
A New Conjecture on Hardness of 2-CSP’s with
Implications to Hardness of Densest k-Subgraph
and Other Problems
Julia Chuzhoy #

Toyota Technological Institute at Chicago, IL, USA

Mina Dalirrooyfard #

Massachusetts Institute of Technology, Cambridge, MA, USA

Vadim Grinberg #

Weizmann Institute of Science, Rehovot, Israel

Zihan Tan #

DIMACS, Rutgers University, New Brunswick, NJ, USA

Abstract
We propose a new conjecture on hardness of 2-CSP’s, and show that new hardness of approximation
results for Densest k-Subgraph and several other problems, including a graph partitioning problem,
and a variation of the Graph Crossing Number problem, follow from this conjecture. The conjecture
can be viewed as occupying a middle ground between the d-to-1 conjecture, and hardness results
for 2-CSP’s that can be obtained via standard techniques, such as Parallel Repetition combined
with standard 2-prover protocols for the 3SAT problem. We hope that this work will motivate
further exploration of hardness of 2-CSP’s in the regimes arising from the conjecture. We believe
that a positive resolution of the conjecture will provide a good starting point for other hardness of
approximation proofs.

Another contribution of our work is proving that the problems that we consider are roughly
equivalent from the approximation perspective. Some of these problems arose in previous work,
from which it appeared that they may be related to each other. We formalize this relationship in
this work.

2012 ACM Subject Classification Mathematics of computing → Approximation algorithms

Keywords and phrases Hardness of Approximation, Densest k-Subgraph

Digital Object Identifier 10.4230/LIPIcs.ITCS.2023.38

Related Version Full Version: https://arxiv.org/abs/2211.05906

Funding Julia Chuzhoy: Supported in part by NSF grant CCF-2006464.
Mina Dalirrooyfard: Part of the work done at Toyota Technological Institute at Chicago.
Vadim Grinberg: Part of the work done at Toyota Technological Institute at Chicago. Supported in
part by NSF grant CCF-2006464.
Zihan Tan: Supported by a grant to DIMACS from the Simons Foundation (820931) and NSF grant
CCF-2006464.

Acknowledgements The authors thank Irit Dinur and Uri Feige for insightful and helpful discussions.

1 Introduction

In this paper we consider several graph optimization problems, the most prominent and
extensively studied of which is Densest k-Subgraph. One of the main motivations of this
work is to advance our understanding of the approximability of these problems. Towards
this goal, we propose a new conjecture on the hardness of a class of 2-CSP problems, and
we show that new hardness of approximation results for all these problems follow from

© Julia Chuzhoy, Mina Dalirrooyfard, Vadim Grinberg, and Zihan Tan;
licensed under Creative Commons License CC-BY 4.0

14th Innovations in Theoretical Computer Science Conference (ITCS 2023).
Editor: Yael Tauman Kalai; Article No. 38; pp. 38:1–38:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:cjulia@ttic.edu
mailto:minad@mit.edu
mailto:vadim.grinberg@weizmann.ac.il
mailto:zihantan1993@gmail.com
https://doi.org/10.4230/LIPIcs.ITCS.2023.38
https://arxiv.org/abs/2211.05906
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

38:2 A New Conjecture on 2-CSP’s with Implications to Densest k-Subgraph

this conjecture. We believe that the conjecture is interesting in its own right, as it can be
seen as occupying a middle ground between the d-to-1 conjecture, and the type of hardness
of approximation results that one can obtain for 2-CSP problems via standard methods
(such as using constant-factor hardness of approximation results for 3-SAT, combined with
standard 2-prover protocols and Parallel Repetition). While our conditional hardness of
approximation proofs are combinatorial and algorithmic in nature, we hope that this work
will inspire complexity theorists to study the conjecture, and also lead to other hardness of
approximation proofs that combine both combinatorial and algebraic techniques.

We prove a new conditional hardness of approximation result for Densest k-Subgraph
based on our conjecture. In addition to the Densest k-Subgraph problem, we study three other
problems. The first problem, called (r,h)-Graph Partitioning, recently arose in the hardness
of approximation proof of the Node-Disjoint Paths problem of [18], who mention that the
problem appears similar to Densest k-Subgraph, but could not formalize this intuition. We
also study a new problem that we call Dense k-Coloring, that can be viewed as a natural
middle ground between Densest k-Subgraph and (r,h)-Graph Partitioning. The fourth problem
that we study is a variation of the notoriously difficult Minimum Crossing Number problem,
that we call Maximum Bounded-Crossing Subgraph. This problem also arose implicitly in [18].
We show that all four problems are roughly equivalent from the approximation perspective, in
the regime where the approximation factors are somewhat large (but some of our reductions
require quasi-polynomial time). We then derive conditional hardness of approximation results
for all these problems based on these reductions and the conditional hardness of Densest
k-Subgraph.

The main contribution of this paper is thus twofold: first, we propose a new conjecture on
hardness of CSP’s and show that a number of interesting hardness of approximation results
follow from it. Second, we establish a close connection between the four problems that we
study. The remainder of the Introduction is organized as follows. We start by providing a
brief overview of the four problems that we study in this paper. We then state our conjecture
on hardness of CSP’s and put it into context with existing results and well-known conjectures.
Finally, we provide a more detailed overview of our results and techniques.

Densest k-Subgraph

In the Densest k-Subgraph problem, given an n-vertex graph G and an integer k > 1, the
goal is to compute a subset S of k vertices of G, while maximizing the number of edges in
G[S]. Densest k-Subgraph is one of the most basic graph optimization problems that has
been studied extensively (see e.g. [2, 7–10, 12, 15, 25–30, 36, 41, 44, 46, 47, 52]). At the same
time it seems notoriously difficult, and despite this extensive work, our understanding of its
approximability is still incomplete. The best current approximation algorithm for Densest
k-Subgraph, due to [8], achieves, for every ε > 0, an O(n1/4+ε)-approximation, in time
nO(1/ε). Even though the problem appears to be very hard, its hardness of approximation
proof has been elusive. For example, no constant-factor hardness of approximation proofs
for Densest k-Subgraph are currently known under the standard P ̸= NP assumption, or
even the stronger assumption that NP ̸⊆ BPTIME(npoly log n). In a breakthrough result,
Khot [36] proved a factor-c hardness of approximation for Densest k-Subgraph, for some
small constant c, assuming that NP ̸⊆ ∩ε>0BPTIME(2nε). Several other papers proved
constant and super-constant hardness of approximation results for Densest k-Subgraph under
average-case complexity assumptions: namely that no efficient algorithm can refute random
3-SAT or random k-AND formulas [2, 25]. Additionally, a factor 2Ω(log2/3 n)-hardness of
approximation was shown under assumptions on solving Planted Clique [2]. In a recent

J. Chuzhoy, M. Dalirrooyfard, V. Grinberg, and Z. Tan 38:3

breakthrough, Manurangsi [46] proved that, under the Exponential Time Hypothesis (ETH),
the Densest k-Subgraph problem is hard to approximate to within factor n1/(log log n)c , for
some constant c. Proving a super-constant hardness of Densest k-Subgraph under weaker
complexity assumptions remains a tantalizing open question that we attempt to address
in this paper. Unfortunately, it seems unlikely that the techniques of [46] can yield such a
result. In this paper we show that, assuming the conjecture on hardness of 2-CSP that we
introduce, Densest k-Subgraph is NP-hard to approximate to within factor 2(log n)ε , for some
constant ε > 0.

The (r, h)-Graph Partitioning Problem

A recent paper [18] on the hardness of approximation of the Node-Disjoint Paths (NDP)
problem formulated and studied a new graph partitioning problem, called (r,h)-Graph Par-
titioning. The input to the problem is a graph G, and two integers, r and h. The goal
is to compute r vertex-disjoint subgraphs H1, . . . , Hr of G, such that for each 1 ≤ i ≤ r,
|E(Hi)| ≤ h, while maximizing

∑r
i=1 |E(Hi)|. A convenient intuitive way of thinking about

this problem is that we are interested in obtaining a balanced partition of the graph G into
r vertex-disjoint subgraphs, so that the subgraphs contain sufficiently many edges. Unlike
standard graph partitioning problems, that typically aim to minimize the number of edges
connecting the different subgraphs in the solution, our goal is to maximize the total number
of edges that are contained in the subgraphs. In order to avoid trivial solutions, in which
one of the subgraphs contains almost the entire graph G, and the remaining subgraphs are
almost empty, we place an upper bound h on the number of edges that each subgraph may
contribute towards the solution. Note that the subgraphs Hi of G in the solution need not
be vertex-induced subgraphs.

The work of [18] attempted to use (r,h)-Graph Partitioning as a proxy problem for proving
hardness of approximation of NDP. Their results imply that NDP is at least as hard to
approximate as (r,h)-Graph Partitioning, to within polylogarithmic factors. In order to prove
hardness of NDP, it would then be sufficient to show that (r,h)-Graph Partitioning is hard
to approximate. Unfortunately, [18] were unable to do so. Instead, they considered a
generalization of (r,h)-Graph Partitioning, called (r,h)-Graph Partitioning with Bundles. They
showed that NDP is at least as hard as (r,h)-Graph Partitioning with Bundles, and then proved
hardness of this new problem. In the (r,h)-Graph Partitioning with Bundles problem, the input
is the same as in (r,h)-Graph Partitioning, but now graph G must be bipartite, and, for every
vertex v, we are given a partition B(v) of the set of edges incident to v into subsets that are
called bundles. We require that, in a solution (H1, . . . , Hr) to the problem, for every vertex
v ∈ V (G), and every bundle β ∈ B(v), at most one edge of β contributes to the solution;
in other words, at most one edge of β may lie in

⋃
i E(Hi). This is a somewhat artificial

problem, but this definition allows one to bypass some of the barriers that arise when trying
to prove hardness of (r,h)-Graph Partitioning from existing hardness results for CSP’s.

It was noted in [18] that the (r,h)-Graph Partitioning problem resembles the Densest
k-Subgraph problem for two reasons. First, in Densest k-Subgraph, the goal is to compute a
dense subgraph of a given graph, with a prescribed number of vertices. One can think of
(r,h)-Graph Partitioning as the problem of computing many vertex-disjoint dense subgraphs
of a given graph. Second, natural hardness of approximation proofs for both problems
seem to run into the same barriers. It is therefore natural to ask: (i) Can we prove that
the (r,h)-Graph Partitioning problem itself is hard to approximate? In particular, can the
techniques of [18] be exploited in order to obtain such a proof? and (ii) Can we formalize
this intuitive connection between (r,h)-Graph Partitioning and Densest k-Subgraph? In this

ITCS 2023

38:4 A New Conjecture on 2-CSP’s with Implications to Densest k-Subgraph

paper we make progress on both these questions. Our conditional hardness result for
Densest k-Subgraph indeed builds on the ideas from [18] for proving hardness of (r,h)-Graph
Partitioning with Bundles. We also provide “almost” approximation-preserving reductions
between (r,h)-Graph Partitioning and Densest k-Subgraph: we show that, if there is an efficient
factor α(n)-approximation algorithm for Densest k-Subgraph, then there is a randomized
efficient factor O(α(n2) · poly log n)-approximation algorithm to (r,h)-Graph Partitioning. We
also provide a reduction in the opposite direction: we prove that, if there is an efficient α(n)-
approximation algorithm for (r,h)-Graph Partitioning, then there is a randomized algorithm for
Densest k-Subgraph, that achieves approximation factor O

(
(α(nO(log n)))3 · log2 n

)
, in time

nO(log n). Therefore, we prove that Densest k-Subgraph and (r,h)-Graph Partitioning are roughly
equivalent from the approximation perspective (at least for large approximation factors and
quasi-polynomial running times). Combined with our conditional hardness of approximation
for Densest k-Subgraph, our results show that, assuming the conjecture on hardness of 2-CSP
that we introduce, for some constant 0 < ε ≤ 1/2, there is no efficient 2(log n)ε -approximation
algorithm for (r,h)-Graph Partitioning, unless NP ⊆ BPTIME(nO(log n)).

