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I. ANALYTICAL CALCULATIONS

A. System

We model an ensemble of disordered quantum emit-
ters in a microcavity by the multi-mode disordered Tavis-
Cummings Hamiltonian

Ĥ = ĤM + ĤL + ĤLM, (1)

where

ĤM =
N∑
j=1

EjB̂
†
j B̂j , ĤL =

∑
k

ωkâ
†
kâk,

ĤLM =
N∑
j=1

∑
k

gj,kB̂
†
j âk +H.c. . (2)

Here, j and k label the quantum emitters B̂j and the
photonic modes âk, respectively, both fulfilling a bosonic
commutation relation. The quantum emitters can rep-
resent atoms, molecules or particle-hole pairs. For con-
creteness, we specify to molecules in this work. The ex-
citation energies of the molecules Ej are distributed ac-
cording to a probability distribution P (E). In this work,
we mainly consider a Gaussian distribution,

P (E) =
1√
πσ

e−
(E−EM)2

2σ2 (3)

with center EM and width σ, but our findings are also
valid for arbitrary disorder models. We consider a one-
dimensional translational-invariant system of length L
with a periodic boundary condition. The molecules are
located at positions rj = j/N · L. The photonic disper-
sion relation is given by

ωk =
√
c2q2k + E2

C, (4)

with qk = 2πk/L and integer k. The confinement en-
ergy EC appears because of the spatial confinement of
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the light field in the transversal direction of the mi-
crocavity. The photonic mode functions are given by
φk(r) = eiqkr/

√
L. The light-matter coupling is param-

eterized by gj,k = gkφk(rj). As the excitation number∑
k â

†
kâk +

∑
j B̂

†
j B̂j is an integral of motion, we focus

on the single-excitation manifold for simplicity. In this
work, we derive a closed-form expression for the Green’s
function of the multi-mode Tavis-Cummings model in the
thermodynamic limit, that we define by N,L → ∞ for a
constant molecule density ρ = N/L.

B. No disorder

Without disorder σ = 0, all molecule energies are equal
Ej = EM and the Hamiltonian can be easily diagonal-
ized. Transforming the molecule operators into wavevec-

tor space, B̂k = 1√
N

∑N
j=1 e

iqkrj B̂j , we find that the

Hamiltonian is block diagonal in k and reads as

Ĥ =
∑
k

Ĥk,

Ĥk = EMB̂†
kB̂k + ωkâ

†
kâk + g

√
ρ
[
B̂†

kâk + h.c.
]
, (5)

where we have assumed a constant gk for simplicity. For
each k, the two energies correspond to the lower and
upper polaritons and are given as

Ek,lo/up =
ωk + EM

2
∓ 1

2

√
(ωk − EM)

2
+Ω2, (6)

where we have defined the Rabi splitting of the disorder-
free system Ω = 2g

√
ρ. The dispersion relations of the

lower and upper polariton branches are depicted in Figs.
1 - 3 by dashed lines. The corresponding eigenstates are

|Ψlo(k)⟩ =
[
cos(θ)â†k + sin(θ)B̂†

k

]
|vac⟩ ,

|Ψup(k)⟩ =
[
− sin(θ)â†k + cos(θ)B̂†

k

]
|vac⟩ , (7)

where

θ =
1

2
arctan

[
gk
√
ρ

(ωk − EM)

]
+

π

2
θ (ωk − EM) (8)
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with the Heaviside function Θ(x).

Crucially, all molecule operators B̂k are coupled to the
photonic operators âk with the same wavevector. Thus,
in contrast to single-mode models, there are no dark
states in the system. However, for very large k, the pho-
tonic energy ωk by far exceeds the molecule excitation
energy EM such that Ek,lo → EM and θ → π/2. In
this limit, the photon modes and molecule modes k are
nearly decoupled such that the molecule mode k can be
considered as dark. We follow the approach suggested in
Ref. [1] and classify an eigenstate according to its photon
weight as dark or bright. Without disorder, the photon
and molecule weights of the lower polariton are defined
by

W (L)(Ek,lo) = sin2(θ),

W (M)(Ek,lo) = cos2(θ). (9)

Accordingly, one can define the weights for the upper
polariton. As suggested by Ref. [1], an eigenstate is clas-
sified as dark, when its photon weight is below a thresh-
old value. In this work, we adopt the threshold value

W
(L)
th (E) = 10%. For disordered systems, a general def-

inition of the photon and molecule weights is given in
Eq. (30).

