Interpreting Training Aspects of Deep-Learned
Error-Correcting Codes

Natasha Devroye, Abhijeet Mulgund, Raj Shekhar, Gydrgy Turan*, Milos Zefran, and Yingyao Zhou
University of Illinois Chicago (UIC), Chicago, IL, USA
* UIC and MTA-SZTE Research Group on Artificial Intelligence, ELRN, Szeged, Hungary
{devroye, mulgund2, rshekh3, gyt, mzefran, yzhou238}@uic.edu

Abstract—As new deep-learned error-correcting codes con-
tinue to be introduced, it is important to develop tools to
interpret the designed codes and understand the training process.
Prior work focusing on the deep-learned TurboAE has both
interpreted the learned encoders post-hoc by mapping these onto
nearby ‘“interpretable” encoders, and experimentally evaluated
the performance of these interpretable encoders with various
decoders. Here we look at developing tools for interpreting the
training process for deep-learned error-correcting codes, focusing
on: 1) using the Goldreich-Levin algorithm to quickly interpret
the learned encoder; 2) using Fourier coefficients as a tool for
understanding the training dynamics and the loss landscape;
3) reformulating the training loss, the binary cross entropy, by
relating it to encoder and decoder parameters, and the bit error
rate (BER); 4) using these insights to formulate and study a new
training procedure. All tools are demonstrated on TurboAE, but
are applicable to other deep-learned forward error correcting
codes (without feedback).

I. INTRODUCTION

Coding theory aims to develop optimal encoder-decoder
pairs for various channels and optimization criteria. This
has traditionally been done more or less “by hand” using
theoretical insights and mathematical and algorithmic con-
structions. Recently, however, this has been attempted with
a new twist: use machine learning / deep-learning to learn
the encoding and/or decoding functions directly [2]-[12]. We
refer to such codes as deep-learned error-correcting codes
(DL-ECC). The approach has been successful, particularly for
channels with feedback [8], [11], [12], but also for point-to-
point Additive White Gaussian Noise (AWGN) channels, one
of the benchmarks for practical code performance [10], [13].

Deep learning provides computational tools for viewing the
task as an optimization problem and solving it efficiently by
training a neural network. The rapidly evolving toolkit of
deep learning offers many possible architectures and allows
(approximately) optimal codes to be found by using a training
procedure. For example, for channels with feedback, [8] uses
Recurrent Neural Networks, while [12] uses a transformer-
based architecture. For point-to-point channels, [10] mimics

This work was supported by NSF under awards 1900911, 1934915 and
2217023, and by the Ministry of Innovation and Technology NRDI Office
within the framework of the Artificial Intelligence National Laboratory
(MILAB) program, Hungary. Computing resources for the experiments were
provided in part by the NSF award 1828265 (COMPaaS DLV). The authors
are in alphabetic order. Proofs and further details are available in [1].

the architecture of Turbo-codes, replacing convolutional codes
with Convolutional Neural Networks (CNN), while [13] uses
non-linear learned components in a Reed-Mueller-like con-
struction. Using deep learning and directly optimizing over
codes raises important new questions:

1) Can one understand deep learning training procedures in
terms of a search process in the space of codes? We suggest
looking at the Fourier expansion of a learned encoder as a
way to both understand the final code, and tracking this, as
a way to understand the training dynamics. We propose an
efficient way to find the dominant Fourier coefficients using
the Goldreich-Levin algorithm [14].

2) If we minimize a loss function over a set of codes
(expressible by a given architecture), what can we say about
the loss landscape [15]? We show that for certain architectures
and loss functions, parity functions appear to be minimizers.

3) Loss functions are chosen to facilitate the training process
(e.g. binary cross-entropy, BCE), but how do they relate to the
performance of a code (e.g. bit error rate, BER)? We show tight
bounds connecting BCE and BER.

4) If optimization is viewed as working over the two-
dimensional (encoder, decoder) space, what can be said about
the structure of this space? For example, several training
procedures [8], [10] alternate training the encoder and decoder
— is this fundamentally needed, or just a practical way to
improve convergence? Is there a way to decompose the loss
function into an encoder-only and a decoder-only component
and exploit this? We show that there is such a decomposition
and suggest an approach that exploits this.