Maximum Bounded-Crossing Subgraph

The third problem that we study is a variation of the classical Minimum Crossing Number
problem. In the Minimum Crossing Number problem, given an input n-vertex graph G, the
goal is to compute a drawing of G in the plane while minimizing the number of crossings in the
drawing. We define the notions of graph drawing and crossings formally in the Preliminaries,
but these notions are quite intuitive and the specifics of the definition are not important in
this high-level overview.

The Minimum Crossing Number problem was initially introduced by Turán [54] in 1944,
and has been extensively studied since then (see, e.g., [13,14,16,19,20,32,33], and also [48–51]
for excellent surveys). But despite all this work, most aspects of the problem are still
poorly understood. A long line of work [16, 17, 20, 21, 24, 32, 33, 43] has recently led to
the first sub-polynomial approximation algorithm for the problem in low degree graphs.
Specifically, [21] obtain a factor O

(
2O((log n)7/8 log log n) · ∆O(1)

)
-approximation algorithm

for Minimum Crossing Number, where ∆ is the maximum vertex degree. To the best of
our knowledge, no non-trivial approximation algorithms are known for the problem when
vertex degrees in the input graph G can be arbitrary. However, on the negative side, only
APX-hardness is known for the problem [3,11]. As the current understanding of the Minimum
Crossing Number problem from the approximation perspective is extremely poor, it is natural
to study hardness of approximation of its variants.

Let us consider two extreme variations of the Minimum Crossing Number problem. The
first variant is the Minimum Crossing Number problem itself, where we need to draw an input
graph G in the plane with fewest crossings. The second variant is where we need to compute
a subgraph G′ of the input graph G that is planar, while maximizing |E(G′)|. The latter
problem has a simple constant-factor approximation algorithm, obtained by letting G′ be
any spanning forest of G (this is since a planar n-vertex graph may only have O(n) edges).

In this paper we study a variation of the Minimum Crossing Number problem, that we
call Maximum Bounded-Crossing Subgraph, which can be viewed as an intermediate problem
between these two extremes. In the Maximum Bounded-Crossing Subgraph problem, given
an n-vertex graph G and an integer L > 0, the goal is to compute a subgraph H ⊆ G,
such that H has a plane drawing with at most L crossings, while maximizing |E(H)|.
Unless we are interested in constant approximation factors, this problem is only interesting
when the bound L on the number of crossings is Ω(n). This is since, from the Crossing

J. Chuzhoy, M. Dalirrooyfard, V. Grinberg, and Z. Tan 38:5

Number Inequality [1, 42], if |E(G)| ≥ 4|V (G)|, then the crossing number of G is at least
Ω(|E(G)|3/|V (G)|2). Therefore, for L = O(n), a spanning tree provides a constant-factor
approximation to the problem. We emphasize that the focus here is on dense graphs, whose
crossing number may be as large as Ω(n4).

The Maximum Bounded-Crossing Subgraph problem was implicitly used in [18] for proving
hardness of approximation of NDP, as an intermediate problem, in the reduction from
(r,h)-Graph Partitioning with Bundles to NDP. Their work suggests that there may be a
connection between (r,h)-Graph Partitioning and Maximum Bounded-Crossing Subgraph, even
though the two problems appear quite different. In this paper we prove that the two
problems are roughly equivalent from the approximation perspective: if there is an efficient
factor α(n)-approximation algorithm for (r,h)-Graph Partitioning, then there is an efficient
O(α(n) · poly log n)-approximation algorithm for Maximum Bounded-Crossing Subgraph. On
the other hand, an efficient α(n)-approximation algorithm for Maximum Bounded-Crossing
Subgraph implies an efficient O((α(n))2 · poly log n)-approximation algorithm for (r,h)-Graph
Partitioning. Combined with our conditional hardness of approximation for (r,h)-Graph
Partitioning, we get that, assuming the conjecture on hardness of 2-CSP that we introduce,
for some constant 0 < ε ≤ 1/2 there is no efficient 2(log n)ε-approximation algorithm for
Maximum Bounded-Crossing Subgraph, unless NP ⊆ BPTIME(nO(log n)).

Dense k-Coloring

The fourth and last problem that we consider is Dense k-Coloring. In this problem, the input
is an n-vertex graph G and an integer k, such that n is an integral multiple of k. The goal
is to partition V (G) into n/k disjoint subsets S1, . . . , Sn/k, of cardinality k each, so as to
maximize

∑n/k
i=1 |E(Si)|. This problem can be viewed as an intermediate problem between

Densest k-Subgraph and (r,h)-Graph Partitioning. The connection to (r,h)-Graph Partitioning
seems clear: in both problems, the goal is to compute a large collection of disjoint subgraphs
of the input graph G, that contain many edges of G. While in (r,h)-Graph Partitioning we
place a limit on the number of edges in each subgraph, in Dense k-Coloring we require that
each subgraph contains exactly k vertices. The connection to the Densest k-Subgraph problem
is also clear: while in Densest k-Subgraph the goal is to compute a single dense subgraph
of G containing k vertices, in Dense k-Coloring we need to partition G into many dense
subgraphs, containing k vertices each. We show reductions between the Dense k-Coloring
and the Densest k-Subgraph problem in both directions, that provide very similar guarantees
to the reductions between (r,h)-Graph Partitioning and Densest k-Subgraph. In particular, our
results show that, assuming the conjecture on the hardness of 2-CSP that we introduce, for
some constant 0 < ε ≤ 1/2, there is no efficient 2(log n)ε -approximation algorithm for Dense
k-Coloring, unless NP ⊆ BPTIME(nO(log n)).

Our Conjecture on Hardness of 2-CSP’s

We now turn to describe our new conjecture on hardness of 2-CSP’s. We consider the following
bipartite version of the Constraint Satisfaction Problem with 2 variables per constraint (2-
CSP). The input consists of two sets X and Y of variables, together with an integer A ≥ 1.
Every variable in X ∪ Y takes values in [A] = {1, . . . , A}. We are also given a collection C
of constraints, where each constraint C(x, y) ∈ C is defined over a pair of variables x ∈ X

and y ∈ Y . For each such constraint, we are given a truth table that, for every pair of
assignments a to x and a′ to y, indicates whether (a, a′) satisfy the constraint. The value

ITCS 2023

38:6 A New Conjecture on 2-CSP’s with Implications to Densest k-Subgraph

of the CSP is the largest fraction of constraints that can be simultaneously satisfied by an
assignment to the variables. For given values 0 < s < c ≤ 1, the (c, s)-Gap-CSP problem is
the problem of distinguishing CSP’s of value at least c from those of value at most s.

We can associate, to each constraint C = C(x, y) ∈ C, a bipartite graph GC = (L, R, E),
where L = R = [A], and there is an edge (a, a′) in E iff the assignments a to x and a′ to y

satisfy C. Notice that instance I of the Bipartite 2-CSP problem is completely defined by
X, Y, A, C, and the graphs in {GC}C∈C , so we will denote I = (X, Y, A, C, {GC}C∈C). We
let the size of instance I be size(I) = |C| · A2 + |X| + |Y |. We sometimes refer to A as the
size of the alphabet for instance I. We say that instance I of 2-CSP is d-to-d′ iff for every
constraint C, every vertex of GC that lies in L has degree at most d, and every vertex that
lies in R has degree at most d′. (We note that this is somewhat different from the standard
definition, that requires that all vertices in L have degree exactly d and all vertices of R have
degree exactly d′. In the standard definition, the alphabet sizes for variables in X and Y

may be different, that is, variables in X take values in [A] and variables of Y take values in
[A′] for some integers A, A′. However, this difference is insignificant to our discussion, and it
is more convenient for us to use this slight variation of the standard definition).

The famous Unique-Games Conjecture of Khot [35] applies to 1-to-1 CSP’s. The conjecture
states that, for any 0 < ε < 1, there is a large enough value A, such that the (1−ε, ε)-Gap-CSP
problem is NP-hard for 1-to-1 instances with alphabet size A. The conjecture currently
remains open, though interesting progress has been made on the algorithmic side: the results
of [4] provide an algorithm for the problem with running time 2nO(1/ε1/3) .

A conjecture that is closely related to the Unique-Games Conjecture is the d-to-1 Conjec-
ture of Khot [35]. The conjecture states that, for every 0 < ε < 1, and d > 0, there is a large
enough value A, such that the (1, ε)-Gap-CSP problem in d-to-1 instances with alphabet size
A is NP-hard.

Håstad [31] proved the following nearly optimal hardness of approximation results for
CSP’s: he showed that for every 0 < ε < 1, there are values d and A, such that the problem
of (1, ε)-Gap-CSP in d-to-1 instances with alphabet size A is NP-hard. The value d, however,
depends exponentially on poly(1/ε) in this result. In contrast, in the d-to-1 Conjecture, both
d and ε are fixed, and d may not have such a strong dependence on 1/ε.

On the algorithmic side, the results of [4, 53] provide an algorithm for (c, s)-Gap-CSP
on d-to-1 instances. The running time of the algorithm is 2nO(1/(log(1/s))1/2) , where the O(·)
notation hides factors that are polynomial in d and A.

A recent breakthrough in this area is the proof of the 2-to-2 conjecture (now theorem),
that builds on a long sequence of work [5,6,22,23,37–40]. The theorem proves that for every
0 < ε < 1, there is a large enough value A, such that the (1 − ε, ε)-Gap-CSP problem is
NP-hard on 2-to-2 instances with alphabet size A.

In this paper, we propose the following conjecture regarding the hardness of Gap-CSP in
d-to-d instances.

▶ Conjecture 1. There is a constant 0 < ε ≤ 1/2, such that it is NP-hard to distinguish
between d(n)-to-d(n) instances of 2-CSP of size n, that have value at least 1/2, and those of
value at most s(n), where d(n) = 2(log n)ε and s(n) = 1/264(log n)1/2+ε .

We now compare this conjecture to existing conjectures and results in this area that we
are aware of. First, in contrast to the d-to-1 conjecture, we allow the parameter d and the
soundness parameter s to be functions of n – the size of the input instance. Note that the
size of the input instance depends on the alphabet size A, so, unlike in the setting of the
d-to-1 conjecture, A may no longer be arbitrarily large compared to d and s.

J. Chuzhoy, M. Dalirrooyfard, V. Grinberg, and Z. Tan 38:7

The hardness of approximation result of Håstad [31] for d-to-d CSP’s only holds when d

depends exponentially on poly(1/s), (in particular it may not extend to the setting where
s(n) = 1/264(log n)1/2+ε , since the size n of the instance depends polynomially on d(n)).