C. Heisenberg equations of motion

The analytical solution for the system operators B̂j

and âk can be obtained in Laplace space. This solution
can then be used to construct arbitrary Green’s func-
tions. The Heisenberg equations for the operators in the
multi-mode Tavis-Cummings model read as

∂tB̂j = −iEjB̂j − i
∑
k

gj,kâk,

∂tâk = −iωkâk − i
∑
k

gj,kB̂j . (10)

Transforming into the Laplace space defined by f̂(z) =∫∞
0

dte−ztf̂(t) for arbitrary operators f̂(t), the equations
of motions become

zB̂j − B̂
(0)
j = −iEjB̂j − i

∑
k

gj,kâk,

zâk − â
(0)
k = −iωkâk − i

N∑
j=1

g∗j,kB̂j , (11)

where B̂
(0)
j = B̂j(0) and â

(0)
k = âk(0) denote the initial

conditions of the operators at time t = 0. In general, this
set of coupled linear equations can not be solved analyti-
cally for a large number of photonic modes. However, we
can find an exact solution in the thermodynamic limit.

To see this, we first resolve Eq. (11) and obtain

B̂j =
B̂

(0)
j

z + iEj
− i

∑
k

gj,kâk
(z + iEj)

. (12)

Inserting this into Eq. (11) and resolving for âk, we find

âk =
â
(0)
k

z + iωk(z)
− i

N∑
j=1

g∗j,kB̂
(0)
j

(z + iωk(z)) (z + iEj)

−
∑
k1 ̸=k

N∑
j=1

g∗j,kgj,k1
âk1

(z + iωk(z)) (z + iEj)
, (13)

where we have defined

ωk(z) = ωk − i
N∑
j=1

|gj,k|2

z + iEj

= ωk − iΠ(z). (14)

where Π(z) will be denoted as self-energy. The third
term in Eq. (13) represents an all-to-all coupling of the
photonic modes, which cannot be solved in general. For-
tunately, this term vanishes in the thermodynamic limit
N → ∞, as we explain in the following. To this end, we
consider the factors

Ak,k1
=

N∑
j=1

g∗j,kgj,k1

z + iEj

=
N∑
j=1

g∗kgk1

z + iEj
φ∗
k(rj)φk1

(rj)

=
g2

L

N∑
j=1

xj + iyj . (15)

In the second equality, we have inserted the parameter-
ization gj,κ = gkφk(rj). In the third line, we have in-
troduced g as a typical measure for gk. To explain the
scaling of Ak,k1

, we have excluded the cavity length L

normalizing the photonic mode functions φk(r) ∝ 1/
√
L.

Because of the energetic disorder, the real and imagi-
nary parts xj and yj are samples of random variables Xj

and Yj , respectively. According to the Gaussian law of
large numbers, the means and the variances of the accu-
mulated random variables scale as〈

N∑
j=1

Xj

〉
∝

〈
N∑
j=1

Yj

〉
∝ δk1,k,

Var
N∑
j=1

Xj ∝ Var
N∑
j=1

Yj ∝ N. (16)

Thus, the expectation values vanish except for k1 = k,
while the variances scale linearly with N . Consequently,
for k1 ̸= k we find Ak,k1

∝ g2
√
N/L = g2ρ/

√
N . Thus,

when approaching the thermodynamic limit N,L → ∞
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FIG. 1. Wavevector-resolved photon and molecule LDOSs
for EC = 0.4 eV, EC = 1.0 eV and EC = 1.3 eV. Overall
parameters are L = 124µm, N = 5000, EM = 1.0 eV, σ =
0.05 eV, and g

√
ρ = 0.14 eV.

while keeping the density ρ constant, the terms Ak,k1
→ 0

with k ̸= k1 vanish.
Combining Eq. (12) with Eq. (13), in which we neglect

the third term, we obtain the following solution for the
photonic modes and molecule excitations

âk(z) =
â
(0)
k

z + iωk(z)
− i

∑
j

gj,kB̂
(0)
j

(z + iωk(z)) (z + iEj)
,

B̂j(z) =
B̂

(0)
j

z + iEj
− i

∑
k

gj,kâ
(0)
k

(z + iEj) (z + iωk(z))

−
∑
k

∑
j1

gj,kg
∗
j1,k

B̂
(0)
j1

(z + iEj) (z + iωk(z)) (z + iEj1)
,(17)

respectively.

D. Green’s function

Based on Eq. (17), one can directly obtain the retarded
Green’s function defined by

G
(L)
k,k′(z) ≡ −i

〈[
âk(z), â

(0)†
k′

]〉
,

G
(M)
j,j′ (z) ≡ −i

〈[
B̂j(z), B̂

(0)†
j′

]〉
, (18)

for photonic operators and molecule operators, respec-
tively. As we consider bosonic operators in a non-
interacting system, the expectation value in Eq. (18) does

FIG. 2. Wavevector-resolved photon and molecule LDOSs
for EC = 0.4 eV, EC = 1.0 eV and EC = 1.3 eV. Overall
parameters are L = 124µm, N = 5000, EM = 1.0 eV, σ =
0.05 eV, and g

√
ρ = 0.28 eV.

not depend on the initial condition, which we do not spec-
ify for this reason. Explicitly, the photonic and molecule
Green’s functions read as

