant
¢y, > 0, target success probability 1 2 (0; 1), and
= log SAT ;

2: Initialize:
PeXt(s;a), N {s; a)

Qh(S;a);QLhCB(S;a);(Th(S;a);h‘(S;a),
Oforall (s;a;h) 2 S A [H];
Vi(s); Vi(s); Vi (s) Oforall(s;h) 2 S [H + 1J;
ref(s;a); " (s; a); *%(si a); *4(s; )5 n(s; @), Ba(s; a) O for
all(s;a;h)2 S A [H];
3: for Epochm = 1to M do
4: Lm = 2™; //specify the number of episodes in the current
epoch
5: NPh(s;a): Oforall (h;s;a)2 [H] S A: //reset the
epoch-wise counter
6: /* Inner-loop: update value-estimates Vy(s;a) and Q-
estimates Qi (s; a)
7:  for In-epoch Episodet= 1toLm do

8: Sample a trajectory fsn; an; rngh-1. //sampling

9: for Steph = 1toH do

10: // update the overall counter

11: Nh(sh;an)  Nn(sh;an)+ 1;n Nu(sh;an).

12: n S:l // update the learning rate

13: // update the Q-estimate with LCB

14: Q}®(sh;an) update-lcb-q();

15: // update the Q-estimate with LCB and reference-
advantage

16: Qy(sh;an) update-lcb-g-ra();

17: // update the estimates Qy and Vj,

18: Qn(sh; an)

19: maxfQ}®(sn; an); Q, (sh;an); Qn(sn; an)g:

20: Vh(sh)  maxa Qn(sh;a).

21: // update the epoch-wise counter and “é’: for the
next epoch

22: @h(sh;ah) m’h(sh;ah 1;

23: "X (sh; an) 1 2 = "%sh;an) +

——hext ( h h) "

ﬁ’ﬁ’;ah) h+1(5h+1)

24: end for

25:  end for

26: for(s;a;h)2 S A [H+ 1]do

27: //set V' and — for the next epoch

28: Vi (s) "“’”(s) qsa) "sa).

29: // restart “EX‘ and set V' for the next epoch

30: Vi(s)  Vals); "e;t(s,a) 0.

31:  end for

32: end for

33: QOutput: the policy b s.t. bh(s) = arg max, Qn(s; a)
forany(s;h) 2 S [H].

following update rules for V1, and —are carried out at the
end of the m-th epoch:

next

Vi(s) Vy, (s); (18a)

1: Functionupdate-lcb-q():

2: Q4C8(sn; an) 1 n)Q'SE(sn;an) + n r(sn;an) +
HSZ

Vhi1(She1)  Cpb
3: Functionupdate- ch q-ra():
/* update the moment statistics of the interested terms
4; [ref,ref adv,advi(q, . 5, update-moments();
/* update the bonus difference and accumulative bonus
5: [n; Bnl(sh; an) update-bonus();

6: ba(sn;an)  Bn(sn;an)+(1 )" WW " et

’ n
// update the Q-estimate based on reference-advantage

7: Qy(sh; an) (1 n)Qp(sh;an) + n ro(sh;an) +
Vhi1(She1)  Vhet(She1) + pish;an)  bn ;

8: Function update-moments():

9: "h(sn; an) (1 F)ch(sh;an) + LY
// mean of the reference

10: "f(sh; an) (1 L)ef(sn; an) +
2" moment of the reference

11: 24 (sp; an) (1 n)®fsh;an)+ n Vhs1(Shs1)
Vh+1(Sh+1) ;//mean of the advantage

12: adh"(sh;ah) (1 n)ad",(sh;ah)+ n Vher(Shet)
Vhe1(she1) 2. //2™ moment of the advantage

13: Function update—bodwus():

14: B?‘e"t(sh;ah) C|;,L
b

t
el):+(1$h+1)

LN tshen) 5/

f(sn;an)  T(sh;an) T+

n

q
Ho 9(sh;an)  *®fsw;an) * ;
15: h(sh; an) BY*“(sh;an) Bn(sh;an);
16: Bn(sn;an)  BY™(sh;an):

P
Lm 1(sy = s;a' = a)¥y s
JS;a) t_n:,l., (h h ) h+1( FH.l)n
h TP b
max th"‘l 1(5}1 = s; a; = a) ;1
(18b)

forall (h;s;a) 2 [H] S A. Here, V (s),is assigned by
V;eXt(s), which is maintained as the value estimate Vi (s) at
the end of the (m  1)-th epoch, and the update of s; a) is
implemented in a recursive manner in the current m-th
epoch. See also line 28 and line 30 of Algorithm 2.

Learning Q-estimate Q, based on the reference-
advantage decomposition. Armed with the references
Vi and ~updated at the end of the previous (m  1)-th
epoch, LCB-Q-Advantage iteratively updates the Q-
estimate Q, in all episodes during the m-th epoch. At each
time step h in any episode, whenever (s; a) is visited, LCB-
Q-Advantage updates the reference Q-value as follows:

n

Qn(s;a) (1 )Qp(s;a)+ rn(s;a)
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(o]

+ Byos Vigr Ve + bn(s; a)
{z }

estimate of P ;5,2 (Vh+1

IEz}

Viet) estimateofPh;s;avh+1

(19)

Intuitively, we decompose the target Ph.s;aVh+1 into a refer-
ence part Ph;s;:aV h+1 and an advantage part Ph;s:a(Vh+1
h+1), and cope with the two parts separately. In the sequel,
let us take a moment to discuss three essential ingredients of
the update rule (19), which shed light on the design rationale
of our algorithm.

Akin to LCB-Q, the term Ph.Ba Vhi1 Vet
serves as an unbiased stochastic estimate of
Ph;s;a Vher  Vihea if a sample transition

(s; a; sh+,) at time step h is observed. If Vi, stays
closetothereference V.1 asthealgorithm proceeds,
the variance of this stochastic term can be lower than

that of the stochastic term ﬁ;s;avhﬂ in (13).

The auxiliary estimate Tptroduced in (18b) serves
as a running estimate of the reference part Ph;s;aV h+1.
Based on the update rule (18b), we design Ts; a)
to estimate the running mean of the reference part
Ph;s:aV h+1 using a number of previous samples. As
a result, we expect the variability of this term to be

well-controlled, particularly as the number of samples
in each epoch grows exponentially (recall thatL =
m

2™M).

n each epl sode, the term by s;a) serves as the ad-
ditional confidence bound on the error between the
esti mates of the reference/ advantage and the ground
truth- M ore specifical ly,"*f(s;a) and*(s;a) are
respectivel y the runni n& mean and 2nd moment of the
reference part P,....V,,; (cf. lines 9-10 of Algo-

rithm 3); 29V(s; a) and 2¢V(s; a) represent respec-
tively the running mean and 2nd moment of the ad-
vantage part Ph.s.a (Vhs1  Vhs+1) (cf. lines 11-12
of Algorithm 3); B 1(s; a) aggregates the empirical
standard deviations of the reference and the advantage
parts. The LCB penalty term by (s; a) is updated using
Bn(s;a)and fs ja ) (cf. lines 5-6 of Algorithm 3),
taking into account the confidence bounds for both the
reference and the advantage.

In a nutshell, the auxiliary sequences of the reference values
are designed to help reduce the variance of the stochastic Q-
learning updates, which taken together with the principle of
pessimism play a crucial role in the improvement of sample
complexity for offline RL.

4.1. Theoretical guarantees for LCB-Q-Advantage

Encouragingly, the proposed LCB-Q-Advantage algorithm
provably achieves near-optimal sample complexity for suffi-

ciently small ", as demonstrated by the following theorem.

Theorem 4.1. Consider any 2 (0; 1), and recall that = log
SAT and T = KH. Suppose thatc, > 0 is chosen to be a
sufficiently large constant, and that the behavior policy
satisfies Assumption 2.1. Then there exists some universal
constant cg > O such that with probability at least 1,V
the policy b output by Algorithm 2 satisfies

r

) HASC’5  HSsc?*
Vi) v o s

(20)

As a consequence, Theorem 4.1 reveals that the LCB-Q-
Advantage algorithm is guaranteed to find an "-optimal
policy (i.e, VS () 'V £() " )aslong as the total sample
size T exceeds
H4sC? H3scC?
® + : (21)

"2 "

For sufficiently small accuracy level " (i.e., " 1=H), this
results in a sample complexity of

G
GHSC

"

; (22)

e
thereby matching the minimax lower bound d veloped in
Xie et al. (2021b) up to logarithmic factor. Compared with

the minimax lower bound
HsSA

in the online RL set-

ting (Domingues et al., 2021), this suggests that offline
RL can be fairly sample-efficient when the behavior policy
closely mimics the optimal policy in terms of the resulting
state-action occupancy distribution (a scenario where C 7 is
potentially much smaller than the size of the action space).

Comparison with offline model-based approaches. In
the same offline finite-horizon setting, the state-of-art model-
based approach called PEVI-Adv has been proposed by Xie
et al. (2021b), which also leverage the idea of reference-
advantage decomposition. In comparison with PEVI-Adyv,
LCB-Q-Advantage not only enjoys the flexibility of model-
free approaches, but also achieves optimal sample complex-
ity for a broader range of target accuracy level ". More
precisely, the "-range for which the algorithm achieves sam-
ple optimality can be compared as follows:

"0; ! " 0H 23 23
Lo v Ty @

(Our LCB-Q-Advantage) (PEVI—_Adv)

offering an improvement by a factor of H1>.

5. Discussions

Focusing on model-free paradigms, this paper has devel-
oped near-optimal sample complexities for some variants
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of pessimistic Q-learning algorithms — armed with lower
confidence bounds and variance reduction — for offline
RL. These sample complexity results, taken together with
the analysis framework developed herein, open up a few
exciting directions for future research. For example, the
pessimistic Q-learning algorithms can be deployed in con-
junction with their optimistic counterparts (e.g., Jin et al.
(2018); Li et al. (2021b); Zhang et al. (2020b)), when
ad-ditional online data can be acquired to fine-tune the
policy (Xie et al., 2021b). In addition, the "-range for
LCB-Q-Advantage to attain sample optimality remains
somewhat limited (i.e., " 2 (0; 1=H])). Our concurrent
work Li et al. (2022) suggests that a new variant of
pessimistic model-based algorithm is sample-optimal for a
broader range of ", which in turn motivates further
investigation into whether model-free algorithms can
accommodate a broader "-range too without compromising
sample efficiency. Moving be-yond the tabular setting, it
would be of great importance to extend the algorithmic and
theoretical framework to accom-modate low-complexity
function approximation (Nguyen-Tang et al., 2021).
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Algorithm 4 LCB-Q for offline RL (a rewrite of Algorithm 1 to specify the dependency on k)
1: Parameters: some constant cp > 0, target success probability 1 2 (0;1), and = log AT |
2: Initialize: Q}(s;a)  0;N}(s;a) Oforall(s;a;h)2 S A [H]; V(s) Oforall(s;h)2 S [H + 1]; 1s.t.
Ys) g 1forall(s;h) 2 S [H].

3: for Episode k = 1to K do
4:  Sample the k-th trajectory fs*; a¥; rfg/'_| from D. //sampling from batch dataset
5: forSteph= 1toH do
6: for(s;a)2 S A do
7: // carry over the estimates and policy
8: NK*(s;a)  NK(s;a); Qf*'(s;a)  Qf(s;a); VH(s)  VE(s); ¥ti(s)  K(s).
9: end for
10: NK*1(sk;ak)  NK(sk;ak)+ 1. //update the counter
11: n Nﬁ*l(skh; ak); n n:ﬁ . // update the learning rate
12: bn ¢ H32. //update the bonus term
13: // update the Q-estimates with LCB n o
k
14: Qh”(sﬁ;a';]) Qf(sk;ak) + n ra(spraph+ Viki(spki)  Qulspran)  ba
15: // update the value esrt]imates o
16: VEr(sk)  max VE(s); maxa QFt(sk;a) .
17: // update the policy
18: If V*1(sK) = maxa Q" (s*; a): update ' (s*) = arg maxa Q***(s*; a).
19:  end for
20: end for
A. Analysis

In this section, we outline the main steps needed to establish the main results in Theorem 3.1 and Theorem 4.1. Before
proceeding, let us first recall the following rescaled learning rates

H+1

o (24)

for the n-th visit of a given state-action pair at a given time step h, which are adopted in both LCB-Q and LCB-Q-Advantage.
For notational convenience, we further introduce two sequences of related quantities defined for any integers N 0 and n

1:
8 Q
(q > N1 0N > g
N . < nNij=n+1 (L ’
—.(1 4)=0; ifN >0 =n
0" = 1.|_1( ’ fn=g T aE N 29)
’ - "0 ifN < n:

The following identity can be easily verified:

N_ 1: (26)

A.1. Analysis of LCB-Q

To begin with, we intend to derive a recursive formula concerning the update rule of Qkh— the estimate of the Q-function at
step h at the beginning of the k-th episode. Note that we have omitted the dependency of all quantities on the episode index
k in Algorithm 1. For notational convenience and clearness, we rewrite Algorithm 1 as Algorithm 4 by specifying the
dependency on the episode index k and shall often use the following set of short-hand notation when it is clear from context.

N k(15; a), or the shorthand N k;] the number of episodes that has visited (s; a) at step h before the beginning of the k-th
episode.
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k“‘s; a), or the shorthand k": the index of the episode in which the state-action pair (s; a) is visited at step h for the
n-th times. We also adopt the convention that k® = 0.

P kh2 f0; 1g*°: a row vector corresponding to the empirical transition at step h of the k-th episode, namely,
Pp(s)=1 s=sp,q foralls2 S: (27)

K= flkgh ., with®(s) = argmax, Q"(s;a); 8(h;s) 2 [H] S: the deterministic greedy policy at the beginning of
the k-th episode.

b: the final output b of Algorithms 1 corresponds to K ** defined above; for notational simplicity, we shall treat b as
in our analysis, which does not affect our result at all.

Consider any state-action pair (s; a). According to the update rule in line 14 of Algorithm 4, we can express (with the
assistance of the above notation)

n (o]
N N N K Nk
Qi(s;a)= Qf "*H(s;a)= 1y QN (8a)+ n, re(s;a) + Vier MSha Ty (28)

where the first identity holds since kN» ‘denotes the latest episode prior to k that visits (s; a) at step h, and the learning rate
is defined in (24). Note that it always holds that k > kNn . Appiying the above relation (28) recursively and using the notation
(25) lead to
k k
Qi(s;a) = " Qubs;a)+ h(s;8) + Vi g K bn: (29)

n=1
As another important fact, the value estimate V,* is monotonically non-decreasing in k, i.e.,
Vi (s) vy, (8) forall (s;k;h) 2 S [K] [H]; (30)

which is an immediate consequence of the update rule in line 16 of Algorithm 4. Crucially, we observe that the iterate th

forms a “pessimistic view” of th —andinturnV ?h— resulting from suitable design of the penalty term. This observation is
formally stated in the following lemma, with the proof postponed to Section C.1.

Lemma A.1. Consider any 2 (0; 1), and suppose that c, > 0 is some sufficiently large constant. Then with probability at
least1 ,
N, & N &
X N¥(s;a) k"(s;a) k" (s;a) NK(s;a)
n" Ph;S;a Ph h+1 n" by (31)
n=1 n=1

holds simultaneously for all (k; h;s;a) 2 [K] [H] S A, and

VK(s) Vi, " (s) Vy (s) (32)
holds simultaneously for all (k; h;s) 2 [K] [H] S.

In a nutshell, the result (32) in Lemma A.1 reveals that th is a pointwise lower bound on Vr: and V ?n thereby forming a
pessimistic estimate of the optimal value function. In addition, the property (31) in Lemma A.1 essentially tells us that the
weighted sum of the penalty terms dominates the weighted sum of the uncertainty terms, which plays a crucial role in
ensuring the aforementioned pessimism property. As we shall see momentarily, Lemma A.1 forms the basis of the
subsequent proof.