We can also combine standard constant hardness of approximation results for CSP’s (such
as, for example, 3-SAT) with the Parallel Repetition theorem, to obtain NP-hardness of
(1, s(n))-Gap-CSP on d(n)-to-d(n) instances. Using this approach, if we start from an instance
of CSP of size N and a constant hardness gap (with perfect completeness), after ℓ rounds of
parallel repetition, we obtain hardness of (1, s)-Gap-CSP on d-to-d instances with s = 2−O(ℓ),
d = 2O(ℓ), and the resulting instance size n = NO(ℓ). Note that d = (1/s)Θ(1) holds,
wich is different from the relationship between these parameters required by the conjecture.
Specifically, by setting the number of repetition to be ℓ = Θ

(
(log N)(1/2+ε)/(1/2−ε)), we can

ensure the desired bound s(n) = 1/264(log n)1/2+ε . However, in this setting, we also get that
d(n) = 2Ω((log n)1/2+ε), which is significantly higher than the desired value d(n) = 2(log n)ε .

Lastly, one could attempt to combine the recent proof of the 2-to-2 conjecture with Parallel
Repetition in order to reap the benefits of both approaches, but the resulting parameters
also fall short of the ones stated in the conjecture.

From the above discussion, one can view Conjecture 1 as occupying a middle ground
between the d-to-1 conjecture, and the results one can obtain via standard techniques of
amplifying a constant hardness of a CSP, such as 3SAT, via Parallel Repetition. We note
that, while the conjecture appears closely related to the Unique Games Conjecture and
d-to-1 conjecture, we are not aware of any additional formal connections, except for those
mentioned above.

We now proceed to discuss our results and techniques in more detail.

1.1 A More Detailed Overview of our Results and Techniques
In addition to posing Conjecture 1 that we already described above, we prove conditional
hardness of approximation of the four problems that we consider. We also prove that all
four problems are roughly equivalent approximation-wise. We now discuss the conditional
hardness of approximation for Densest k-Subgraph and the connections between the four
problems that we establish.

Conditional Hardness of Densest k-Subgraph

Our first result is a conditional hardness of Densest k-Subgraph. Specifically, we prove that,
assuming that Conjecture 1 holds and that P ̸= NP, for some 0 < ε ≤ 1/2, there is no efficient
approximation algorithm for Densest k-Subgraph problem that achieves approximation factor
2(log N)ε , where N is the number of vertices in the input graph.

We now provide a brief overview of our techniques. The proof of the above result employs
a Cook-type reduction, and follows some of the ideas that were introduced in [18]. We
assume for contradiction that there is a factor-α algorithm A for the Densest k-Subgraph
problem, where α = 2(log N)ε . Given an input instance I of the 2-CSP problem of size n, that
is a d(n)-to-d(n) instance, we construct a constraint graph H representing I. We gradually
decompose graph H into a collection H of disjoint subgraphs, such that, for each subgraph
H ′ ∈ H, we can either certify that the value of the corresponding instance of 2-CSP is at
most 1/4, or it is at least β, for some carefully chosen parameter β. In order to compute
the decomposition, we start with H = {H}. If, for a graph H ′ ∈ H, we certified that the
corresponding instance of 2-CSP has value at most 1/4, or at least β, then we say that graph
H ′ is inactive. Otherwise, we say that it is active. As long as H contains at least one active

ITCS 2023

38:8 A New Conjecture on 2-CSP’s with Implications to Densest k-Subgraph

graph, we perform iterations. In each iteration, we select an arbitrary active graph H ′ ∈ H
to process. In order to process H ′, we consider an assignment graph G′ associated with H ′,
that contains a vertex for every variable-assignment pair (x, a), where x is a variable whose
corresponding vertex belongs to H ′. We view G′ as an instance of the Densest k-Subgraph
problem, for an appropriately chosen parameter k, and apply the approximation algorithm A
for Densest k-Subgraph to it. Let S be the set of vertices of G′ that Algorithm A computes
as a solution to this instance. Note that S is a set of vertices in the assignment graph G′,
while H is a family of subgraphs of the constraint graph H. We exploit the set S of vertices
in order to either (i) compute a large subset E′ ⊆ E(H ′) of edges, such that, if we denote by
C′ ⊆ C the set of constraints corresponding to E′, then at most 1/4 of the constraints of C′

can be simultaneously satisfied; or (ii) compute a large subset E′ ⊆ E(H ′) of edges as above,
and certify that at least a β-fraction of such constraints can be satisfied; or (iii) compute a
subgraph H ′′ ⊆ H ′, such that |V (H ′′)| ≪ |V (H ′)|, and the number of edges contained in
graphs H ′′ and H ′ \ V (H ′′) is sufficiently large compared to E(H ′). In the former two cases,
we replace H ′ with graph H ′[E′] in H, and graph H ′[E′] becomes inactive. In the latter case,
we replace H ′ with two graphs: H ′′ and H ′ \ V (H ′′), that both remain active. The algorithm
terminates once every graph in H is inactive. The crux of the analysis of the algorithm is to
show that, when the algorithm terminates, the total number of edges lying in the subgraphs
H ′ ∈ H is high, compared to |E(H)|. The specific fraction of edges that remain in the
subgraphs H ′ ∈ H is governed by the parameters s(n) and d(n), and the specific relationship
between these parameters in Conjecture 1 is selected to ensure that many edges remain in the
graphs of H when the algorithm terminates. The algorithm for decomposing graph H into
subgraphs and its analysis employ some of the techniques and ideas introduced in [18], and
is very similar in spirit to the hardness of approximation proof of the (r,h)-Graph Partitioning
with Bundles problem, though details are different. We employ this decomposition algorithm
multiple times, in order to obtain a partition (E0, E1, . . . , Ez) of the set E(H) of edges
of the constraint graph into a small number of subsets, such that, among the constraints
corresponding to the edges of E0, at most a 1/4-fraction can be satisfied by any assignment
to X ∪ Y , and, for all 1 ≤ i ≤ z, a large fraction of constraints corresponding to edges of Ei

can be satisfied by some assignment. Depending on the cardinality of the set E0 of edges we
then determine whether I is a Yes-Instance or a No-Instance.

Reductions from Dense k-Coloring and (r,h)-Graph Partitioning to Densest
k-Subgraph

We show that, if there is an efficient factor α(n)-approximation algorithm for the Densest
k-Subgraph problem, then there is a randomized efficient O(α(n2) · poly log n)-approximation
algorithm for Dense k-Coloring, and a randomized efficient O(α(n2)·poly log n)-approximation
algorithm for (r,h)-Graph Partitioning. The two reductions are very similar, so we focus on
describing the first one. We believe that the reduction is of independent interest, and uses
unusual techniques.

We assume that there is an α(n)-approximation algorithm for the Densest k-Subgraph
problem. In order to obtain an approximation algorithm for Dense k-Coloring, we start by
formulating a natural LP-relaxation for the problem. Unfortunately, this LP-relaxation has
a large number of variables: roughly nΘ(k), where n is the number of vertices in the input
graph and k is the parameter of the Dense k-Coloring problem instance. We then show an
efficient algorithm, that, given a solution to the LP-relaxation, whose support size is bounded
by poly(n), computes an approximate integral solution to the Dense k-Coloring problem.

J. Chuzhoy, M. Dalirrooyfard, V. Grinberg, and Z. Tan 38:9

The main challenge is that, since the LP relaxation has nΘ(k) variables, it is unclear
how to solve it efficiently. We consider the dual linear program, that has poly(n) variables
and nΘ(k) constraints. Using the α(n)-approximation algorithm for Densest k-Subgraph as
a subroutine, we design an approximate separation oracle for the dual LP, that allows us
to solve the original LP-relaxation for Dense k-Coloring, obtaining a solution whose support
size is bounded by poly(n). By applying the LP-rounding approximation algorithm to this
solution, we obtain the desired approximate solution to the input instance of Dense k-Coloring.

Reductions from Densest k-Subgraph to (r,h)-Graph Partitioning and Dense
k-Coloring

We prove that, if there is an efficient α(n)-approximation algorithm for Dense k-Coloring,
then there is a randomized algorithm for the Densest k-Subgraph problem, whose running
time is nO(log n), that with high probability obtains an O(α(nO(log n)) · log n)-approximate
solution to the input instance of the problem. We also show a similar reduction from Densest
k-Subgraph to (r,h)-Graph Partitioning, but now the resulting approximation factor for Densest
k-Subgraph becomes O((α(nO(log n)))3 · log2 n). By combining these reductions with our
conditional hardness result for Densest k-Subgraph, we get that, assuming Conjecture 1,
for some constant 0 < ε ≤ 1/2, there is no efficient 2(log n)ε-approximation algorithm for
(r,h)-Graph Partitioning and for Dense k-Coloring, unless NP ⊆ BPTIME(nO(log n)).

The two reductions are very similar; we focus on the reduction to Dense k-Coloring in
this overview. Our construction is inspired by the results of [34], and we borrow some of our
ideas from them. Assume that there is an efficient α(n)-approximation algorithm for Dense
k-Coloring. Let G be an instance of the Densest k-Subgraph problem. The main difficulty in
the reduction is that it is possible that G only contains one very dense subgraph induced by
k vertices, while the Dense k-Coloring problem requires that the input graph G can essentially
be partitioned into many such dense subgraphs. To overcome this difficulty, we construct
a random “inflated” bipartite graph H, that contains nO(log n) vertices, where n = |V (G)|.
Every vertex of G is mapped to some vertex of H at random, while every edge of G is
mapped to a large number of edges of H. This allows us to ensure that, if G contains a
subgraph G′ induced by a set of k vertices, where |E(G′)| = R, then graph H can essentially
be partitioned into a large number of subgraphs that contain k vertices each, and many of
them contain close to R edges. Therefore, we can apply our α(n)-approximation algorithm
for Dense k-Coloring to the new graph H. The main challenge in the reduction is that,
while this approximation algorithm is guaranteed to return a large number of disjoint dense
subgraphs of H , since every edge of G contributes many copies to H , it is not clear that one
can extract a single dense subgraph of G from dense subgraphs of H. The main difficulty in
the reduction is to ensure that, on the one hand, a single k-vertex dense subgraph in G can
be translated into |V (H)|/k dense subgraphs of H ; and, on the other hand, a dense k-vertex
subgraph of H can be translated into a dense subgraph of G on k vertices. We build on and
expand the ideas from [34] in order to ensure these properties.

Reductions between (r,h)-Graph Partitioning and Maximum Bounded-Crossing
Subgraph

Lastly, we provide reductions between (r,h)-Graph Partitioning and Maximum Bounded-Crossing
Subgraph in both directions. First, we show that, if there is an efficient factor α(n)-
approximation algorithm for (r,h)-Graph Partitioning, then there is an efficient O(α(n) ·
poly log n)-approximation algorithm for Maximum Bounded-Crossing Subgraph. On the other

ITCS 2023

38:10 A New Conjecture on 2-CSP’s with Implications to Densest k-Subgraph

hand, an efficient α(n)-approximation algorithm for Maximum Bounded-Crossing Subgraph
implies an efficient O((α(n))2 ·poly log n)-approximation algorithm for (r,h)-Graph Partitioning.
Combined with our conditional hardness of approximation for (r,h)-Graph Partitioning, we
get that, assuming Conjecture 1, for some constant 0 < ε ≤ 1/2, there is no efficient
2(log n)ε-approximation algorithm for Maximum Bounded-Crossing Subgraph, unless NP ⊆
BPTIME(nO(log n)).