G
(L)
k,k′(z) = δk,k′

−i

z + iωk(z)
,

G
(M)
j,j′ (z) =

−i

z + iEj
δj,j′

+ i
∑
k

gj,kg
∗
j′,k

(z + iEj) (z + iωk(z)) (z + iEj′)
.(19)

Similarly, mixed light-matter Green’s functions can be
constructed. Using the photonic mode functions, we can
express the photon Green’s function in position space as

G
(L)
j,j′(z) = i

∑
k

φk(rj)φ
∗
k(rj′)

z + iωk(z)
. (20)

E. Disorder average

We define the disorder-averaged Green’s function as

G
(X)

a,a′ (z) = lim
N→∞

∫ [
N∏
i=1

dEiP (Ei)

]
G

(X)
a,a′(z), (21)

where X ∈ {L,M}, and a, a′ can label position j or
wavevector k.
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FIG. 3. Wavevector-resolved photon and molecule LDOS for
three different disorders σ for a Gaussian disorder distribu-
tion. Overall parameters are EC = 0.4 eV, L = 124µm,
N = 5000, EM = 1.0 eV, eV, and g

√
ρ = 0.14 eV.

1. Self-energy

We observe that the photonic Green’s function in
Eq. (19) depends on the disorder via the self energy Π(z)
in the renormalized frequencies ωk(z) in Eq. (14). Using

|gk,j |2 = g2k/L, the self-energy becomes

Π(z) = lim
N→∞

N∑
j=1

|gk,j |2

(z + iEj)

→ N

∫
dEP (E)

[
1

L

|gk|2

(z + iE)

]
= |gk|2 · ρ · iΓ(z). (22)

As the summation in the first line does not depend on
the position, the sum over N can be interpreted as an
integral over the energy weighted by the disorder distri-
bution P (E) for N → ∞. Finally, we have introduced
the disorder-averaged Green’s function of the uncoupled
molecules

Γ(z) = −i

∫
dE

P (E)

(z + iE)
. (23)

The key point in this derivation is that the self-energy
term is self-averaging in the thermodynamic limit and
thus does not require the external averaging operations
defined in Eq. (21).

2. Disorder-averaged Green’s function

Given that the self energy is self averaging, it is now
straight forward to perform the disorder average of the
Green’s function in Eq. (19). Apart from ωk(z), the pho-
ton Green’s function does not depend on the molecule en-
ergies such that the disorder-averaged Green’s functions
coincides with the expressions in Eqs. (19) and (20) in
position and wavevector space, respectively.

The disorder average of the matter function has the
effect that the terms 1/(z+ iEj) are replaced by iΓ(z) in
Eq. (23), i.e.,

G
(M)
j,j′ (z) =

[
Γ(z)δj,j′

− iΓ2(z)
∑
k

|gk|2
φk(rj)φ

∗
k(rj′)

z + iωk(z)

]
, (24)

which in momentum space becomes

G
(M)
k,k′(z) = δk,k′

[
Γ(z)− iΓ2(z)

|gk|2 ρ
z + iωk(z)

]
. (25)

We emphasize that these Green’s functions are exact in
the thermodynamic limit N → ∞ because of the self-
averaging property of the self energy. Formally, the self
average is equivalent to the celebrated coherent poten-
tial approximation (CPA). However, we emphasize that
the CPA is exact for arbitrary disorder distributions
for the model considered here. This is in contrast to
nearest-neighbor and other short-range hopping models,
where the CPA is only exact for the Lorentzian disorder
model [2].

Noteworthy, the Greens function in wavevector space

G
(L)
k,k′(z) in Eq. (19) and G

(M)
k,k′(z) in Eq. (25) are iden-

tical to the Green’s function of the single-mode Tavis-
Cummings model when replacing the photonic disper-
sion relation ωk by the energy of the single cavity mode
ωC . The single-mode model with Lorentzian disorder
has been investigated in detail in Ref. [3]. This shows
that spectroscopic quantities, which can be wavevector-
resolved measured, can be correctly calculated using
single-mode models. In contrast, the Greens’s functions
in positions space given in Eq. (20) and (24) involve a
summation of the wavevector. Therefore, we conclude
that transport quantities and the coherence length can-
not be accurately investigated in single-mode models.
Thereby, the wave-vector summation in Eq. (20) and (24)
ensures that the speed-of light is maintained as an upper
bound in the dynamics.

