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Abstract

The main approach to defining equivalence
among acyclic directed causal graphical models
is based on the conditional independence relation-
ships in the distributions that the causal models
can generate, in terms of the Markov equivalence.
However, it is known that when cycles are allowed
in the causal structure, conditional independence
may not be a suitable notion for equivalence of
two structures, as it does not reflect all the infor-
mation in the distribution that is useful for identi-
fication of the underlying structure. In this paper,
we present a general, unified notion of equiva-
lence for linear Gaussian causal directed graphical
models, whether they are cyclic or acyclic. In our
proposed definition of equivalence, two structures
are equivalent if they can generate the same set
of data distributions. We also propose a weaker
notion of equivalence called quasi-equivalence,
which we show is the extent of identifiability from
observational data. We propose analytic as well as
graphical methods for characterizing the equiva-
lence of two structures. Additionally, we propose
a score-based method for learning the structure
from observational data, which successfully deals
with both acyclic and cyclic structures.

1. Introduction

The problem of learning directed graphical models from
data has received a significant amount of attention over the
past three decades since those models provide a compact and
flexible way to represent constraints on the joint distribution
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of the data (Koller & Friedman, 2009). When interpreted
causally, they can model causal relationships among the
variables of the system and help make predictions under
intervention (Pearl, 2009; Spirtes et al., 2000).

There exists an extensive literature on learning causal graph-
ical models from observational data under the assumption
that the model is a directed acyclic graph (DAG) (Zhang
et al., 2018). Existing approaches include constraint-based
methods (Spirtes et al., 2000; Pearl, 2009), score-based
methods (Heckerman et al., 1995; Chickering, 2002), hy-
brid methods (Tsamardinos et al., 2006), as well as meth-
ods which make extra assumptions on the data generating
process. For example, the model may be assumed to be lin-
ear with non-Gaussian exogenous noise variables (Shimizu
et al., 2006) or contain specific types of non-linearity in the
causal modules (Hoyer et al., 2009; Zhang & Hyvirinen,
2009).

Most real-life causal systems con- > XR
tain feedback loops, since feedback l \\
is generally required to stabilize the ; X X
system and improve performance in \ 1\‘ fK/
the presence of noise. Hence, the

causal directed graph (DG) corre-

sponding to such systems will be Figure 1.

cyclic (Spirtes, 1995; Hyttinen et al.,

2012). However, there are relatively few works on learn-
ing structures that contain cycles. In many state-of-the-art
causal models, not only is feedback ignored, it is also explic-
itly assumed that there are no cycles passing information
among the considered quantities. Note that ignoring cycles
in structure learning can be very consequential. For instance,
in Figure 1, if one uses a conditional independence-based
learning method designed for DAGs such as the PC algo-
rithm (Spirtes et al., 2000), in the absence of the dashed
feedback loop the skeleton will be estimated correctly on
the population dataset and the directions for all edges into
X can be determined. However, in the presence of the
feedback loop, the output is a complete directed graph since
no two variables will be independent conditioned on any
subset of the rest of the variables.

The lack of attention to cyclic structures in the literature
is primarily due to the simplicity of working with acyclic
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models (see (Spirtes, 1995)) and the fact that in contrast to
DAGs, there exists no generally accepted characterization
of statistical equivalence among cyclic structures in the lit-
erature. The main method for defining equivalence among
DAG:s is based on the conditional independence (CI) rela-
tionships in the distributions that they imply. That is, two
DAGs are equivalent if and only if they imply the same CI
relations. CI relationships can be seen from statistical data,
and the CI-based equivalence characterization for DAGs is
attractive because CI relationships contain all the informa-
tion in the distribution that can be used for structure learning
under the assumption of causal sufficiency. However, when
causal sufficiency is violated or cycles are allowed in the
structure, conditional independency may not reflect all the
information in the distribution that can be used to identify
the underlying structure. That is, the joint distribution may
contain information that can be used to distinguish among
the members of a CI-based equivalence class, which is also
known as a Markov equivalence class. This means that it
is possible for two graphs to be distinguishable from ob-
servational data even though they are in the same Markov
equivalence class. For more details, see (Lacerda et al.,
2008) for the case of the violation of acyclicity and (Tian
& Pearl, 2002; Shpitser et al., 2014) for the case of the
violation of causal sufficiency.

With the goal of bridging the gap between cyclic and acyclic
DGs, in this paper we present a general characterization
of equivalence for linear Gaussian DGs.! In the case of
DAGs, our approach provides a novel alternative to the
customary tests for Markov equivalence. The proposed
distribution equivalence characterization (Theorems 1 and
2) not only is capable of characterizing equivalence beyond
conditional independencies, but also provides a simpler and
more concise evaluation approach compared to (Richardson,
1996b). We summarize our contributions as follows.

e We present a general, unified notion of equivalence
based on the set of distributions that the directed graphs
are able to generate (Section 2). In our proposed defi-
nition of equivalence, two structures are equivalent if
they can generate the same set of data distributions.

e We propose an algebraic and graphical characteriza-
tion of the equivalence of two DGs, be they cyclic or
acyclic, based on the so-called Givens rotations (Sec-
tions 3 and 4).

e We also propose a weaker notion of equivalence called
quasi-equivalence, which we show is the extent of iden-
tifiability from observational data (Section 5).