In this paper, we attempt to study these issues through a
mixture of theoretical and experimental insights, focusing on
the specific DL-ECC termed TurboAE [10], which has been
one of the few DL-ECCs for which interpretability studies
have been initiated [16], [17]. Some questions we seek to
answer here were inspired by passing remarks in [16] and [17];
we expand upon these. Our experimental observations raise
several algorithmic and theoretical questions. This research
direction aims to connect coding theory with machine learning
interpretability and deep-learning theory.

II. TURBOAE: BASICS AND PAST INTERPRETATIONS

The architecture of the DL-ECC termed “TurboAE” encoder
network [10] is based upon a classical rate % Turbo code, with

the three “constituent codes” replaced by CNN blocks f, o(-),
b € {1,2,3} as in Fig. 1 (adapted from [16]). Similarly,
the TurboAE decoder architecture replaces the iterations of
the BCJR decoder by CNNs g4 1, g¢,2 as in Fig. 1 (adapted
from [10]), where yp € R'90 (we use bold font for vectors)
and y1, = XAg,b+2Zb, for zy, i.i.d. Gaussian noise of mean zero
and variance 1, for each stream b € {1,2,3}. The network
is trained in an end-to-end fashion to obtain the network
parameters of the encoder and decoder CNNs jointly.

The input to the network is a sequence u of 100 bits,
and the output of each block b € {1,2,3} is a sequence
xapp € {£1}90. The network has two versions, TurboAE-
cont (with real-valued encoder outputs, essentially performing
coding and modulation tasks jointly) and TurboAE-binary
(with Boolean encoder outputs which are then modulated for
transmission over an AWGN channel). The power control
modules are omitted, as is the treatment of the boundary first
2 and last 2 bits, discussed in [17] (not needed here).

In [16] “interpretation” of TurboAE-binary was attempted
through both exact (non-linear) and approximate (linear, or
parity) approximations of the encoding functions f; o(-); these
are provided in Tables I and II in the Appendix of [1].
From these, we see that TurboAE-binary’s encoders are non-
recursive, non-systematic, and f; g, f3 ¢ are non-linear and f5 ¢
is a linear function of the 5 inputs at times j — 2,-- -7 + 2.

In [16], besides finding the exact and best linear approxi-
mations to the encoder functions, several other “interpretation”
tools were suggested but not deeply explored. Among these is
1) the use of the Fourier representation of Boolean and pseudo-
Boolean functions to better understand the training dynamics,
and 2) the suggestion of using the Goldreich-Levin algorithm
to find the largest Fourier coefficient(s) as an approximation
algorithm for the encoder. We expand on these here, and
also look more deeply into the training dynamics, offering an
alternative training to that presented in the original TurboAE
[10]. All code will be posted on github if the paper is accepted.

III. INTERPRETATIONS THROUGH THE FOURIER LENS

We will later investigate the tracking of Fourier coefficients
(FC) of the encoder as a tool for understanding both the
training dynamics and the loss landscape. We first discuss an
approach to estimate the dominant FC of the learned encoding
functions, which may have a large number of inputs.

Changing to the domain z; € {%1}, and letting xs =
Hie g, each Boolean (Fy — IF) and pseudo-Boolean
(F5 — R) function has a unique Fourier representation [14]

@y = S F(S)xs,

SC{1,2,,n}

where f(S) is the FC for set S, and | f(.)|? the Fourier weight.
The Goldreich-Levin algorithm (GL) [18] seeks to output a
list of sets S for which |f(S)| is larger than a pre-specified
threshold ~. It requires “query access”, which in our context
simply means evaluating the neural network on an input.
The theoretical underpinnings are presented in Theorem
1 [14], and our implementation is detailed in the Appendix

Encoder structures of

TurboAE
(Binary) [flﬂ(') — XAE,1
> X
u— | fo0()) [TFAE2 B xap
Interleaver
f3,0(") |+-XAE3
Decoder structure of

TurboAE
(Binary)
;7;: CNN TF(yl): CNN Repeat

9o1|q 22 | 962 |q it
p— 4; 1 e ﬁ""ﬁ

Fig. 1: Above: rate R = % (u € F5”°,xap ; € {£1}'°°) TurboAE-
binary encoder structure. Functions f; () are the constituent codes
implemented as CNNs. Below: decoder structure of TurboAE remade
from [10]. The parameters of CNNSs g4 1, g,2 are trained. The noisy
channel outputs of the three encoded streams x1, X2, X3 are given by
V1,¥2,ys. The interleaver is 7 (and its inverse 7~ 1). The decoder
produces probabilities that each input bit is 0 or 1, denoted by 1.