Both these reductions exploit the following connection between crossing number and
graph partitioning: if a graph G has a drawing with at most L crossings, then there is a
balanced cut in G, containing at most O

(√
L + ∆ · |E(G)|

)
edges, where ∆ is maximum

vertex degree in G. This result can be viewed as an extension of the classical Planar Separator
Theorem of [45]. Another useful fact exploited in both reductions is that any graph G with
m edges has a plane drawing with at most m2 crossings. In particular, if H = {H1, . . . , Hr}
is a solution to an instance of the (r,h)-Graph Partitioning problem on graph G, then there is a
drawing of graph H =

⋃r
i=1 Hi, in which the number of crossings is bounded by r · h2. These

two facts establish a close relationship between the (r,h)-Graph Partitioning and Maximum
Bounded-Crossing Subgraph problems, that are exploited in both our reductions.

We have now obtained a chain of reductions, showing that all four problems, Dens-
est k-Subgraph, Dense k-Coloring, (r,h)-Graph Partitioning, and Maximum Bounded-Crossing
Subgraph are almost equivalent from approximation viewpoint, if we consider sufficiently
large approximation factors and allow randomized quasi-polynomial time algorithms. We
also obtain conditional hardness of approximation results for all four problems based on
Conjecture 1.

Organization

We start with preliminaries in Section 2. In Section 3 we provide the conditional hardness
of approximation proof for the Densest k-Subgraph problem. In Section 4 we provide our
reductions from Dense k-Coloring and (r,h)-Graph Partitioning to Densest k-Subgraph, and in
Section 5 we provide reductions in the opposite direction. Lastly, in Section 6 we provide
reductions between (r,h)-Graph Partitioning and Maximum Bounded-Crossing Subgraph. Due
to lack of space, some of the proofs are deferred to the full version of the paper.

2 Preliminaries

By default, all logarithms are to the base of 2. For a positive integer N , we denote by
[N] = {1, 2, . . . , N}. All graphs are finite, simple and undirected. We say that an event holds
with high probability if the probability of the event is 1 − 1/nc for a large enough constant c,
where n is the number of vertices in the input graph.

2.1 General Notation
Let G be a graph and let S be a subset of its vertices. We denote by G[S] the subgraph of G

induced by S. For two disjoint subsets A, B of vertices of G, we denote by EG(A, B) the set
of all edges with one endpoint in A and the other endpoint in B, and we denote by EG(A)
the set of all edges with both endpoints in A. Given a graph G and a vertex v ∈ V (G),
we denote by degG(v) the degree of v in G. For a subset S of vertices of G, its volume is
volG(S) =

∑
v∈S degG(v). We sometimes omit the subscript G if it is clear from the context.

Given a graph G, a drawing φ of G is an embedding of G into the plane, that maps every
vertex v of G to a point (called the image of v and denoted by φ(v)), and every edge e of
G to a simple curve (called the image of e and denoted by φ(e)), that connects the images
of its endpoints. If e is an edge of G and v is a vertex of G, then the image of e may only

J. Chuzhoy, M. Dalirrooyfard, V. Grinberg, and Z. Tan 38:11

contain the image of v if v is an endpoint of e. Furthermore, if some point p belongs to the
images of three or more edges of G, then p must be the image of a common endpoint of all
edges e with p ∈ φ(e). We say that two edges e, e′ of G cross at a point p, if p ∈ φ(e) ∩ φ(e′),
and p is not the image of a shared endpoint of these edges. Given a graph G and a drawing
φ of G in the plane, we use cr(φ) to denote the number of crossings in φ, and the crossing
number of G, denoted by CrN(G), is the minimum number of crossings in any drawing of G.

2.2 Problem Definitions and Additional Notation
In this paper we consider the following four problems: Densest k-Subgraph, Dense k-Coloring,
(r,h)-Graph Partitioning and Maximum Bounded-Crossing Subgraph. We now define the
problems, along with some additional notation.

Densest k-Subgraph

In the Densest k-Subgraph problem, the input is a graph G and an integer k > 0. The goal is
to compute a subset S ⊆ V (G) of k vertices, maximizing |EG(S)|. We denote an instance
of the problem by DkS(G, k), and we denote the value of the optimal solution to instance
DkS(G, k) by OPTDkS(G, k).

We also consider a bipartite version of the Densest k-Subgraph problem, called
Bipartite Densest (k1, k2)-Subgraph. This problem was first studied in [2]. The input to the
problem is a bipartite graph G = (A, B, E) and positive integers k1, k2. The goal is to
compute a subset S ⊆ V (G) of vertices with |S ∩A| = k1 and |S ∩B| = k2, such that |EG(S)|
is maximized. An instance of this problem is denoted by BDkS(G, k1, k2), and the value of
the optimal solution to instance BDkS(G, k1, k2) is denoted by OPTBDkS(G, k1, k2). The
following lemma shows that the Bipartite Densest (k1, k2)-Subgraph problem and the Densest
k-Subgraph problem are roughly equivalent from the approximation viewpoint. Similar results
were also shown in prior work.

▶ Lemma 2. Let α : Z+ → Z+ be an increasing function such that α(n) = o(n). Then the
following hold:

If there exists an α(n)-approximation algorithm for the Densest k-Subgraph problem with
running time at most T (n), where n is the number of vertices in the input graph, then there
exists an O(α(N2))-approximation algorithm for the Bipartite Densest (k1, k2)-Subgraph
problem, with running time O(T (N2) · poly(N)), where N is the number of vertices in
the input graph. Moreover, if the algorithm for Densest k-Subgraph is deterministic, then
so is the algorithm for Bipartite Densest (k1, k2)-Subgraph.
Similarly, if there exists an efficient α(N)-approximation algorithm for the Bipartite
Densest (k1, k2)-Subgraph problem, where N is the number of vertices in the input graph,
then there exists an efficient O(α(2n))-approximation algorithm for the Densest k-Subgraph
problem, where n is the number of vertices in the input graph. Moreover, if the algorithm
for Bipartite Densest (k1, k2)-Subgraph is deterministic, then so is the algorithm for
Densest k-Subgraph.

Dense k-Coloring

The input to the Dense k-Coloring problem consists of an n-vertex graph G and an integer
k > 0, such that n is an integral multiple of k. The goal is to compute a partition of V (G)
into n/k subsets S1, . . . , Sn/k of cardinality k each, while maximizing

∑n/k
i=1 |EG(Si)|. An

instance of the Dense k-Coloring problem is denoted by DkC(G, k), and the value of the
optimal solution to instance DkC(G, k) is denoted by OPTDkC(G, k).

ITCS 2023

38:12 A New Conjecture on 2-CSP’s with Implications to Densest k-Subgraph

(r, h)-Graph Partitioning

The input to the (r,h)-Graph Partitioning problem consists of a graph G, and integers r, h > 0.
The goal is to compute r vertex-disjoint subgraphs H1, . . . , Hr of G, such that for all
1 ≤ i ≤ r, |E(Hi)| ≤ h, while maximizing

∑r
i=1 |E(Hi)|. An instance of the (r,h)-Graph

Partitioning problem is denoted by GP(G, r, h), and the value of the optimal solution to
instance GP(G, r, h) is denoted by OPTGP(G, r, h).

Maximum Bounded-Crossing Subgraph

In the Maximum Bounded-Crossing Subgraph problem, the input is a graph G and an integer
L > 0. The goal is to compute a subgraph H ⊆ G with CrN(H) ≤ L, while maximizing
|E(H)|. An instance of the Maximum Bounded-Crossing Subgraph problem is denoted by
MBCS(G, L), and the value of the optimal solution to instance MBCS(G, L) is denoted by
OPTMBCS(G, L). We note that we can assume that L ≤ |V (G)|4, as otherwise the optimal
solution is the whole graph G, since the crossing number of a simple graph G is at most
|E(G)|2 ≤ |V (G)|4.

3 Conditional Hardness of Densest k-Subgraph

3.1 Conjecture on Hardness of 2-CSP’s
We consider the Bipartite 2-CSP problem, that is defined as follows. The input to the problem
consists of two sets X, Y of variables, together with an integer A > 1. Every variable
z ∈ X ∪Y takes values in set [A] = {1, . . . , A}. We are also given a collection C of constraints,
where each constraint C(x, y) ∈ C is defined over a pair of variables x ∈ X and y ∈ Y . For
each such constraint, we are given a truth table that, for every pair of assignments a to x

and a′ to y, specifies whether (a, a′) satisfy constraint C(x, y). The value of the CSP is the
largest fraction of constraints that can be simultaneously satisfied by an assignment to the
variables.

We associate with each constraint C = C(x, y) ∈ C, a bipartite graph GC = (L, R, E),
where L = R = [A], and there is an edge (a, a′) in E iff the assignments a to x and a′ to y

satisfy C. Notice that instance I of the Bipartite 2-CSP problem is completely determined by
X, Y, A, C, and the graphs in {GC}C∈C , so we will denote I = (X, Y, A, C, {GC}C∈C). The
size of instance I is defined to be size(I) = |C| · A2 + |X| + |Y |.

Consider some instance I = (X, Y, A, C, {GC}C∈C) of Bipartite 2-CSP. We say that I is a
d-to-d instance if, for every constraint C, every vertex of graph GC = (L, R, E) has degree
at most d.

Consider now some functions d(n), s(n) : R+ → R+. We assume that, for all n,
d(n) ≥ 1 and s(n) < 1. In a (d(n), s(n))-2CSP problem, the input is an instance I =
(X, Y, A, C, {GC}C∈C) of Bipartite 2-CSP, such that, if we denote by n = size(I), then the
instance is d(n)-to-d(n). We say that I is a Yes-Instance, if there is some assignment
to the variables of X ∪ Y that satisfies at least |C|/2 of the constraints, and we say that
it is a No-Instance, if the largest number of constraints of C that can be simultaneously
satisfied by any assignment is at most s(n) · |C|. Given an instance I of (d(n), s(n))-2CSP
problem, the goal is to distinguish between the case where I is a Yes-Instance and the
case where I is a No-Instance. If I is neither a Yes-Instance nor a No-Instance, the
output of the algorithm can be arbitrary. We now state our conjecture regarding hardness of
(d(n), s(n))-2CSP, that is a restatement of Conjecture 1 from the Introduction.

J. Chuzhoy, M. Dalirrooyfard, V. Grinberg, and Z. Tan 38:13

▶ Conjecture 3. There is a constant 0 < ε ≤ 1/2, such that the (d(n), s(n))-2CSP problem
is NP-hard for d(n) = 2(log n)ε and s(n) = 1/264(log n)1/2+ε .

3.2 Conditional Hardness of Densest k-Subgraph
In the remainder of this section, we prove the following theorem on the conditional hardness
of Densest k-Subgraph.

▶ Theorem 4. Assume that Conjecture 3 holds and that P ̸= NP. Then for some 0 < ε ≤ 1/2,
there is no efficient approximation algorithm for Densest k-Subgraph problem that achieves
approximation factor 2(log N)ε , where N is the number of vertices in the input graph.

In fact we will prove a slightly more general theorem, that will be useful for us later.