"Note that for non-linear cyclic SEMs, even the Markov prop-
erty does not necessarily hold (Spirtes, 1995; Pearl & Dechter,
1996; Neal, 2000), and hence, it is not clear if one can make gen-
eral statements about the equivalence of structures regardless of
the involved equations.

e We propose a score-based method for structure learn-
ing from observational data with local search. We
show that our score asymptotically achieves the
extent of identifiability (Section 5). To the best
of our knowledge, this is the first local search
method capable of learning structures with cy-
cles. The implementation is publicly available at
https://github.com/syanga/dglearn.

1.1. Related Work

Richardson (1996a;b) proposed graphical constraints neces-
sary and sufficient for Markov equivalence for general cyclic
DGs and proposed a constraint-based algorithm for learning
cyclic DGs. That algorithm was later extended to handle
latent confounders and selection bias (Strobl, 2019). Hyt-
tinen et al. (2013; 2014) also focused on structure learning
based on CI relationships for possibly cyclic and causally
insufficient data gathered from multiple domains that may
contain conflicting CI information. They proposed an ap-
proach based on an SAT or ASP solver. Due to generality of
their setup, the run time of this approach can be restricting.
A similar approach was proposed in (Forré & Mooij, 2018)
for the case of nonlinear functional relationships with an
extended notion of graphical separation called o-separation.
Also, Hyttinen et al. (2012) provided an algorithm for learn-
ing linear models with cycles and confounders that deals
with perfect interventions. As mentioned earlier, having the
assumption of non-Gaussian exogenous noises and specific
types of non-linearity may lead to unique identifiability in
DAGs. This idea was also investigated for cyclic DGs. Lac-
erda et al. (2008) proposed a method for learning DGs based
on the ICA approach for linear systems with non-Gaussian
exogenous noises, and Mooij et al. (2011) investigated the
case of nonlinear causal mechanisms with additive noise.

To the best of our knowledge, there exists no work on learn-
ing cyclic linear Gaussian models which utilizes the obser-
vational joint distribution itself rather than CI relationships
in the distribution.

2. Distribution Equivalence

We consider a linear structural causal model over p ob-
servable variables {X;}’_,, with exogenous Gaussian
noise. For ¢ € [p], variable X; is generated as X; =

?:1 B;;X; + Nj, in which N; is the exogenous noise
corresponding to variable X;. We assume that B, ; = 0, for
all i € [p]. Variable X is a direct cause of X if B;; # 0.
We represent the causal structure among the variables with a
DG G = (V(G),E(G)),inwhich X; — X, € Gif X;isa
direct cause of X;. Let X := [X; - -+ X,] . The model can
be represented in matrix form as X = BT X + N, where
Bis ap x p weighted adjacency matrix of G with B ; as
its (4,4)-th entry and N = [Ny --- N,]". Elements of N
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are assumed to be jointly Gaussian and independent. Since
we can always center the data, without loss of generality,
we assume that N, and hence, X is zero-mean. Therefore,
X ~ N(0,%), where ¥ is the covariance matrix of the joint
Gaussian distribution on X, and suffices to describe the
distribution of X. We assume that X is always invertible
(the Lebesgue measure of non-invertible matrices is zero).
Therefore, equivalently the precision matrix © = ¥~ con-
tains all the information regarding the distribution of X. ©
can be written as

O=I-BQ'(I-B), (1)
where Q is a p x p diagonal matrix with Q;; = o7
Var(N;). In the sequel, we use the terms precision matrix
and distribution interchangeably.

The most common notion of equivalence for DGs in the
literature is Markov equivalence (also called independence
equivalence) defined as follows:

Definition 1 (Markov Equivalence). Let Z(G) denote the
set of all conditional d-separations® implied by the DG G.
DGs Gy and G5 are Markov equivalent if Z(G1) = Z(G2).

When cycles are permitted, defining equivalence of DGs
based on CI relations that they represent is not suitable, as CI
relations do not reflect all the information in the distribution
that can be used for identification of the underlying structure;
e.g., see (Lacerda et al., 2008). That is, there exist DGs
which can be distinguished using observational data with
probability one despite representing the same CI relations.
We define the notion of equivalence based on the set of
distributions which can be generated by a structure:

Definition 2 (Distribution Set). The distribution set of struc-
ture G, denoted by ©(Q), is defined as

0(G)={0:0 =1 -B)Q I -B)", forany (B,Q)
s.t. Q € diag™ and supp(B) C supp(Bg)},

where diag™ is the set of diagonal matrices with positive
diagonal entries, B¢ is the binary adjacency matrix of G,

and supp(B) = {(i, j) : Bij = 0}.

O(@G) is the set of all precision matrices (equivalently, dis-
tributions) that can be generated by G for different choices
of exogenous noise variances and edge weights in G.