We are now ready to embark on the analysis for LCB-Q, which is divided into multiple steps as follows.
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Step 1: decomposing estimation errors.  With the aid of Lemma A.1, we can develop an upper bound on the performance
difference of interest in (20) as follows

Vo) Vakl= Vilsi)e Vi (sa)

S1

d1 (s) VZ(s) VI(s); (33)
k=1s2S

where (i) results from Lemma A.1 (i.e., VlK (s) VX (a) forall s 2 S), (ii) follows from the monotonicity property in
(30), and the last equality holds since dl?(s) = (s) (cf. (4)).
We then attempt to bound the quantity on the right-hand side of (33). Given that ° is assumed to be a deterministic policy,

we have d;(s) = d?Ls; ?(s)). Taking this together with the relations V*(s) maxa Q*(s; a), Q¥(s;’(s)) (seg line 16 of
Algorithm 4) and V,, (s) = Qs; (s)),’we oBtain

X X, , X X , . k=1
d n(s) Vifs) Vts)= d (g '(s)), Vn(s) © V¥(s),
s2S k=1s2S
X KX ? ? ? ? Kk ?
d (s:7(s))Q" s;7(s) QF s;7(s)k=152s
X X ) ,
= dp (s;a) Qj(s;a) Qf(s;a) (34)

k=1 (s;a)2SA
for any h 2 [H], where the last identity holds since ° is deterministic and hence

d, (s;a)= 0 foranya = ,(s): (35)

In view of (34), we need to properly control Q/(s;a) Qf(s;a). By virtue of (26), we can rewrite Q;(s; a) as follows

%: k k X N:k
Qj(s;a) = Miauls;a)= N Ql(s;a)+ N QMs;a)n-o0
n=1
k
Nk P} k‘h lNk >
= 5" Q’s;a) + n' rh(s;a)+ Phis;aVish s (36)

n=1

where the second line follows from Bellman’s optimality equation (10). Combining (29) and (36) leads to

Qi(s;a) Qf(s;a)

'\lj )Ql: N k n n
= o " Quls;a) Quls;a) + R Phis;iaVhit Vesi(spka) + ba
n=1
Nt L x N i
,« k k |x k n n
= " Qulsia) Quls;a)+  atBrt N Pmba V7o Ve ¥ N Pl PRV KT (37)
n=1 n=1 n=1
k k
k hK‘k %h k n
§ B+ 2 bm # Nn Ph;s;a Vh+?1 Vh+k1 ’ (38)
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where we have made use of the definition in (27) by recognizing P X" VX", = V.X', (s¥7, ) in (37), and the last inequality
follows from the fact Q?h(s; a) Qlfs;a)= Q?Qqs; a) 0 H andthe bound(31) in Lemma A.1. Substituting the above bound

into (34), we arrive at

Kfe.
? ? k X X ? N, (sSa) X X ? N%S’a)N fs;a)
dy (s) Vi(s) Vi(s) dp(s;a)™ """ 'H + 2 dy(s;a) 8 bn
k=1s25 =1 (s;a)25A k=1 (s;a)25A n=1
{z. - }
=:|h
K(c.
X<; X N*S,a) k . n .
+ dyy (s;2)Ph;s;a Nn(“s'a) Vit th&sl,a) : (39)
k=1 (s;a)2SA n=1

Step 2: establishing a crucial recursion. As it turns out, the last term on the right-hand side of (39) can be used to derive
a recursive relation that connects step h with step h + 1, as summarized in the next lemma.

Lemma A.2. With probability at least 1 , the following recursion holds:

k .
X< X ? N’)éSIa) k . n .
dy (s;a)Ph;s;a R RV thfsl’a)
k=1 (s;a)2SA n=1
1X X« (J— 1" B
1+ o dpse1(s)?Vhea(s)r Visi(sk+ 24 H2C?K log + 12HC’ log D (40)
H «k=1s2s
Lemma A.2 taken together with (39) implies that
X% X ) 1 X X « k=1s2S
dy (s) Vg(s) Vi(s) 1+ _dpea(s) Viea(s) 2 Via(s) «
H «k=1s2s
4 2H
?
+1lp+ 24 H2C?Klog—+ 12HC' log —: (41)

Invoking (41) recursively over the time stepsh = H; H 1; ;1 with the terminal condition VH+1k= VH+1?= 0, we
reach

K K
X X , ) K X X ? k
1028 Hs) V7As) Vs) maxatnl, g (s)PV(s) PV E(s) !
Xy qht f o 2H 21 !
1+ - In+ 24 H2C?Klog~  + 12HC’ log ;o (42)
h=1 H

which captures the estimation error resulting from the use of pessimism principle.

Step 3: controlling the right-hand side of (42). The right-hand side of (42) can be bounded through the following
lemma, which will be proved in Appendix C.3.

Lemma A.3. Consider any 2 (0; 1). With probability at least 1 , we have
r !

v h 1 ——H 2H p
1+ Hl lh + 24 H2C?K log—_ + 12HC?log—— . H2SC’+ HSST’KST (43)
h=1
where we recall that = log AT,

Combining Lemma A.3 with (42) and (33) yields

1 X X< , )
— d (s),V(s) ; V(s) k=1
s2S

Vi) VvE)
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1 X kX

_max d’ (s) Vi(s) V¥(s)
K h2[H] h h h
r k=1s2S r
Ca H®SC?®  caH?SC’ ca HESC?>  caH?SC’
2r K 2 K ) T 20T
H6SC?3
N (44)

for some sufficiently large constant ca > 0, where the last inequality is valid as long as T > SC’. This concludes the proof
of Theorem 3.1.

A.2. Analysis of LCB-Q-Advantage

We now turn to the analysis of LCB-Q-Advantage. Thus far, we have omitted the dependency of all quantities on the epoch
number m and the in-epoch episode number t in Algorithms 2 and 3. While it allows for a more concise description of our
algorithm, it might hamper the clarity of our proofs. In the following, we introduce the notation k to denote the current
episode as follows:

k= Li+t (45)
i=1

which corresponds to the t-th in-epoch episode in the m-th epoch; here, Lm = 2™ stands for the total number of in-epoch
episodes in the m-th epoch. With this notation in place, we can rewrite Algorithm 2 as Algorithm 5 in order to make clear the
dependency on the episode index k, epoch number m, and in-epoch episode index t.

Before embarking on our main proof, we make two crucial observations which play important roles in our subsequent
analysis. First, similar to the property (30) for LCB-Q, the update rule (cf. lines 19-20 of Algorithm 5) ensures the monotonic
non-decreasing property of Vi (s) such that for all k 2 [K],

V< (s) Vi (5); forall (k;s;h) 2 [K] S [H]: (46)

Secondly, V,* forms a “pessimistic view” of V!, which is formalized in the lemma below; the proof is deferred to
Appendix D.1.

Lemma A.4. Let 2 (0;1). Suppose that cp, > 0 is some sufficiently large constant. Then with probability at least 1 , the
value estimates produced by Algorithm 2 satisfy

Vi(s) Vi (s) V(s) (47)
forall (k; h;s) 2 [K] [H + 1] S.

With these two observations in place, we can proceed to present the analysis for LCB-Q-Advantage. To begin with, the
performance difference of interest can be controlled similar to (33) as follows:

V) V(= g Vis) g Vi(s)

S1 S1

1

2

(i) !
le Vis )} le VK]'(S }

K
(ii)_1X L E vk
K . s } . s }
k=1
1 X ? 5 K
= di (s) Vi(s) Vi(s); (48)
k=1s2S

where (i) follows from Lemma A.4 (i.e., VlK (s) V K(si) forall s 2 S), (ii) holds due to the monotonicity in (46) and the
last equality holds since dl?(s) = (s) (cf. (4)). It then boils down to controlling the right-hand side of (48). Towards this
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Algorithm 5 LCB-Q-Advantage (a rewrite of Algorithm 2 that specifies dependency on k or (m; t).)

1: Parameters: number of epochs M, universal constant c, > 0, target success probability 1 2 (0;1), and
= log SAT .
2: Initialize: Q) (s; a); QL% (s; a); @, (s; a); Hs; a); "V (s; a); N'(s; @) Oforall (s;a;h)2'S A [H];V
1@)~v"7§)-v”“‘*“(s) 0forall (s;h) 25 [H + 1;
fil(s; a); "fl(s; a); 2IV(s; a), 2Vi(s; a), n(s; a); Bp(s; a) Oforall(s;a;h) 2 S A [H].
3: for Epochm = 1to M do
4:  Lm = 2™; //specify the number of episodes in the current epoch
5: W™ (s;a)= 0forall (h;s;a) 2 [H] S A: //reset the epoch-wise counter
h
6:  /*Inner-loop: update value-estimates Vi (s; a) and Q-estimates Qx(s; a)
7:  forIn- epocIE)Eplsode t=1tol 6 do
8: Set k Li + t://set the eplsodelndex
9: Sample the k-th trajectory fsk b a gh ;- // sampling from batch dataset
10: Compute ¥ s.t. k(sr) = arg max, QX (sya) forall (s;h) 2 S [H]. //update the policy 11:
for Steph = 1toH do
12: for(s;a)2 S A do
13: // carry over the estimates
14: N (s;a)  NE(s;a); WS (s;a)  Mf(s;a); Vi i(s)  VX(s);
. . —k —k
15: Q" (s; a) Q;CB “(s;a) Q" (s;a)  Quls;a); Qfi(s;a)  Qf(s;a);
—k+1 —k —next;k+1 —next;k
16: Vi (s) Vils) ViTVHs) VT s); M i(s;a) Ms;a),
17: end for
18: N k+l(S ) N k(sk' k) +1;n NE”(skh; a';) // update the overall counter
19: n ::1 //update the Iearnlng rate
20: // update the Q-estimate with LCB
21: Q¥ k*1(sk;ak)  update-lcb-q();
22: // update the Q-estimate with LCB and reference-advantage
—k
23: +1(s§§ ak) update-lcb-g-ra();
24: //update the Q estimate Q and value estimate Vh
LCB;k+1 .
25: QY (sk;ak)  maxfQleB I (sk: ak); Q' (s ak); Q(sK; ak)e:
26: VEI(sk)  maxa Qf(sK; a).
27: // update epoch-wise counter and ™*(s; a) for the next epoch
t+1 ;t
28: Mt gk aky M sk aky 4 g,
29: __next;k+1 __next;k next, t(sh 1
’ h (sh;ah) 1 Wﬁpﬁw h (sh;ah) + —hn—ﬁTWVh+l +
30: end for "
31: end for -
32:  /* Update the reference (V, V 'ﬂm) and (;,, ") 33:
for(s;a;h)2S A [H + 1]do
—k k ) _
34: +1(s) V:eXt +1(s)'kﬂ(s;a) ﬁtht’k+1(s;a). //set V1 and Tar the next epoch 35:
k 7 nex -
VﬂeXt' +1(S)V k+lgs), nextikilig. 3) 0. //set™ and V"™ fon the next epoch
36: end for
37: end for p
38: Output: the policy b = ¥ withK = mzl Lm.
end, it turns out that one can control a more general counterpart, i.e.,
XX ) , )
h (s) Vi(s) Vy(s) (49)
k=1s2S

for any h 2 [H]. This is accomplished via the following lemma, whose proof is postponed to Appendix D.2.

Lemma A.5. Let 2 (0;1), and recall that =:log AT . Suppose that ca;cp > O are some sufficiently large constants.
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Then with probability at least 1, one has

XX R
dy (s) Vi(s) V¥(s) J, +1, +2); 3 (50)
k=1s25
where
x( X n #
. K(s: 4c,H7=4 4cpH?
Jt:= d(s;a) M 5¥H + b + cb ;
h h 3=4 K(c-
k=1s;a2SA NKX(s;a)_ 1 Np(s;a)_1
KX , .
J2:=2 dh(s;a)Bh(s;a);
k=1s;a2SA
3 1X % f——2H—— P,
13 =1+ div1(s) Viei(s) Viei(g)+ 48 HC?Klog  + 28caH3C? S2; (51)
he o —
H k=1s25s

As a direct consequence of Lemma A.5, one arrives at a recursive relationship between time steps h and h + 1 as follows:

X ?
d . (s) Vifs) V¥(s)
k=1s25

1X Xk . 2H — 3~2Pc2 1
1+ d,q1(s) Vpsi(s) 2 Vue1(s)« 48 HC?K log + 28caH®CY S+ ) + ) 2 (52)
o - h

H k=1s2S

Recursing over time stepsh = H; H  1; ;1 with the terminal condition V ¥ Hel = VH?+1 = 0, we can upper bound the
performance difference at h = 1 as follows

K K

X X X X .
1028 Us) VAs) VMs) maratn, g (s)PV7(s) P VE(s) "

1h 1 r 24 p [
X 14 48 HC?K log +28caH3C? s2+ 0+ ), & (53)
T - h

H H
h=1

To finish up, it suffices to upper bound each term in (53) separately. We summarize their respective upper bounds as follows;
the proof is provided in Appendix D.3.

Lemma A.6. Fix 2 (0;1), and recall that =:log SAT . With probability atleast1 , we have

H h 1
X 1+ 1 J1 . HZT75(SC?)aK a2+ H3SC3 (54a)
h=1 H
A\

H u K
X 1h1 X X p — P

1+ "H J2.h H4SC?3 max,y; d7 (s)hV7?(s) h VK(s) 4 H3SC?KS + H*SC’?; (54b)
h=1 k=1s2S

h 1 r 2 U p ! r 2H p

| 48 HC?Klog  + 28c,H3C” s> . " H3C’Klog  + H*C’ s%: (54c)
h=1

Substituting the above upper bounds into (48) and (53) and recalling that T = H K, we arrive at

V() VP ! X'{Xd? v? vk
0 Vo). * max (5) Vis) Vs)

K- h2(H] k=1s2S
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0 Qll 1
1 ) P .
~ @t H4SC?3 max d’(s) V?(s) VK(s)+ H3SEHS+HASC?® + HZ73(SC7)4K 42 A
K h2[H] h h

k=1s2S
0Ov 1
g XK p

@tH45¢?3 max d?(sh) Vi(s) VE(s)+ H3S e Ss—+H425C?4A

K 2l g sas

(il

PHISE2K5+ H 5C 24
H#SC?*5— H3sC™

+ ;
T T

where (i) has made use of the AM-GM inequality:
2 2 p
2HZ73(sC?)iK & HO75(sC?)sK+* + HZ(SC?)7 = H3SCIK+ H*scC’;

P ?
and (ii) holds by letting x = maxnau; K1 <25 dh(s) Vi, #s) V, ks) and solving the inequality x
P H3SC3x + P A3SC?KS + H*SC?4. This concludes the proof.

B. Technical lemmas
B.1. Preliminary facts

Our results rely heavily on proper choices of the learning rates. In what follows, we make note of several useful properties
concerning the learning rates, which have been established in (Jin et al., 2018; Li et al., 2021b).

Lemma B.1 (Lemma 1in (Li etal., 2021b)). For any integer N > 0, the following properties hold:

1 XN 1
NT naiNai for all 5 al; (55a)
n=1
N 2H X 1
2H; (n)? ; 1+ : (55b)
lpAay N nN
ax N net N Nen m

In addition, we gather a few elementary properties about the Binomial distribution, which will be useful throughout the
proof. The lemma below is adapted from Xie et al. (2021b, Lemma A.1).

Lemma B.2. Suppose N Binomial(n;p), where n 1and p 2 [0;1]. For any 2 (0; 1), we have

p 8log 1
N_1 T (56)
and

npl if np 8log 1 ; (57a)

N (8Iog = if np log ;

e2np if np 2log 1:

57b
N 2e%log % 1 (57b)

with probability at least 1 4.

Proof. To begin with, we directly invoke Xie et al. (2021b, Lemma A.1) which yields the results in (56) and (57a). Regarding
(57b), invoking the Chernoff bound (Vershynin, 2018, Theorem 2.3.1) with E[N] = np, when np log % satisfies

P(N e%np) e "P enp e "P .
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Similarly, when np 2log , we have

(A *2e? log(}
P N 22log 1 e b —__.enp
2e log2 1
(i) 2¢2 1og(1)
|Ie np eer:,‘pp e 20 lég 11 ),.

where (i) results from Vershynin (2018, Theorem 2.3.1), and (ii) follows from the basic fact e?log 1 2log 1 np.
Taking the union bound thus completes the proof.

B.2. Freedman’s inequality and its consequences

Both the samples collected within each episode and the algorithms analyzed herein exhibit certain Markovian structure. As a
result, concentration inequalities tailored to martingales become particularly effective for our analysis. In this subsection, we
collect a few useful concentration results that will be applied multiple times in the current paper. These results might be of
independent interest.

To begin with, the following theorem provides a user-friendly version of Freedman’s inequality (Freedman, 1975); see Li
et al. (20214, Section C) for more details.

Theorem B.3 (Freedman’s inequality). Consider a filtration Fo F1 F2 , and let Ex stand for the expectation

conditioned on Fi. Suppose that Y, = R-1 Xk 2 R, where fXk g is a real-valued scalar sequence obeying
jXkj R and Ex 1Xxk =0 forallk 1
for some quantity R < 1. We also define
Xn
Wh = Ex 1X(2
k=1

In addition, suppose that W, 2 holds deterministically for some given quantity 2 < 1. Then for any positive integer m 1,
with probability at least 1  one has

r

n @ 4 2

jYnj 8 max Wn;ZMog £3Rlog :7m

(58)

We shall also record some immediate consequence of Freedman’s inequality tailored to our problem. Recall that Nri (s;a)
denotes the number of times that (s; a) has been visited at step h before the beginning of the i-th episode, and k"(s; a)
stands for the index of the episode in which (s; a) is visited for the n-th time. The following concentration bound has been
established in Li et al. (2021b, Lemma 7).

lemmaB.4. Let W/ 2R®j1i K;1 hH+1 and u'(s;a;N)2Rj1i K;1 h H+ 1 bea collections of
vectors and scalars, respectively, and suppose that they obey the following properties:

W, is fully determined by the samples collected up to the end of the (h  1)-th step of the i-th episode;

hi

uf ks; a; N) is fully determined by the samples collected up to the end of the (h  1)-th step of the i-th episode, and a
given positive integer N 2 [K];

0 uy(sha;N) Cu;
PN (si9) K, (s53)
0 hLuy (s;a; N) 2.