▶ Theorem 5. Suppose there is an algorithm for the Densest k-Subgraph problem, that,
given an instance DkS(G, k) with |V (G)| = N , in time at most T (N), computes a factor
2(log N)ε-approximate solution to the problem, for some constant 0 < ε ≤ 1/2. Then there
is an algorithm, that, given an instance I of (d(n), s(n))-2CSP problem of size n, where
d(n) = 2(log n)ε and s(n) = 1/264(log n)1/2+ε , responds “YES” or ”NO”, in time O(poly(n) ·
T (poly(n))). If I is a Yes-Instance, the algorithm is guaranteed to respond “YES”, and if
it is a No-Instance, it is guaranteed to respond “NO”.

Theorem 4 immediately follows from Theorem 5. The remainder of this section is
dedicated to proving Theorem 5. A central notion that we use is a constraint graph that is
associated with an instance I of 2-CSP.

Let I = (X, Y, A, C, {GC}C∈C) be an instance of the Bipartite 2-CSP problem. The
constraint graph associated with instance I is denoted by H(I), and it is defined as follows.
The set of vertices of H(I) is the union of two subsets: set V = {v(x) | x ∈ X} of vertices
representing the variables of X, and set U = {v(y) | y ∈ Y } of vertices representing the
variables of Y . For convenience, we will not distinguish between the vertices of V and the
variables of X, so we will identify each variable x ∈ X with its corresponding vertex v(x).
Similarly, we will not distinguish between vertices of U and variables of Y . The set of
edges of H(I) contains, for every constraint C = C(x, y) ∈ C, edge eC = (x, y). We say
that edge eC represents the constraint C. Notice that, if E′ is a subset of edges of H(I),
then we can define a set Φ(E′) ⊆ C of constraints that the edges of E′ represent, namely:
Φ(E′) = {C ∈ C | eC ∈ E′}. Next, we define bad sets of constraints and bad sets of edges.

▶ Definition 6 (Bad Set of Constraints and Bad Collection of Edges). Let C′ ⊆ C be a collection
of constraints of an instance I = (X, Y, A, C, {GC}C∈C) of Bipartite 2-CSP. We say that C′ is
a bad set of constraints if the largest number of constraints of C′ that can be simultaneously
satisfied by any assignment to the variables of X ∪ Y is at most |C′|

4 . If E′ ⊆ E(H(I)) is a
set of edges of H(I), whose corresponding set Φ(E′) of constraints is bad, then we say that
E′ is a bad collection of edges.

The next observation easily follows from the definition of a bad set of constraints.

▶ Observation 7. Let I = (X, Y, A, C, {GC}C∈C) be an instance of bipartite 2-CSP, and let
C′, C′′ ⊆ C be two disjoint sets of constraints that are both bad. Then C′ ∪ C′′ is also a bad set
of constraints.

Next, we define good subsets of constraints and good subgraphs of the constraint graph
H(I).

ITCS 2023

38:14 A New Conjecture on 2-CSP’s with Implications to Densest k-Subgraph

▶ Definition 8 (Good Set of Constraints and Good Subgraphs of H(I)). Let C′ ⊆ C be a
collection of constraints of an instance I = (X, Y, A, C, {GC}C∈C) of Bipartite 2-CSP, and
let 0 < β ≤ 1 be a parameter. We say that C′ is a β-good set of constraints, if there is an
assignment to variables of X ∪ Y that satisfies at least |C′|

β constraints of C′. If E′ ⊆ E(H(I))
is a set of edges of H(I), whose corresponding set Φ(E′) of constraints is β-good, then we say
that E′ is a β-good collection of edges. Lastly, if H ′ ⊆ H(I) is a subgraph of the constraint
graph, and the set E(H ′) of edges is β-good, then we say that graph H ′ is β-good.

The next observation easily follows from the definition of a good set of constraints.

▶ Observation 9. Let I = (X, Y, A, C, {GC}C∈C) be an instance of bipartite 2-CSP, let
0 < β ≤ 1 be a parameter, and let H ′, H ′′ be two subgraphs of H(I) that are both β-good and
disjoint in their vertices. Then graph H ′ ∪ H ′′ is also β-good.

The observation follows from the fact that, since graphs H ′, H ′′ are disjoint in their
vertices, if we let C′ = Φ(E(H ′)), C′′ = Φ(E(H ′′)) be the sets of constraints associated with
the edge sets of both graphs, then the variables participating in the constraints of C′ are
disjoint from the variables participating in the constraints of C′′.

The following theorem is key in proving Theorem 5.

▶ Theorem 10. Assume that there exists a constant 0 < ε ≤ 1/2, and an α(N)-approximation
algorithm A for the Densest k-Subgraph problem, whose running time is at most T (N), where
N is the number of vertices in the input graph, and α(N) = 2(log N)ε . Then there is an
algorithm, whose input consists of an instance I = (X, Y, A, C, {GC}C∈C) of Bipartite 2-CSP
and parameter n that is greater than a large enough constant, so that size(I) ≤ n holds, and
I is a d(n)-to-d(n) instance of Bipartite 2-CSP, for d(n) ≤ 2(log n)ε . Let β = 28(log n)1/2+ε ,
and let r = ⌈β · log n⌉. The algorithm returns a partition (Eb, E1, . . . , Er) of E(H(I)), such
that Eb is a bad set of edges, and for all 1 ≤ i ≤ r, set Ei of edges is β3-good. The running
time of the algorithm is O(T (poly(n)) · poly(n).

The proof of Theorem 5 easily follows from Theorem 10. Assume that there exists a
constant 0 < ε ≤ 1/2, and an α(N)-approximation algorithm A for the Densest k-Subgraph
problem, whose running time is at most T (N), where N is the number of vertices in the
input graph, and α(N) = 2(log N)ε . We show an algorithm for the (d(n), s(n))-2CSP problem,
for d(n) = 2(log n)ε and s(n) = 1/264(log n)1/2+ε . Let I = (X, Y, A, C, {GC}C∈C) be an input
instance of the Bipartite 2-CSP problem, with size(I) = n, so that I is a d(n)-to-d(n) instance
of Bipartite 2-CSP, for d(n) ≤ 2(log n)ε . If n is bounded by a constant, then we can determine
whether I is a Yes-Instance or a No-Instance by exhaustively trying all assignments to
its variables. Therefore, we assume that n is greater than a large enough constant. We apply
the algorithm from Theorem 10 to this instance I. Let (Eb, E1, . . . , Er) be the partition of
the edges of E(H(I)) that the algorithm returns. We now consider two cases.

Assume first that |Eb| > 2|C|/3. Let Cb ⊆ C be the set of all constraints that correspond
to the edges of Eb. Recall that set Cb of constraints is bad, so in any assignment, at most
|Cb|

4 of the constraints in Cb may be satisfied. Therefore, if f is any assignment to variables
of X ∪ Y , the number of constraints in C that are not satisfied by f is at least 3|Cb|

4 > |C|
2 .

Clearly, I may not be a Yes-Instance in this case. Therefore, if |Eb| > 2|C|/3, we report
that I is a No-Instance.

If |Eb| ≤ 2|C|/3, then we report that I is a Yes-Instance. It is now enough to show
that, if |Eb| ≤ 2|C|/3, then instance I may not be a No-Instance. In other words, it is
enough to show that there is an assignment that satisfies more than |C|

264(log n)1/2+ε constraints.

J. Chuzhoy, M. Dalirrooyfard, V. Grinberg, and Z. Tan 38:15

Indeed, since |Eb| ≤ 2|C|/3, there is an index 1 ≤ i ≤ r, with |Ei| ≥ |C|
3r . Since set Ei of

edges is β3-good, there is an assignment to the variables of X ∪ Y , that satisfies at least
|Ei|
β3 ≥ |C|

3rβ3 constraints that correspond to the edges of Ei. Recall that β = 28(log n)1/2+ε

and r = ⌈β · log n⌉. Therefore, 3rβ3 ≤ 6β4 log n ≤ 264(log n)1/2+ε . We conclude that there is
an assignment satisfying at least |C|/264(log n)1/2+ε constraints, and so I may not be a No-
Instance. It is easy to verify that the running time of the algorithm is O(T (poly(n))·poly(n).

To conclude, we have shown that, if there is an α(N)-approximation algorithm A for
the Densest k-Subgraph problem, with running time at most T (N), where N is the number
of vertices in the input graph, and α(N) = 2(log N)ε , then there is an algorithm for the
(d(n), s(n))-2CSP problem, for d(n) = 2(log n)ε and s(n) = 1/28(log n)1/2+ε , whose running
time is O(T (poly(n)) · poly(n).

In the remainder of this section we prove Theorem 10.

3.3 Proof of Theorem 10
The following theorem is the main technical ingredient of the proof of Theorem 10.

▶ Theorem 11. Assume that there exists an α(N)-approximation algorithm A for the
Bipartite Densest (k1, k2)-Subgraph problem, whose running time is at most T (N), where
N is the number of vertices in the input graph. Then there is an algorithm, that, given
an instance I = (X, Y, A, C, {GC}C∈C) of Bipartite 2-CSP and parameters n, β ≥ 1, so that
size(I) ≤ n, β ≥ 230(α(n))3(log n)12, and I is a d(n)-to-d(n) instance of Bipartite 2-CSP,
for some function d(n), in time O(T (n) · poly(n)), does one of the following:

either correctly establishes that graph H(I) is β3-good; or
computes a bad set C′ ⊆ C of constraints, with |C′| ≥ |C|

8 log2 n
; or

computes a subgraph H ′ = (X ′, Y ′, E′) of H(I), for which the following hold:
|X ′| ≤ 2d(n)·|X|

β ;
|Y ′| ≤ 2d(n)·|Y |

β ; and
|E′| ≥ volH (X′∪Y ′)

2048d(n)·α(n)·log4 n
.

The proof of Theorem 11 partially relies on ideas and techniques from [18], and is deferred
to the full version of the paper. We now complete the proof of Theorem 10 using Theorem 11,
starting with the following simple corollary, whose proof is deferred to the full version of the
paper.

▶ Corollary 12. Assume that there exists an α(N)-approximation algorithm A for the Bipartite
Densest (k1, k2)-Subgraph problem, whose running time is at most T (N), where N is the
number of vertices in the input graph. Then there is an algorithm, whose input consists of
an instance I = (X, Y, A, C, {GC}C∈C) of Bipartite 2-CSP and parameters n, β ≥ 1, so that
size(I) ≤ n, β ≥ 230(α(n))3(log n)12, and I is a d(n)-to-d(n) instance of Bipartite 2-CSP.
The algorithm returns a partition (E1, E2) of E(H(I)), where E1 is a bad set of edges, and:

either the algorithm correctly certifies that E2 is a β3-good set of edges; or
it computes a subgraph H ′ = (X ′, Y ′, E′) of H(I), with E(H ′) ⊆ E2, for which the
following hold:

|X ′| ≤ 2d(n)·|X|
β ;

|Y ′| ≤ 2d(n)·|Y |
β ; and

|E′| ≥ |E∗
2 |

2048d(n)·α(n)·log4 n
, where E∗

2 is a set of edges containing every edge e ∈ E2 with
exactly one endpoint in V (H ′).

The running time of the algorithm is O(T (n) · poly(n)).

ITCS 2023

38:16 A New Conjecture on 2-CSP’s with Implications to Densest k-Subgraph

Next, we obtain the following corollary.