Definition 3 (Distribution Equivalence). DGs G and G4
are distribution equivalent, or for short, equivalent, denoted
by G1 = G, if ©(G1) = O(G).

It is important to note that for DG G and distribution ©,
having © € ©(G) does not imply that all the constraints
of ©, such as its conditional independencies, can be read

2See (Pearl, 2009) for the definition of d-separation.

off of G. For instance, a complete DAG does not represent
any conditional d-separations, yet all distributions are con-
tained in its distribution set. This is due to the fact that the
parameters in B can be designed to represent certain extra
constraints in the generated distribution.

As mentioned earlier, we can have a pair of DGs which
are distinguishable using observational data despite having
the same conditional d-separations. This is not the case
for DAGs. In fact, restricting the space of DGs to DAGs,
Definitions 3 and 1 are equivalent.

Proposition 1. Two DAGs G1 and G4 are equivalent if and
only if they are Markov equivalent.

Therefore, one does not lose any information by caring
only about Markov equivalence when dealing with acyclic
structures. All proofs are provided in the Supplementary
Materials.

For general DGs, the graphical test for Markov equivalence
is known to be significantly more complex (Richardson,
1996b) than the test for DAGs (Verma & Pearl, 1991). There
are currently no known graphical conditions for distribution
equivalence. This is the goal of Section 4.

3. Characterizing Equivalence

In order to determine whether DGs G; and G5 are equiva-
lent, a baseline equivalence test is as follows: We consider a
distribution © € ©((G1) which results from a certain choice
of parameters of (G; in expression (1), i.e., a certain choice
of exogenous noise variances and edge weights. We then
check whether there exists a choice of parameters for which
G5 generates ©. We then repeat the same procedure for G,
considering G5 as the original generator. More specifically,
for DG G, let Q; = (I — B)Q~2 for any choice of B such
that supp(B) C supp(Bg,) for i € {1,2}. For any choice
of parameters of (3, that results in distribution © = Q,Q7 ,
we check if Q2Q5 = O has real-valued solution, and vice
versa. Although this baseline equivalence test provides a
systematic approach, it is tedious in many cases to check
for the existence of a solution. In the following, we propose
an alternative equivalence test based on rotations of ().

Let v; be the i-th row of matrix Q. Therefore, © = QQ " is
the Gramian matrix of the set of vectors {vy, - --v,}. The
set of generating vectors of a Gramian matrix can be deter-
mined up to isometry. That is, given Q1 Q] = ©, we have
Q2Q, = O if and only if Q2 = QU for some orthogonal
transformation U. Therefore, Q1 should be transformable to
()2 by arotation or an improper rotation (a rotation followed
by a reflection).

In our problem of interest, for any parameterization of ()4
(resp. (Q2) it is necessary to check if there exists an orthogo-
nal transformation of @1 (resp. (J2) which can be generated
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for some parameterization of ()5 (resp. @1). Therefore, only
the support of the matrix before and after the orthogonal
transformation matters. Hence, we only need to consider
rotation transformations. This can be formalized as follows:
Let Q¢ be Bg with 1s on its diagonal, i.e. Q¢ := I + Bg.
This is the binary matrix that for all choices of parameters
B and Q, supp(Q) C supp(Qc).

Proposition 2. G = G4 if and only if for any choice of
Q1. there exists rotation U such that supp(Q,U™M)) C
supp(Qc.), and for any choice of Qs, there exists rotation
U such that supp(Q-UP)) C supp(Qg, ).

To test the existence of a rotation required in Proposition 2,
we propose utilizing a sequence of a special type of planar
rotations called Givens rotations (Golub & Van Loan, 2012).
Definition 4 (Givens rotation). A Givens rotation is a ro-
tation in the plane spanned by two coordinate axes. For
a O-radian rotation in the (j, k) plane, the entries of the

Givens rotation matrix G(j,k,0) = [glpxp in RP are
gii = Lfori & {j,k}, gi; = cos(0) fori € {j, k}, and
Gk,; =—9j,k =—sin(0), and the rest of the entries are zero.

Any rotation in R? can be decomposed into a sequence
of Givens rotations. Hence, in Proposition 2, we need to
find a sequence of Givens matrices and define U to be their
product. The advantage of this approach is that the effect of
a Givens rotation is easy to track: The effect of G(j, k, 0)
on a row vector v is as follows.

for - vy vk ]G K 0) =

[vr -+ cos(@)vj+sin(@)vg -+ —sin(0)v;+cos(O)vg -+ vp).
@)

3.1. Support Rotation

As previously mentioned, since all choices of parameters
in the structure need to be considered, it is necessary to
determine the existence of a rotation that maps one support
to another. We define support matrix and support rotation
as follows.

Definition 5 (Support matrix). For any matrix Q, its sup-
port matrix is a binary matrix £ of the same size with entries
in {0, x}, where §; j = X if Q; ; = 0and & ; = 0 other-
wise. For directed graph G, we define its support matrix as
support matrix of Q¢.