In addition, consider the following sequence

Xi(s;a;h;N) = up(s;a;N) PT o PrigaWhpa 1(sp;a') = (s;a) ; 1 K; (59)
. h h
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with P/ defined in (27). Consider any 2 (0; 1). Then with probability at least 1

k
X Xi(s;a; h; N)
i=1
v I
= SATY " ) "cT ., sAT
C log2 22t uE“(S"a)(s;a; N)Varhs:a W::(f;a) + CuCw+ N—”CW log? =—— (60)
n=1
holds simultaneously for all (k; h;s;a; N) 2 [K] [H] S A [K].
Next, we make note of an immediate consequence of Lemma B.4 as follows.
Lemma B.5. Let Wri] 2R>j1i K;1 h H+ 1 bea collection of vectors satisfying the following properties:
W, is fully determined by the samples collected up to the end of the (h  1)-th step of the i-th episode;
hi
kW k1 Cw.
For any positive N H, we consider the following sequence
Xi(s;a;hiN) = \y;0) P10 PhisiaWiy 1(s';a') = (s;a) ; 1iK; (61)
: i h h h
with P/ defined in (27). Consider any 2 (0; 1). With probability at least1
r
Xk —H
Xi(s;a;h;N) . 7C3vlog2£ (62)
N

i=1

holds simultaneously for all (k; h;s;a; N) 2 [K] [H] S A [K].

Proof. Taking uL(s; a;N) = , one can see from (55b) in Lemma B.1 that

N.
N, (5;a)

' 2H
uy(s;a; N) l:l Cu:

Recognizing the trivial bound Var;s;a W#;(S"a) Cw, We can invoke Lemma B.4 to obtain that, with probability at least
1

1,

Kk r VN kK(cs:a) r l

X' Xi(s;a; h;N) . Culog?SATY X NC2 4+  CuCw+ CYCw log?SAT

i=1 o n=1 N W N o

r HC SAT r ucz SAT
N 08° — — Cy + NW log® . g log?

holds simultaneously for all (k; h;s;a; N) 2 [K] [H] S A [K], where the last line applies (55b) in Lemma B.1 once
again. O

Finally, we introduce another lemma by invoking Freedman’s inequality in Theorem B.3.

Lemma B.6. Let W,‘j(s;a) 2R%j(s;a)2S A;1 k K;1 h H + 1 bea collection of vectors satisfying the
following properties:

WkI(s; a) is fully determined by the given state-action pair (s; a) and the samples collected up to the end of the
(k  1)-th episode;

kW, fs; a)ki Cw.
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For any positive Cq4 0, we consider the following sequences

2 3
5|§ ah X
Xh;k = Cd 4 h Ph;sk;akaI\(+1(5fl1(}ah) d?(sia)Ph;S;aWhi(l(S}a)s; 1k K; (63)
dh Sh ah) hor (s;a)2s "
2 ' A 3
R (’Sh,ah) X
Xh;k = Cd 4jl( k )Ph Wik (spkap ¥ dh?(S}a)Ph;S;aWr'fu(S}a)} 1k K: (64)
5
h (s;a)2SA

Consider any 2 (0; 1) Then with probability atleast1 ,

K k'_ X—
Z 2H
X X ¥ c2c d"(s; @) Pris;a Wy, g(s; @)  log “H+ 2cqC?Clog & (65)
k=1 k=1 d (s;a)2SA h
K UK
X Xhk u X 8C§C" X d,’(s; a)Ph;s;a W, ,4(s;a) legZH + 2CdaC’Cw Iog2|_| (66)
- k
k= k= (s;a)2SA — —

hold simultaneously for all h 2 [H].

P
Proof. We intend to apply Freedman’s inequality (cf. Theorem B.3) to control Kkzlxh;k. Considering any given time
step h, it is easily verified that

Ex 1[Xn;x]l = 0; Ex 1[Xn;] = 0;

where Ex 1 denotes the expectation conditioned on everything happening up to the end of the (k  1)-th episode. To
continue, we observe that

. . d,(s%a

iXn:kj Ca (" ) 1Wh+1(s a) 2C4C°Cw; (67)
h (s

th,'kj C4q I _.b)) +1 Wh+1(S a) 2Cq4C° Cw, (68)

where we use the assumptions C? forall (h s a) 2 [H]IS A (cf. Assumption 2.1) and W, ,  (s*; k)1 Cw.

|’ (ssaa)

h h
Recall that (S A) is the probability simplex over the set S A of all state-action pairs, and we denote by d 2 (S Ah) the state-
action visitation distribution induced by the behavior policy at time step h 2 [H]. With this in hand, we obtain

2 32
X . .2 X 2 (ﬁh'd(h) k X ? . .
Ec 1[iXnwj”] c Eg 14 Phjst; akWh+1\‘Sh,dﬁ1) d*(s; a)Ph;s;aWh.1 (85 a)5k=1
k=1 dn(s*;af)"
(s;a)2SA
d?(sk; a¥) 2
X Cak(s,ia,a, h- hPh,ts ja, Whaa (ks an k=
K d (sh,a )
2 d,(s;
= C d d LS a) PhsaWh+1(lS a k=1
(s;a)2SA h d (S a
(x « » X Kk 2
Cq4C? d,’(s; @) Phys;a Wi (s; a) (69)
k=1 (s;a)2SA
X 2 X ? 42 k( <k % ?r2
C” gy Cidi(s;a) Wh.i(s®; gn)™ GaC'CoK; (70)
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where (i) follows from d ?(Sfi;a)c? (see Assumption 2.1) and the assumption Wy, ; (sy; @y}, Ew. Similarly,
d
we can derive
2 32
. X K d?(ék;%k) X
E k l[jxh;kj ] Cd E%( 14 —'—ﬁ\ Wﬁwltsh;dﬁ]) k dh?(S;a)Ph;s;aWrﬁl(S;a)s
1 h

k.
k=1 K dn(sh;a (s:a)2SA
n K K #

d. (spa) 2
LB W (s an)¢ ¢

X

=

x

2
CaEfs, ;o) Ep

k
ko1 hPh;sh;ah kd;(sh;ah)k hK
X X d.’(s: a
- W1S12) ) (; a)Epup, L Py WE (572) ke
(s;a)2SA dh(s’a) "
(i) X 5y 2 X ’
c2e” di(s;a)Ep o, .., P, WE,,(s; a) (71)
k=1 (s;a)2SA
X 5 X 5
= cig’ d;(s; a)Ph;s;a Whe1(s; a) (72)
k=1 (s;a)2SA
X 2 X ? 4> 2 2 ~?2,2
Cy C’d; (s;a) Wp,1{(s; a) c’cicik; (73)
k=1 (s;a)2SA

) d (sia) o ) ) k h kh«k
where (i) follows from “d{57a)” C* (see Assumption 2.1) and the assumption W, ,;(s ;a )1 Cw.

P P
Plugging in the results in (67) and (69) (resps. (68) and (72)) to control K|<=1th;kj (resps. K1 Xh;k), we invoke
Theorem B.3 with m = dlog, K e and take the union bound over h 2 [H] to show that with probability at least 1 ,

u Vv 8 9
X K u <x K X c2c’C2K ~ 2H
Xh,;k 8tnax cyC?? dh?(s;a)Ph;s;athl(s;a)z; ulog —
. m .
k=1 k=1 (s;2)254 '
8 2H
+ §CdC?CW log =—
X X X 2H 2H
tTgc,CZ d,’(s;a) Ph;s,aW, X (s; a)” log “ —+ 6C4C7Cyw log = —
k=1 (s;a)2SA
and
g Y §)¥ 9
u X 22,2, =
X bk ¥ 8 max cac? d,7(5;2)Phissa W, (s;a) 2; SdC CwK jog 2H
k=1 C k=1 (s;a)25A 2 ;

8 2H
+ _CyC’Cwlog ——
v 3

u¥ « X 2H 2H
t 8C4CZ dh?(s;a)Ph;s;athl(s;a)zIog —+ 6CqC'Cwlog " —

k=1 (s;a)2SA

holds simultaneously for all h 2 [H]. O
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C. Proof of main lemmas for LCB-Q (Theorem 3.1)
C.1. Proof of Lemma A.1
C.1.1. PROOF OF INEQUALITY (31)

P
To begin with, we shall control

Nfsia) Ny (sia) p Pknh(s"a)V k*(si2) by invoking Lemma B.5. Let

n="1 n h+1
Wit = Vi

which satisfies

kWh,1ki H = Cu:

Applying Lemma B.5 with N = Nhk(s; a) reveals that, with probability at least 1

Nk(s?( Xk S
Nssa) k" (s;a) k" (s;a) H3?2
n Ph:s:a P h \Y h+1 = Xi s;a;h; Nh(g; a) o N¥ar (74a)
n=1 i=1 hs,a

holds simultaneously for all (s;a; k; h) 2 S A [K] [H], provided that the constant c, > 0 is large enough and that
NE(S; a)> 0.IfN I;(s; a) = 0, then we have the trivial bound

Nk(ssz

N¥(s;a) k" (s;a) k"(s;a)

n Phisia Py h+1 =0 (74b)
n=1

q
Additionally, from the definition b, = cp

H32

—— we observe that

h i
8PNfIgia) NM(siaiby 2 Ch Nﬂ?ﬁ;a—;Zcbq Nﬂﬁéml ; ifNk(s;a)> 0

. P NKs;a) Ny bs;a) (75)
e Y if Nk(s;a) = 0
holds simultaneously for all s;a; h;k 2 S A [H] [K], which follows directly from the property (55a) in Lemma B.1.
Combining the above bounds (74) and (75), we arrive at the advertised result
N, 6 N, 6
X Ni(s;a) K"(s;a)  k"(s;a) X N(sia)y .
n Ph;s;a P Vhet n n*
n=1 n=1
C.1.2. PROOF OF INEQUALITY (32)
Note that the second inequality of (32) holds straightforwardly as
Vi(s) V7(s)
holds for any policy . As a consequence, it suffices to establish the first inequality of (32), namely,
V(s) v, (s) forall (s;h;k) 2 S [H] [K]: (76)
Before proceeding, let us introduce the following auxiliary index
n o
ko(h; k;s) = max |:1< kandV{(s)= maxQ}(s;a) (77)
a

forany (h; k;s) 2 [H] [K] S, which denotes the index of the latest episode — before the end of the (k  1)-th episode — in
which Vi (s) has been updated. In what follows, we shall often abbreviate ko (h; k; s) as ko (h) whenever it is clear from
the context.
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Towards establishing the relation (76), we proceed by means of an inductive argument. In what follows, we shall first justify the
desired inequality for the base case when h+ 1= H + 1 for all episodes k 2 [K], and then use induction to complete the
argument for other cases. More specifically, consider any step h 2 [H] in any episode k 2 [K], and suppose that the first
inequality of (32) is satisfied for all previous episodes as well as all steps h® h + 1 in the current episode, namely,

Vi (s) Vhoko(s) forall (k% h%s)2 [k 1] [H + 1] S; (78a)
Vis(s) Vio (s) forallh® h+ lands2 S: (78b)

We intend to justify that the following is valid
V(s) Vv, (s) foralls2 S; (79)
assuming that the induction hypothesis (78) holds.

Step 1: base case. Let us begin with the base case when h+ 1= H + 1 for all episodes k 2 [K]. Recognizing the fact
thatV,,,; = VK,; = Oforany andany k 2 [K], we directly arrive at

VE. () Viaql(s) forall (k;s) 2 [K] S: (80)

Step 2: induction. To justify (79) under the induction hypothesis (78), we decompose the difference term to obtain

Vi(s) V&)= V'(s) maxmaxQ¥(s;a);Vk 1(s)
h h

= ot]hk s; hks) mafmathk(s;a)?Vk°(h)(s) ; (81)

a h h

where the last line holds since Vh(s) has not been updated during episodes ko(h); ko(h) + 1; ;k 1 (in view of the
definition of ko (h) in (77)). We shall prove that the right-hand side of (81) is non-negative by discussing the following two
cases separately.

Consider the case where V kk(s) = max,; QX (15; a). Before continuing, it is easily observed from the update rule in
line 16 and line 16 of Algorithm 1 that: Vi (s) and n(s) are updated hand-in-hand for every h. Thus, it implies that

h(s) = arg ma;(Qh(%;a); when Vy(s) = maaXQ'ﬁ(S;a) (82)

holds for all (k; h) 2 [K] [H]. As a result, we express the term of interest as follows:
k k k
V(s) Viks)= Qp osiale) maka(s;ha) = Q s;hk(s) Qn sinls): (83)
a
To continue, we turn to controlling a more general term Qh* (s;a) Qf(s;a)forall(s;a)2 S A. Invoking the fact
e P 2‘51 N ‘= 1 (see (25) and (26)) leads to
k
k N ki %h N, ko ok
Qu(s;a)= ""Q (g,a) + nQp (s;a):

n=1

This relation combined with (29) allows us to express the difference between Q" and Q¥ as follows

Ny k i
k k n n
Q,(s;a) Q¥s;a)= " @Q'(s;p) Q(s;a)+ M QudBia) ra(s;a) Vaea(sn.dS+ Ha on-a
- £ h [
k k n n
2" a(s;a) Qliga) + " PhisaVher  Vadi(spi1) + ba

n=1
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k .
(ii)k‘h N b k kn kn !
A Phis;aVher  Viei(Shia) + b

(iii) N K i
n"Phis;a Vher  Vhe1 +

Ph;s;a Phkn Vr'f:1+ bn : (84)

Here, (i) invokes the Bellman equation Q;(s; a) = rn(s;a)+Ph;s;aV kh;riii) holds since Qk(sh; a) 0= Ql(s; a); (iii)
relies on the notaion (27); and (iv) comes from the fact

n

Vi Vilk Vi,
h+1 h+1 h+1,

owing to the induction hypothesis in (78) as well as the monotonicity of Vh+1 in (30). Consequently, it follows from

(84) that
NX(s;a) N*(s;a)
k . n(e- N(e- .
Qh(s;a) QkLS;a) Nr:‘ fs;a) Phis;a th (s;a) th+:(Ls,a) + Nr:‘ fs,a)bn
n=1 n=1
NK(s;a) NK(s;a)
')é N:(s;a) ')é N:(s;a) k" (s;a) k"(s;a)
n n n Ph;s;a Ph Vh+1 0 (85)

n=1 n=1

for all state-action pair (s; a), where the last inequality holds due to the bound (31) in Lemma A.1. Plugging the above
result into (83) directly establishes that

Vi(s) Vnis)= Q' s;%(s) Q¥ s;%(s) o (86)
h h h

WhenV, s) = V k;"”')(s), it indicates that

ko(h ko(h Ko (h Ko(h
Vv, ( )(s) = maaxQh ( )(s;a); h( )(s) = argma;(Q h( )(s;a); (87)

which follows from the definition of ko (h) in (77) and the corresponding fact in (82). We also make note of the fact that
afs) = <0 s); (88)

which holds since Vi (s) (and hence h(s)) has not been updated during episodes ko (h); ko(h)+ 1; ; k 1 (in view of
the definition (77)). Combining the above two results, we can show that

k -0 % <.k Ko(h) ey = A% <.k Kol e 2y = O
V (s) Vpis)=Q, s;(s) V (s)=Q s;%(s) maxQ (s;a)= Q
h s; k(M) (g) M Qketh) & kolh) () h h a b
0; h h h h (89)

where the final line can be verified using exactly the same argument as in the previous case to show (84) and then (86).
Here, we omit the proof of this step for brevity.

To conclude, substituting the relations (86) and (89) in the above two cases back into (81), we arrive at
Vi (s) Vi(s) 0

as desired in (79). This immediately completes the induction argument.
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C.2. Proof of Lemma A.2

Observing that Lemma A.2 would follow immediately if we could establish the following relation:

X< X N K s;a)
2 k . n .
An = dh (s;a)Ph;s;a Nn(,§,a) Vhil VI;H(ls'a)
k=1 (s;a)2SA n{=21 }
=:An;k
X r _—
1+ Adhaa(s) Vials) Via(si+16 H2C?Klog +8HiCTlog ;  H (90)
=1 s2S
| {z }

=Bh;k
the remainder of the proof is thus dedicated to proving (90).

To continue, let us first consider two auxiliary sequences th;kg"f:l and fzh?kng=1 which are the empirical estimation of
An;k and B,k respectively. For any time step h in episode k, Yn;kx and Zy;x are defined as follows

NK(sK;ak)
A h'%h
()i N:(sk'

k
Yoo dh (sk;ah) ar) V2 Vk (s;af)
h;k += T) h;StFah n h+1 h+1 ’
hiShs @ n=1
?
! k
1 d, (5,;a5)
- h h’%h ? k
Zp;g = 1+ — D —0-1 Ph;sh;af‘ Vh+1 Vh+1

' H  d,(sk;ak)

To begin with, let us establish the relationship between fYh;xgk., and fZn;kg/X ;:

) NK(s*:ak)
X Voo X d, (sk;ak) PRV ) RV G
h;k = d (Sk ak) h;sf;af n h+1 h+1
k=1 k=1 n=1
8 9
NK I;I -
DX sy < e o
d (S' )Ph;SL;a'h: Nhl(slh;dh); Vh's1 Vh+1 (91)
I=1 ~h h N=N'h(s'h;a'h)
K K
1 X d "(sk;ak) X
1+ — —h hs h_Ph'sk‘ak Vr?1+1 Vﬁ+1 = Zhk: 92
Ay dnlssag) e 2

Here, (i) holds by replacing k"(sk; ar':) with | and gathering all terms that involve V|, ; V'fH(IS s ); in the last line, we

P P
have invoked the property E _(S 2l N 1 _. V.= 1+ 1=H (see (55b)) together with the factV?, ., V! 0
(see Lemma A.1), and have further replaced | W|th k.