B of [1]. We explore the applicability of this algorithm in
estimating the largest FCs of the encoder of a deep-learned
error-correcting code (first proposed for this purpose in [16]),
an alternative method to that used in [16] for finding the best
parity-approximation. The algorithm has been used in theoret-
ical domains such as cryptography [19], learning theory [20],
and coding theory [21], [22] (as a randomized list decoder for
Reed-Mueller RM(1,m) codes), but practical implementations
and experiments appear limited. We explore some practical
aspects of this algorithm.

Theorem 1. [14] Given query access to f : {+1}™ — {£1},
given v, > 0, there is a poly(n, % log %)—time algorithm that
outputs a list L = {S1,---,Sm} such that (1) if 1£(9)] =,
then S € L, and (2) if S € L, then |f(S)| > % holds with
probability 1 — 6.

The theorem requires y to be specified in advance, which
holds in several applications. In general, v can be expo-
nentially small (e.g., for bent functions [23] where every
coefficient is 2~"/2 for n inputs), but it is polynomial, e.g., for
functions with small |L;|-norm. If 7 is too high then nothing
is returned and if it is too low then the running time increases
and more coefficients are returned than desired. We are not
aware of any work which calculates explicit constants for the
number of queries needed in Theorem 1.

We apply GL to TurboAE-binary, exploring its feasibility
and the number of queries needed. Previous work [16], [17] is
based on the CNN architecture which suggests that the func-
tions in question depend on 9 (TurboAE-cont) or 5 (TurboAE-
binary) variables. Here we do not use such a priori knowledge.

Given each TurboAE-binary constituent code f;g
{£1}190 — {+1}100 we randomly select one output bit. We

Block | Approx. sets for output 11 | Min # | Approx.

queries | f(S)

1 {ul,UQ,U3,U47U5} 200 —0.81

2 {ul,U3,U4,U5} 25 1.0

3 Sol 1: {ul, u2, U4} 800 0.4982
Sol 2: {uy,ug,us,uq} —0.5004
Sol 3: {ul,UQ,U4,U5} —0.5014
Sol 4: —0.4995
{ul, U2, U3, Uq, U5}

where Ul = Tij42, U2 = Tij41, U3 = Ty,

Uy = Tj-1, U5 = Xj_2, T = inputs

Fig. 2: Goldreich-Levin approximation for TurboAE-binary.

implemented a heuristic procedure for determining v for each
block and computing the minimum number of queries for each
block to get the correct result. Details are given in Appendix
B of [1]. How to best pick v and a minimal number of queries
in a principled way is an interesting open question.

Table in Fig. 2 shows the experimental results. The number
of queries refers to the number of function evaluations for
estimating a single expectation.

IV. TRAINING DYNAMICS: EVOLUTION OF FOURIER
COEFFICIENTS (FC)

Continuing the theme of analyzing Boolean functions in
Fourier space, we explore Fourier representation as a tool for
understanding the training dynamics and the loss landscape.

A. Dominance and stability of a few Fourier coefficients

The trained TurboAE was found to have a few dominant
Fourier coefficients [16], [17]. One can hypothesize that this
might be a general phenomenon when training this network.
To investigate this, we trained TurboAE-binary several times
from scratch as in [10]. At convergence, the Fourier space
appears to almost always be dominated by a few large FCs.
In the randomly selected examples in Fig. 3(a) 95% of the
total energy (sum of fz(S)) is for at most 5 (out of 32) FCs.