F. Photon and molecule local density of states

In terms of the eigenstates |α⟩ and energies ϵα of the
Hamiltonian in Eq. (1), we define the wavevector-resolved
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photon and molecule local density of states (LDOS) via

νL,k(ω) =
1

2δ

∑
ϵα∈[ω−δ,ω+δ]

⟨α| â†kâk |α⟩ ,

νM,k(ω) =
1

2δ

∑
ϵα∈[ω−δ,ω+δ]

⟨α| B̂†
kB̂k |α⟩ (26)

with an infinitesimal δ > 0. We note that the photon
and molecule LDOS can be measured by angular-resolved
spectroscopy. The diagonal elements of the Green’s func-
tion in Eq. (18) can be formally written as

G
(L)
k,k(z) ≡ −i

∑
α

Ψ
(L)
α (qk)Ψ

(L)∗
α (qk)

z + iϵα
,

G
(M)
k,k (z) ≡ −i

∑
α

Ψ
(M)
α (qk)Ψ

(M)∗
α (qk)

z + iϵα
, (27)

where Ψ
(L)
α (qk) = ⟨α| â†k |vac⟩ and Ψ

(M)
α (qk) =

⟨α | B̂†
k |vac⟩ are the eigenstates in wavevector represen-

tation. Using the Dirac identity limδ↓0 1/(x + iδ) =
P1/x− iπδ(x), it is now straightforward to show that

ν
(X)
k (ω) = − lim

δ↓0

1

π
ImG

(X)
k,k (−iω + δ) (28)

for X ∈ {L,M}. For later purpose, we also define the
total density of states

ν(ω) ≡ Nω,δ

2δ

=
∑
k

[νL,k(ω) + νM,k(ω)] , (29)

where Nω,δ is the number eigenstates in the energy inter-
val [ω − δ, ω + δ] having an infinitesimal width 2δ. The
equality in the second line follows from the fact that∑

k

[
â†kâk + B̂†

kB̂k

]
= 1 in the single-excitation mani-

fold.

In Fig. 1, we analyze the photon and molecule LDOSs
for three confinement energies EC = 0.4 eV, EC = 1.0 eV
and EC = 1.3 eV. For simplicity we assume a wavevector-
independent light-matter interaction gk = g. All three
photon and molecule LDOSs look qualitatively similar.
Yet, we find that the photon LDOS for EC = 1.3 eV has
a significant smaller contribution for energies close to EM

than the ones for EC = 0.4 eV and EC = 1.0 eV. In con-
trast, the matter LDOS for EC = 1.3 eV has a significant
smaller contribution close to the photon dispersion ωk

than the ones for EC = 0.4 eV and EC = 1.0 eV.

In Fig. 2, we analyze the LDOSs for the same pa-
rameters as in Fig. 1, but for a larger light-matter cou-
pling. Accordingly, we see that now the Rabi splitting
Ω = 2

√
ρg is significantly larger. Consequently, the

transparency effect in the matter LDOS within the gap
is better visible.

Next, we investigate the influence of disorder on the

FIG. 4. Investigation of the photonic weight W (L)(ω) [panels

(a), (b), and (d)] and matter weight W (M)(ω) [panels (d), (e),
and (f)] defined in Eq. (31). Panels (g), (h), and (i) depict the

product W (L)(ω) ·W (M)(ω) as a measure for the light-matter
mixing. Overall parameters are the same as in Fig. 1.

photon and molecule LDOSs, which is depicted in Fig. 3
for three different σ. For σ = 0.05 eV, we observe two
separate polariton bands, that merged for σ = 0.3 eV.
When further increasing to σ = 0.8 eV, the photon LDOS
increasingly concentrates around the photon dispersion
relation ωk: for increasing σ, the molecular excitation
energies are distributed over a larger energy range, which
leads to an increasing decoupling of photonic and molec-
ular systems, analog to the behavior in single-mode mod-
els [3].

G. Photon and molecule weights

The photon and molecule weights of a polariton de-
termine its dynamical properties. In terms of the eigen-
states |α⟩ of the multi-mode Tavis-Cummings Hamilto-
nian, these quantities are defined as

W (X)(ϵα) ≡ ⟨α|
∑
k

â†kâk |α⟩ , (30)

where X ∈ {L,M}. In the numerical calculations, we
evaluate the averaged quantities

W (X)(ω) =
1

Nω,δ

∑
ϵα∈[ω−δ,ω+δ]

W (X)(ϵα), (31)

where Nω,δ is the number of eigenstates in the energy
interval [ω − δ, ω + δ] of width 2δ ≪ ω. Note that due to
their definition, the photon and matter weights sum up to
one, i.e., W (L)(ω)+W (M)(ω) = 1. Using the definitions of
the wavevector-resolved LDOS in Eq. (26) and the total
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FIG. 5. Sketch of the nonanalyticities of the Green’s function
in the complex q plain, that determine the asymptotic behav-
ior of the Fourier transformation in Eq. (33). The branch cut
of the integrand Gq are depicted by blue contours. The poles
of Gq are marked by red points.

density of states in Eq. (29), we find

W (X)(ω) =
∑
k

ν
(X)
k (ω)

ν(ω)
. (32)

Thus, the photon (molecule) weight is the photon
(molecule) LDOS integrated over the wavevector k and
normalized by the total density of states. This expres-
sion can be numerically integrated using the analytical
expression of the Greens’s functions in Eq. (19) and (25).