With this relation in hand, to verify (90), we further decompose A}, into several terms

X X X (i) X X
Ap = Ank = Yhk + (An;xk  Ynk) Zn;k + (An;k  Ynk)
k=1 k=1 k=1 k=1 k=1
X X X
= Bh;k+ (Zn;k Bnik)+ (An;k  Yhik) (93)
k=1 k=1 k=1

where (i) follows from (92).

P P
As aresult, it remains to control | X ; (Zn;k  Bn;k) and X5 (An;k  Yh;k) separately in the following.

P
Step 1: controlling sz 1 (An;x  Ynx). Weshall first control this term by means of Lemma B.6. Specifically, consider

N K s;a)

Wi (sia) = FE AR A

h+ 1 ’ Ca=1 (94)
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which satisfies

N:‘)és;a)
NK(s; k" (s; — .
Wh'il(s;a)1 [ bei2) Vi, v v (;fl) . 2H €yt (95)
n=1

Pk k
Here we use the fact that Ng v nle nZ 1 (see (25) and (26)). Then, applying Lemma B.6 with (94), we have with

probability at least 1, the following inequality holds true

v
XK X R X ) 2 H > H
(An;x  Yni) = Xh;k ISCZC?O| d,'(s;a) Ph;s;aW, K (s;a) log + 2C4C°Cwlog
K
k=1 é:] ‘ k=1 (s;a)2SA
(i) b X k ‘

H H
8C? W,,,(s;a) log +4HC log ¢
k=1

8 H2C?Klog HaHC?l0g ; H (96)
where (i) holds by Ph;s;a, = 1.

p
Step 2: controlling Kk=1 (Zh;k Bhik).

P
- Similarly, we shall control kK= 1 (Zn;x  Bnh;k) by invoking Lemma B.6.
Recalling that

k k
? . X
Znje Brk= 1+ 1 dn (Seiddpy oo Vi Vg 1+ 1 dni1(s) VReals)  Vikals) ; (97)
LI NCTE T R Fos "
consider
k ? k 1
Wia(s;a) = Vo1 Viers Cq= 1+ I 2 (98)
which satisfies
Whlfrl(S;a)l Vh+11?+ Ve, PH = Cu: (99)

Again, in view of Lemma B.6, we have with probability at least 1

\i
u
t X

X X
(Bh;k  Zh;k) = Xh;k

k=1 k

: H H
8c2c? d,"(s;a) Phys;aWy,(s;a) “log —+ 2C4C7Cy log —

k=1 (s;a)2SA

i
=

o B— ¥ —
"¢ 3207X W, (s;a) 2 log -+ 8HC7log
r k !
) H , H
16 H2C’Klog +8HC'log ; — (100)

where (i) holds by Ph;s;a, = 1.

Step 3: putting together. Substitution results in (96) and (100) back into (93) completes the proof of Lemma A.2 by
X X K X K X kL —F ., H
An Bh;k + (Znh;x Bnxk)+ (An:k  Yhk) Bh.k +24 H2C?K log + 12HC'log = :k=1 —
k=1 k=1 k=1
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C.3. Proof of Lemma A.3

Recall that the term of interest in (42) is given by
r !

XH 1 h 1 _ﬁ-ﬁ_ , 2H H 1 h 1
1+ 24 H2C?K logZ_ + 12HC? log =~ + I (101)
h=1 H h=1 H
First, it is easily seen that
h 1 H
1+ 1-1F 1+ 1-1r e forevery h = 1; ; H; (102)
which taken collectively with the expression of the first term in (101) yields
r - - ! r o !
X 1 —————7H ., 2H Xt P > 2H
1+ H— 24 H2C?K log— + 12HC' log —  24e H2C?K log —+ HC'log —
h=1 h=1
' H H
H4C?K log — + H2C’ log —: (103)

As a result, it remains to control the second term in (101). Plugging the expression of I, (cf. (39)) and invoking the fact
(102) give

K

N 1 M1 X 1 X X

? N (.
all _ il . (s;a)
1+H Iy = 1+ H dh (s;a)y" H
h=1 h=1 k=1 (s;a)2SA
K
X 1 "X X Nis:2)
+2 1+ — d, (s;a) Nolsialy
h=1 k=1 (s;a)2SA n=1
Kfe.
XoxK X N (s ¥oxkoox : A S
e di(s;a) ¥ H + 2e d,(s; a) AR
h=1k=1(s;a)2SA h=1 =1 (s;a)2SA =1
|—(s a) 1 } J_ _k (s;a) _{Z n }
=:A =:B

(104)

Step 1: controlling the quantities A and B in (104). We first develop an upper bound on the quantity A in (104).
Recognizing the fact that o N= 0 forany N > 0 (see (25)), we have

XX X

A=e dh?(s;a)Ng(kS;a)H
h=1k=1 (s;a)2SA
XH X , KX
eH dh' (s;a) 1 N¥s;a)< 1
h=1 (s;a)2SA k=1
X H X , 3 XX , X )
eH dh (s;a) ———— + eH dh(s;a) 1 Nh(s;a)< 1
h=1 (s;a)2SA (s;a) h=1 (s;a)2SA k=d —_ se
h
¥ X o, 3 XHX X .
= eH d, s; (s) ?( ) + eH d hs;'(s) 1 er: s;(s) < 1;h=1
d, s; (s _ _
s2S h h=1s2S k_ddjs;:{‘mﬁ?i

where the last equality holds since ? is a deterministic policy (so that d?(§; a) = 0only whena = °(s)). Recalling

dg'((:,f)) C? under Assumption 2.1, we can further bound A by
NG
? X X ? ? X ?
A 8eH2SC’ + eH d s 7(s) 1 Nf s;°(s) < 1h=1
s2S k=d — - —f,
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= 8eH2SC’; (105)
where the last inequality follows since when k —S?a),§one has — with probability at least 1 ~ — that
h
kd,(s; a
Nk(sia) <l g,

holds simultaneously for all (s; a; h; k) 2 S A [K] [H] (as implied by (57a)).
Turning to the quantity B in (104), one can deduce that

XK x Ngeia)
B = 2e dh (s;a) W)y

h=1k=1(s;a)2SA n=1

XX X _,( )S—kFrB—Z— X X X ?(S) 32 (106)

dh (s;a) X = d s;(s) —|— _— 106
’ h ’ 'k— ’
N,(s;a)_1 H K N, s; fs) _1
h=1k=1 (s;a)2SA h=1k=15s25

where the inequality follows from inequality (75), and the last equality is &alid since ° is a deterministic policy. To further

control the right hand side above, Lemma B.2 provides an upper bound for 1= N, s;?(s) _ 1 which in turn leads to

p__ X' XX 7 -1
B. H33 d, s;%(s) = 7
h=1 £1s2S kdrs, (s)
p —_ XX XA . 1 —
H3C?3 d, " s;?(s) k
h=1k=1s2$
pHSC K3 max X 9 diisiHs)—
h s2S |
p A ’
H5C’K3 S d,  s;°(s) H5SC7K3, (107)
p
s2S

where the second inequality follows from the fact %f‘ia)@it ? under Assumption 2.1, and the last line invokes the
Cauchy-Schwarz inequality. "

Taking the upper bounds on both A and B collectively establishes
H h o1
X 1+ 1 lh A+B . H2SC?+ PHsscaka. (108)
h=1 H

Step 2: putting everything together. Combining (103) and (108) allows us to establish that

X P ' 7H 2H!
1+  — lh+ 16 H2C?K log— + 8HC’ log=—— . H?SC?+ HSSC’K3,;

h=1 H p

as advertised.

D. Proof of lemmas for LCB-Q-Advantage (Theorem 4.1)

Additional notation for LCB-Q-Advantage. Let us also introduce, and remind the reader of, several notation of interest
in Algorithm 5 as follows.

N k(]s; a) (resp. N (r:;t)(s; a)) denotes the value of N (s; a) — the number of episodes that has visited (s; a) at step h at
the beginning of the k-th episode (resp. the beginning of t-th episode of the m-th epoch); for the sake of conciseness, we

shall often abbreviate N, =k N, (s a) (resp. N (m;ht) =N (m"}:)(s; a)) when it is clear from context.
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Lm = 2™M: the total number of in-epoch episodes in the m-th epoch.

k"(s; a): the index of the episode in which (s; a) is visited for the n-th time at time step h; (m(s; a); {"(s; a)) denote
respectively the index of the epoch and that of the in-epoch episode in which (s; a) is visited for the n-th time at step
h; for the sake of conciseness, we shall often use the shorthand k" = k'(s;a), (m"; k") = (m/(s; a); k'(s; a))
whenever it is clear from context.

Q¥(s; a), QL(;B;k(s; a), Oﬁ]s; a) and V¥(s) are used to denote Qn(s;a), Q"®(s;a), Q {s;a), and Vn(s) at the
beginning of the k-th episode, respectively.

—next;k

V%(]s); VL (s); K (s a); next;J;\(s; a) denote the values of V n(s); V neﬁﬁ); (s; @), and "***(s;3) at the begin-ning of
the k-th episode, respectively.

N B“h;t)(s; a) represents Nplps; a) at the beginning of the t-th in-epoch episode in the m-th epoch.

N E3’?}""'“(5; a) denotes N bE;L“‘”)(s; a), representing the number of visits to (s; a) in the entire duration of the m-th
epoch.
. . . Kok ko ke - .
[refik, refik, advik, advik, ;B b ): the values of [ref, ref. adv, adv; ;B bn] gt the beginning of the k-th episode,

h’ A ’h
respectively.

In addition, for a fixed vector V 2 RI®J, let us define a variance parameter with respect to Ph.s:a as follows
h i
2
Varh;S;a(V ) = 0 E Vv (SO) Ph;s;aV = Ph;s;a(V 2) (Ph;s;aV )2: (109)
sP h;s;a
This notation will be useful in the subsequent proof. We remind the reader that there exists a one-to-one mapping between the
index of the episode k and the index pair (m;t) (i.e., the epoch m and in-epoch episode t), as specified in (45). In the
following, for any episode k, we recall the expressions of V h+1 and ;"(which is the running mean of V n+1).

Recalling the update rule of V, anthneXt in line 34 and line 35 of Algorithm 5, we observe that both the reference
values for the current epoch V', and for the next epoch VEeXt remain unchanged within each epoch. Additionally, for

any epoch m, V', takes the value of \T‘;m in the previous (m  1)-th epoch; namely, for any episode k happening in
the m-th epoch, we have

—next;k°

Vi =V] (110)

for all episode k® within the (m  1)-th epoch.
k%grves as the estimate of Pp.s.aV kih” constructed by the samples in the previous (m  1)-th epoch (collected by
updating —next). Recall the update rule of ~ipn line 34 and line 29 of Algorithm 5: forany (s;a;h) 2 S A [H], we can

write , as

nls; a) = (mil)(s;a) - nexgm;l)(s;a) _ nextjm 1;Ln 1)(S;a)PN(m;1)
h h h

N
—nextKi i P (m:i1) —k i
i:hN(m 1;1)+1Vh+1 (Srk1+1 i:hN‘m 1;1)+1Vh+1(slr(1+1)
= h = h ; (111)
NppPoim Ys;a) 1 NppPoim Ys;a) 1 ’

where the last equality follows from (110) using the fact that the indices of episodes in which (s; a) is visited within

the (m  1)-th epoch are fi :i = Nf}m L1y o1, Nr(]m L1y o). ;N(m;rl])g.

Finally, according to the update rules of adh‘“km (sp;¥apYand ad";]km (sp; &,) i lines 11-12 of Algorithm 3, we have

dv;kn*t . _ adv;k"+1, k. _ky _ dv;k" LAk - .
ady (shikank= 2N @) = (1 a)®Y (s @ Wt 0 Vhea(Shaa) VY nea(Snkd); ko
h h h h h



Pessimistic Q-Learning for Offline Reinforcement Learning: Towards Optimal Sample Complexity

dv;kn*? dv;k"+1 . dv;k" . 2.
BV (spxapk= 2 (spran) ® (1 0)7Y Eshrah)k"' k Vhe1(Shkt) kY per(SETD) ko

k
Applying this relation recursively and invoking the definitions of Min (25) give

k

N N
Nk X n \ Nk X |k n -
2kt (s; @) = " P Whigk" Visi§n=1 2k t(s; a) = N Pn Vpiak” Vthk%1 (112)
h n=1
N+l L n+l
Similarly, according to the update rules of re}:'k (s;a) and ref': (s;a) in lines 9-10 of Algorithm 3, we obtain

n+l n 1 N 1 K" n+l
ref;k (S,'a)= ref;k +l(s;a)= 1 ref;k (S, a)+ Vh+1 (—S—he)lt), refl,(kn (S;a)
h oin h o PO 2 =
= sia) =1 sia) e Vg (spe) 27
n 1 —next; K"
h h ~ h -
Simple recursion leads to
Ny Ny, X
ref;ka”(s; a) = 1k " p, v, rEf"ka”(s; a) = 1k " p," VK2, (113)
n=1 n=1
h o kK — h o k
h Nh h+1 h Nh h+1
D.1. Proof of Lemma A.4
Akin to the proof of Lemma A.1, the second inequality of (47) holds trivially since
Vi (s) Vi (3)
holds for any policy . Thus, it suffices to focus on justifying the first inequality of (47), namely,
VE(s) Vi (s)  8(k;h;s)2 [K] [H] S (114)
which we shall prove by induction.
Step 1: introducing the induction hypothesis. For notational simplicity, let us define
n n - 00
ko(h; k;s) = max |:1< kandV{(s) = maxmax Q,ECB;'(s;a); Qy(s; a) (115)
a

for any (h; k;s) 2 [H] [K] S. Here, ko(h; k;s) denotes the index of the latest episode — right at the end of the (k
1)-th episode — in which Vi (s) has been updated, which shall be abbreviated as ko(h) whenever it is clear from context.

In what follows, we shall first justify the advertised inequality for the base case where h = H + 1 for all episodes k 2 [K],
followed by an induction argument. Regarding the induction part, let us consider any k 2 [K] and any h 2 [H], and suppose that

0
Vo (s) Vo (s) forall (k%h%s)2 [k 1] [H + 1] S; (116a)
Vi(s) Vhok(s) forallh® h+ 1ands2 S: (116b)
We intend to justify K
ViX(s) V' (s) 8s2S; (117)

assuming that the induction hypotheses (116) hold.
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N K Nkbk"+1

P
Step 2: controlling the confident bound I I

Before proceeding, we first introduce an auxiliary result on

. P Nk Nk, k"1 . . L .
bounding "= ;b W which plays a crucial role. For any (s; a), it is easily seen that
N&sm)
Nk(s;a)=0 =) Ny fsialple (520+1 g (118)
n=1

When N ';1(5; a) > 0, expanding the definitions of btnﬂ (cf. line 6 of Algorithm 3) and th (cf. line 15 of Algorithm 3)

leads to

%I: k
kgnyq
Nr,{ lBh+
n=1
N N, k Ny k Kk Ny NK k
X Y i 1_k N
X0 T 0 e isar e e v e L W e, H2 0 1lpen
n=1 n n n=1 N n
Ne O Ny Ny 1 Ne N N  NE
=X @V 1 nBgkis;a) V(1 )BpMs;a) At X a L H™ 4 X a"H?
n=1 i=n+1 i=n n=1Nn n=1 N
k k k k k k
o Xr ¥ & 31 Xo P P X r'f“k _— X r’:‘hk 5
= (1 §)B , “(s;a) (1 §)B ,(s;a)+ cb szH Tt o H
n=1i=n+1 n=2i=n n=1 n=1 n
k vk N); 1 wk )?k K )lz'k Kk
%h h h h Ny h N
ii Py} k8 -
@ (1 )8, N(s;a) (1 1B M (s;a)+ o " H 4 L H?
n=1i=n+1 n=1 i=n+1 n=1 n=1 n
k k k
ek XoooNoo Xoo Ny
=B, "Hs;a)+ o taH ™ o " HZ; (119)
n=1 n=1 n

1
where we abuse the notation to let qi:jﬂ(l i) = 1. Here, (i) holds since B (s;a) = 0, (ii) follows from the

n+1

K" A . - . . -
fact that B +1(s; a)=B (s; a), since (s; a) has not been visited at step h during the episodes between the indices
k

- . . . P yx N
1 N h
k" + 1 and kn+k 1. Combining the above result in (119) with the properties ('N;,f%”_ N S0 (N-_ﬁh}_and
- P N ﬁﬁ;’* N, _(5kee Lemma B.1), we arrive at
B%Nﬁ+1(s~a)+ c H 7 +C H? jZINhkkbkn“1 B" +}Ls-ha)+ 2c ’ %H * H (120)
h ; b(N#)3=4 bNhk - nh ; b(N )3:4*( N, k

as long as N ¥ (s;a) > 0.