Furthermore we observed that at initialization, the dominant
FCs almost always correspond to one bit parities. However,
with training, higher degree parities emerge as dominant, see
Fig. 3(b). Although the setups differ, these observations may
be related to recently observed staircase properties [24].

We also trained TurboAE multiple times starting with the
same initialization of the neural net weights to evaluate how
stable the training process is at convergence. We found that it
is somewhat stable w.r.t. the dominant Fourier coefficients,
as shown for some runs on Fig. 3(c). This begs further
questions about the loss landscape of Turbo-like codes, which
we propose to study also using a Fourier lens next.

B. Local Optimality of parities for Turbo Codes

The loss landscape of the TurboAE network is a function
over 150,000 parameters, depending on the network. The
network parameters of the encoder determine the FCs of the
encoding function, and so local minima of the latter can be

Trained Encoder 4
1

Trained Encoder 1 Trained Encoder 2 Trained Encoder 3

14 p }1

| O
1:000111000

2:000000000

1:001110000
1 2:000000000

1:000000000

’ i 1:001011000 E
| 2:001111100 |
1 2

2:000000000

Fourier Coefficient

12
0 200 400 0 200 400 ©O 200 400 0 200 400
Fourier Coefficient/Parity Index (0 through 512)
(a) Largest FCs of Block 1 with energy > 95% over 4 independent
training sessions. Always a few FCs dominate the Fourier space.

Epoch O Epoch 10 Epoch 100 Epoch 800
S 2
=
5 LUl 2 ¢
Q 04 b = s
o ! |
5 1:000000010 ‘ 1:000100000 r 1:001010000 1:000011100
’gl |1 2001000000 | |1 2:000010000 2:000000000 4 2:000000000
0 200 400 0 200 400 O 200 400 0 200 400

Fourier Coefficient/Parity Index (0 through 512)

(b) FCs of block 3 over different epochs of a training session.
Initially, 1-bit parities always dominate, but later higher degree
parities emerge.

Training Run 0 Training Run 1 Training Run 2 Training Run 3

=
o
o

-0.251

1:001101000

1:001101000 | ;‘21:001101000 1:001101000 |

-0.501
0751 4 2000000000 |

1 2:001110000 2:000000000 2:000000000

1 11
0 200 400 0 200 400 0 200 400 0 200 400
Fourier Coefficient/Parity Index (0 through 512)

Fourier Coefficient

(c) FCs of block 2 after 4 training sessions with same initialization.
The most dominant FC is stable across all runs.

Fig. 3: Progression of TurboAE’s Fourier Coefficients with Training.
Similar behaviors seen for all the blocks.

helpful for understanding the former. Thus we study the loss
landscape in terms of the Fourier parameterization with 512
parameters, fixing the decoder to BCJR.

To study the loss landscape of generic non-recursive Turbo
codes in Fourier space, we constructed a parametric Turbo
code of block length L(=10), memory 4, parameterized not
by CNNs, but by the FC of its constituent codes. It is not
clear whether the encoder part of the TurboAE network can
implement any triple of 5-variable Boolean functions, there-
fore the observations might not transfer directly to TurboAE.

For each block b € {1, 2, 3}, use a pseudo-Boolean function
fr.o, 1 {—1,1}®> — R, as the constituent code f; 4(-) of Fig.
1, which is completely determined, hence parameterized by
its FC ©, = fb. These form the Turbo encoder £g. We use
a standard six iteration BCJR decoder for £g as the Decoder
Deo. We use expected binary cross entropy (BC'E) between
the input and the decoded output as loss L, i.e.

L£O©)= E

z~ UL
2~ NE

L5 BCE (11,Do (€a(e) +),)
i€[L]

Here z is the i.i.d. noise sampled from AWGN channel i.e.
J\/‘o,g, where o corresponds to SNR = 1dB. We control the
power by keeping the squared sum of the FCs to be 1, which
constrains the average power of each bit to also be 1 due to

0022
0.020 011
0018 0.10

& 0.016 0.09
8

u
e

Parity
0012
0.07 Bent

Parity
0.010
0.06

02 00 02 04 06 08 10 12
A

02 00 02 04 06 08 10 12
A

(a) Line Joining two parities. Local
minima at 0 and 1 show that both
parities are locally optimal on this
line.

