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Abstract

We study the problem of making calibrated probabilistic forecasts for a binary sequence
generated by an adversarial nature. Following the seminal paper of Foster and Vohra
(1998), nature is often modeled as an adaptive adversary who sees all activity of the fore-
caster except the randomization that the forecaster may deploy. A number of papers
have proposed randomized forecasting strategies that achieve an ϵ-calibration error rate of
Op1{

?
T q, which we prove is tight in general. On the other hand, it is well known that it is

not possible to be calibrated without randomization, or if nature also sees the forecaster’s
randomization; in both cases the calibration error could be Ωp1q. Inspired by the equally
seminal works on the power of two choices and imprecise probability theory, we study a
small variant of the standard online calibration problem. The adversary gives the fore-
caster the option of making two nearby probabilistic forecasts, or equivalently an interval
forecast of small width, and the endpoint closest to the revealed outcome is used to judge
calibration. This power of two choices, or imprecise forecast, accords the forecaster with
significant power—we show that a faster ϵ-calibration rate of Op1{T q can be achieved even
without deploying any randomization.

1. Introduction

A number of machine learning and statistics applications rely on probabilistic predictions.
In economics, the influential discrete choice framework uses probabilistic modeling at its
core (McFadden, 1974). Spiegelhalter (1986) argued that when predictive models are used
in medicine for detecting disease, categorizing patient risk, and clinical trials, it is imper-
ative that they provide accurate probabilities, in order to appropriately guide downstream
decisions. Weather forecasters (and their audiences) would like to know the probability of
precipitation on a given day (Brier, 1950).

We study the problem of producing probabilistic forecasts for binary events, that are cal-
ibrated without any assumptions on the data-generating process. Informally, a forecaster is
calibrated if, on all the days that the forecaster produces a forecast pt that is approximately
equal to p P r0, 1s, the empirical average of the observations yt P t0, 1u is also approximately
equal to p, and this is true for every p P r0, 1s that is frequently close to a forecast (Dawid,
1982). We formalize this next.
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1.1. Calibration games and ϵ-calibration

Calibration-Game-I (classical)
(nature is an adaptive adversary)

At time t “ 1, 2, . . . ,

• Forecaster plays ut P ∆pr0, 1sq.

• Nature plays vt P ∆pt0, 1uq.

• Forecaster predicts pt „ ut.

• Nature reveals yt „ vt.

Calibration-Game-II (POTC)
(nature is an adaptive adversary,
forecaster has two nearby choices)

Fix ϵ ą 0. At time t “ 1, 2, . . . ,

• Forecaster plays pt0, pt1 P r0, 1s, such that
pt0 ď pt1 and |pt1 ´ pt0| ď 2ϵ.

• Nature reveals yt P t0, 1u.

• If yt “ 1, set pt “ pt1; else set pt “ pt0.

Calibration-Game-I models the problem as a game between a forecaster and nature.
The forecaster produces a randomized forecast ut P ∆pr0, 1sq, which is a distribution over
the space of forecasts r0, 1s. ∆pSq denotes the set of probability distributions over the set S
(in every case, S is a standard set like r0, 1s with a canonical σ-algebra). Nature observes ut
and responds with a Bernoulli distribution for the outcome vt P ∆pt0, 1uq “ r0, 1s. We abuse
notation slightly and use vt to denote both the Bernoulli distribution and its parameter in
r0, 1s. Then forecaster and nature draw their actual actions, the forecast pt „ ut and the
outcome yt „ vt, simultaneously. At time T ą 1, the prior activities put, vt, pt, ytq

T´1
t“1 are

known to both players. The goal of the forecaster is to appear calibrated, defined shortly.
Nature wishes to prevent the forecaster from appearing calibrated. Such a nature is typically
referred to as an adaptive adversary.

Even before defining calibration formally, we can see that randomization is essential for
the forecaster to demonstrate any semblance of being calibrated. If the forecaster is forced
to put all his mass on a single pt at each time (or equivalently if nature is an adaptive
offline adversary), nature can play vt “ yt “ 1tpt ď 0.5u to render the forecaster highly
miscalibrated (Oakes, 1985; Dawid, 1985).

In anticipation of a forthcoming definition of ϵ-calibration error (equation (1)), we note
that it will suffice for forecasters to only make discrete forecasts. Let ϵ ą 0 be a discretization
or tolerance level, which is a small constant such as 0.1 or 0.01 depending on the application.
For technical simplicity, we assume that ϵ “ 1{2m for some integer m ě 2. Consider the ϵ-
cover of r0, 1s given by the m intervals I1 “ r0, 1{mq, I2 “ r1{m, 2{mq, . . . , Im “ r1´1{m, 1s.
At time t, the forecaster makes a forecast on the ‘2ϵ-grid’ of the mid-points of these intervals:

pt P tM1 :“ 1{2m “ ϵ,M2 :“ 3{2m “ 3ϵ, . . . ,Mm :“ 1´ 1{2m “ 1´ ϵu.