In Fig. 4 (a) - (c) we depict the photon weight as a func-
tion of energy for three different confinement energies EC.
These plots serve also as a benchmark calculation of our
analytical solution in Eqs. (19) and (25). Thereby, the
weights have been numerically evaluated using Eq. (31),
where the eigenstates |α⟩ have been obtained by numer-
ical diagonalization of the Hamiltonian. In panels (a)-
(c) we observe a significant dip in the photon weight for
energies around ω ≈ EM. As the photon weight is less
than W (L) < 10%, these eigenstates are classified as dark
states according to the explanations in Sec. I B. In panel
(b) and (c) we find that the photon weight is larger than
W (L) = 50% only for energies above EM, as the photonic
dispersion relation is bounded by EC from below. The
panels Fig. 4 (d) - (f) depict the corresponding matter
weights. Moreover, we depict the light-matter mixing,
which we define as the product W (L)(ω) ·W (M)(ω). The
peaks of this quantity clearly resembles the lower and
upper polariton bands.

H. Asymptotic behavior in position space

Next, we are interested in the asymptotic behavior of
the Green’s function in position space, i.e., we investigate

G
(X)
j,j′ (−iω+) for X ∈ {L,M} and large |rj − rj′ |, where

ω+ = ω+iδ with infinitesimal δ > 0. From Eqs. (19) and

(20) we see that the matter Green’s function is propor-
tional to the photon Green’s function when gk changes
only slowly with k, such that we continue to investigate
the latter, which reads in the continuum limit L → ∞

G
(L)
j,j′

(
−iω+

)
=

∫ ∞

−∞
Gq(−iω)eiq(rj−rj′)dq,

Gq(−iω) =
−i

−iω + iωqL/2π + ig2qL/2πρΓ(−iω)
,

(33)

On the right hand side we can replace ω+ → ω as the
poles of the Green’s function are not located on the real
axes because of the complex-valued Γ(z).

We can analyze the asymptotic behavior of the Green’s
function using a theorem of functional analysis [4]:

Let f be in L2 (Rn) (space of square-
integrable functions). Then eb|x|f ∈ L2 (Rn)
for all b < a if and only if its Fourier trans-
formation f̃ has an analytic continuation to
the set {ζ | |ζ| < a} with the property that for

each η ∈ Rn with |η| < a, f̃(·+ iη) ∈ L2 (Rn)
and for any b < a: sup|η|≤b ||f(·+ iη)||2 < ∞.

Applied to the Fourier transformation in Eq. (33), this
theorem states that the asymptotic behavior of the
Green’s function is determined by the poles and branch
cuts of the integrand (i.e., the Green’s function in
wavevector space), where q is now interpreted as a com-
plex variable.

For simplicity, we consider the case gk = g. In this
case the integrand Gq is nonanalytic at

q∗,1 =
1

c

√
[ω − g2ρΓ(−iω)]

2 − E2
C,

q∗,2 = i
EC

c
, (34)

as well as the complex conjugate values. Thereby, q∗,1
appears because of the pole of the Green’s function Gq,
q∗,2 appears because of the branch cut induced by the
photonic dispersion relation in Eq. (4). According to
the above theorem, the asymptotic behavior is mainly
determined by the nonanalyticity whose imaginary part
is closer to zero.

In Fig. 5, we sketch two cases: (i) |Im q∗,1| < |Im q∗,2|,
and (ii) |Im q∗,1| > |Im q∗,2|. In case (i), we find that the
asymptotic decay is determined by the pole of the Green’s
function. In this case, the coherence length depends on
the light-matter interaction and other system parame-
ters. In case (ii), the branch cut and, consequently, the
ratio EC/c determines the asymptotic behavior. In short,
the asymptotic behavior for large r = |rj − rj′ | can be
written as∣∣∣G(L)

j,j′

(
−iω+

)∣∣∣ → a1e
− r

2ζcoh,1 + a2e
− r

2ζcoh,2 , (35)
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where we have defined the coherence lengths

ζcoh,i =
1

2Im q∗,i
(36)

for i = 1, 2. In the numerical calculations we find that the
asymptotic behavior is accurately determined by q∗,1, see
Sec. II B. For this reason, we assess that the coefficients
fulfill a1 ≫ a2, and we define the system’s coherence
length as ζcoh ≡ ζcoh,1.
In the Letter, the coherence length for different val-

ues of the confinement energy EC is shown in Figs. 1(g)-
(i). Comparing with the photon weight, we observe a
clear correlation between both quantities, that will be ex-
plained in the next section. Consequently, the coherence
length is very short in the energy range close to ω ≈ EM,
that exhibits dark states. From this observation we con-
clude, that dark states have an overall destructive impact
on transport properties.