Givens rotations can be used to introduce zeros in a matrix,
and hence, change its support. Consider input matrix Q).
Using expression (2), for any i, j € [p], Q; ; can be set to
zero using a Givens rotation in the (j, k) plane with angle
0 = tan='(—Q; ;/Qir). When zeroing @); ;, there may
exist an index [ such that Q; ; or Q; 5, will also become zero.
However, since we consider all parameterizations of ), we
cannot take advantage of such accidental zeroings.

Definition 6 (Support Rotation). The support rotation

A(i, j, k) is a transformation that takes a support ma-
trix £ as the input and sets & ; to zero using a

® ~

X X 0 X
xX1A(1,31) [0 x 0 x
0 X X X 0
X X 0 X X

X X X X

Figure §. ox (Case 20Prdp.| 3). Ele-
ment &} (e M blug. X
X 0 0 x

Givens rotation in the (j, k) plane. The output is the
support matrix of QG(j, k,tan"1(—=Q; ;/Qi x)), where
Q € argmaxq |supp(Q'G(j, k, tan™' (=Q; ;/Q; 1))
such that the support matrix of Q' is & Note that
G(j, k,tan~"(=Qj;/Q} ) is the Givens rotation in the
(j, k) plane which zeros Q; ;.

Note that due to (2), A(4, j, k) only affects the j-th and k-th
columns of the input. The general effect of support rotation
A(i, j, k) is described in the following proposition.

Proposition 3. Support rotation A(i, j, k) can have three
possible effects on support matrix &:

1. If& ; =0, A(4, j, k) has no effect.

2.If&; = xand &, = X, A(i,j, k) makes & ; = 0,
and for any | € [p] \ {i} such that at least one of §; ;
and & 1 is X, A(i, 7, k) makes & j = X and &), = X.
This is obtained by an acute rotation.

3. If& ;= xand &, = 0, A(i, j, k) switches columns
j and k of &. This is obtained by a /2 rotation.

Figure 2 visualizes an example of a support rotation. Ob-
serve that the following four cases partition all the effects
that can be obtained from a support rotation A(i, j, k).

e Reduction. If fi,j = fi,k = X and &7]* = §l7k for all
l € [p] \ {i}. then only &; ; becomes zero.

e Reversible acute rotation. If ¢; ; = &, = x and
there exists a row 4’ such that the j-th and k-th columns
differ only in that row, then §; ; becomes zero and both
&5 and & 1, become X.

o Irreversible acute rotation. If §; ; = &, = X and
the j-th and k-th columns differ in at least two rows,
then &; ; becomes zero and all entries on the j-th and
k-th columns become x on the rows on which they
differed.

e Column swap. If §; ; = x and &; ;, = 0, then columns
7 and k are swapped.

Note that if £ is transformed to £’ via a reversible acute
rotation A(%, j, k), and & ; = 0, then £’ can be mapped
back to & via A(i’, j, k), hence the name reversible.
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X, T \Xl X4/ T \Xl
N Xs/ Xs/
G, G,

Figure 3. Example related to Proposition 4.

3.2. Characterizing Equivalence via Support Rotations

We give the following necessary and sufficient condition
for distribution equivalence of two structures using the in-
troduced support operations. We show that irreversible
acute rotations are not needed for checking equivalence.
Here, for two support matrices £ and &', we say £ C ¢ if

supp(§) < supp(&’).

Theorem 1. Let &1 and &5 be the support matrices of DGs
G1 and G, respectively. G is distribution equivalent to G2
if and only if there exists a sequence of reductions, reversible
acute rotations, and column swaps that maps &, to a subset
of &2, and a sequence that maps &5 to a subset of &;.

Theorem 1 converts the problem of determining the equiv-
alence of two structures into a search problem for two se-
quences of support rotations. We propose to use a depth-first
search algorithm that performs all column swaps at the end
of the sequences. Due to space constraints, the pseudo-code
is presented in the Supplementary Materials.

The following result is a nontrivial application of Theorem
1 regarding reversing cycles in DGs.

Proposition 4 (Direction of Cycles). Suppose structure G4
contains a directed cycle C. Let G2 be a structure that
differs from G1 in two ways. (1) The direction of cycle C
is reversed and (2) any variable pointing to X; € C in G
via an edge which is not part of C' is, in G2, pointing to the
preceder of X; in C in G1. In this case, G is distribution
equivalent to Go. (See Figure 3 for an example.)

Richardson (1996b) presented a result similar to Proposition
4 for the case of using CI relationships in the data and
concluded that “it is impossible to orient a cycle merely
using CI information.” Proposition 4 extends that result
by concluding that it is impossible to orient a cycle merely
using observational data.

The following proposition provides a necessary and suffi-
cient condition for equivalence for a specific class of DGs.

Proposition 5. Consider DGs G, and G2 with support
matrices &1 and &o, respectively. If every pair of columns of
&, differ in more than one entry, then G1 = G+ if and only
if the columns of &5 are a permutation of columns of &;.