(b) Line Joining two non-parity Bent
functions. Neither of the two are lo-
cally optimal.

Fig. 4: BCE landscape on parametric line A®"' + (1 —)@’ joining
combinations of parity/non-parity functions. A = 0,1 correspond to
©’,0" respectively.

Parseval’s Theorem: E [fb (X)z} = f (S)* = ||@b||§
e . sChl

avg power

Our hypothesis is that triples of different parity functions
are all local minima, but there are other triples that are not
local minima. We ran the following experiment, with results
consistent with the hypothesis.

Pick ©',©" corresponding to triples of different parities
1

xer = (X1,X5,x3) and xer = (X1,x2,x3) respectively.
Evaluate £ over several points on the line joining ©’ and ©”
with power re-normalization. Evaluating a point representing
a pseudo-Boolean function involves running BCJR for that
function and computing the BCE. We found that ©’ and ©"”
were always local optima on this line. On the other hand, the
triple formed by three copies of the bent function ;22 G x324
on different subsets of 5 variables is not a local minimum. The
results are illustrated in Fig. 4, and Fig. 8 in the Appendix of

[1].
V. TRAINING LOSS FUNCTIONS: BCE AND BER

We now investigate the implications of optimizing BCE
from theoretical and empirical perspectives. We consider op-
timizing an encoder function f : F§ — S where S C R™ is
bounded and R = k/n is our code rate. We take U ~ Unif[F5]
and Y € R" to be random variables representing the input and
received sequence, respectively. Note Y depends on f. Our
optimization problem is then:

Problem 1. Find encoder f : F5 — S and soft decoder g €
R™ — [0, 1]* that minimizes the expected BCE, C(f, g), where

k
Clf9) =B |1 3" ~Uilggi(¥) — (1~ U) (1 = i(¥)]

A. Theoretical Analysis of BCE Minimization
We re-write the BCE as

k
C(f.9) = 1 D2 EIDxa ([T = 11Y]lg: (V)] + HT[Y)

ey
where H(U;|Y") is the conditional entropy and E[D 1, (P[U; =
11Y]]g:(Y")) is the expected Kullback-Leibler divergence with

the expectation taken over the distribution of received se-
quences. Note that for a fixed channel, H(U;|Y") only depends
on the encoder f, and for a fixed encoder the KL-Divergence
term E[Dgr(PU; = 1]Y]||g:(Y)) only depends on the
decoder, g. We can easily establish the following proposition
(proof in Appendix D of [1]):

Proposition 2. Consider a fixed encoder f : F§ — S. The
decoder g : S — [0,1)% defined elementwise as g;(y) =
P(U; = 1Y = y) is the unique a.s. minimizer of C(f,g).

This is exactly the soft-output MAP decoder, a minimizer
of the BER B(f,g), for a fixed encoder f. This means
that, given f, minimizing BCE and BER both reduce to
finding a soft-MAP decoder for f. Denote C(f),B(f) to be
C(f,9map(s)), B(f, 9rmap(y)), Where garap(y is the soft-
MAP decoder for f. Hence, finding a decoder that minimizes
BCE finds a decoder that minimizes BER. The same does not
hold for the general problem of finding an encoder-decoder
pair; a memoryless counter-example (asymmetric in the input,
unlike the BSC or AWGN) is shown in Appendix F of [1]. The
best bounds possible relating BER and BCE are the following,
proof in Appendix E of [1].

Proposition 3. Let B;, C; denote the BER and BCE respec-
tively on the i™ input bit. Then for all choices of f and for
all i € [k], 2B;(f) < C;(f) < Ha(B,(f)), and in particular

2B(f) < C(f) < 1

&

K
ZHQ(Bi(f))
i=1

where Hy(p) denotes the binary entropy function with parame-
ter p € [0, 1]. Furthermore, these bounds are tight in the sense
that for any BER t € [0, 3] and side of the bound, there exists
a channel and an encoder which makes that side an equality.