It is also instructive to investigate the coherence length
for a small light-matter interaction. Taylor expansion of
Eq. (34) up to first order in g2ρ results in

ζ−1
coh =

1

c
Im

[√
ω2 − E2

C − ω√
ω2 − E2

C

g2ρΓ(−iω)

]
+O

[(
g2ρ

)2]
, (37)

which exhibits a different behavior depending on the en-
ergy ω. For ω > EC, the first term in Eq. (37) is real
valued and the coherence length is essentially determined
by the imaginary part of Γ(−iω). This analysis thus re-
veals why the coherence length decreases g2ρ in Fig. 3(a)
and (c) in the Letter for ω > EC. As the imaginary part
of Γ(−iω) is given by the molecular disorder distribu-
tion P (E), the coherence length is proportional to the
number of molecules having excitation energy Ej = ω.
Noteworthy, for EC = 0, the inverse coherence length

ζ−1
coh ∝ g2ρP (ω) (38)

is proportional to Beer’s absorption length, which is con-
sistent with the unraveling of the Green’s function in
terms of scattering processes below in Sec. I I.

For ω < EC, the first term becomes imaginary and
gives a constant contribution to ζ−1

coh. Now, the real part
of Γ(−iω) determines the dependence on g

√
ρ. Interest-

ingly when the energy ω approaches EC from above, the
coherence length increases. Formally for ω = EC, the
coherence length diverges, yet, we note that the Taylor
expansion is invalid in this case. Thus, from Eq. (37) we
cannot conclude that the coherence length is non-analytic
at ω = EC.

I. Interpretation

Interestingly, the coherence length is a function of the
Rabi frequency Ω = 2g

√
ρ. Analysis of the coherence

length shows that it scales with ζcoh ∝ Ω−2 for small Ω,
as can be seen in Figs. 1(a) and (c) in the Letter. In this
section, we interpret this behavior in terms of photon
scattering.

Expanding the photon Green’s function in position
space in orders of g, we obtain

G
(L)
j,j′(z) =

∑
k

G
(L)
j,j′(z, k),

G
(L)
j,j′(z, k) = G

(0)
j,j′(k) + g2

N∑
j1=1

G
(0)
j,j1

(k)Γj1G
(0)
j1,j′

(k)

+ g4
N∑

j1,j2=1

G
(0)
j,j1

(k)Γi1G
(0)
j1,j2

(k)Γi2G
(0)
j2,j′

(k)

+ O(g6), (39)

where

G
(0)
i,j (k) = G

(0)
i,j (z, k) = −i

φk(ri)φ
∗
k(rj)

(z + iωk)
,

Γj = Γj(z) = −i
1

(z + iEj)
(40)

denote the free Green’s functions of the photon mode k
and the molecule j, respectively. Thus, the full Green’s
function is a sum of k-dependent Green’s functions, that
can be unraveled as a series of scattering processes. The
first term (∝ g0), describes the propagation of a pho-
ton without scattering events. The second term de-
scribes a single scattering at molecule j1. Both absorp-
tion and emission contribute one factor g. Noteworthy,
ImΓj(−iω) is proportional to the linear absorption of a
two-level systems in dipole approximation. As there are
N molecules in the cavity, this terms scales overall with
∝ g2N . Accordingly, the third term can be interpreted
as two scattering events and scales with ∝ g4N2. Each
term in Eq. (39) can be interpreted as a distinct path
from rj to rj′ .

For increasing g2N , more higher-order paths become
relevant in the expansion in Eq. (39). Due to the random
phase factors of φk(rj), this leads to a destructive in-
terference between different paths, which suppresses the
probability that a photon can travel from rj to rj′ . This
is reflected by a shorter coherence length of the Green’s
function.

The disorder distribution of the molecular excita-
tion energies P (E) thereby determines the number of
molecules that can take part in this scattering pro-
cess. Only molecules whose excitation energy Ej exactly
matches the energy of the eigenstate ω(= iz) can reso-
nantly scatter photons, which mediate the formation of
the eigenstates. Thereby, the more a photon is scattered
at molecules the smaller is the photon weight, which ex-
plains the close correspondence of photon weight and co-
herence length in Fig. 1 in the Letter. This analysis mo-
tivates to identify the coherence length as the absorption
length known in Beer’s absorption low, which opens an
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alternative way for the experimental verification of the
predictions in our work.

II. NUMERICAL CALCULATIONS

A. Diagonalization

Before describing the details of the numerical calcula-
tions, we list here the overall parameters and procedures
that are used unless stated differently. In the numerical
calculations, we use an open boundary conditions instead
of a periodic one, as the corresponding mode functions
φk(r) = sin(qkr)/

√
L/2 with qk = π/L·k are real valued.

This guarantees that all eigenvalues are real, simplifying
the disorder average. This is in contrast to the periodic
boundary condition considered in the analytical calcu-
lations in Sec. I. Yet, away from the boundaries, the
physical properties will be the same under both bound-
ary conditions.