Denote the total number of times the forecast is pt “ Mi until time T ě 1 as

NT
i :“ |tt ď T : pt “ Miu| ,

and the observed average of the yt’s when pt “ Mi as

pTi :“

#

1
NT

i

ř

tďT :pt“Mi
yt if NT

i ą 0,

Mi otherwise.
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Following Foster (1999), the (ℓ1-)calibration error at time T , CET , is defined as the weighted
sum of the prediction errors for each possible forecast:

CET :“
m
ÿ

i“1

NT
i

T
¨
∣∣Mi ´ pTi

∣∣ , or equivalently m
ÿ

i“1

∣∣∣∣∣ 1T
T

ÿ

t“1

1tpt “ MiupMi ´ ytq

∣∣∣∣∣ .
Finally, we define the ϵ-calibration error pϵ-CET q as the calibration error with a slack of ϵ:

ϵ-CET :“ maxpCET ´ ϵ, 0q. (1)

In Calibration-Game-I, the forecaster and nature are allowed to randomize, thus ϵ-CET is
a random quantity. A commonly studied object is its expected value. A forecaster is said
to be ϵ-calibrated if, for any strategy of nature, the forecaster satisfies

lim
TÑ8

E rϵ-CET s “ 0, or equivalently E rϵ-CET s “ oT p1q
loomoon

fpT q

. (2)

We are interested in the worst case value of E rϵ-CET s against an adversarial nature, denoted
as fpT q, henceforth called the ϵ-calibration rate or simply calibration rate. We show results
about the asymptotic dependence of fpT q as T Ñ 8, holding ϵ as a fixed problem parameter
on which f may depend arbitrarily.

1.2. Related work and our contributions

A number of papers have proposed ϵ-calibrated forecasting algorithms which guarantee
fpT q “ Op1{

?
T q—the first was the seminal work of Foster and Vohra (1998), followed by

a number of alternative proofs and generalizations of their result (Foster (1999), Fudenberg
and Levine (1999), Vovk et al. (2005), Mannor and Stoltz (2010, Section 4.1), Abernethy
et al. (2011, Theorem 22), Perchet (2015, Section 4.2)).

In Theorem 7, we show that the Op1{
?
T q rate achieved by these algorithms is tight.

There is a strategy for nature that ensures fpT q “ Ωp1{
?
T q. Our proof uses a non-

constructive lower bound for Blackwell approachability games (Mannor and Perchet, 2013).
Qiao and Valiant (2021) recently showed that the worst-case calibration error without

the ϵ-slack, E rCET s, is ΩpT
´0.472q. In contrast, we treat ϵ as a small constant fixed ahead

of time, and consider lower bounds on E rϵ-CET s. Neither goal subsumes the other, so our
lower bound complements theirs. In particular, observe that E rCET s “ ΩpT´1{2q can be
forced by nature by playing a non-adaptive Bernoulli strategy, drawing independently each
yt „ Bernoullippq for some p. This strategy seems insufficient for deriving a useful lower
bound on E rϵ-CET s. These comparisons are further discussed in Section 4.6.

Foster (1999) showed that calibration is a Blackwell approachability instance (see Sec-
tion 4.1), and while the rate fpT q “ Ωp1{

?
T q has not been formally established earlier (to

the best of our knowledge), it is the rate one expects from a general Blackwell approacha-
bility instance (Cesa-Bianchi and Lugosi, 2006, Remark 7.7). Instead, the community has
looked to establish positive results for alternative notions: calibration with more stringent
tests than ϵ-calibration (Perchet, 2015; Rakhlin et al., 2011), calibration where the output
space takes more than two values (Mannor and Stoltz, 2010), calibration with checking
rules (Lehrer, 2001; Sandroni et al., 2003; Vovk et al., 2005), weak calibration (Kakade and
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Foster, 2004), and smooth calibration (Foster and Hart, 2018). In particular, while no deter-
ministic forecaster playing Calibration-Game-I can be ϵ-calibrated, there exist deterministic
forecasters who are weakly/smoothly calibrated (Foster and Hart, 2018).