B. Empirical Application of BCE Decomposition

In light of equation (1), it seems reasonable to decouple
the optimization process: optimize the encoder conditional
entropy first, then optimize a soft decoder to minimize its
KL-divergence with respect to the good encoder. The major
obstacle is estimating the conditional entropy of the encoder
(or equivalently, the KL-divergence of the decoder). We opt
for a naive approach to get around this, but more sophisticated
approaches can be found in [25], [26]. If we were optimizing
convolutional codes, we could take advantage of the fact that
the BCJR [27] is a MAP decoder. However, in the case of

general Turbo codes, we have no such efficient MAP decoder.

We thus propose training a Turbo-like encoder (top of Fig. 1,
but allowing for real-valued outputs) at short block lengths,
k = 16, using a brute-force marginalization MAP decoder.
The encoder is trained with many choices of interleaver so it
may generalize well at larger block lengths. Then, we train
a neural decoder on the same encoder at our block length
k = 100. This is in direct contrast to the approach in [10],
where the authors alternated between training the encoder and
decoder until they jointly converged. See Appendix G of [1]
for a more precise formulation of the training procedure.

1) Methods: Like [10], we train a non-systematic, non-
recursive turbo code of rate R = % for use at block length
100. Rather than training a neural encoder, we directly train
the input-output table of a window w = 5 (memory 4),
possibly nonlinear, automata encoder, borrowing terminology
from [28]. We parameterize our encoder by the outputs of a
function h : FY — R3. This function is slid over the input
bits in F5 as in a non-recursive convolutional encoder. The
third stream is convolved over an interleaved copy of the input
instead. h is initialized with a normal distribution of mean
0 and variance 1. We also tried initializing h with a parity
function, but found it to be at best as good as the normal
initialization. Details can be found in the Appendix I of [1].

To enforce the power constraint we use a different method
than in [10]. We instead analytically compute power using h.
We then center and rescale h after each gradient update so that
its power is 1. Precise derivation of this power normalization
can be found in the Appendix H of [1]. This helped reduce
much of the noise in the training process introduced by
the power-normalization in [10]. This method could also be
applied when training a neural encoder as in [10]. Once we
had a trained encoder, we then trained a neural decoder at
larger block length with the same architecture as in [10].

2) Results: The encoder converges fairly quickly (200
steps). The training curve is in [1, Fig. 11, Appendix]. Over
several training runs, we were unable to find an encoder
with as low a conditional entropy as TurboAE-cont. The
discrepancy may come from: (1) our encoder was trained at a
block length of 16, while TurboAE-cont was trained at block
length 100, and (2) TurboAE-cont was trained by alternating
between optimizing the encoder and the decoder, which may
have avoided local optima our training scheme runs into.

We show the evolution of the FC for our final encoder in
Fig. 5, and the coefficient evolution of another trained encoder
in the Appendix of [1]. By the end, only a few dominant FC
remain, echoing what we saw in Section IV-A. The FC change
significantly from the initialization.

Our decoder optimization proceeds relatively quickly com-
pared to TurboAE-cont; See the [1, Appendix, Fig. 9] for the
training curve. The number of steps required for our procedure
is only 300,500 whereas TurboAE-cont requires 480,000. In
Fig. 6 we see that the performance of our encoder-decoder is
slightly worse than TurboAE-cont above SNR 1.0. Observe,
if we replace our decoder with BCJR, the performance is
almost exactly the same. The decoder may have learned a
BCJR-like decoding algorithm which proved to be a local
minimum. Nonetheless, our encoder-decoder pair suggests that
our training scheme is a viable optimization strategy.

VI. CONCLUSIONS

We presented new tools which may help in the interpretation
of training aspects of DL-ECCs, including 1) the application
of the Goldreich-Levin algorithm to finding the best parity /
linear approximation to a black-box encoding function, where
its efficiency is useful when there are a large number of
input variables but outputs depend only on a few of those