▶ Corollary 13. Assume that there exists a constant 0 < ε ≤ 1/2, and an α(N)-approximation
algorithm A for the Bipartite Densest (k1, k2)-Subgraph problem, whose running time is at
most T (N), where N is the number of vertices in the input graph, and α(N) = 2(4 log N)ε .
Then there is an algorithm, whose input consists of an instance I = (X, Y, A, C, {GC}C∈C)
of Bipartite 2-CSP and parameter n that is greater than a large enough constant, so that
size(I) ≤ n holds, and I is a d(n)-to-d(n) instance of Bipartite 2-CSP, for d(n) ≤ 2(log n)ε .
Let β = 28(log n)1/2+ε . The algorithm returns a partition (E1, E2, E3) of E(H(I)), where E1
is a bad set of constraints, E2 is a β3-good set of constraints, and |E1 ∪ E2| ≥ |E(H(I))|

β . The
running time of the algorithm is O(T (n) · poly(n)).

Proof. Throughout the proof, we assume that there exists a constant 0 < ε ≤ 1/2, and
an α(N)-approximation algorithm A for the Bipartite Densest (k1, k2)-Subgraph problem,
whose running time is at most T (N), where N is the number of vertices in the input graph,
and α(N) = 2(2 log N)ε . Assume that we are given an instance I = (X, Y, A, C, {GC}C∈C) of
Bipartite 2-CSP, together with a parameter n that is greater than a large enough constant, so
that size(I) ≤ n, and I is a d(n)-to-d(n) instance of Bipartite 2-CSP, for d(n) ≤ 2(log n)ε . For
convenience, we denote H = H(I). Our algorithm uses a parameter η = 212d(n) ·α(n) · log4 n.

The algorithm is iterative. Over the course of the algorithm, we maintain a collection H
of subgraphs of H, and another subgraph Hg of H. We will ensure that, throughout the
algorithm, all graphs in H ∪ {Hg} are mutually disjoint in their vertices. We denote by
Eg = E(Hg) and E1 =

⋃
H′∈H E(H ′). Additionally, we maintain another set Eb of edges of

H, that is disjoint from Eg ∪ E1, and we denote by E0 = E(H) \ (Eg ∪ Eb ∪ E1) the set
of all remaining edges of H. We ensure that the following invariants hold throughout the
algorithm.

I1. set Eg = E(Hg) of edges is β3-good;
I2. set Eb of edges is bad; and
I3. all graphs in H ∪ {Hg} are disjoint in their vertices.

Intuitively, we will start with the set H containing a single graph H, and Eg = Eb =
E0 = ∅. As the algorithm progresses, we will iteratively add edges to sets Eg, Eb and E0,
while partitioning the graphs in H into smaller subgraphs. The algorithm will terminate
once H = ∅. The key in the analysis of the algorithm is to ensure that |E0| is relatively
small when the algorithm terminates. We do so via a charging scheme: we assign a budget
to every edge of E1 ∪ Eg ∪ Eb, that evolves over the course of the algorithm, and we keep
track of this budget over the course of the algorithm.

In order to define vertex budgets, we will assign, to every graph H ∈ H a level, that is an
integer between 0 and ⌈log n⌉. We will ensure that, throughout the algorithm, the following
additional invariants hold:

I4. If H ′ ∈ H is a level-i graph, then the budget of every edge e ∈ E(H ′) is at most ηi; and
I5. Throughout the algorithm’s execution, the total budget of all edges in Eg ∪ Eb ∪ E1 is at

least |E(H)|.

Intuitively, at the end of the algorithm, we will argue that the level of every graph in H
is not too large, and that the budget of every edge in Eg ∪ Eb ∪ E1 is not too large. Since
the total budget of all edges in Eg ∪ Eb ∪ E1 is at least |E(H)|, it will then follow that
|Eg ∪ Eb ∪ E1| is sufficiently large. We now proceed to describe the algorithm.

J. Chuzhoy, M. Dalirrooyfard, V. Grinberg, and Z. Tan 38:17

Our algorithm will repeatedly use the algorithm from Corollary 12, with the same
functions α(N), d(n), and parameter β. In order to be able to use the corollary, we need
to estalish that β ≥ 230(α(n))3(log n)12. This is immediate to verify since β = 28(log n)1/2+ε ,
α(n) = 2(4 log n)ε , and n is large enough.

At the beginning of the algorithm, we set E0 = Eg = Eb = ∅, and we let H contain a
single graph H, which is assigned level 0. Note that E1 = E(H) must hold. Every edge
e ∈ E(H) is assigned budget b(e) = 1. Clearly, the total budget of all edges of E1 ∪ Eg ∪ Eb

is B =
∑

e∈E1∪Eg∪Eb b(e) = |E(H)|. The algorithm performs iterations, as long as H ̸= ∅.
In every iteration, we select an arbitrary graph H ′ ∈ H to process.

We now describe an iteration where some graph H ′ ∈ H is processed. We assume
that graph H ′ is assigned level i. Notice that graph H ′ naturally defines an instance
I ′ = (X ′, Y ′, A, C′, {GC}C∈C′) of Bipartite 2-CSP, where X ′ = V (H ′) ∩ X, Y ′ = V (H ′) ∩ Y ,
C′ = {C ∈ C | eC ∈ E(H ′)}, and the graphs GC for constraints C ∈ C′ remain the same as
in instance I. Clearly, size(I ′) ≤ size(I) ≤ n, and H(I ′) = H ′. Furthermore, instance I ′

remains a d(n)-to-d(n) instance. We apply the algorithm from Corollary 12 to instance I ′,
with parameters n and β remaining unchanged. Consider the partition (E1, E2) of E(H ′)
that the algorithm returns. Recall that the set E1 of edges is bad. We add the edges of E1
to set Eb. From Invariant I2 and Observation 7, set Eb of edges continues to be bad. If
the algorithm from Corollary 12 certified that E2 is a β3-good set of edges, then we update
graph Hg to be Hg ∪ (H ′ \ E1), and we add the edges of E2 to set Eg. We then remove
graph H ′ from H, and continue to the next iteration. Note that, from Observation 9 and
Invariants I1 and I3, the set Eg of edges continues to be β3-good. It is easy to verify that all
remaining invariants also continue to hold.

From now on we assume that the algorithm from Corollary 12 returned a subgraph
H ′′ = (X ′′, Y ′′, E′′) of H ′, with E′′ ⊆ E2, such that |X ′′| ≤ 2d(n)·|X′|

β and |Y ′′| ≤ 2d(n)·|Y ′|
β .

In particular, |V (H ′′)| = |X ′′| + |Y ′′| ≤ 2d(n)
β · (|X ′| + |Y ′|) ≤ 2d(n)

β · |V (H ′)|. Additionally,
if we denote by E∗

2 the subset of edges of E2 containing all edges with exactly one endpoint
in X ′′ ∪ Y ′′, then |E′′| ≥ |E∗

2 |
2048d(n)·α(n)·log4 n

must hold. We let H∗ be the graph obtained
from H ′ \ E1, by deleting the vertices of H ′′ from it, so V (H∗) ∪ V (H ′′) = V (H ′), and
E(H∗) ∪ E(H ′′) ∪ E∗

2 = E2. We remove graph H ′ from H, and we add graphs H ′′ and H∗

to H, with graph H ′′ assigned level (i + 1), and graph H∗ assigned level i. We also add the
edges of E∗

2 to E0, and we update the set E1 of edges to contain all edges of
⋃

H̃∈H E(H̃).
Since we did not modify graph Hg in the current iteration, it is immediate to verify that
Invariants I1–I3 continue to hold. Next, we update the budgets of edges, in order to ensure
that Invariants I4 and I5 continue to hold. Intuitively, the edges of E∗

2 are now added to
set E0, so we need to distribute their budget among the edges of E(H ′′), in order to ensure
that the total budget of all edges in Eg ∪ Eb ∪ E1 does not decrease. This will ensure that
Invariant I5 continues to hold. At the same time, since the level of graph H ′′ is (i + 1), while
the level of graph H ′ was i, we can increase the budgets of the edges of E(H ′) and still
maintain Invariant I4.

Formally, recall that Corollary 12 guarantees that |E∗
2 | ≤ |E′′| · (2048d(n) · α(n) · log4 n) =

|E′′|·η
2 . From Invariant I4, the current budget of every edge in E′′ ∪ E∗

2 is bounded by ηi.
Therefore, at the beginning of the current iteration:

∑
e∈E′′∪E∗

2
b(e) ≤ ηi · (|E∗

2 | + |E′′|) ≤
ηi · |E′′| ·

(
1 + η

2
)

< ηi+1 · |E′′|.
We set the budget of every edge in E′′ to be ηi+1, and leave the budgets of all other

edges unchanged. It is easy to verify that
⋃

e∈Eg∪Eb∪E1 b(e) does not decrease in the current
iteration, so Invariant I5 continues to hold. It is also easy to verify that Invariant I4 continues
to hold. Therefore, all invariants continue to hold at the end of the iteration. This completes
the description of an iteration.

ITCS 2023

38:18 A New Conjecture on 2-CSP’s with Implications to Densest k-Subgraph

The algorithm terminates when H = ∅. Clearly, we obtain a partition (Eg, Eb, E0) of
E(H) into disjoint subsets, where the set Eb of edges is bad, and the set Eg of edges is
β3-good. It remains to show that |Eg ∪ Eb| ≥ |E(H)|

β . We use the edge budgets in order to
prove this. Let L∗ be the largest level of any subgraph of H that belonged to H at any time
during the algorithm. We start with the following key observation, whose proof is deferred
to the full version of the paper.

▶ Observation 14. L∗ ≤ (log n)1/2−ε.

From Invariant I4, throughout the algorithm, for every edge e ∈ E1, b(e) ≤ ηL∗ must
hold. Once an edge is added to Eb ∪ Eg, its budget does not change. Therefore, at the end
of the algorithm, the budget of every edge in Eg ∪ Eb is at most ηL∗ . On the other hand,
from Invariant I5, at the end of the algorithm, the total budget of all edges in E1 ∪ Eg ∪ Eb

is at least |E(H)|. Therefore, at the end of the algorithm, |Eg ∪ Eb| ≥ |E(H)|
ηL∗ holds.

We now bound ηL∗ . Recall that η = 212d(n)·α(n)·log4 n ≤ 24(log n)ε , since d(n) ≤ 2(log n)ε ,
α(n) = 2(4 log n)ε , and n is large enough. Since, from Observation 14, L∗ ≤ (log n)1/2−ε, we
get that ηL∗ ≤ 24(log n)1/2

< β, since β = 28(log n)1/2+ε . Therefore, |Eg ∪ Eb| ≥ |E(H)|/β as
required.

Lastly, it is easy to verify that the algorithm has at most poly(n) iterations, and the
running time of each iteration is bounded by O(T (n) · poly(n)), so the total running time of
the algorithm is at most O(T (n) · poly(n)). ◀

We are now ready to complete the proof of Theorem 10. Assume that there exists a
constant 0 < ε ≤ 1/2, and an α(N)-approximation algorithm A for the Densest k-Subgraph
problem, whose running time is at most T (N), where N is the number of vertices in the
input graph, and α(N) = 2(log N)ε . From Lemma 2, there exists an α′(N)-approximation
algorithm A for the Bipartite Densest (k1, k2)-Subgraph problem, where N is the number of
vertices in the input graph, and α′(N) ≤ O(α(N2)) ≤ O

(
2(2 log N)ε)

. The running time of
the algorithm is at most O(T (N2) · poly(N)). Denote by T ′(N) = O(T (N2) · poly(N)) this
bound on the running time of the algorithm, and let α′′(N) = 2(4 log N)ε . Then there is an
α′′(N)-approximation algorithm for Bipartite Densest (k1, k2)-Subgraph with running time at
most O(T ′(N)).