Example 1. In Figure 4, (a) G1 = Gs, (b) G1 # G3, and
(c) Gy = Gy

\/\/\

X1 —>X; Xl\_/v 2 X1<—X; X1\/1
Gy G, Gs Gy

Figure 4. DGs related to Example 1.

(a) shows that unlike DAGs, equivalent DGs do not need

to have the same skeleton or the same v-structures. To see
1 = Ga, we note that

X X X x x 0 x x 0
&1=10 x 0| A(1,3,1) |0 x 0| A(3,1,2) |x x 0| Cé,.
0 X x| 777 |{x x x| T7T7V7/7/7/77]0 x x
[x x 0] [x x 0] [x x x]
o= |x x 0| A(2,1,2) |0 x O A(3,1,3) |0 x 0| C¢&;.
0 X x| 7777 7 |x x x|/ X X

(b) follows from Proposition 5 since each pair of columns of
&3 differ in more than one entry. For (c), we already have
& C &4. For the other direction,

X X X X X X X X X
=[x x 0] A(2,1,2) |0 x 0| A(3,1,3) |0 x 0| Ce.
0 X x| 77 7 |{x x x| 7/ ]0 x x

As seen in Example 1, structures GG; and G4 in Figure
4 are distribution equivalent. Therefore, the extra edge
X5 — Xj in G4 does not enable this structure to generate
any additional distributions. In this case, we say structure
(4 is reducible. This idea is formalized as follows.

Definition 7 (Reducibility). DG G is reducible if there ex-
ists G’ such that G = G' and E(G') C E(G). In this
case, we say edges in E(G) \ E(G") are reducible, and G
is reducible to G'.

Proposition 6. DG G with support matrix £ is reducible
if and only if there exists a sequence of reversible acute
rotations that enables us to apply a reduction to &.

Proposition 6 implies the following necessary condition for
reducibility.

Proposition 7. A DG with no 2-cycles is irreducible.

A 2-cycle is a cycle over only two variables, such as the
cycle over X7 and X5 in G5 in Figure 4. Propositions 6
and 7 lead to the following corollary regarding equivalence
for DAGs, which bridges our proposed approach with the
classic characterization for equivalence of DAGs.

Corollary 1. DAGs G and G5 with support matrices &,
and & are equivalent if and only if there exists a sequence
of reversible acute rotations and column swaps that maps
&1 to a subset of &2, and one that maps &5 to a subset of &7.
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/,Xs\ X3\ /X3\ ‘//VXS\ ‘//7X3\

Gl: Xl XZ GZ: Xl\l XZ G3: Xl\ 64: X1 XZ GS: X1 Xz
LN AT N, P AN
RN 2N /XB\ AN AN

G6: Xl X2 G7: Xl X2 Ggl X1 T Gg: X1 Xz Glo: X1 X2
\X4-/ \X4,/ X4_/ \X4/

Figure 5. Elements of a distribution equivalence class.

Example 2. We demonstrate our approach on a familiar
equivalence example on DAGs: Let G1 : X1 — X5 — X3,

G2 : X4 <—X26X3,andG3:X1 — X9 +— X3.
(a) G1 = Ga. (b) Gh £ Ga.
To see G1 = G4, we note that
X X 0 x 0 0 x 0 0
&1 = |:0 X ><:| A(1,2,1) |:>< X ><:| A(2,3,2) |:>< X O] C &.
00 x| 70 0 x| 7|0 x x
x 0 0 x 0 0 X x 0
o = {x X O:| A(3,2,3) {x X x} A(2,1,2) |:0 X ><:| C &
0 x x| 77100 x| 7|00 x

For the second part, we note that {3 has two columns with
two zeros, while &1 has only one column with two zeros.
Therefore, reversible acute rotations and column swaps can-
not map & to a subset of 3. Therefore G1 % G3.

4. Graphical Characterization of Equivalence

In this section, we present a graphical counterpart to Theo-
rem 1 by providing graphical counterparts to the rotations
required by that Theorem.

Definition 8. For vertices X, and Xs, let Py := Pa(X;) U
{X1} and Py := Pa(X5)U{ X5}, where Pa(X) denotes the
set of parents of vertex X. X1 and X are parent reducible if
Py = P, and parent exchangeable if |PyAPs| = 1, where
A is the symmetric difference operator, which identifies
elements which are only in one of the sets.

The three rotations in Theorem 1 lead to the following graph-
ical operations:

o Parent reduction. If X; and X, are parent reducible,
any support rotation on columns &. ; and &. , which ze-
ros a non-zero entry on those columns except &; ; and
&k, Temoves the parent from X; or X, corresponding
to the zeroed entry. We call this edge removal a par-
ent reduction. The support rotation in this case is of
reduction rotation type.

Parent exchange. If X; and X, are parent exchange-
able, by definition there exists X; such that P;A Py, =

{X;}. In this case, any support rotation on columns
&.j and &, which zeros a non-zero entry on those
columns except &;,; and &, removes the parent from
X or X}, corresponding to the zeroed entry. Addition-
ally, the missing edge from X; to X; or X}, is added.
We call this a parent exchange. The support rotation in
this case is of column swap or reversible acute rotation

type.