= vk

Step 3: base case. Let uslook at the base case withh = H +1 forany k 2 [K]. Recalling the factsthatV , , ; Wl

for any and any k 2 [K], we reach

=0

Vi,i(s) VH+1k(s) forall (k;s) 2 [K] S: (121)

Step 4: induction arguments. We now turn to the induction arguments. Suppose that (116) holds for a pair (k; h) 2
[K] [H]. Everything comes down to justifying (117) for time step h in the episode k.

First, we recall the update rule of V(s) in lines 25-26 of Algorithm 5:
o

n
Vi(s) = maxQli(s;a) = Qf ;" s) = max QT s K(s) Q" sTp(s)h A T os;ufs) ¢ b

Then we shall verify (117) in three different cases.
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When V, (g) = QLeBk s, n(s), the term of interest can be controlled by
h

Vi (s) Vi(s) 8 Qy' sinks) QY% s;(s) O;
h

where (i) holds since ¥ is set to be the greedy policy such that V ‘ (s) = Qk(s,;I k(s));hand the last inequality
follows directly from the analysis for LCB-Q (see (85)).

When Vv, Ls) = Quk S; h(%)' we obtain
k k
Vi (s) Vi(s)= Qp s;nls)  Qps;nlsk (122)
To prove the term on the right-hand side of (122) is non-negative, we proceed by developing a more general lower
bound on Qkh(s; a) Qljﬁ; a) forevery (s;a) 2 S A. Towards this, recalling the definition of N ¥ and k", we can express
—k —kMh 41
Q,(s;a) = Q, (s;a):

Thus, according to the update rule (cf. line 7 in Algorithm 3), we arrive at

arkl(s; a) 6: ""s; a)

_pk KN E RN MK KN K Nk PLLEE
(1§ 0Qn (s;a)+ n, wnl(sia)+ Vaad (80.5)" Vier (spk)% o tsia) b° 77

Applying this relation recursively and invoking the definitions of N kand n" '\%rk1 (25) give

Ny
X n n "+1
afi(sia) = “ratsia)+ T M ri(sia) + Viaa($haa )kt Vi itsha )i o (sra) by ok (123)

n=1

P
Additionally, for any policy ¥, the basic relation " N "= lN,Qk o k1 (see (26) and (25)) gives
k K k‘k Nk K
Q,[s;a) = o"Q, (5;a) + M Q ($;a): (124)
n=1

Combing (123) and (124) leads to
Q'(s;a) QYs;a)= " Q'(s;a) Q'tsia)
h N h 0 h h
Xh n n +
+ 00N Q' (s;a) rn(s;a) Vadi(sakd) + VaKi(sak)  ndsia) + by ¥ (125)
n=1

Plugging in the construction of ;,"in (111) and invoking the Bellman equation

Qp'(s;a) = rn(s;a) + Phis;aVhai; (126)
we arrive at
Qy'(s;a) r(s;a) VEL(skia) + Viea(skla)  7(sia)+ bpo
N .
VLIEL K" i ilrhr:y(l'")" 1;1)+1V:11(5EL1) L)

h "
om +

k K"
= Phis;aVher + Vie1(Sher)  Vasr(She) Bl a) 1 h
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0 PN(m";U
" oy P
n : mn ;1) h n _n
k n n n K =N 1 —k k" +1
= Phis;aVher  Vica(shaa) + PE Phis;a  Vihe1 +%@Ph;s;a blepo'jm” 1 . %V h+1 + by
NS (s;a)_1
"1 n
= Phis;a Ve Vi bp—e + 05y
where 0 Py (m"i0) i 1
n P
PLE K" k" K" B i=N.(m L, h C —k"
h = Py Ph;s;a Vher  Vher + @Phs;a epomn 1 AV i (127)
\ (s;a)_1
Inserting the above result into (125) leads to the following decomposition
Nk
k Nk Kk XNk . nn+1 .hk.n
Qy (s;a) Qf(s;a) = o Qn (s;a) Qufs;a)+ Physia Vier  Vier + b+ (128) =1
N k
b( Kk Py n
N ) (129)
n=1

which holds by virtue of the following facts:

—1
(i) The initialization Qy(s; a) = 0 and the non-negativity of Q,(s; a) for any policy and(s;a) 2 S A lead to Q'
—1
(sha) Qu(s;a)= QM (s;a) O.

(ii) For any episode k" appearing before k, making use of the induction hypothesis Vr:+(15) A {g) in (116b) and
the monotonicity of Vi (s) in (46), we obtain

Vhea(s)  VEa(s) Vik(s) Vi, kls) o (130)

The following lemma ensures that the right-hand side of (129) is non-negative. We postpone the proof of Lemma D.1
to Appendix D.4 to streamline our discussion.

Lemma D.1. For any 2 (0; 1), there exists some sufficiently large constant c, > 0, such that with probability at
least1 ,
xNhk X N
N, P AR
n h‘ k n ’:
n=1 n=1

X 8k 2 [K]: (131)

Taking this lemma together with the inequalities (122) and (129) yields

NW '\;(k
Vi (s) Vi(s)= Qui{s;a) @ffs;a) X aRbgk+1 AR b 0:n=1
n=1

Next, consider the case where V, (s) = Qk 1 s; h(s). In view of the definition of ko(h) in (115), one has V,
h n o)
ko (h iko(h o(h)
) ()= @ T sinls)= @M s;(s) = max QYT s (s siu(s)
since Qn s; ¥(s) has not been updated r1:Iuring the episode ko (h) ar?d remains unchanged in the episodes ko(h) +
1; ko(h) + 2; pk 1. With this equality in hand, the term of interest in (117) can be controlled by
n o
. ko(h) —
th (s) VK(s)= ngs; k(s) max QLCB':"(M s; *(s);Q () Sin(s) OX

where the last inequality follows from the facts

. (i)
Q' (s;nfs)) QUM (s () o
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k — (ii)
Qp, (s;hls)) QhOKh)(S;h(S’)) 0:

Here, (i) follows from the same analysis framework for showing (84) and (86); (ii) holds due to the following fact

ko(h)

Nko(h)
K _ P kotn)
Qy (s;a) Q" (s;a) (b

+1 k& n
ho+h ) 05

which is obtained directly by adapting (129) and then invoking (131) for k = ko (h); since the analysis follows verbatim,
we omit their proofs here.

Combining the above three cases verifies the induction hypothesis in (117), provided that (116) is satisfied.

Step 5: putting everything together. Combining the base case in Step 3 and induction arguments in Step 4, we can
readily verify the induction hypothesis in Step 1, which in turn establishes Lemma A.4.

D.2. Proof of Lemma A.5

For every h 2 [H], we can decompose

K i X )y, () ()
X X kX X, A ) k=Ks2s ?
dy, (s) Vw(s) Vi, (s) dy, s;p,sQ s;"s" Qp's;p S
k=1s2S
X X )
= dh'(s;a)Q’(s;a)  Qyls; a); (132)
k=1s;a2SA

where (i) follows from the facchk(s) = maxa Qh(s; a) maxa QIF(ﬁ; a) Qk (?;h?(s))}(see lines 25-26 in Algorithm 5). Here,
the last equality is due to (35).

- P
Step 1: bounding Q}(s; a) Qi (s;a). The basic relation oh v . =N1“kn NS g (see (26) and (25)) gives

jg‘hk
Ql(s;a) = (¥ Qfs;a)+ ot QNs;a); (133)
n=1
which combined with (123) leads to
Q’(s;a) @Qpls;a)= ""*Qubs;a) Qpis; a)
h N 0
XK N K K" K" —k" K" n —+T
+ n h Qh()S;a) rh(S;a) Vh+1(5h+1) + Vh+1(5h+1) h_(‘S;a)"' bh : (134)
n=1
Invoking the Bellman optimality equation
Qi:(sia) = rn(s;a) + I:)h;s;th?+1; (135)

we can decompose Qj (s; a) 6‘;(5; a) similar to (128) by inserting (127) as follows:
Ny«

X n n
Qp(s;a) Qf(s;a)= Ng kQ?Ls;a) Qpils; a) + N Pnh;ks,-a Vie1  Vepaq + by TRl
k

N k
(§ h ]
N + )g\lk b.hnh+1 -ll-( h"

Blh

Ny,

kK N¥ ? n
+ Phis;a Mav1 Ve n=1n=1%



Pessimistic Q-Learning for Offline Reinforcement Learning: Towards Optimal Sample Complexity

-~ N K X N K
( X\ L]
INth+ NhPH;;;a Vier Vi + 2 b ' n"i

0 1h
n=1
(.. K H7=4 !
¥”0h N<+ %nhh PNAa Ve, Mpeq + R By(s; al® 2o \ .+ 2cp L — 2 ; (136)
n=1 k1 - h

h —
where (i) follows from the initialization ai(s; a) = 0 and the trivial upper bound Q(s; a) H for any policy, (ii) holds
owing to the fact (see (131))
. =1 n

hbh

"
[y

X‘hk n N : N k)( n Ny n
—+"+1 n k-X(— 1 P k 1
N NI N T TR gy
n=1 n=

N k+
and (iii) comes from (120) with the fact ﬂ " 1(s; a) = Bk;(s; a).

Step 2: decomposing the error in (132). Plugging (136) into (132) and rearranging terms yield

dh’(s) Vi(s) Vi(s) (138)
k=1s2S "
X K X s . 7=4 2
dr'](s;a) Nk(()sh’a)H + ZBkﬁh;a)+ AcpH ,  deof
3=4 K({c.
k=1 (s;a)2SA Nfl]((sl.a)_ 1 Nh(s'a)— 1
k .
X( X ? Nl)éS’a) k . n .
+ dn(s; @)Ph;s;a an'a) Viii VI;H(lS’a)
k=1 (s;a)2SA n=1
X K ) K(s: bepH7=4 acpH?  F_w X )
d (s;a) " UEH + b P +2 d (s;2)8"(s; a)
3=4 K({c-
k=1 Nkh'a\ 1 Nh(s,a)_ 1} k=1 Y
(s:a)2SA fr = :
L {z, L {z____
=:J1 =:)2
XX Ngeie)
+ d, (s;a)Ph;s;a N fs;a) Viig V';H(ls"a) : (139)
k=1 (s;a)2SA n=1
Step 3: controlling the last term in (139). If we could verify the following result
k
X X ) Ny -
dh(S;a)Ph;s;a Nrr{ fsie) Vh?+1 Vl}(ﬁ(ls,a)
k=1 (s;a)2SA n=1
1 X ? ? : 2H 3 ?p 2 s2S
1+ 0 dhe1(s) Viii(s) V&i(s)+ 48 HC?K log — 28caH3C? $2;(140) |
{z }

=g
then combining this result with inequality (139) would immediately establish Lemma A.5. As a result, it suffices to verify
the inequality (140), which shall be accomplished as follows.

Proof of inequality (140). We first make the observation that the left-hand side of inequality (140) is the same as what
Lemma A.2 shows. Therefore, we shall establish this inequality following the same framework as in Appendix C.2. To
begin with, let us recall several definitions in Appendix C.2:

k
)d( X NMs;a)
2 . k "s:
Ap = d,(s; a)Ph;s;a Nﬁ'fs'a) Vi Vh+(ISIa) ’
k=1 (s;a)2SA n=1
{z }
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1 X
Bhjk = 1+ I_Tdh+1(5?) Vier(8)  Viea(g);
s2S
N K k.ak)
d?(sk'ak hS{h' h NK(sk;ak ko (K ak
Yhik = h_kq hisk;ak nh(sh 3 Viey Vh+](_5h ay) ;
d, (sk;ak) ne1
1 d?(sk'akg
& = — h" A" K . ? k .
Zhik = 1+ 4 dh(sh;aﬂ‘q)Ph'sh'ah Vh+1  Vhel (141)

and we also remind the reader of the relation in (93) as follows
X K K X K
An Bhskt+t (Zn;k Bnk)*+  (Ansk Yk (142)

k=1 k=1 k=1
. . . . P« P .
Equipped with these relations, we aim to control >, (Zn;k  Bn;k) and 21 (An;k  Yn;k) respectively as follows.

P
We firstbound kz{Ah;k Yh;k), which is similar to (96) (as controlled by Lemma B.6). Repeating the argument and
tightening the bound from the second line of (96), we have for all (h;s;a) 2 [H] S A, with probability at least 1

X X __ N 2H 2
KAnh;k  Ynk) t 4 8C,C7 d,7(s;a) Ph;s;aW,,,(s; @) log  + 2CaC’Cw log
2 Kk - _
k=1 k=1 (s;a)2SA
v . 3>
9] X< X N 15,a)
t8iC? log 2H dy(s;a)4 Vo bpy e Via Vaw'(") 5+ 4HC7log 2H
k=1 (s;a)2SA n=1
.
(i 2H 2H
8C?log = (36HK + 3c2H®6SC?) + 4HC log —
r ?—Z_Hi 3,~7 2.
32 HC?K log ™ —+ 12caH3C? s2: (143)
Here, (i) holds by virtue of the following fact
k 32
X N (s;a)
? ; ko fs; ?
di(s;a)4 Nt pha Ve VS I 5 36HK + 3¢2HESCY; (144)
k=1 (s;a)2SA n=1

whose proof is postponed to Appendix D.2.1.
o}
Next, weturnto k=1(zh?k Bh;k), which can be bounded similar to (100) (as controlled via Lemma B.6). Repeating
the argument and tightening the bound from the second line of (100) yield

Vv

XK uXY « X 2H 2H
(Bh;k Znx) t8C,C?2 d,’(s;a) Phis;aW, & (s;a)” log '+ 2C4C7Cw log * —
k=1 k=1 (s;a)2SA

u X K X

2H 2H
8 £7log " — d,7(5;2) Prisia Vy 2, VoK~ + 8HClog ~ s (145)
k=1 (s;a)2SA

To further control (145), we have

k 2 LR X 2 ? k 2
Vit di(s;a)Ph;s;a Vit Vs

k=1 (s;a)2SA

X X ?
dy(s;a)Phs;a Vihia

k=1 (s;a)2SA
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Gy X X ,
H dh?(s;a)Ph;s;a Vi1 Vri(+1
k=1 (s;a)2SA
(yii

2HK + c?H4®sc’: (146)
Here, (i) holds due to the non-negativity of the variance
2
Varh;s;a(Vaer  Yke1) = Phis;a(Veer  Viger)2 Phis;a(Vgser  Vie1) O (147)
(ii) follows from the basic property V ° A H; to see why (iii) holds, we refer the reader to (154), which
will be proven in Appendix D.2.1 as weil Inseh'ﬁiﬁg](146) back into (145) yields
r - —_ - -
XX i ? ,  2H
(Bh;k Zn;k) 8 C?log” H2KH + c2HESC?)+ 8HC’ log
k=1
’ 2H p
16 HC?K log “—+ 16caH3C? S: (148)

Substituting the inequalities (143) and (148) into (142), and using the definitions in (141), we arrive at

X X Nger2)
An = dh?(sia)Ph;s;a Nﬁ‘(s;a) Viis Vl;,:(ls;a)
k=1 (s;a)2SA n=1
K K
1 ) X X
1+ = dhi1(s) Videi(s)  Viq(s) + (Zh;k Bhyk) + (Ah;k  Yhik)
H s2S k=% k=1
1 ) 7H p
1+ —  dig(s) Vpils) Vupki(s)+ 32 HC?Klog ™ —+ 12caH3C? S?
H s2S
' 2H p
+16 HC?K log ——+ 16caH3C’ S
;
1X ) T T TTTIHE p
1+ ﬁ;”(s)hv? 1(S) 1+ Vher(s) ¥ 48 HC K log 7 + 28ezH3C’ S?; (149)
s2S

which directly verifies (140) and completes the proof.