Step 0 Step 100 Step 300 Step 500
1 1:19:10011 1:19:10011 1:27:11011 1:29:11101
2: 0:00000 2:31:11111 2| 2:31:11111 2:27:11011
2
—
% 0] Lyt NI |.||.n..u
% 04 o PR N B N 1R AR w,
[l
g I I| | 1 || I | 1 ” I| ”
1 1
” 1 1:23:10111 1:23:10111 1:23:10111 1:23:10111
@ 2:16:10000 2: 9:01001 2:29:11101) 2:19:10011
=2 2
E o~
S~ 1 I
8% o "||'||II|II""" ||' l.I_I_I I_I.I II_._ Tt . ..I___ TR Wl
g
3 2 1 2
= 1
1 1:30:11110 1:29:11101 1:31:11111 1:23:10111
2:25:11001 2:31:11111 2:23:10111 2 2:27:11011
m
% odal I|| o _I.T,l |- 11 I| TN | N .,l,r .
2 | | | | |I 1 I|| | | |
2
e e — T T — e e
0 8 16 24 0 8 16 24 0 8 16 24 0 8 16 24

Fourier Coefficient/Parity Index (0 through 32)

Fig. 5: Evolution of FC during training of the encoder from [1,
Fig. 11, Appendix]. The largest coefficients are marked and their
corresponding parity is annotated in the respective subplot. Note how
a few dominant coefficients emerge and persist during training.

1071 4
10*2 o
10—3 o
o
% 10*4 -
s —}— Turbo-155-7 w/ BCJR
107 5 Trained Encoder w/ BCJR
10-6 4 —F— Trained Encoder w/ Neural Decoder
—J— TurboAE-Cont w/ Neural Decoder
1077 T T T T T T T T T T T T T T T
-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0
SNR

Fig. 6: The BER performance of (1) a benchmark RSC turbo code,
(2) our trained encoder paired with BCJR, (3) our trained encoder
paired with our neural decoder, (4) TurboAE-cont. TurboAE-cont
tends to perform worse at SNRs below 0.5, while showing significant
gains at SNRs above 3.0. Our trained neural decoder performs almost
the same as BCJR, suggesting it may have learned a similar decoder.

inputs each in the final learned code; 2) the use of FC to
understand the loss landscape when training DL-ECCs and
also as a possible parameterization for learning codes; 3)
observations relating the BCE and BER and a principled alter-
native approach for training DL-ECCs. While our experiments
showed the viability of our alternate training scheme, there
are many more aspects to explore: with good estimation of
the conditional entropy of an encoder at larger block lengths,
we expect performance to improve. In addition, the neural
decoder of [10] was designed to mimic an iterative BCJR
decoder. However, designing the neural network to mimic
exact inference algorithms (e.g. a junction tree [29]) could
lead to a better approximation of the MAP decoder. From a
bigger-picture perspective, we hope that this decomposition
and the usage of Fourier coefficients both as an alternative
representation and as a tool for understanding training, will
lead to a more principled approach toward the training of DL-
ECCs. This could open doors to a more systematic way of
finding such codes for different channels.

[1]

[3]

[4]

[5]

[6]
[7]

[8]

[10]

(11]

[12]

[13]

[14]
[15]
[16]
[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

REFERENCES

N. Devroye et al., “Interpreting Training Aspects of Deep-Learned
Error-Correcting Codes — extended ArXiv version,” Jun. 2023. [Online].
Available: https://arxiv.org/abs/2305.04347

H. Kim, S. Oh, and P. Viswanath, “Physical Layer Communication via
Deep Learning,” IEEE Jour. on Sel. Areas in Info. Theory, vol. 1, no. 1,
pp. 5-18, 2020.

Y. Jiang et al., “Learn codes: Inventing low-latency codes via recurrent
neural networks,” [EEE Journal on Selected Areas in Information
Theory, vol. 1, no. 1, pp. 207-216, 2020.

T. J. O’Shea, K. Karra, and T. C. Clancy, “Learning to communicate:
Channel auto-encoders, domain specific regularizers, and attention,”
in 2016 IEEE International Symposium on Signal Processing and
Information Technology (ISSPIT), 2016, pp. 223-228.

Y. Jiang et al., “MIND: Model Independent Neural Decoder,” in 2079
IEEE 20th International Workshop on Signal Processing Advances in
Wireless Communications (SPAWC), Jul. 2019, pp. 1-5.