Cycle reversion. A cycle reversion swaps the column
of each member of a cycle C' with the column corre-
sponding to its preceder in the cycle. This reverses the
direction of the cycle C' and changes any edge outside
of C' connecting to an X; € C in the original DG to
point instead to the preceder of X; in C'.

Note that in the graphical operations above, we exclude
support rotations that lead to zeroing a diagonal entry, since
they do not have a graphical representation (by Def. 5).

Equipped with the graphical operations, we present a graph-
ical counterpart to Theorem 1.

Theorem 2. G is distribution equivalent to G if and only
if there exists a sequence of parent reductions, parent ex-
changes, and cycle reversions that maps G to a subgraph
of G, and a sequence that maps G to a subgraph of G1.

Example 3. Figure 5 shows the elements of a distribution
equivalence class. Suppose G is the original structure.
Cycle reversion on the cycle (Xo, X4, X3, Xo) results in G,
cycle reversion on the cycle (X1, X3, Xo, X4, X1) results
in G's, parent exchange A(4,1,3) results in G4, and parent
exchange A(1,3,1) results in Gs.

Remark 1. Given observational data from any of the struc-
tures in Figure 5, CI-based structure learning methods such
as CCD (Richardson, 1996a) may output a structure (for
example G1 without edges X4 — X1) which is not distribu-
tion equivalent to the ground truth. This can be prevented by
leveraging other statistical information in the distribution
beyond CI relationships.

We have the following corollary regarding equivalence for
DAGs. The reasoning is the same as in Corollary 1.
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Corollary 2. DAGs G and G4 are equivalent if and only
if there exists a sequence of parent exchanges that maps G
to Go, and one that maps G to G1.

5. Learning Directed Graphs from Data

Structure G imposes constraints on the entries of precision
matrix ©. We will refer to such constraints as the distribu-
tional constraints of G. Every distribution in ©(G) should
satisfy the distributional constraints of GG. Clearly, two DGs
are distribution equivalent if and only if they have the same
distributional constraints. We call a distributional constraint
a hard constraint if the set of the values satisfying that
constraint is Lebesgue measure zero over the space of the
parameters involved in the constraint. For instance in DAGs,
if X; and X; are non-adjacent and have no common chil-
dren, we have the hard constraint ©; ; = 0. We denote the
set of hard constraints of a DG G by H(G).

Recall that distribution equivalence of two structures (1 and
G4 implies that any distribution that can be generated by
(G1 can also be generated by G5, and vice versa. Therefore,
no distribution can help us distinguish between G and Gs.
However, in practice we usually have access to only one
distribution which is generated from a ground truth structure,
and it may be the case that this distribution can be generated
by another structure which is not equivalent to the ground
truth. Therefore, finding the distribution equivalence class of
the ground truth structure from one distribution is in general
not possible, and extra considerations are required for the
problem to be well defined. Below we will accordingly
provide a weaker notion of equivalence and show that the
ground truth can be recovered up to this equivalence.

The aforementioned issue also arises when learning DAGs
and considering Markov equivalence. The most common ap-
proach to dealing with this issue in the literature is to assume
that the distribution is faithful to the ground truth structure.
This requires a one-to-one correspondence between the con-
ditional d-separations of the ground truth structure and the
CI relationships in the distribution (Spirtes et al., 2000).
This is a sensible assumption from the perspective that the
Lebesgue measure of the parameters which lead to extra Cls
in the generated distribution is zero (Meek, 2013).

The case of general DGs is more complex since they can
require other distributional constraints besides Cls. In partic-
ular, we may have distributional constraints other than hard
constraints due to cycles. Hence, in this case the Lebesgue
measure of the parameters which lead to extra distributional
constraints in the generated distribution is not necessarily
zero. This motivates the following weaker notion of equiva-
lence for structure learning from observational data.

Definition 9 (Quasi Equivalence). Let 0 be the set of lin-
early independent parameters needed to parameterize any

distribution © € ©(G). For two DGs Gy and G, let
1 be the Lebesgue measure defined over 0, U 0g,. G1
and Gy are quasi equivalent, denoted by G1 = G, if
M(@Gl n 9@2) =0.

Roughly speaking, two DGs are quasi equivalent if the set
of distributions that they can both generate has a non-zero
Lebesgue measure. Note that Definition 9 implies that if
DGs (1 and G4 are quasi equivalent they share the same
hard constraints. We have the following assumption for
structure learning, which is a generalization of faithfulness:

Definition 10 (Generalized faithfulness). A distribution ©
is generalized faithful (g-faithful) to structure G if © satis-
fies a hard constraint k if and only if k € H(G).

Assumption 1. The generated distribution is g-faithful to
the ground truth structure G*, and for irreducible DG G*,
if there exists a DG G such that H(G) C H(G*) and
|E(G)| < |E(G*)|, then H(G) = H(G™).

The following justifies the first part of Assumption 1:

Proposition 8. With respect to Lebesgue measure over 6,
the set of distributions not g-faithful to G is measure zero.