D.2.1. PROOF OF INEQUALITY (144)

Step 1: rewriting the term of interest. We first invoke Jensen’s inequality to obtain

NK k k h

Xh N K > K 2 th VL N 2 th Nk R K b2
Phis;a Vher ' Vi 0" Phisa Vi Ve n"Phis;a Vier  Vipin o

n=1 n=1 n=1

P
where the first inequality follows from Nnh:l . ] (see (26) and (25)), and the last inequality holds by the non-negativity
of the variance Varn;s;a[VE,; V&' 1. This allows one to derive

ZN;% ) 3
¥ X s;a -

dh"(s;a)4 Nﬁk'a)Ph;S;a Vpls  Vpky o
k=1 (s;a)2SA n=1

X X
k 2
dh'(Sia)&(h;S;a n" Vi het" ? k?”

k=1 (s;a)2SA n=1
(0 1X X re2 o 2H
1+ dy.1(8) Vy.qi(8) Vh+1(5)2+ 32 HAC Klog 32H2C?Iog . (150)
H k=1s2s

where (i) can be verified in a way similar to the proof of Lemma A.2 in Appendix C.2. We omit the details for conciseness.
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Step 2: controlling the first term in (150). Let us introduce the following short-hand notation
kstop = C;HSSC?;

and decompose the term in (150) as follows

X R kX , X X , s2s
dp,q1(s) Viia(s)  Vi&a(s)” H A1 (S) Vieals)  Viuals)
k=1 k=1s2S
Koo X x X,
= H dps1(s) Visa(s)  Via(s) + H dps1(s) Visa(s)  Vi&a(s): (151)
k=1s2S k=Kkstop+1s2S

Here, (i) holds since 0 V,,7(s) V,.X(s) H. The first term in (151) satisfies

gctopx q
H dpii(s) Viea(s) Via(s) H ca HS5SC?kstop + CaH2SC’ c’Hsc’; (152)
k=1s2S

where the first inequality holds by applying the results of LCB-Q in (44) with K = kstop. The second term in (151) can be
controlled as follows:

X X X
H dns1(s) Via(s)  Visa(s) HK  dipsa(s) Viea(s) Vy™(8),
k=kstop+1s2S s2S
1 XX
? ? k
HK kstop ko152 dh+{s) v h+{S) v h+{s)
s _75 !
HS5 ? H2 C?
HK e 1o3C, caf™s 2HK; (153)
kstop kstop
where the first and the second inequalities hold by the monotonicity property V k:i A h+1 introduced in (46), and the final
inequality follows from applying (44).
Inserting the results in (152) and (153) into (151) yields
X R KX s ) 2 X X , e n?
dy,q1(s)  Vii(s) V&i(s) H dy,1(8) Visifs)  Vi,ifs) 2HK + c H®SE": (154)
s2S k=1 k=15s25

Step 3: combining the above results. Inserting the above result (154) back into (150), we reach:

Nk ) 32
S;a
X X ? 4})% Ny (sia) ? K" 5
dh'(S;a) n Ph;s;a Vi1 Vis1
k=1 (s;a)2SA n=1
1X X K r 2H
1+ U dL1(S) Vie: Vaai o+ 82 HAC?Klog ~ + 32H2C7log * k=1s2s
h

(i) H

2H 2H
4HK + 2c?H®SC?+ 32 HA4C?Klog”™ —+32H%C’log

(i)
36HK + 3c?H°sC’; (155)
where (i) holds due to (154) and 1 + H—l 2, and (ii) results from the Cauchy-Schwarz inequality.

D.3. Proof of Lemma A.6

We shall verify the three inequalities in (54) separately.
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D.3.1. PROOF OF INEQUALITY (54a)

We start by rewriting the term of interest using the expression of J ,in (51) as

H h 1
X141 1t
h=1 H
Nal h 1y ! _ #
= 14 1 X d?(é'a) N (s AcoH ™ | 4cpH ?
- I ’ 0 3=4 K(c-
h=1 H k=1 (s;a)2SA Nk(Si,{J‘)_l N (S'qw)—l
X‘I 1h 1X X( ? . h 1X ? 4 H7=4
= 1+~ d(s;a)n ¥ H e 14 % B d (s;a) Kb an
H " ° H H " (N, (s;a) _ 1)
hz1 k=1 (s;§32SA ) =1 k=1 (s;a)2{% )
ST - 7 =112
h 1x X 2
1 K ? 4cpH
£ X 1 T d’(s;a) b : (156)
h K(c-
JHy H o1 N*(s;a)_1
(safZen L
I 1
=1,
Invoking (105) and (102) yields
J,b. H2%sc’: (157)
In terms of J ;2, one has
h o1 A
g2 Xy, 1 X Xd'(s; a) 4 Cohb 74
T ohaa k=1 (s;a)25 (N (s;a S s
(i) XX x o, 1
H7=42 d'(s?a) :
h=1k=1 (s;a)2$ (kdy(s;a))e
. K 1
(i) X , *
U HTe2(C) S 1 d (s;a)
h=1k=1 K* (5;a)25A
7242~y 3 X" 1 X 5 ? ;4
= H/75(C7) 4« — 1 a="(s) dy(s;a) ;
h=1k=1 K* (s;a)2SA

where (i) holds due to (102) and N_T(s:'La) T TS(S'a) from Lemma B.2, and (ii) follows from the definition of C? in
Assumption 2.1. A direct applicatior'? of Holder’s inequality leads to

. 0 1540 114
X X ,
)2 HTEA2(Ch) iJ@ (a="(s)A @ d (s;3)A
h=1k=1 K* (s;a)25A (s;a)2SA
. K
Ui 545 ? X X 1 2:75 )k o2
H (SC*)e — H (SC7)aK +%; (158)
h=1k=1 K*

where (iii) follows since ? is assumed to be a deterministic policy.

Similarly, we can derive an upper bound on J ;3 as follows:
K

3 X ]_h 1 X X A ? 4CbH2
I, = 1+ d, (s;a) X
h=1 H k=1 (s;a)2s N (Sla)_ 1
W zzwkx KXA d, (s;a) 3?3
H . HSC ; 159
kd s; (159)

h=1 =1 (s;a)2s
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where (i) follows from the result in (102) and the fact N,ﬁlﬁ—(s;aTh(%f?temma B.2), and the last relation results from

the definition of C (cf. Assumption 2.1) and the assumphtion that is a déterministic policy.
Putting the preceding results (157), (158) and (159) together, we conclude that

H h o1
X 1s 1 Jh . HZ73(sC?)iK 42+ H3SCT3:
h=1 H

D.3.2. PROOF OF INEQUALITY (54b)

Making use of the definition of BT]k(s; a) (cf. (14)) in the expression of J,2(cf. (51)), we obtain

(160)

X ih 1 ) ¥ lh 1 X X ? »
1+ H Jy =2 1+ " dh(S;a)Bh(s;a)
h=1 h=1 k=1 (s;a)25A
\
h 1 U adv k adv Kk
! P X ! s;a s;a)2
=2X 14 ~ cp H— d'(s;a) X ¥, (s; e (s;a)
i : " K ; Nj(s;a)_;
h=1 (s;a)2SA k=1 v h
Xt 1h? p X ( )X< ch'lrefhk(s‘a) refif(c.
- ? sS:a ‘s a)
+ 2 1+ Cp d ’ = .
h=1 " (s;a)2SA h k=1 Nh(sl a)_1
i
p_)@ X ) %tqﬂdV;k(s; a) adV;k(S;a) 2
H dy (s;a) ; S — AT
Np(s;a)_ 1
h=1(s;a)2SA k={z }
=:J21
U
XH X ) JSEf ko ref;k (. 2
+ P d (s;a) X t ‘15:3) _ (%},_a) )
h K({c- 1 ’
h=1(s;a)2SA k=1 Ny (s;a) _
| {z
=2

where the last inequality follows from (102). In the following, we shall look at the two terms in (161) separately.

(161)

. N k
Step 1: controllingJ ;. Recalling the expressions of adr:"k(s; a) = 29vik"+ (g, 5) in (112), we observe that the main

h
part of J } in (161) satisfies

u:ldv-k adv;k 2 s -
X X . X g7 (s; a) *(s; a) p X X X ] dn' (sia) **Ks;a)
dy (s;a) Nk(s;a)_1 4 (s;pa)™ kd -(S'a)
h=1(s;a)2SA k=1 hA=r €l — h=1(s;a)25A k=1 hi=»
v p : - —2
X X N d’(s;a) "IN EERIpkn ey KT
p X t h =l N h h+1 h+1
“h ST
h=1(s;a)25A k=1 kdn(s; a)
4 N&s-a)
(')p )d_‘ X X( u 1 5 ' N Kk ;a) —kn 2
(o Y21 a=,0) d,'(s;a) e Ky ke vk
h=1(s;a)2SA k=1 n=1
A X Nolsia) > ¥ X X 1
(i) C?tU k H dy,'(s;a) X WPV, Vi tT KA Ta= ,(s)
k=1h=1(s;a)2SA n=1 n" k ko T k=1h=1 (s;a)2SA ' =
v
N (s,
p H X(?X_I X N (S‘a) nk& a) k n —kn 2
ASC?Zt d,’(s; a) R T A VA ; (162)
k=1 h=1 (s;a)2SA n=1
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where the first inequality is due to the fac-t—k—Ll— d T—rﬁrom Lemma B.2, (i) follows from the definition of C?

Assumption 2.1 and (35), and (ii) follows from the Cauchy Schwarz inequality. To continue, we claim the following bound
holds, which will be proven in Appendix D.3.4:

XX x ) Nigei2)

. . n N k" 2
dh(sia) qu (‘s,a)th Vi Ve
k=1 h=1 (s;a)2SA n=1
x X, p
H? max d (s) V(s) VKs)+ K + H® sc’?: (163)
h2[H] h h h
k=15s2S

Combining the above inequality with (162), we arrive at

v
p A R p
H2SC?3 UH2 max ‘ d’(s) V?(s) VK(s)+ K + H5 SC?2

[H] X h h h
k=1s2S
v
u h*2
X X . P S 72:
tH45C?3 max d’(s) V?(s) VK(s)+ H25eH3+H3°5C725; (164)
h2[H] h h h
k=1s2S
Step 2: controlling J 2. Recalling the expressions of “J‘fh;k”(s;a) = refikt IHl(s a) and "F k+1(s a) =
k
reg’kN *1l(s;a)in (113) toJ 2 jn (161), we can deduce that
v R
g
u ref;k .. ref;k 2
o X' X ? X i (s;a) (s;a)
1,2 = d, (s;a) NS i
h=1(s;a)2SA k=1 h(s,a)_
S —V Pmk{hq a) next:-kn r 2 PN 3 — xR -
p X X 4 X B nis Vi (5044) Y] K 2
h (s,a) N ‘S-la’ |t N (s:a) 1 . n=1pn (ghit 4Sh+1)
h=1(s;a)2SA k=1 = I T ST= { KT e =
I z [ -
=:Fn;k _
(165)
We further decompose and bound Fp; as follows:
Nk k(s;a) n 2 Nk(s;a) next;k", ,n |
r (')U_p AeT h?+i A+ T P n=1 —h+1 (Sh+1]
. [ h
N N, (Ya) (s ) N, (a) 1
Upry . PN : PN PN 3
N k n 2 k(s;a) k(s;a) k(s;a) —next;Xn n
R Vi1 (shi1) njl Vioq (Shaq) 2, njl Vi1 (siig) 2 nfl Vi (shia) 2
- NK(s;a) _ 1 NK(s;a) _ 1 N¥(s;a) _ 1 NK(s;a) _1
(s;a) _
vV UPyy — . 2 Puiksa U PRAR A - — 7
(i) g n=t VL (gh+1) nal o yRel(gh+l) gt 2H Vi, 1(she1) Vier  (Shea)
+ ;
N¥(s;a) 1 N¥(s;a) 1 NKk(s;a)_ 1
| G{\Z;k | -.{%;k }
(166)
0 H‘\ext;k” _ K0 3 ext . .
where (i) follows from the fact that for some k° 2 [K], V', ;" = V<, v’ heq (see the update rule of V" in line 35

and the fact in (47)), and (ii) holds due to the fact that

next;k"

) P X P ;a) n _Ne
=“‘Sl$j) Vie1(spd) 2 “‘Sk'j) Vne o ( Shid') 2 nd i ’ Via(spei) Vv (5h¥1)
Ny(sa_ 1 Nk(s; a)_ 2H Ny(s;a)_ 1

EES
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Inserting (166) back into (165), we arrive at

s
pX H X : KX T
)2 dh (s; a) ki(Gh;k"' Lh;k)
h=1 (s;a)2SA k=1 N (s;a)_1
(i) pP

P _ P
H3STPR*F HASC’3 + H3STRZFH2SC?3 . H3sCPT+FH*SC’4;

where (i) follows from the following facts

h s S

X! X ? X 1 S — 5

d (s;a) — L. H3C?K4+ H*sC™?;

Nf&(s;a)_1 7
h=1 (s;a)2SA k=1
s

H X S S
X X : « —t p

dh(s;a) N}k(s;a)_lGhl_k_ H3 C?K2 + H25 C?3.
h=1 (s;a)2SA k=1

We postpone the proofs of (168) and (169) to Appendix D.3.5 and Appendix D.3.6, respectively.

Putting the bounds together. Substitute (164) and (167) back into (161) to yield

1+ J2 . H#sSC?3 max d’(s) V?(s) Vk(s)+ H2SC2K3 & H355C?25
o h h h h
h=1 H hZ[H]k=1525
| o
+ H3SC?KS + H*sC’*
v
X X . o] 24
. FH45C?3 max d’(s) V?(s) VK(s)+ H3sE2KS+HASC4:
h2[H] h h h
k=1s2S
D.3.3. PROOF OF INEQUALITY (54c)
Invoking inequality (102) directly leads to
- I -
1 r I : r PE—
% hot . 2H. N . 2H- P,
+ I 48 HC?K log + 28caH®C* S . H3C?K log + H*C® S
h=1
as claimed.

D.3.4. PROOF OF INEQUALITY (163)

We shall control the term in (163) in a way similar to the proof of Lemma A.2 in Appendix C.2.

(167)

(168)

(169)

Step 1: decomposing the terms of interest. Akin to Appendix C.2, let us introduce the terms of interest and definitions

as follows:
k
X( X . NMs;a) . . o 2
An = dn’(s; a) e kv vl
k=1 (s;a)2SA n=1 {z }
=:Ank
. 1 X 2 K —k 2
Bh;k = 1+ I_T CIh+1(5) Vh+1(s) Vh+1(s) ;
s2S

, Ny bsy kap b
dh(skf'maklz " SX h Nkh(sk(;ak)

Yhk = ——h_h ;
T skial) L, "
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1.d,"(s*;a%) 2
b TP Vi (Ve (170)

H o d(shaf)
With these definitions in place, we directly adapt the argument in (93) to arrive at

Znh,x = 1+

X K X K X K
An  Bh;k+ (Znh;k Brxk)+ (An;k  Yhk): (171)
k=1 k=1 k=1

P P
As a consequence, it remains to control kK: 1 (Zn;x  Bnh;k) and kK: 1 (An;x  Ynk) separately.

P P
Step 2: controlling kK: 1 (An;x  Yni). To control kK: 1 (An:x  Yn;k), we resort to Lemma B.6 by setting

N:‘)és;a) )
NK(s; n —k"
Wk, 1(s;a) = v v s Ca= g (172)
n=1

which satisfies
Whh(sia)l 4H? = Cw:

Applying Lemma B.6 with (172) yields that: with probability at least 1

K K
X (An;k  YnK= X Xn;k
k=1 k=1
¥
K X
u 2H 2H
t gc,C? d,’(s; a)Ph;s;a W, X, (s;a)” log ©~ —+ 2C4C7Cy log = —
k=1 (s;a)2SA
v 2 35
H % X N¥(s;a)
. - n 2
Pe e log 2 d,’(s; a)Phssia 4 A VA RV CH2log 2. (73
k=1 (s;a)2SA n=1
To further control the first term in (173), it follows from Jensen’s inequality that
2 2 3 -
k n . k o0 4 g
Ph;s;a4 Nn "Vh+1k Vh+1 5 Ph;s;a n Vh+1Nh th+1 ; (174)
n=1 n=1
which yields
- 2
X X o8 2
> N ;h n —k"
di(s; a)Phisia 4 W VLK v TS
k=1 (s;a)2SA n=1
Xk X XN 4
d;(s}a)Ph;s;a hn he1 K"Vt (k=1
(s;a)2SA n=1
1X X« 4 r 5, 2H
1+ ~ dpe1(s)Vhi1(s) kK Vypep(sy*+ 32 H8C?K Tog + 32H7C" log : L (175)
H k=1s2s

This can be verified similar to the proof for Lemma A.2 in Appendix C.2. We omit the details for conciseness. To continue,
it follows that

X X R - 4
dh+i(S)Vh+f(S) Vh+1(s)
k=1s2S
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(i) X LX X ) ) 4
dhr1(s)Vi2i(s) ViR (s)
M
m=1t=1s2S
W XX 4
ii 1)_1;1
w dnaa(s) Viads) VO™ P(s)
m=11t=15s2S
X v 4
(1) ? 1)_1;1
W d L as) 2™ Vpals)  viim Bt
s2S m=1
2 4
? 1)_1;1
=4 dp.i(s) 2™ 2y (s)  y ™ PR
s2S m 2= 1
Xo L4 X Lo Xm 2 . 4
=4 2" 2Vpa(s) VUTs) + 4 dya(5) 2" 2Vpa(3) VI Ts) w2
1 s2S m 2=1

Here, (i) holds by using the pessimistic property V? V¥ Vv “ forall k 2 [K] (see (47)) and by regrouping the summands; (ii)
follows from the fact (see updating rules in line 34 and line 35) that for any (m;s; h) 2 [M] S [H + 1],

VLm;t)(s) = Vh((m V1), t=1;2; ;Lm; (176)

and (iii) results from the choice of the parameter L, = 2™. In addition, we can further control

K N () i i X Ln
X X - k —k 4 (;V) MT2X ? (m+1_1) 4k=1525
dh+1s)Vh+1S Vh+1(s) 8H"+ 4 dh+1(s) Vh+1(s) \Y ! (gj
s2S m=1 t=1
(v X ? % 2xn . 4
B9+ 4 " dla(s) Vials) vm9s)
s2S m=1 t=1
4 X ? X¢ ? K 4
8H"+ 4 dp,1(s)  Viiils) Vihii(s) (177)
s2S k=1
X , XK
8H*+ 4H® dy.1(s)  Vii(s) Vi.f(s)
s2S k=1
(vi)
H3K + H8C": (178)