J. Whang et al., “Neural Distributed Source Coding,” May 2022.
[Online]. Available: http://arxiv.org/abs/2106.02797

R. K. Mishra et al., “Distributed Interference Alignment for K-user
Interference Channels via Deep Learning,” in 2021 IEEE International
Symposium on Information Theory (ISIT), Jul. 2021, pp. 2614-2619.
H. Kim et al., “Deepcode: Feedback codes via deep learning,” IEEE
Journal on Sel. Areas in Inf. Theory, vol. 1, no. 1, pp. 194-206, 2020.
Y. Jiang et al., “Joint channel coding and modulation via deep learning,”
in SPAWC, 2020, pp. 1-5.

——, “Turbo autoencoder: Deep learning based channel codes for point-
to-point communication channels,” in NIPS, Dec. 2019, pp. 2758-2768.
K. Chahine, R. Mishra, and H. Kim, “Inventing Codes for Channels
with Active Feedback via Deep Learning,” IEEE Journal on Selected
Areas in Information Theory, pp. 1-1, 2022.

E. Ozfatura et al., “All you need is feedback: Communication with block
attention feedback codes,” IEEE Jour. on Sel. Areas in Info. Theory, pp.
1-1, 2022.

A. V. Makkuva et al., “Ko codes: inventing nonlinear encoding and
decoding for reliable wireless communication via deep-learning,” /ICML,
2021.

R. O’Donnell, Analysis of boolean functions.
Press, 2014.

H. Li et al., “Visualizing the loss landscape of neural nets,” Advances
in neural information processing systems, vol. 31, 2018.

N. Devroye et al., “Interpreting Deep-Learned Error-Correcting Codes,”
in ISIT, Jun. 2022, pp. 2457-2462.

——, “Evaluating interpretations of deep-learned error-correcting
codes,” in Allerton, Sep. 2022.

O. Goldreich and L. A. Levin, “A hard-core predicate for all one-way
functions,” in Proceedings of the twenty-first annual ACM symposium
on Theory of computing, 1989, pp. 25-32.

J. Hastad et al., “A pseudorandom generator from any one-way func-
tion,” STIAM Journal on Computing, vol. 28, no. 4, pp. 1364-1396, 1999.
E. Kushilevitz and Y. Mansour, “Learning decision trees using the fourier
spectrum,” in Proceedings of the twenty-third annual ACM symposium
on Theory of computing, 1991, pp. 455-464.

A. Akavia, S. Goldwasser, and S. Safra, “Proving hard-core predicates
using list decoding,” in FOCS, vol. 44. Citeseer, 2003, pp. 146-159.
A. S. Abdouli et al., “The Goldreich-Levin algorithm with reduced
complexity,” in Thirteenth International Workshop on Algebraic and
Combinatorial Coding Theory (ACCT’12), Pomorie, Bulgaria, Jun.
2012, pp. 7-14.

0. S. Rothaus, “On “bent” functions,” Journal of Combinatorial Theory,
Series A, vol. 20, no. 3, pp. 300-305, May 1976.

E. Abbe et al., “The staircase property: How hierarchical structure can
guide deep learning,” in Advances in Neural Information Processing
Systems, vol. 34. Curran Associates, Inc., 2021, pp. 26 989-27 002.
B. Poczos and J. Schneider, “Nonparametric Estimation of Conditional
Information and Divergences,” in Proceedings of the Fifteenth Inter-
national Conference on Artificial Intelligence and Statistics, 2012, pp.
914-923.

L. Paninski, “Estimation of entropy and mutual information,” Neural
Computation, vol. 15, no. 6, p. 1191-1253, Jun 2003.

L. Bahl et al., “Optimal decoding of linear codes for minimizing symbol
error rate (corresp.),” IEEE Transactions on Information Theory, vol. 20,
no. 2, pp. 284-287, 1974.

Cambridge University

[28] L. Bazzi, M. Mahdian, and D. A. Spielman, “The minimum distance of

turbo-like codes,” IEEE Transactions on Information Theory, vol. 55,
no. 1, p. 615, Jan 2009.

[29] E. Castillo, J. M. Gutiérrez, and A. S. Hadi, Expert Systems and

Probabilistic Network Models, ser. Monographs in Computer Science.
New York, NY: Springer, 1997.