The second part of Assumption 1 requires that if the ground
truth structure G* has no reducible edges and there exists
another DG G that has only relaxed some of the hard con-
straints of G*, then G must have more edges than G*. This
is clearly the case for DAGs.

Proposition 9. Under Assumption 1, quasi equivalence is
the extent of identifiability from observational data.

5.1. Score-Based Structure Learning

We propose a score-based method for structure learning
based on local search. Score-based methods are well-
established in the literature for learning DAGs. The pre-
dominant approach is to maximize the regularized likeli-
hood of the data by performing a greedy search over all
DAGs (Heckerman et al., 1995), equivalence classes of
DAGs (Chickering, 2002), or permutations of the variables
(Teyssier & Koller, 2012; Solus et al., 2017). Also, works
such as (Van de Geer & Biihlmann, 2013; Fu & Zhou, 2013;
Aragam & Zhou, 2015; Raskutti & Uhler, 2018; Zheng et al.,
2018) specifically consider the problem of learning a linear
Gaussian acyclic model via penalized parameter estimation.

To the best of our knowledge, there are no existing score-
based structure learning approaches for the cyclic linear
Gaussian model. In light of our theory, we propose to use
the ¢y-regularized negative log likelihood function as the
score, which is a standard choice of the score in the literature
of learning DAGs, and show that it is able to recover the
quasi equivalence class of the underlying DG. Let X be the
n x p data matrix. The ¢y-regularized ML estimator solves
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the following unconstrained optimization problem:

min min

L(X:B,Q)+ M|Blo, 3
G (B,Q):supp(B)Csupp(Bg) ( ) || HO

where £(X: B, Q) =—nlog(det(I-B))+>_¢_, %log(c?)+
ﬁ |X. ;—XB. ;|3 is the negative log-likelihood of the data,
[Bllo :=>_; ; La0(Bi,;), and similar to the BIC score, we
set A = 0.5logn.

Remark 2. The estimator in (3) will never output a re-
ducible DG, since removing redundant edges improves the
score. This is in line with the minimality assumption in the
literature for DAGs (Pearl, 1988; Raskutti & Uhler, 2018).

Theorem 3. Under Assumption 1, the global minimizer of
(3) with A = 0.5log n outputs G = G* asymptotically.

Hence, by Prop. 9 and Theorem 3, the score (3) is consistent,
i.e., it asymptotically achieves the extent of identifiability.

5.1.1. STRUCTURE SEARCH

We solve the outer optimization problem in (3) via local
search over the structures. We choose the search space
to contain all DGs and use the standard operators (i.e., lo-
cal changes) of edge addition, deletion, and reversal. See
(Koller & Friedman, 2009) for a discussion regarding the
necessity of these operators. Two main issues arise when
cycles are allowed in the structure:

Virtual edges. There exists a virtual edge between non-
adjacent vertices X; and X if they have a common child
X}, which is an ancestor of X; or X; (Richardson, 1996b).
If a greedy search algorithm does not find X, and X; (or
X;) to be on a cycle, it can significantly increase the likeli-
hood by adding an edge at the location of the virtual edge.
The algorithm would therefore be trapped in a local opti-
mum with one more edge than the ground truth. To resolve
this issue, we propose adding the following fourth search
operator: Suppose we have a triangle over three variables
X;, X; and Xy, and there exists an additional sequence
of edges connecting X; and X},. In one atomic move, we
perform a series of edge reversals to form a cycle containing
X; — X, along the sequence, delete the edge connecting
X; to X;, and orient the edge X; — Xj,. If the likelihood
is unchanged, the edge deletion improves the score. In the
case that the oriented cycle is of length two, additional con-
siderations are needed; see the Supplementary Materials for
details as well as simulations justifying this fourth operator.

Score decomposability. When the DG is acyclic, the dis-
tribution generated by a linear Gaussian structural equation
model satisfies the local Markov property. This implies
that the joint distribution can be factorized into the product
of the distributions of the variables conditioned on their
parents. The benefit of this factorization is that the compu-
tational complexity of evaluating the effect of operators can

be dramatically reduced since a local change in the structure
does not change the score of other parts of the DAG. In
contrast, for the case of cyclic DGs the distribution does
not necessarily satisfy the local Markov property. However,
the distribution still satisfies the global Markov property
(Spirtes, 1995). Therefore, our search procedure factorizes
the joint distribution into the product of conditional distribu-
tions. Each of these distributions is over the variables in a
maximal strongly connected subgraph (MSCS), conditioned
on their parents outside of the MSCS. After applying an op-
eration, the likelihoods of all involved MSCSs are updated;
see the Supplementary Materials for additional details.

The implementation of the approach is publicly available at
https://github.com/syanga/dglearn.