Here, (iv) follows from the fact 0 V,,(s) V(lﬁ){s) H 0= H; (v)holds since V, ,, ?\/(m+1;1)+1= V(m"Lmh)Jrl\/(m;t)

h
forall t 2 [Lm] (using the monotonic increasing property of Vh+1 introduced in (46)); and (vi) follows from (154). Putting
(f7§) and (175) together with (173), we arrive at

V }
u r T
X 2H - 2H 2H 2H
(Ah;k Yhik) - yc?log— H3K + H8SC?+ HB8C?K log —+ H4C?log — + C’H?log —
K
k=1 e P
H3C?K + H* sc?2: (179)
. P K .. . P K ’
Step 3: controlling o1 (Zn;k  Bn;k). Similarly, we also invoke Lemma B.6 to control o1 (Zn;k  Bn;k). Let’s
set
WPK+1(S;a) := VH(+1 V>h+1 2; Cda = 1+ Flr 2; (180)

which satisfies

Wk, (s;a) | 4aH2= Cy:
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Applying Lemma B.6 with (180) yields that: with probability at least 1

’

X (Bh;k Zh;k)=)<< Xh;k
k=1 k=1
u \
Kap o A R K 2 2H 5 2H
p8C2Cy d,’(s;a)Ph;s;a W, K (s;a) log ™ —+ 2CqC Cwlog  —
k=1 (s;a)2SA
u i
2H XX _ 'a 2H
e log =— d’(s;a)Phs;a Vi Ky Vi, + C’H2log

k=1 (s;a)2SA
r
(i)

2H 2H P p
C?log = (H3K + H8SC?) + C’H?log —. H3C’K + H* sC??;

(181)
where (i) follows from (177) and (178).
Step 4: combining the results. Inserting (181) and (179) back into (171), we can conclude that
k .
x( )(‘ X 2 N&S,a) N ‘( n . 2 )(‘
. w(s;a)pk " k —
dy(s;a) n P% Vhis Vi = An
k=1 h=1 (s;a)2SA n=1 h=1
XX XX XX
Bk + (Zn;xk  Bhyk) + (Ah;k  Yhik)
h=1k=1 h=1k=1 h=1k=1
X HX K . 2 X KoK X X+ oK
1+ dhe1(s) Vihek(s)  Vieal(s) + (Zn;x  Bnk)+ (Ah;x  Yhx)
h=1k=1 H s2s h=1 k=1 h=1 k=1
X' X" 1 X ? k vk Pseri, us P2
H 1+ — dh+1(s) Vpsa(s)  Vipea(s) + H2C?K+ H> SC
h=1k=1 Ho s
M ¥ X X , s [
. H dnea(s) Viia(s)  Viials) + K + H® sc??
h=1k=1s2S
2 X X ? k sP22
H< max d (s) Vi(s) V*(s)+ K + H> SC*~; (182)
h2[H] h h h
k=1s2S

where (i) follows from the same routine to obtain (177) and the Cauchy-Schwarz inequality.

D.3.5. PROOF OF INEQUALITY (168)

Step 1: decomposing the error in (168). The term in (168) obeys
s
X! X , X

1
dy (s;a) 7 Lhik
h=1(s;a)2SA k=1 Nh(s,a)_ 1
v
S—HPNk&s;a) ? kn nextkm ; kn 1y
_)@ X dnziLS-a))<< h+1 hk1 b+1 hep 2HV (s" ) v (s" )
= h \S; KT e- KT
h=1(s;a)2SA k=1 Nils;a) _1 Ni(s;a) _ 1
. s M ? . l-"\N"(s;a) next; k"
(i p__X X X dh_?(s;_a)'tldh (s;a) N Viedsnetd Vo (spd )
. H —_ o
(s;a)2SA k=1 kdh(s’a) Kd,(s;a)
s ? r . V, - . PNk(<;n) next;kn
(")pE—ZXH X 71 (a’= (?gntgh (s;a) A Vi1 BSpafn vV h+1(5h+1l)”h:1

kd. (s;
(s;a)2SA k=1 k n(s7a)
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% P k __next;k"

u ? . N. (s;a) 2 kn
(i”) pHC. i v X X dnifs;a) hi1 h+1Vh+1(sk ) Vh+ (Si(a)—u(w)h X, a)25)§<k ]
deh(s;a) hel(s;a)254 =1 k -
LV k(s;a7—
P u, X A d(s;a) X X ls12)) MG kP (s50)
H2sC?Ht d_h(s_-'a) - Vi, (s Vi (s )
’ K
h=1(s;a)2SA h k=1 n=1
Y
(iv) P X X d LS ’ k)§ next;k
Y T grsCTUSt h (skh-a’k') R Ph ? WV, VT
H Ig ! 0 K
R
v X Pk k
T T d'h_ _ﬁla_ﬁ i
(s(; ;
H25C?4 AU R v, VAT (183)
h=1 k=1

Here, (i) follows from the fact N ‘ﬂl . (S 3] (cf. Lemma B.2); (ii) follows from the definition of C? in Assump-

tion 2.1; (iii) invokes the Cauchy Schwarz |nequaI|ty, (iv) can be obtained by regrouping the terms (the terms involving
nextik ) associated with index k will only been added during episodes k® = k; k + 1; ;K).

(Vh+1 V
With this upper bound in hand, we further decompose
v
s
X X X 1 p— XX d,’ sk ak _
? _— —(——)—H k
d, (s;a Nk ' 1Lh;k- H2sc?4t g h k_(vh+1 Vnﬁ’itl)
h=1 (s;a)2SA v ) k=1 (s;a) _ h=1 k=1 s hah
(i p XX
—E d, Jsp; 2 h)P W2 Vi
d | ( kak
h=1k=1 R H
(i YT 3
. PHeseea d, 1s;a)Phis;a Vi, Ve
h=1k=1 (s;a)2SA
v 0 1
p U XHX K X )
v EEsTHI @ 4 (s;a)Phsa S0 pA Y ok (184)
h=1k=1 (s;a)25A " W (skpak) P

Here (i) holds due to the following observation: denoting by m the index of the epoch in which episode k occurs, we have

Vinextk = VV(m:1) V ((m 1.1);1) = Vk
h+1 h+1 h+1 h+1 (185)

which invokes the monotonicity of VX, in (46). In addition, (ii) arises from the Cauchy-Schwarz inequality.

The first term in (184) satisfies

XX X ) X X X X )
d, (s;@)Phisia Viar? Vier = d, (s;a) A

Pr(is;a); Vier Vipe1 h=1k=1(s;a)2SA

Step 2: controlling the first term in (184).

h=1k=1 (s;a)2SA

(i) ox X d ? 0 P 0 k 0
- h+1(s )Vh+1(s ) \Fh+1(s )
h=1k=1s02S
(i) DD QD .
H?+ dia(s) Vaea(s)  Vili(s)n=1kk1sas
(iii)
. HK + H®fsC?; (186)

P ? ?
where (i) holds due to the fact 12sA d (s;a)Pn(js;a)=d 'QL,l(ii) comes from the same argument employed to

establish (177), and (iii) follows from (154).
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Step 3: controlling the second term in (184). We shall invoke Lemma B.6 for this purpose. To proceed, let

—k
Wi(s;a) = Viea Vipers  Ca=:1; (187)

which satisfies
Wk (s;a) H = G

Applying Lemma B.6 with (187) yields, for all h 2 [H], with probability at least 1

0 1
X X " d X
@ d (S?a)Ph;s;a h_kk( ‘k' n)kPhA Vi I\/h+1 = Xh;k
k=1 (s;a)2s dn (sh;an) k=1
V — —
ux A
¢ , X i 2 2H , 2H
8C,T? d,’(s;a)Pn;s;a Wk (s;a) log —+ 2CqC'Cwlog  —
K
V_ -3 (s:2)2SA
u i
E 2HX X 2 2H
? |Og7 d;(s;a)Ph;s;a Vh+1? thlk + HC? |Og v
k=1 (s;a)2S
u 0 A 1
(I) u X< X 2 2H
tC? Iog AlCITER dy7(s;a)Phs;a Vi, VK, A+ HC?log ——
k=1 (s;a)2SA
(ii) '
1
c?log 2M(HK + Hesc?)+ HC g 2H
PHC?K + H3 pSC?: (188)

Here (i) follows from the same routine to arrive at (177), and (ii) comes from (154). As a result, the second term in (184)
satisfies, with probability at least 1

’

0 1
HX KX X . . ka }P
@ dh’ (s; a)Pnse & L S0KAPh A 5 iy
h=1k=1 (s;a)2SA dn (s¥; a¥) h
X K 0 " 1
? ? ; P — p p
G dn (s; a)Prs R ARPRAY 2yl Pys o Pscr (189)
H=1 k=1 (s;a)25A dn(s*;af)

Step 4: combining the results. Finally, inserting (186) and (189) into (184), we arrive at
s

Xt X ) K 1~
d(s; a — Ly,
h ) Ni (o) "
h=1 (s;a)2SA k=1 h
a .
p Y p— p—
H2SC?4 HK + H6SC? + HZSC’%4 H3C?K + H4 SC?
p o]
p 4 ?3 P P 4 ?3
H3SC?K4 + H*SC*°> + H2S(C?4 HK + H4 SC? . H3SC?K%4 + H*SC'>; (190)

p

where the last two inequalities follow from the Cauchy-Schwarz inequality.

D.3.6. PROOF OF INEQUALITY (169)
Recall the expression of Gp .k in (166) as

2 Pri(s;a) "
Vh?+1(5h+1) n=h1S : Vh?+1(5h+1) 2
NK(s;a)_1 NKk(s;a)_1
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PN ¥ (s;a) n 2 PN K (s;a) n
n&1 >3, SERRV/ | n#1 pk v+l 2
Ng(sal_ 1 Ng(s;al_ 1 : (191)

To continue, we make the following observation

1=2
Gh;k Gh;k 2 Varns;a(Viea)o+ Varnsa(Viea) 2

+ q Uarh;s;algﬂ+l’

1=2
Gh;k2 Varh;s;a(Vh+13

(192)

p
due to the elementary inequality aZ + bZ a+ bforany a;b 0. Here, we remind the reader that Varn:s;a(V * )h

F1
Ph;s;a(Vii1)?  (Phis;aVitq)? (cf. (109)). This allows us to rewrite '

S
X s !
h 188 Nk o 7 Chik
h=1(s;a)25A k=1 Nk(s;a) _ 1
%j—; — s
2 N -
X! X ? X t G h;k Varh;s;a(vh+1) Xt X ) X< Varh;s;a(Vh?+1)
dy, (s;a) NK(s: 1 + dy, (s;a) e (193)
h=1 (s;a)2SA k=1 h(s,a)_ h=1 (s;a)2SA k=1 h(S,a)_

leaving us with two terms to cope with.

Step 1: controlling the first term of (193). By definition, we have

P NK(s;a) n v 2 P NK(s;a) K" y2?
G Varnsa(Vyl,) = L_h _Th+l =l h Thel Topl (VAP PhisaVig
h;k h,s,a( h+1) Nkh (s;a)_ 1 Nﬁ(s;a)_ 1 h,s,a( h+1) h;s;aVh+l
n
k ? k oy ?
Pukista) Pho Vi Pnhs;a) Phn Vi 2 ?
= i3 +1 2
Phis:a(Vhaq)2 + h Phis:aV
Nh((S; a) ~ 1 h,s,a( h+1) N (s;a)_ 1 h;s;aVhe1
n
P N X(s;a) n 5 2 P N X (s;a) N
P Vv PRV
=1 h h +1 ? 2 n=1 h h+1 ?
Ph.s:a(Vy + 2H Ph.s.aViiq; 194
N (s;a) _ 1 his;a(Vie1) N#(S;a)_ 1 h;s;aVhel ( )
n
where the last inequality holds due to
P Nk(s;a) n P Nk(s;a) n P Nk(s;a) n
nz Pfl: Vh? 2 ? ) n=hl PPI: Vh? ? nz Prt( Vh? ?
k i Pr.c.aV = k T opgaV Tk T4+ PhisaV
NP (s;a)_ 1 hisie Thel N, (s;a) _ 1 s thil N (dha) 1 hisiaTh+1
P Nk(s;a) N
L PV
2H NS h T PhisaVias
NK(s;a)_ 1 et

We now control the two terms in (194) separately by invoking Lemma B.4. For the first term in (194), let us set

2
Whia = Vi and up(s; a;N) = i = Cu; (195)
which indicates that
kWi, ki H%2 = Cu; (196)
Applying Lemma B.4 with (195) and N = N = NX(s; a), with probability at least 1 ,, we arrive at
k
K" 2 _ e Nk
Kk %f(P Ph;S;)(Vh+1) - qu S;a; h/N
N¥(s;d) 1 .7 ? o
—f———~n=1 h a i=1 h
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r Vv - - S _ |
— S SAT g ¥F —— SAT
Cu log u X up'(s;a; Ny )Varnsa Wy, + CuCw + u _ Cw log?
n=1 k —
h
s v N s
2 ¢ X 1 kW ke + H?2 0 H22 1 . (197)
Np—t o Nt e r—
n=1
Similarly, for the second term in (194), with W{i,, = V\’,;, we have with probability at least1 ,,
N K S
1 Xr . 1
_ P Ph.s. V . H? —— 198
NK(s;a)_1 _, " hisia Thel NK(s;a)_ 1 (198)
Inserting (197) and (198) back into (194) yields
s
- 1
G2 var™,(¢,,,) - H2Z — = 199
h;k a h+1 N#(s;a)_ 1 ( )
Consequently, the first term in (193) can be controlled as
Ve —
X oo X p G2 o v (Ve ) XX X 1
d, (s;a) — . H d, (s;a) _
h=1(s;a)25A k=1 Np(s;a)_ 1 h=1(s;a)25A k=1 Nf(s;a) *_1
H2(SC?)iK #%; (200)
where the last inequality holds due to (158).
Step 2: controlling the second term of (193). The second term can be decomposed as
s
x X ) X Varp.s.a(V,.2.)
hd  (s;a) N T
h=1 (s;a)25 k=1 T
s
A
mx X X c?d, " (s;a)Varp.ea(V,’
' h ( ) > h,s,a( h+1) 1(a _ h(g))
h=1(s;a)2S =1
V] _ Vv
Uk K uow K
(i) p X , X ? X X X 1
. c?t d,'(s;a) Varn;s;a(Vy, )t Z1(a= ?&s))
h=1 (s;a)2s k=1 h=1(s;a)2s k=1 k
———— \
pP——, tuX X )
HSC?K?2 dy, (s;a)Varn;s;a(VE,1); (201)
h=1 (s;a)2SA

where (i) follows from the facts N,ﬁll_'%j—(s;a_)_ﬁy_Lemma B.2 and the definition of C° in Assumption 2.1, (ii) holds by the

Cauchy-Schwarz inequality, and the final inequa'?lity comes from the fact that is detePministic.

P P )
We are then left with bounding = "} ; (s:a)2sa On (S;@)Varn;s;a(Vy,1). Note that

n #
X X , .
dh (s;a)Varn;s;a(Vie1) = E51;5h+1Ph;sh;?(Sh) Varh;sh;h(sh)(v-’ml)
h=1(s;a)25A ) " h=1
W, X , 2 #
_ EshisiaPi i) rh(sh;r(sSh)) + Vihaa(she1)  Viosh)
h H
uh=1 #
X_| 2
S Bt ) | rh(shinbsh) + Vadi(shet) Vi Bsn)
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" | #
: 2
(i) X . (v
= rh(sh; nfsn)) V{(s1) H?; (202)
h=1

S15Sh+1Phisy; (s ?

where (i) follows from Bellman’s optimality equation, (ii) follows from the Markov property, (iii) holds due to the fact that V' ?

hsq(s)= 0foralls2 S, and (iv) arises from the fact rn(s; a) 1forall(s;a;h)2 S A [H]. Substituting (202) back into
(201), we get
s
X X ? X Vary.e.a(V..: p
dy(s; a) hska(—“”) HISCTKZ: (203)
h=1(s;a)2SA k=1 Np(s;a)_1

Step 4: combing the results. Combining (200) and (203) with (193) yields
s
)@ X ? '9( - _1 2 2, 3 12 p
d(s;a) ————Gnx - H (SC*)2K 7+ H3SC’K?Z
h=1(s;a)25A k=1 Ny(s;a)_ 1

p .
H3SC KZ+ H2°sC?3: (204)

D.4. Proof of Lemma D.1

In view of (127), we can decompose the term of interest into

Nk(ﬁ;a)
"NERK jUsf U
n=1
where
%Ir Kk n
k n
U = n ¥ Ph® Phsia Vier  ViedS (205a)
n=1
a 0 P mni1) ol 1
h N K j=n(m L1),q h .
U= e e (205b)
2 n h;s;a bﬁpo;mn 1 h+1:
he1 N (s;a)_1

Next, we turn to controlling these two terms separately with the assistance of Lemma B.4.
Step 1: controlling U;. In the following, we invoke Lemma B.4 to control U; in (205a). Let us set
W|I'1+l = Vi Vr:+1} and UL(S;a; N) = N:l(w’s;a) 0;
which indicates that
KWi,, ki KVnarke + kVpi ki 2H = Cuws

and

N 2H
max N(s;a) 71=:Cu:
(206)N;h;s;a2 fog[[K] [HISA —

Here, the last inequality follows since (according to Lemma B.1 and the definition in (25))
N 2H
N, (s;a) N _ 1’

N:‘(Ws;a) =0 if Nj(s;a) > N:

if0 N, ($;a) N;
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To continue, it can be seen from (26) that
X N X N
0 umkia) (. 5. N) = . ¥ (207)
n=1 n=1
holds for all (N;s;a) 2 [K] S A. Therefore, choosing N = Nk(s;ha) = N for any (s; a) and applying Lemma B.4
with the above quantities, we arrive at
k

h

jUsj= XM P Prise Ve Viegos XE sjaih NS
n=1 n h i=1 h
r i 4 ro !
SAT K . SAT
Cutog k'hl up"(s;a; Ny)Varnsa Wy, + CuCw + C..Cw log?
— .- N1 —
S ,9 K
H
h k
N _zlgn%'; npVarsa Vi Vi + ﬂzlz (208) .
S rl\( . h
H ’ (s; a) (s;a) ~ + N H7 4 + 22 (209)
2 TV T EELERE Py = :
SN ‘ i ‘ (?1)23;4 leTl

h h
with probability at least 1 . Here, the proof of the inequality (209) is postponed to Appendix D.4.1 in order to streamline
the presentation of the analysis.