Assume now that we are given an instance I = (X, Y, A, C, {GC}C∈C) of Bipartite 2-CSP
and parameter n that is greater than a large enough constant, so that size(I) ≤ n holds,
and I is a d(n)-to-d(n) instance of Bipartite 2-CSP, for d(n) ≤ 2(log n)ε . Let β = 28(log n)1/2+ε ,
and let r = ⌈β · log n⌉. For convenience, we denote H = H(I). Initially, we set Eb = ∅. Our
algorithm performs r iterations, where for all 1 ≤ j ≤ r, in iteration j we construct the set
Ej ⊆ E(H) of edges, that is β3-good, and possibly adds some edges to set Eb. We ensure
that, throughout the algorithm, the set Eb of edges is bad.

We now describe the jth iteration. We assume that sets E1, . . . , Ej−1 of edges of
H were already defined. We construct graph Hj , that is obtained from graph H, by
deleting the edges of E1 ∪ · · · ∪ Ej−1 ∪ Eb from it. Notice that graph Hj naturally defines
an instance Ij = (X, Y, A, Cj , {GC}C∈Cj) of Bipartite 2-CSP, with Hj = H(Ij), where
Cj = {C ∈ C | eC ∈ E(Hj)}. We apply the algorithm from Corollary 13 to graph Hj , with
parameters n, β, and d(n) remaining unchanged. Consider a partition (E1, E2, E3) of E(Hj)
that the algorithm returns. We add the edges of E1 to set Eb. Since both sets of edges are
bad, from Observation 7, set Eb of edges continues to be bad. We also set Ej = E2, which
is guaranteed to be a β3-good set of edges. Recall that Corollary 13 also guarantees that
|E1 ∪ E2| ≥ |E(Hj)|/β. We then continue to the next iteration.

J. Chuzhoy, M. Dalirrooyfard, V. Grinberg, and Z. Tan 38:19

Since, from the above discussion, for all 1 ≤ j < r, |E(Hj+1)| ≤
(

1 − 1
β

)
|E(Hj)|, and

since r = ⌈β · log n⌉, at the end of the algorithm, we are guaranteed that the final collection
Eb, E1, . . . , Er of subsets of edges indeed partitions E(H).

Notice that the running time of a single iteration is bounded by O(T ′(n) · poly(n)) ≤
O(T (poly(n)) · poly(n)). Since the number of iterations is bounded by poly(n), the total
running time of the algorithm is bounded by O(T (poly(n)) · poly(n)).

4 Reductions from Dense k-Coloring and (r,h)-Graph Partitioning to
Densest k-Subgraph

Our reductions from the Dense k-Coloring and (r,h)-Graph Partitioning problems to Densest
k-Subgraph are summarized in the following theorem.

▶ Theorem 15. Let α : Z+ → Z+ be an increasing function, such that α(n) ≤ o(n). Assume
that there is an efficient α(n)-approximation algorithm for the Densest k-Subgraph problem,
where n is the number of vertices in the input graph. Then both of the following hold:

there is an efficient randomized algorithm that, given an instance of Dense k-Coloring
whose graph contains N vertices, with high probability computes an O(α(N2) · poly log N)-
approximate solution to this instance; and
there is an efficient randomized algorithm that, given an instance of (r,h)-Graph Partitioning
whose graph contains N vertices, with high probability computes an O(α(N2) · poly log N)-
approximate solution to this instance.

The proof of the theorem is deferred to the full version of the paper, due to lack of space.
We provide a high-level overview of the proof of the first assertion: a reduction from Dense
k-Coloring to Densest k-Subgraph. The proof of the second assertion is similar. We start by
considering an LP-relaxation of the Dense k-Coloring problem, whose number of variables
is at least

(
N
k

)
. Due to this high number of variables, we cannot solve it directly. We first

show an algorithm, that, given an approximate fractional solution to this LP-relaxation,
whose support size is polynomial in N , computes an approximate integral solution to the
Dense k-Coloring problem instance. We then show an efficient algorithm that computes an
approximate solution to the LP-relaxation, whose support is relatively small. In order to do
so, we design an approximate separation oracle to the dual LP of the LP-relaxation, that
relies on an approximation algorithm for Densest k-Subgraph.

5 Reductions from Densest k-Subgraph to Dense k-Coloring and
(r,h)-Graph Partitioning

Our reductions from Densest k-Subgraph to Dense k-Coloring and (r,h)-Graph Partitioning are
summarized in the following theorem.

▶ Theorem 16. Let α : Z+ → Z+ be an increasing function with α(n) ≤ o(n). Then the
following hold:

If there exists an efficient α(n)-approximation algorithm A for the Dense k-Coloring prob-
lem, where n is the number of vertices in the input graph, then there exists a randomized
algorithm for the Densest k-Subgraph problem, whose running time is NO(log N), that with
high probability computes an O(α(NO(log N)) · log N)-approximate solution to the input
instance of the problem; here N is the number of vertices in the input instance of Densest
k-Subgraph.

ITCS 2023

38:20 A New Conjecture on 2-CSP’s with Implications to Densest k-Subgraph

If there exists an efficient α(n)-approximation algorithm for the (r,h)-Graph Partitioning
problem, where n is the number of vertices in the input graph, then there exists a random-
ized algorithm for the Densest k-Subgraph problem, whose running time is NO(log N), that
with high probability computes an O((α(NO(log N)))3 · log2 N)-approximate solution to the
input instance of the problem; here N is the number of vertices in the input instance of
Densest k-Subgraph.

Due to lack of space, we defer the proof of the theorem to the full version of the paper.
The key to both reductions is a randomized algorithm, that, given an instance DkS(G, k) of
the Densest k-Subgraph problem, constructs an auxiliary graph H. Intuitively, if instance
DkS(G, k) of Densest k-Subgraph has a solution of value h, then with high probability, graph
H has close to |V (H)|/k subgraphs that contain close to h edges each. On the other hand,
there is an algorithm that, given a subgraph H ′ ⊆ H that contains at most k vertices, extracts
a subgraph of the original graph G, containing at most k vertices, and close to |E(H ′)|
edges. If |V (G)| = N , then our construction of graph H ensures that |V (H)| ≤ NO(log N),
which leads to the quasi-polynomial time of our reductions. The specific construction of the
graph H is inspired by the ideas from [34]. We obtain the following immediate corollary of
Theorem 16, whose proof is deferred to the full version of the paper due to lack of space.

▶ Corollary 17. Assume that Conjecture 3 holds and that NP ̸⊆ BPTIME(nO(log n)). Then
for some constant 0 < ε′ ≤ 1/2, there is no efficient 2(log n)ε′

-approximation algorithm for
(r,h)-Graph Partitioning, and there is no efficient 2(log n)ε′

-approximation algorithm for Dense
k-Coloring.

6 Reductions between (r,h)-Graph Partitioning and Maximum
Bounded-Crossing Subgraph

We establish a connection between the (r,h)-Graph Partitioning and Maximum Bounded-Crossing
Subgraph problems via the following two theorems.

▶ Theorem 18. Let α : Z+ → Z+ be an increasing function with α(n) = o(n). Assume
that there exists an efficient α(n)-approximation algorithm for the (r,h)-Graph Partitioning
problem, where n is the number of vertices in the input graph. Then there exists an efficient
O(α(N) · poly log N)-approximation algorithm for Maximum Bounded-Crossing Subgraph,
where N is the number of vertices in the input instance of Maximum Bounded-Crossing
Subgraph.

▶ Theorem 19. Let α : Z+ → Z+ be an increasing function with α(n) = o(n). Assume that
there exists an efficient α(N)-approximation algorithm for the Maximum Bounded-Crossing
Subgraph problem, where N is the number of vertices in the input graph. Then there exists an
efficient O((α(n))2 · poly log n)-approximation algorithm for (r,h)-Graph Partitioning, where n

is the number of vertices in the input instance of (r,h)-Graph Partitioning.

The proofs of the above two theorems are deferred to the full version of the paper. Both
proofs exploit well-known connections between crossing number and graph partitioning, that
can be viewed as an extension of the classical Planar Separator Theorem of [45]: namely,
if a graph G has a drawing with at most L crossings, then there is a balanced cut in G,
containing at most O

(√
L + ∆ · |E(G)|

)
edges, where ∆ is maximum vertex degree in G.

Another useful fact exploited in the proofs of both these theorems is that any graph G with
m edges has a plane drawing with at most m2 crossings. For example, if H = {H1, . . . , Hr}

J. Chuzhoy, M. Dalirrooyfard, V. Grinberg, and Z. Tan 38:21

is a solution to an instance of the (r,h)-Graph Partitioning problem on graph G, then there is a
drawing of graph H =

⋃r
i=1 Hi, in which the number of crossings is bounded by r · h2. These

two facts are exploited in order to establish a close relationship between the (r,h)-Graph
Partitioning and Maximum Bounded-Crossing Subgraph problems, and complete the proofs of
Theorems 18 and 19. By combining Theorem 19 with Corollary 17, we obtain the following
corollary, whose proof is deferred to the full version of the paper.

▶ Corollary 20. Assume that Conjecture 3 holds and that NP ̸⊆ BPTIME(nO(log n)). Then
for some constant 0 < ε′ ≤ 1/2, there is no efficient 2(log n)ε′

-approximation algorithm for
Maximum Bounded-Crossing Subgraph.

References
1 M. Ajtai, V. Chvátal, M. Newborn, and E. Szemerédi. Crossing-free subgraphs. Theory and

Practice of Combinatorics, pages 9–12, 1982.
2 Noga Alon, Sanjeev Arora, Rajsekar Manokaran, Dana Moshkovitz, and Omri Weinstein.

Inapproximabilty of densest k-subgraph from average case hardness. Manuscript, 2011. URL:
https://www.tau.ac.il/~nogaa/PDFS/dks8.pdf.

3 Christoph Ambuhl, Monaldo Mastrolilli, and Ola Svensson. Inapproximability results for
sparsest cut, optimal linear arrangement, and precedence constrained scheduling. In 48th
Annual IEEE Symposium on Foundations of Computer Science (FOCS’07), pages 329–337.
IEEE, 2007.

4 Sanjeev Arora, Boaz Barak, and David Steurer. Subexponential algorithms for unique games
and related problems. Journal of the ACM (JACM), 62(5):1–25, 2015.

5 Boaz Barak, Parikshit Gopalan, Johan Håstad, Raghu Meka, Prasad Raghavendra, and David
Steurer. Making the long code shorter. SIAM Journal on Computing, 44(5):1287–1324, 2015.

6 Boaz Barak, Pravesh K. Kothari, and David Steurer. Small-set expansion in shortcode
graph and the 2-to-2 conjecture. In 10th Innovations in Theoretical Computer Science
Conference, ITCS 2019, January 10-12, 2019, San Diego, California, USA, pages 9:1–9:12,
2019. doi:10.4230/LIPIcs.ITCS.2019.9.

7 Siddharth Barman. Approximating nash equilibria and dense bipartite subgraphs via an
approximate version of caratheodory’s theorem. In Proceedings of the forty-seventh annual
ACM symposium on Theory of computing, pages 361–369, 2015.