6. Experiments

We generated 100 random ground truth DGs of orders
p € {5,20,50}, all with maximum degree 4. The DGs
are constrained to have maximum cycle lengths 5, 5, and
10, respectively. For each structure, we sampled the edge
weights uniformly from B; ; € [—0.8, —0.2]U[0.2,0.8] and
the exogenous noise variances uniformly from o2 € [1, 3] to
generate the data matrix X of size 10* x p. We constrained
the ground truth B matrices to be stable via an accept-reject
approach; the modulus of all eigenvalues of B should be
strictly less than one. The stability of a model guarantees
that the effects of one-time noise dissipate. Our search algo-
rithms were also constrained to only output stable structures.
We used the following standard local search methods: 1.
Hill climbing 2. Tabu search (Koller & Friedman, 2009).

Evaluating the performance of a learning approach is not
trivial for the case of general DGs. As seen before, equiva-
lent cyclic DGs may have very different skeletons. Hence,
conventional evaluation metrics such as structural Hamming
distance (SHD) with the ground truth DG or comparison of
the learned and ground truth adjacency matrices cannot be
used. We propose the following evaluation methods:

1. SHD Evaluation. We enumerate the set of all DGs equiv-
alent to the ground truth DG using Algorithm 1 in the Sup-
plementary Materials to form the distribution equivalence
class of the ground truth. We then compute the smallest
SHD between the algorithm’s output DG and the members
of the equivalence class as a measure of the performance.

2. Multi-Domain Evaluation. Suppose the input data is
sampled from a distribution © generated by ground truth DG
G*, and let (¢ denote an algorithm’s output structure. Due to
finite sample size and the possible violation of Assumption
1, G may be able to maximize the likelihood yet not be
(quasi) equivalent to G*. In general, we expect such an
output to be compatible with only the given data and not
with data sampled from other distributions generated by G*.
We therefore propose the following evaluation approach.
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Figure 6. Results for p = 5, 20, 50, top to bottom. Left column:
multi-domain evaluation. The percentage of outputs with success
rate larger than a certain value is plotted vs. success percentages;
e.g., for p = 20, 80% of the outputs could generate more than
25% of the distributions generated by their corresponding ground
truth. Right column: SHD evaluation. The percentage of outputs
with SHD less than or equal to a certain value is plotted vs. SHD.

1. For ground truth structure G*, generate d distributions
{O1, ...,04} by sampling edge weights and variances.

2. For each ©;, run the algorithm to obtain G‘i.

3. For each G;, optimize its edge weights and variances
to generate distributions {©; 1, ..., ©; 4} such that ©; ;
minimizes the KL-divergence to ©; € {01, ..., 04}

4. The success rate of G is the percentage of domains
for which the minimizing KL-divergence computed in
step 3 is below a threshold 7.

Since domain distributions are generated randomly, if the
success rate of output G is large, there is a non-negligible
subset of the distribution set of G* that G; can generate as
well. Hence, G; is quasi equivalent to G*. In our evalua-
tions, we used d = 50 and = p x 1073, We emphasize
that multi-domain data is only used for evaluation. In the
learning stage, only one distribution is used.

We cannot compare the performance of our approach with
the performance of methods based on CI relationships (such

PHC CA3/DG
ERC —> CAl
PRC Sub

Figure 7. Ground truth structure for the fMRI hippocampus
dataset.

as CCD), since those approaches return a PAG represent-
ing all Markov equivalent DGs, which usually represents
a much larger set of DGs than the distribution equivalence
class. We therefore only compared our approach with
an ¢;-regularized maximum likelihood estimator which
directly solves the optimization problem ming o £(X :
B, Q) + M| B||1, which does not need a separate structure
search. The results are given in Figure 6. The figure shows
that our proposed approach successfully finds DGs capable
of generating distributions generated by the ground truth
structure. While the SHD evaluation shows that the outputs
are not always distribution equivalent, the multi-domain
evaluation provides evidence that many are quasi equivalent
to the ground truth. We also evaluated the effect of sample
size on the performance in the Supplementary Materials.

6.1. fMRI hippocampus data

We considered the fMRI hippocampus dataset (Poldrack
et al., 2015), which contains signals from six separate brain
regions: perirhinal cortex (PRC), parahippocampal cortex
(PHC), entorhinal cortex (ERC), subiculum (Sub), CA1, and
CA3/Dentate Gyrus (CA3) in the resting state. We used the
anatomical connections (Bird & Burgess, 2008; Zhang et al.,
2017) as the ground truth, depicted in Figure 7. We applied
our proposed method on one of the domains in the dataset
and found that two out of eight structures equivalent to the
ground truth were (local) optima for the score even though
there is no evidence that the data are linear Gaussian.

7. Conclusion

We presented a general, unified notion of equivalence for
linear Gaussian DGs and proposed methods for characteriz-
ing the equivalence of two structures. We also proposed a
score-based structure learning approach that asymptotically
achieves the extent of identifiability. Our results are instru-
mental to the fields of causality and graphical models. From
the causality perspective, consider for example Figure 5.
Our results guarantee a direct causal effect between X5 and
X, and show that a direct causal effect does not necessarily
exist between X3 and X,4. From the graphical models per-
spective, our results provide the tools to handle distributions
that lack a DAG representation but can be modeled by a
cyclic DG. We hope that this work spurs further research in
the study of directed graphs.
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