
Figure 1: Exploded view of annotated imaging implant prototype. *Indicates
part is made of PEEK plastic, chosen for its radiolucent properties, strength, and
ability to be sterilized.

Problem Definition
Several problems challenge mesoscopic imaging in the brain: 1) Difficulty with positioning
high-NA objectives near the brain; 2) Creating a flat imaging window against the surface of
the brain; 3) Adjusting the imaging window to changes in swelling and pressure in the
brain, such as those that may occur due to hydration changes and other physiological
factors; 4) Preventing growth of dura and biofilms that cloud the imaging window; 5)
Follow-on MRI imaging of the animal post-implantation.

Engineering Design Solution

Failures & Modifications
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A Novel Pressure Regulating Brain Imaging Implant For Ultra-Large Field-of-View Microscopic Imaging in NHPs

Functional Requirement
Maintain a flat, clear, imaging window against the surface of the brain.

Constraints
• Radiolucent
• Thin enough to allow for an objective with a working distance of 2mm to image the

brain.
• Allow for water immersion objective.
• Capable of holding attachments & bearing weight (at least 5 lbs).
• Imaging window must be at least 20 mm in diameter.
• Coverslip must move parallel to chamber to allow for manual control of the imaging

window.
• Must be durable, last at least six months and be usable on awake monkeys.
• Must be hermetically sealed to prevent infection.

Need Statement
Need a thin, strong, radiolucent, and pressure regulating implant for ultra-large field-of-
view microscopic imaging in primates.

Problem Definition & Need

Design Inputs
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Component Listing with Description
Cap & Cap Screws- Removable cap for imaging and cleaning.
Silicone O-Ring - Approximately .4 mm thick, prevents bacterial movement between
chamber and cap. There are two O-rings, one on the outer and one on the inner diameter
of the chamber. The cap and chamber have indents to accommodate the rings and squeeze
them when the cap is completely secured.
Thin Securing Ring - Secures rotating ring against the bottom shelf of the chamber and
prevents it from moving up.
Guide Cannulas - Cannulas are threaded into the rotating ring at 3 different locations and
sealed with silicone glue. These cannulas allow for 21G CED needles to penetrate the
cylinder.
CED Injection Needles – Convection enhanced delivery needles. Designed for cortical
injections but can also be used to deliver drugs or imaging contrast agents into the soft
tissue.
Rotating ring – Multiple threaded holes for the height adjusting screws and can rotate to
adjust the positions of the screws. Sits between shelf in chamber and thin securing ring.
Chamber - Has holes for bone screws that are perpendicular to the surface of the bone to
increase the strength of the bond between the chamber and bone2. It also includes three
threaded holes on the top to allow for attachments and to secure the cap.
Silicone – Chosen for its ease in manufacturing, control of mechanical properties, and
ability to be sterilized. Serves as a spring to adjust for pressure changes caused by the
variations in swelling in the brain. Although not indicated in the drawing, the silicone
connects to the lip of the imaging cup and rotating ring to create a sealed environment.
Imaging Cup & Glass Cover Slip – The glass is glued to the cup. Together they create a bowl
that can hold liquid for a water immersion objective.
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Modification: Redesigned the silicone gasket to include two O-rings. Previous design was a flat 
disk
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Modification: Implemented use of Lorde medical grade adhesive. 3D printed structures to 
accommodate improved adhesion. 
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Modification: Switched from multi-axis titanium arm to a limited, bulkier, aluminum block.
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Modification: Redesigned cylinder to have permanent , metal,  21G needle guides sealed with silicone 
adhesive to allow for penetration and subsequent suction. Works in conjunction with head stabilization to 
reduce motion.

Stability Analysis

Figure 5: LED light scatter simulation, 1 mm
deep into the cortex using Zemax Optic Studio.
LED positional array of 100 16 x 16 µm LEDs
separated by 8 µm, each LED operates at .012
mW/mm^2 of power.
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500 µm
Modifications for 3D printing

Figure 2: (A) 2cm imaging window (stars indicate previous probe sites). White star
indicates the LGN CED injection site. (B) Stitched 2P image (49 tiled 2800 µm stacks) of
GCamp6f infected cells.(C) Multicolor scan of multiple fluorescent protein cells. (D)
Positions of individual best of multi-color FP cells. E) Hyperspectral brainbow analysis. We
were able to successfully transfect the cortical area beneath the implant with five multi-
color fluorescent proteins and GCamp6. The implant allowed for impressive imaging using
our 2-photon scope and after analysis revealed successful transfection of the virus’
injected. The results indicate that the implant was successful in its ability to keep
enough dural and pial regrowth at bay to allow for the imaging previously discussed.
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Figure 4: X-Y motion was measured by
placing a clear slide of fluorescent od =
microbeads on the imaging glass of the
chamber. The movement of each bead
(gray lines) was recorded & averaged
(black line). Large bodily movements of
the NHP are indicated with red arrows. As
seen in the figure the NHP becomes
restless after ~ 30 mins of imaging.
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Figure 3: (A) Violin plot shows 4,752 distinguishable colors. (B) indicates the hue,
saturation, and values of the cell colors.
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Figure 2: Panels (A), (B) & (C) show the progression of replacing damaged threads on the
implant using a soldering iron to press new, metal inserts into PEEK plastic at 550 degrees
Celsius. Panels (D) & (E) show a modified tab design to replace the threaded ring and it easier
to print. Panel (D) is a strength simulation showing >2 e^-4 mm of displacement when 20 N of
force is placed on the ring.
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