Step 2: bounding U,. Making use of the result in (111), we arrive at

N N

P (m™:i1) Ki P (mi1) Pkivnext}ki
i=N{™ lyq h VAR L E L h = hel
h+1 b -mn

NRPOM" 1(s.3) 1

b, . .
NRPOM" L(s.3) 1

To continue, for any (s;a) 2 S A, we rewrite and rearrange U, (cf. (205b)) as follows:

) 0 Py (mnit) k‘l
h
X N, B =N Mg Phoc o
Uz = n" @Ph;s;a NpEPem 1(g. 5) 1A Vit
n=1 h ’ —
K 0 I:’N(hm"’“ iinext;ki:L
%h Nk — K" i=N(m 1;1|+1 Ph V h+1
K oe, g ", g
n his;a” h+1 epo;m" 1
he1 \Pepo; (s;a)_1
N
) OPNir";ll P (mh";l) kiinext;kil
(i)%h N:%) i:N:‘mn 1;1;+1Ph;s;avkn i:Nh(m" 1;1)+1P hV ha g
= n epo,m™ 1,_. h+1 epo,m" 1,_.
ho1 NDh (s;a) _ 1 NDh (s;a) _ 1
k X (m";1)
k]h nlN N'X K __next;ki
= Npepo;m" 1(s-a) 1 ) Ph?sia I:’h Vh+1
n=1 h ’ - i=N(mn 1;1+1
h
N & 0 N(mi+z;1]ANk Nk
(“)Xh h X h ah & N __next;k!
208 : P PY Vv
Epo;mn 1. h;s;a h h+1
i=1 n=N.Fmi+1;l)+1 N h (f'a)—l
" (mir2;1) K
) Nn ANh k )
X Q X N C K —_next;}!
= @ “epoimi 1A Phis;a  Phn Vher
i=1 —

”=N(hm,+1;l]+1 h
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where (i) follows from the fact that N (r:n;l) N (mh” LU N ep@ém" L(s; a), and (ii) is obtained by rearranging terms with
respect to i (the terms with respect to V nex%kh will only be added during the epoch m' + 1), and the last equality holds since

m" 1= miforalln= N(™ Y 4 1 NMHLL L o,y (M2

h ’ h ’ he
With the above relation in mind, we are ready to invoke Lemma B.4 to control Uz. To continue, for any episode j k, let us
denote by m(j) the index of the epoch in which episode j happens (with slight abuse of notation). Let us set

(m(j)+2;1)

N AN

X N
n

I@:pO;m(j)(s;a) 1

—next;j i
Vil s and ui(s;a;N) =

j —
VVh+1 -

nen (MOt

As a result, we see that

Aext;j

kWi, ki kv ke H = Cw

and the following fact (which will be established in Appendix D.4.2)

NlM(j)+2;1)AN
. h X N 64e2
0 u.(s;a;N) = —n = Cy (210)
h epo;m(j) N 1
pon (ML) Nph (s;a) _1 -

h

holds for all (j; h;s;a) 2 [K] [H] S A with probability at least 1

GiventhatN = N ';1(5; a) = N, applying Lemma B.4 with the above quantities, we can show that for any state-action pair
(s;a)2 S A,
N O 1

N(m'+2;1)ANk

k
h X h Ny o Xk
jUoj = ) epo’m K Phis;a P thfzt'k = Xj s;a; h;N';1
1 n=N(hmi+1;1)+1 h _1
v —
r. u r !
At X | : Cu SAT
1 h h+1
Nk(s;a)
j=
2
Cu log . ukl(s"a)(s;a;N)Varh;s;a Wk'(s‘a) + CuCw + \ lcw log?
. k -—
s 3 y 1 Iﬁ‘lh Vv Vnext;ki H3
> = arh;s;a Vhse1 +
k k k
Nk _T Nk_1 _, NK_1
s o
3 ref;kNh £1 ref;kNh +1k 2 H 3
’ s;a ’ s;a + : 211
NI (s;a) h (s a) (N* T3+ (211)
h h
To streamline the presentation of the analysis, we shall postpone the proof of (211) to Appendix D.4.3.
tep 3: summing up. Combining the bounds in an yields that: for any state-action pair (s; a ,
Step 3 i Combining the bounds in (209) and (211) yields that: f i ir(s;a)2s A
Nk(I)S(;a)
NI U+ U2
n=1
s r
NH 2 K K
kil ac#v,k ﬁl(s; a) advﬁk +1h(S; a)z
s " r
3 Nk Nk 7=4 2 22
" ref;k Jﬁl(s;a) ref;k ”h(s;a) 2+ b H : + ¢ H
er:_l h h (N, _k1)3=% N, _kI
K 7=4 2 22
LN H H
B (s;a) + cp __+ ¢p (212)
(Nj _1)3=4 Nk _ 1
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N
holds for some sufficiently large constant cp, > 0, where the last line follows from the definition of Bk; " +1(s; a) inline 14
of Algorithm 3. As a consequence of the inequality (212), for any (s;a) 2 S A, one has

=z

nk K 7=4 2 22 )'z‘lk
k N Kk n
IR —ket (g0 a) + cp + ke o " by k"4l

H
Ny 1P SR

>

n=1

where the last inequality holds due to (120). We have thus concluded the proof of Lemma D.1.

D.4.1. PROOF OF INEQUALITY (209)

To establish the inequality (209), it is sufficient to consider the difference

k
kjh K k k
N —k" AN N
= NoVarnsa(Vell Vin) PN Mssa)+ (2 TS a))% 0

W11 h

P
Before continuing, it is easily verified that if NX = N¥(s;a) = 0, the basic fact Nn“:l n Ni= 0 leads to Wi = 0, and
therefore, (209) holds directly. The remainder of the proof is thus dedicated to controlling W1 when N kh =N kh(s; a) 1.
Recalling the definition in (109)

, _ 2
Varns;a(Vikir  VEi1) = Phys;a(Vida \Hﬁll)z Phis;a(Vihae  VRK) (213)

we can take this result together with (112) to yield

N & K" —k" 2 N* K" —k" 2
Wi = n Ph;s;a(Vh+1 Vh+1) n Ph;S;a(Vh+1 Vh+1)
n=1 n=1
RIE Kk 2 %:
N n —k" k n n — k"
0P (Vs W) PP (Vi V)2
n=1 n=1
lj(kh Kk n
N n n —k
(P Phisa) (Vi V)2
|n=1 {Z }
=:wi
Ny N k
X Kk ___n2 h &( Kk 2 n
N n n k. N k =1 =1
+ Ph Vet Vi) "Phps;a(Vher  Vher) (214) | "7 {z
} n
=:Wp

It then boils down to control the above two terms in (214) separately when N X = N, X(s;a) 1.
Step 1: controlling W{. To control W;!, we shall invoke Lemma B.4 by setting
Wi = (Vs Vi) and  ul(s;a;N) = Nsa) O
which obey
kWi, ki KVi.1ki% KV, k;22H2 = Cu

Invoking the facts in (206) and (207), we arrive at
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and

X N
0 W (s aN) 1 8(N;s;a) 2 [K] S A:net

Therefore, choosing N = N ';](s; a)=N E for any (s; a) and applying Lemma B.4 with the above quantities, we arrive at,
with probability at least 1
N

k
a1 X0 kK K2 X k
JWij = nh(Ph Ph;s;a)(vh+1 Vh+1) = Xi s;a;h; Ny
1 v 1
e le E r !
SAT " a C SAT
Cu |ng 7%1 Uﬁ (s;a; N#)Varh;s;a W#:l + CuCw + N “ 1Cw |Og2 _
n=1 —
S M %k - s = 35
H "ok . H > H
H Lt AW kK2, oy A (215)
N, 1 . N, 1 N_1 N_1
Step 2: controlling W2. Observe that Jensen’s inequality gives
Ny ¥ k
X n n 2 %h n n 2
oM Prisia(Vikd Vilh) oM Phisia(Vikl VD) (216)
n=1 n=1

P
due to the fact nNzhkl N . 1 (see (26) and (25)). Plugging the above relation into (214) gives

k

Nh)&i N, X
n n - 7%n Kk a2 k"
w7 P (Vi1 *Vii) Mo PhisiakVie: VK1) net
n=1
NXk Mk n kn 7kn thk Nk kn kn 7kn
= (P Pris;a)(Vher Vi) n" (Ph“+ Phis;a) (Vs Vinsea) ¢ (217)
n=1 n=1

Note that the first term in (217) is exactly jU1j defined in (205a), which can be controlled by invoking (208) to achieve that,
with probability at least 1

X k N h
Nn " (R Phs;a (eer  Wepy1)
n=1 v
s N S
d XI!? 22 T, 32 2
ot Wange, vl vy o+ B HET L B, (218)
Nk_1 i N k1 Nk_1 Ng_1
n=1
where the final inequality holds since Varp.s.a V" v . H2 and the fact in (26). In addition, the second term in
(217) can be controlled straightforwardly by h+1 h+l
k N k

lNP k" \y‘n 7|:"Nk k"x - . K" —
n t Phis;aVhe1 h+1 Po o+ Ph;'é;alvth,l Vi1, 2H;n=1 n=1

where we have used the fact in (26), V., thw , HandP, ’ 1= Phis;ay = 1
kT k

Taking the above two facts collectively with (217) yields

2
Woo Nk Tt N T (219)
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Step 3: summing up. Plugging the results in (215) and (219) back into (214), we have

Wi W; + W, 2 + ;

which leads to the desired result (209) directly.

D.4.2. PROOF OF INEQUALITY (210)

To begin with, let us recall two pieces of notation that shall be used throughout this proof:

1. m(j): the index of the epoch in which the j-th episode occurs.

2. NDEF""'"'(S; a): the value of NJﬁm;Lm”)(s; a), representing the number of visits to (s; a) in the entire m-th epoch with
lengthLm = 2™M.

Applying (56) and taking the union bound over (m(j); h;s;a) 2 [M] [H] S A yield

2 ™, (s;a)

N,EPO;m(J)(S,. a) 1 (220)

with probability at least 1~ =2.

For any epoch m, if we denote by klast(m) the index of the last episode in the m-th epoch, we can immediately see that
Xm Xm

Klast(m)= L; = 21 =2m1 2 pm+l. (221)
i=1 i=1

Applying (56) again and taking the union bound over (m(j); h;s;a) 2 [M] [H] S A, one can guarantee that for every
n2 [N (m““;’l); N (m““i"l)], with probability at least 1 =2,

(m(j)+1;1) (m()+251) _ g Kisst(m(i)+1)
N n N{MUF2it) oy kel

Jm(j)+2 ( eZZm(j)+2dg15'a) ime‘”*Zdh(s;a) log A% if

h 2e2log SAT 2mi)+24, (s;a) 2log AT . (222)
Combine the above results to yield
8
;m(i (D) omi@) (5;a) (1) if2mU)+2 d (s;a) log SAT; if
ENG:O’m(J)(S;a)_ 77|2 Ed)s(ﬁfT) o 1 _ n; . n(s;a) log ;
8log ¥ AL)  32e égi—j gm(j)+2 dh(s;a) 2 log SAT;

0 i | (223)
Ze_og(}mlrn_

where (i) follows from (220), (ii) and (iii) hold due to (222). As a result, we arrive at

>nsPoimi) .
PNEOM (s;a) 11

(m(j)+2:1) (m(j)+2;1)
Ny "N N No o x ~N 32e2log SAT N
n n
epo;m(j)
n=N MU g e, (s;a)_1 n=N MO g n
N
X 32e?log SATN 64e? log SAT
n n N _1
pon (ML) = ;
h

N

P
where the last inequality holds since ifl -~ \ 2(see Lemma B.1).
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D.4.3. PROOF OF INEQUALITY (211)

In this subsection, we intend to control the following term

)Iz‘ k
1 " — next;R ref;k"h 1
W, := Varnsa Vo (

N
i ref;k h+1'<(s,a)
Np_1,-1

’

s;a)

forall (s;a) 2 S A. First, it is easily seen that if N ¥ 7 0, then we have W = 0 and thus (211) is satisfied. Therefore, the

remainder of the proof is devoted to verifying (211) when N ¥ g N k(§; a) 1. Combining the expression (113) with the
following definition

xt;k" x*c;k"2 *next,kr‘z
Varh;s;a Veh+1 - F‘h;s,'a veh+1 Ph,'s;avh+1 ’
we arrive at
k ; 2
1 X next;k"2 __nextk"?2
Wh;sa—km P h;s¥ h+1 P
N A _ 1 n=1
k 0 k 1>
1 h n __next;k" 2 % kli h
n next;k"P + @7 P \ A
Nﬁ 1 h h+1 NIR 1 h h+1
- n=1 n=1
0 1,
k k k
1 )?h K __next;kn 2 )?h nfnext;k"A 1 )Igh —_next;kn 2
= NE 1 Ph;s;za  Pn Ve + K Ph hi1 NK 1 P h;s;aV h+1 :
| h — 1 {Z } h 1 h 1 }
= —'Wl | T~ {Z = _—
B =:WZ2

(224)

In the sequel, we intend to control the terms in (224) separately.

Step 1: controlling W4. The first term W, can be controlled by invoking Lemma B.4 and set

02
Wit = yexe! ; and up(s;a;N) = 1 = Cy:
. h+1 |
To proceeding, with the fact
i2
thll —next;i 2 - Cw
Vh+1
and N = N/f(s;a) = N, applying Lemma B.4 with the above quantities, we have for all state-action pair (s;a) 2 S A,
N,k
1 n . next;k"2 X K
W, 1= Ph... PV T—= Xi “s;a;h; N
2! 'ﬁ his;a kK Th h+l ' h
h k
n=1 i=1
v =
r —g N';)és;a) r !
SAT kN (s; n(s; C SAT
Culog? 2™ uh“(sa)(s;a;N)Varh;s;a erj:(ls 4 CuCw + N—”CW log2 22—
n=1
s _ s _
2 g H22 H42 H22
—kW, k2 + . + : (225)
N & N Ni N

Step 2: controlling W2. Towards controlling W2 in (224), we observe that by Jensen’s inequality,

k . k
1 % p —next k"2 1 X
W;s;a hl N

n=1 h n=1

Lok
—next k"2
hl?s;a h+1
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Equipped with this relation, W satisfies

0 ) 1, 0 ) 1>,
1 k{ h n —next;k" 1 k{ h __next;k"
V\/Z2 @‘(h P#+1\/k A @4h",s;a Bhsa nyl A
Nh n=1 Nh
K k
1 % K" _next;k" 1 Nb X K" _next;k"
l—— Phis;a PV —h Phis;at Pty \
Nh n=1 Nh n=1
As for the first term in (226), let us set
. __next;i i
Wit = Vet ; and  up(s;a;N) = — =:Cy;
which satisfy
— i
Whif—ll h+1Vlne)H; = Cw:

For any (s; a), Lemma B.4 together with the above quantitiesand N = N X = N%(s; a) gives

1 XN:‘( K" —next;k"
W Ph Ph;s;a Vh+1
h n=1
r —MN‘S;E,) r !
SATH X , . Cu SAT
— hen (e B, .
Cu log? ut (S’a)és;a;N)Varh;s;a Wknl(s’a) + CuCw + N Cw log?
r s =
2 n(s:a 2 ﬁ‘i 22 2
S — th(s,a - H = H th+ .
1 N, NS ON,

with probability at least 1 . In addition, the second term can be bounded straightforwardly by

k k
1 I\k‘ kn _next;k" 1 )Izih kn _next;k"
—x Ph + Ph;s;a Vh+1 —x Pn 1+ Phis;a 1 Vh+1 1 2H;
Nh n=1 Nh n=1
. S Sy k" n -
where the last inequality is valid since Ve HandPX" = Pps.a = 1. Substitution of the above two
h+1 h
observations back into (226) yields ’ 15 ! !
2 H H?
W, . 2+ :
NF_1 N k1

Step 3: combining the above results. Plugging the results in (225) and (227) into (224), we reach

S
4 2
W, W, +w, ? HY ., H7>
NK_ 1 Nk 1

’

thus establishing the desired inequality (211).

(226)

(227)