We consider a system with N = 5000 molecules and a
cavity of length L = 124µm. Molecule j ∈ {1, . . . , N} is
located at position rj = N/L ·j . For reference, we define
the resonance wavelength λ0 such that c ·2π/λ0 = EM/ℏ.
For EM = 1 eV, we find that λ0 = 1.24µm. Thus, ex-
pressed in units of λ0, the cavity length is L = 100λ0,
and the particle density is ρ = N/L = 50/λ0. We
quantize the photonic field with N = 5000 modes,
such that the cut-off energy is ωcut-off = ωk=5000 =√

c2(π50/L)2 + E2
C ≈ 50 · EM. In total, we average over

M = 50 sample Hamiltonians.

In the diagonalization, the photon and molecule sub-
systems are represented in the wavevector basis and posi-
tion basis, respectively. The construction of the Green’s
function requires a transformation between these repre-
sentations. We denote the elements of the photon sub-

system of an eigenstates α with energy ϵα by Ψ
(L)
α (qk),

and the molecule subsystem elements by Ψ
(M)
α (rj). Using

the photonic mode functions φk(r), we can transform the
photon subsystem into the position representation via

Ψ(L)
α (rj) =

√
L

2N2

N∑
k=1

φk(rj)Ψ
(L)
α (qk). (41)

The additional factor
√
L/2N is required due to the

discretization of the photon field in position space.
It ensures that the photon weight remains unchanged

in the transformation: W (L)(ϵa) =
∑

j

∣∣∣Ψ(L)
α (rj)

∣∣∣2 =∑
k

∣∣∣Ψ(L)
α (qk)

∣∣∣2. Accordingly, we can transform the mat-

ter subsystem into the wavevector representation:

Ψ(M)
α (qk) =

√
L

2N2

N∑
j=1

φk(rj)Ψ
(M)
α (qk). (42)

FIG. 6. Comparison of [ηX,r(ω)]
2 [defined in Eq. (46) via

the imaginary part of the Green’s function] and the disorder-
averaged eigenstate in Eq. (47). The general diagonalization
procedure is described in Sec. II A. The Green’s function and
eigenstates are averaged over an interval of width δ = 0.01.
The dash-dotted black lines depict the analytical predicted
exponential decay with the coherence length in Eq. (36) for
i = 1. Parameters are the same as in Fig. 1 and EC = 0.4 eV.

B. Disorder-averaged Green’s function

In terms of eigenstates, the disorder-averaged Green’s
function in position space can be written as

G
(X)

j,j′ (z) =
−i

M

M∑
l=1

∑
α

Ψ
(X)(l)
α (rj)Ψ

(X)(l)∗
α (rj′)

z + iϵ
(l)
α

, (43)

where ϵ
(l)
α and Ψ

(l)
α (rj) are the energies and the eigen-

states of the l-th sample Hamiltonian. In the following,
we use that the Hamiltonian in Eq. (1) is time-reversal
invariant, implying that there exist a gauge for which the
eigenstates are real valued. For this reason, it is possible
to express the imaginary part of the Green’s function as

η
(X)
j,j′ (ω) ≡ lim

δ↓0

−1

π
ImG

(X)

j,j′ (−iω + δ)

=
1

M

M∑
l=1

lim
δ↓0

∑
ϵ
(l)
α ∈[ω−δ,ω+δ]

Ψ(X)(l)
α (rj)Ψ

(X)(l)
α (rj′).

(44)
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In the wavevector representation, the Green’s function
can be evaluated using

G
(X)

k,k′(z) =
1

M

M∑
l=1

∑
α

Ψ
(X)(l)
α (qk)Ψ

(X)(l)∗
α (qk′)

z + iϵ
(l)
α

. (45)

As the system is translational invariant in a stochastic
sense, the disorder-averaged Green’s function is diagonal

in the wavevector basis, i.e., G
(X)

k,k′(z) ∝ δk,k′ .

C. Asymptotic behavior in position space

As the disorder-averaged Green’s function is transla-
tionally invariant, it can be expressed as the difference of
two positions, i.e.,

ηX,r(ω) ≡ lim
N→∞

η
(X)
j,j′ (ω), (46)

where r = |rj − rj′ |. Importantly, the asymptotic be-
havior of ηX,r(ω) for large r exhibits the same scaling as
Eq. (35).

In Fig. 6, we depict η2X,r(ω)/N for both X = L,M as a
function of position by a solid green line. The normaliza-
tion N is chosen such that the integral over the position
is one. We depicted the squared function to allow for a
better comparison with the disorder-averaged eigenstates
defined later in Eq. (47).