8 Aditya Bhaskara, Moses Charikar, Eden Chlamtac, Uriel Feige, and Aravindan Vijayaraghavan.
Detecting high log-densities: an O(n1/4) approximation for densest k-subgraph. In Proceedings
of the 42nd ACM Symposium on Theory of Computing, STOC 2010, Cambridge, Massachusetts,
USA, 5-8 June 2010, pages 201–210, 2010. doi:10.1145/1806689.1806718.

9 Aditya Bhaskara, Moses Charikar, Venkatesan Guruswami, Aravindan Vijayaraghavan, and
Yuan Zhou. Polynomial integrality gaps for strong sdp relaxations of densest k-subgraph. In
Proceedings of the twenty-third annual ACM-SIAM symposium on Discrete Algorithms, pages
388–405. SIAM, 2012.

10 Mark Braverman, Young Kun Ko, Aviad Rubinstein, and Omri Weinstein. Eth hardness for
densest-k-subgraph with perfect completeness. In Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 1326–1341. SIAM, 2017.

11 Sergio Cabello. Hardness of approximation for crossing number. Discrete & Computational
Geometry, 49(2):348–358, 2013.

12 Shih-Chia Chang, Li-Hsuan Chen, Ling-Ju Hung, Shih-Shun Kao, and Ralf Klasing. The
hardness and approximation of the densest k-subgraph problem in parameterized metric graphs.
In 2020 International Computer Symposium (ICS), pages 126–130. IEEE, 2020.

13 Chandra Chekuri and Anastasios Sidiropoulos. Approximation algorithms for euler genus
and related problems. In 2013 IEEE 54th Annual Symposium on Foundations of Computer
Science, pages 167–176. IEEE, 2013.

ITCS 2023

https://www.tau.ac.il/~nogaa/PDFS/dks8.pdf
https://doi.org/10.4230/LIPIcs.ITCS.2019.9
https://doi.org/10.1145/1806689.1806718

38:22 A New Conjecture on 2-CSP’s with Implications to Densest k-Subgraph

14 Markus Chimani and Petr Hliněnỳ. A tighter insertion-based approximation of the crossing
number. In International Colloquium on Automata, Languages, and Programming, pages
122–134. Springer, 2011.

15 Eden Chlamtác, Michael Dinitz, Christian Konrad, Guy Kortsarz, and George Rabanca. The
densest k-subhypergraph problem. SIAM Journal on Discrete Mathematics, 32(2):1458–1477,
2018.

16 Julia Chuzhoy. An algorithm for the graph crossing number problem. In Proceedings of the
forty-third annual ACM symposium on Theory of computing, pages 303–312. ACM, 2011.

17 Julia Chuzhoy. Excluded grid theorem: Improved and simplified. In Proceedings of the
forty-seventh annual ACM symposium on Theory of Computing, pages 645–654, 2015.

18 Julia Chuzhoy, David Hong Kyun Kim, and Rachit Nimavat. Almost polynomial hardness of
node-disjoint paths in grids. Theory of Computing, 17(6):1–57, 2021.

19 Julia Chuzhoy, Sepideh Mahabadi, and Zihan Tan. Towards better approximation of graph
crossing number. In 2020 IEEE 61st Annual Symposium on Foundations of Computer Science
(FOCS), pages 73–84. IEEE, 2020. Full version: arXiv:2011.06545.

20 Julia Chuzhoy, Yury Makarychev, and Anastasios Sidiropoulos. On graph crossing number
and edge planarization. In Proceedings of the twenty-second annual ACM-SIAM symposium
on Discrete algorithms, pages 1050–1069. SIAM, 2011.

21 Julia Chuzhoy and Zihan Tan. A subpolynomial approximation algorithm for graph crossing
number in low-degree graphs. In Proceedings of the 54th Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2022, pages 303–316, 2022. Full version: arXiv:2202.06827.

22 Irit Dinur, Subhash Khot, Guy Kindler, Dor Minzer, and Muli Safra. On non-optimally
expanding sets in Grassmann graphs. In Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018,
pages 940–951, 2018. doi:10.1145/3188745.3188806.

23 Irit Dinur, Subhash Khot, Guy Kindler, Dor Minzer, and Muli Safra. Towards a proof of the
2-to-1 games conjecture? In Proceedings of the 50th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 376–389,
2018. doi:10.1145/3188745.3188804.

24 Guy Even, Sudipto Guha, and Baruch Schieber. Improved approximations of crossings in
graph drawings and vlsi layout areas. SIAM Journal on Computing, 32(1):231–252, 2002.

25 Uriel Feige. Relations between average case complexity and approximation complexity. In
Proceedings of the thiry-fourth annual ACM symposium on Theory of computing, pages 534–543,
2002.

26 Uriel Feige and Michael Langberg. Approximation algorithms for maximization problems
arising in graph partitioning. Journal of Algorithms, 41(2):174–211, 2001.

27 Uriel Feige, David Peleg, and Guy Kortsarz. The dense k-subgraph problem. Algorithmica,
29(3):410–421, 2001.

28 Uriel Feige, Michael Seltser, et al. On the densest k-subgraph problem, 1997. URL: https:
//citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.37.9962&rep=rep1&type=pdf.

29 Doron Goldstein and Michael Langberg. The dense k subgraph problem. arXiv preprint, 2009.
arXiv:0912.5327.

30 Tesshu Hanaka. Computing densest k-subgraph with structural parameters. arXiv preprint,
2022. arXiv:2207.09803.

31 Johan Håstad. Some optimal inapproximability results. Journal of the ACM (JACM),
48(4):798–859, 2001.

32 Ken-ichi Kawarabayashi and Anastasios Sidiropoulos. Polylogarithmic approximation for
minimum planarization (almost). In 58th IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017, pages 779–788,
2017. doi:10.1109/FOCS.2017.77.

https://arxiv.org/abs/2011.06545
https://arxiv.org/abs/2202.06827
https://doi.org/10.1145/3188745.3188806
https://doi.org/10.1145/3188745.3188804
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.37.9962&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.37.9962&rep=rep1&type=pdf
http://arxiv.org/abs/0912.5327
http://arxiv.org/abs/2207.09803
https://doi.org/10.1109/FOCS.2017.77

J. Chuzhoy, M. Dalirrooyfard, V. Grinberg, and Z. Tan 38:23

33 Ken-ichi Kawarabayashi and Anastasios Sidiropoulos. Polylogarithmic approximation for euler
genus on bounded degree graphs. In Proceedings of the 51st Annual ACM SIGACT Symposium
on Theory of Computing, pages 164–175. ACM, 2019.

34 Sanjeev Khanna, Nathan Linial, and Shmuel Safra. On the hardness of approximating the
chromatic number. Combinatorica, 20(3):393–415, 2000.

35 Subhash Khot. On the power of unique 2-prover 1-round games. In Proceedings of the
thiry-fourth annual ACM symposium on Theory of computing, pages 767–775, 2002.

36 Subhash Khot. Ruling out ptas for graph min-bisection, dense k-subgraph, and bipartite
clique. SIAM Journal on Computing, 36(4):1025–1071, 2006.

37 Subhash Khot, Dor Minzer, Dana Moshkovitz, and Muli Safra. Small set expansion in the
Johnson graph. Electronic Colloquium on Computational Complexity (ECCC), 25:78, 2018.
URL: https://eccc.weizmann.ac.il/report/2018/078, arXiv:TR18-078.

38 Subhash Khot, Dor Minzer, and Muli Safra. On independent sets, 2-to-2 games, and Grassmann
graphs. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 576–589, 2017. doi:10.1145/
3055399.3055432.

39 Subhash Khot, Dor Minzer, and Muli Safra. Pseudorandom sets in Grassmann graph have
near-perfect expansion. In 59th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2018, Paris, France, October 7-9, 2018, pages 592–601, 2018. doi:10.1109/FOCS.2018.
00062.

40 Subhash Khot and Muli Safra. A two-prover one-round game with strong soundness. Theory
of Computing, 9:863–887, 2013. doi:10.4086/toc.2013.v009a028.

41 G Kortsarz and D Peleg. On choosing a dense subgraph. In Proceedings of 1993 IEEE 34th
Annual Foundations of Computer Science, pages 692–701. IEEE Computer Society, 1993.

42 F. T. Leighton. Complexity issues in VLSI: optimal layouts for the shuffle-exchange graph and
other networks. MIT Press, 1983.

43 Tom Leighton and Satish Rao. Multicommodity max-flow min-cut theorems and their use in
designing approximation algorithms. Journal of the ACM (JACM), 46(6):787–832, 1999.

44 Bingkai Lin. The parameterized complexity of the k-biclique problem. Journal of the ACM
(JACM), 65(5):1–23, 2018.

45 Richard J Lipton and Robert Endre Tarjan. A separator theorem for planar graphs. SIAM
Journal on Applied Mathematics, 36(2):177–189, 1979.

46 Pasin Manurangsi. Almost-polynomial ratio ETH-hardness of approximating densest k-
subgraph. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 954–961, 2017.
doi:10.1145/3055399.3055412.

47 Pasin Manurangsi. Inapproximability of maximum biclique problems, minimum k-cut and
densest at-least-k-subgraph from the small set expansion hypothesis. Algorithms, 11(1):10,
2018.

48 J. Matoušek. Lectures on discrete geometry. Springer-Verlag, 2002.
49 J. Pach and G. Tóth. Thirteen problems on crossing numbers. Geombinatorics, 9(4):194–207,

2000.
50 R. B. Richter and G. Salazar. Crossing numbers. In L. W. Beineke and R. J. Wilson, editors,

Topics in Topological Graph Theory, chapter 7, pages 133–150. Cambridge University Press,
2009.

51 Marcus Schaefer. The graph crossing number and its variants: A survey. The electronic journal
of combinatorics, pages DS21–Sep, 2012.

52 Renata Sotirov. On solving the densest k-subgraph problem on large graphs. Optimization
Methods and Software, 35(6):1160–1178, 2020.

53 David Steurer. Subexponential algorithms for d-to-1 two-prover games and for certifying almost
perfect expansion, 2010. Available at https://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.189.5388&rep=rep1&type=pdf, 2010.

54 P. Turán. A note of welcome. J. Graph Theory, 1:1–5, 1977.

ITCS 2023

https://eccc.weizmann.ac.il/report/2018/078
http://arxiv.org/abs/TR18-078
https://doi.org/10.1145/3055399.3055432
https://doi.org/10.1145/3055399.3055432
https://doi.org/10.1109/FOCS.2018.00062
https://doi.org/10.1109/FOCS.2018.00062
https://doi.org/10.4086/toc.2013.v009a028
https://doi.org/10.1145/3055399.3055412
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.189.5388&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.189.5388&rep=rep1&type=pdf

	1 Introduction
	1.1 A More Detailed Overview of our Results and Techniques

	2 Preliminaries
	2.1 General Notation
	2.2 Problem Definitions and Additional Notation

	3 Conditional Hardness of Densest k-Subgraph
	3.1 Conjecture on Hardness of 2-CSP's
	3.2 Conditional Hardness of Densest k-Subgraph
	3.3 Proof of Theorem 10

	4 Reductions from Dense k-Coloring and (r,h)-Graph Partitioning to Densest k-Subgraph
	5 Reductions from Densest k-Subgraph to Dense k-Coloring and (r,h)-Graph Partitioning
	6 Reductions between (r,h)-Graph Partitioning and Maximum Bounded-Crossing Subgraph