The decay of the Green’s function with increasing sepa-
ration |r| is clearly visible for both photon and molecule
Green’s functions. For comparison, we have added the
exponential decay predicted by the analytical coherence
length ζcoh,1 in Eq. (36) as a dash-dotted black line. We
observe that the numerical and analytical calculations
precisely agree, which is especially clearly visible for the
molecule Green’s function. We thus conclude that the
asymptotic behavior of the Green’s function is deter-
mined by ζcoh = ζcoh,1 and that a1 ≫ a2 in Eq. (35).
This assessment is additionally confirmed by the agree-
ment of the analytical and numerical calculations of the
coherence length shown in Fig. 1 (g)-(i) in the Letter .

In Fig. 6, the photon Green’s function is more smooth
than the matter contribution and exhibits a modulation
as a function of separation r. The modulation frequency
is determined by the real part of the root q∗,1 in Eq. (34).
We explain the deviation form a mononchromatic modu-
lation by the finite energy integral, over which we average
the Green’s function in Eq. (44).

D. Disorder-averaged eigenstates

We define the disorder-averaged eigenstates in position

space for the eigenstates Ψ
(X)
α (r) within a small energy

interval ϵα ∈ [ω − δ, ω + δ] as∣∣Ψ(X)(r)
∣∣2 =

1

Nω,δ

∑
ϵα∈[ω−δ,ω+δ]

∣∣∣Ψ(X)
α (r − rα)

∣∣∣2 , (47)

where x ∈ {L,M}, Nω,δ is the number of eigenstates in
the energy interval, and the center of each eigenstate α
is given by

rα =

∑N
j=1 rj

∣∣∣Ψ(X)
α (rj)

∣∣∣2∑N
j=1

∣∣∣Ψ(X)
α (rj)

∣∣∣2 . (48)

Similarly, we can define the disorder-averaged eigenstates
in wavevector space, which agrees with the Green’s func-
tion in Eq. (45) for k = k′.

Guided by the analytical and numerical calculations
of the Green’s function, we anticipate that the exponen-
tial decay of the disorder-averaged wavefunction is dom-
inated by one exponential term. Similar to the Green’s
function in Eq. (35), we thus define the coherence length
ζloc such that

∣∣Ψ(X)(r)
∣∣2 ∝ exp

[
− |r|
ζloc(ω)

]
(49)

for large |r|.
In Fig. 6, we depict the disorder-averaged eigenstates

and observe that the photon contribution of the wave
function exponentially decays with |r|. The fluctuations
are significantly less than the fluctuations in the Green’s
function. Interestingly, we observe that the disorder-
averaged eigenstates and the Green’s function exhibit
the same decay behavior for small-to-intermediate |r|,
i.e., ζcoh ≈ ζloc. We attribute this agreement to the
photon-mediated long-range interaction between distant
molecules, which protects their coherent phase relation.

For very large |r|, the eigenstates decay significantly
slower than the Green’s function. These deviations can
have two distinct explanations: (i) the Green’s function
is subject to significant destructive interference because
of the average over the finite energy interval in Eq. (44).
(ii) The numerical calculation suffers from a finite com-
putational precision. Importantly, we have numerically
checked that this slow decay is not determined by the
branch-cut related value ζcoh,2 in Eq. (36), which would
predict a significantly faster decay rate.

E. Numerical calculation of the coherence length

Because of the large fluctuations of the Green’s func-
tion, extracting the coherence length via fitting is nu-
merically unstable. Instead, we determine the coherence
length via comparison with the position variance of the
normalized function as follows:

We start with a generic exponentially decaying func-
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tion

F (r) =
λ

2
e−λ|r|, (50)

whose integral over x ∈ {−∞,∞} is one. In partic-
ular, we use F (r) = η2M,r(ω)/N . Here, we use X =
M, as the molecule Green’s function does not exhibit
(almost) monochromatic smooth modulations like the
photon Green’s function (c.f., Fig. 6). While for the
monochromatic modulation of the photon Green’s func-
tion, F (r) must be multiplied by a cosine function with
an unknown frequency, the high-frequent fluctuations of
the molecules Green’s function simply average away. The
position variance of F (r) evaluates to

VarF X̂ = 2

∫ ∞

0

λ

2
r2e−λrdr

= λ
1

λ2

∫ ∞

0

e−λxdr

= λ
1

λ2

1

λ

= 2λ
1

λ3
= 2

1

λ2
= 2ζ2coh. (51)

In the last step, we have inserted the coherence length
ζcoh = 1/λ.

This numerical approach assumes that there is only one
exponentially decaying term, as opposed to the two terms
predicted in Eq. (35). However, the analysis in Fig. 6
has shown that only the pole of the Green’s function
substantially determines the decaying behavior, while the
branch-cut term can be neglected. For this reason, the
deployed numerical procedure provides a value for the
coherence length related to the Green’s function pole. We
emphasize that the precise agreement of the analytical
and numerical calculations in Fig. 1(g)-(i) in the Letter
justifies the numerical approach introduced here.
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