In our work, we take a slightly different approach from these papers. We retain the
classical definition of ϵ-calibration but change the calibration game. In Calibration-Game-
II, also called the Power-Of-Two-Choices (POTC) game, the forecaster reveals two forecasts
pt0, pt1 P r0, 1s, such that pt0 ď pt1 and |pt1 ´ pt0| ď 2ϵ. Since the earlier binning scheme
used a 2ϵ-grid, that is 1{m “ 2ϵ, this effectively allows the forecaster to choose a full bin
as their forecast (rather than its midpoint), or equivalently to choose two consecutive bin
midpoints. Thus there is no randomization, and nature knows the two forecasts. If nature
chooses to play yt “ 0, pt “ pt0 is used to judge the calibration of the forecaster, and if
nature chooses to play yt “ 1, pt “ pt1 is used. (One could say that the forecast closer to
reality is used for measuring calibration, or that the forecaster decides which one of the two
forecasts to use; these are all equivalent.) Obviously, without the restriction of pt0, pt1 being
2ϵ-close, the problem is trivial: the forecaster would predict pt0 “ 0 and pt1 “ 1 in each
round, and achieve zero error in every round. Requiring |pt1 ´ pt0| ď 2ϵ makes the problem
interesting. The POTC setup may appear surprising to some and we devote Section 2 to
motivating it.

The summary of our main result (Theorem 2) is as follows. In the POTC game, the
forecaster can ensure—deterministically—that

ϵ-CET “ Op1{T q. (3)

Compared to (2), there is no expectation operator anymore since the forecaster is deter-
ministic and nature being fully adaptively adversarial does not benefit from randomizing.

Our forecaster is a variant of Foster (1999). While Foster’s forecaster randomizes over
two nearby forecasts (making it almost deterministic in the sense of Foster and Hart (2021)),
our forecaster predicts both these values and is judged with respect to the better one (and
is actually, not almost, deterministic).

Remark 1 (Generalization from binary to bounded outputs) The POTC game can
be modified for bounded, instead of binary, outputs. That is, nature can play vt P r0, 1s and
calibration would be judged with respect to the average of the vt’s on the instances when
pt “ Mi. Note that this is not the same as nature playing yt „ Bernoullipvtq, since the
calibration loss (left-hand-side of (3)) is not linear in yt. With bounded outputs, the same
Op1{T q calibration rate can be achieved by a minor modification to our proposed forecasting
strategy; see Appendix C for more details. A similar remark holds for Calibration-Game-I
and the corresponding lower bound of Ωp1{

?
T q. This latter fact is evident without further

details since the lower bound can only increase if nature is given more flexibility.

Organization. Section 2 provides further context and motivation for the POTC game.
Section 3 presents our algorithm for the POTC game and proves the fast calibration rate
of Op1{T q for it (Theorem 2). Section 4 reviews the well-known equivalence between cal-
ibration and Blackwell’s approachability theorem (Blackwell, 1956), using which we prove
the slow calibration rate of Ωp1{

?
T q for Calibration-Game-I (Theorem 7). Most proofs are

presented alongside the results. Section 5 concludes with a discussion.
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2. Motivation for the POTC calibration game

Calibration-Game-II or the POTC game is motivated by two rich fields of literature: im-
precise probability and the power of two choices.

2.1. A practical perspective via imprecise probability

The reader may wonder what the practical usefulness of the POTC game is. Why would we
judge the forecaster in such a manner? The answer is that our earlier problem was phrased
in a fashion that makes the connection to the power of two choices transparent. But one
can also re-cast the problem in the language of imprecise probability. In this area, one is
typically not restricted to work with single, unique probability measures, but instead the
axioms of probability are relaxed, and added flexibility is provided in order to work with
upper and lower probability measures (Walley and Fine, 1982).

In the context of our problem, instead of saying that the probability of rain is 0.3,
a forecaster is allowed to say 0.3 ˘ ϵ. One may just say that the forecaster is slightly
uncertain and does not wish to commit to a point forecast, and indeed we may not force a
forecaster to announce a point forecast against their will. From a Bayesian or game-theoretic
perspective, we may say that the forecaster allows bets against their forecast, represented
as a contract which pays off yt, but the forecaster’s prices for buying and selling such a
contract are slightly different. From a practical perspective, this type of interval forecast
arguably has almost the same utility and interpretability to a layman as the corresponding
point forecast. The use of upper and lower forecasts (translated to prices or betting odds)
is standard in game-theoretic probability (Shafer and Vovk, 2019). Separately, the recent
work of de Cooman and De Bock (2022) establishes that randomness is inherently imprecise
in a formal sense, and provides a different justification for the use of interval forecasts for
binary sequences.

Remarkably, this small and seemingly insignificant change in reporting leads to a huge
change in our ability to achieve calibration. (This gain can be rather puzzling: we were
binning/gridding anyway, so why not report a full bin rather than its midpoint? How could
that possibly improve our calibration error?!) Of course, we must figure out how to judge
the quality of such an interval forecast: we must swap out 1tpt “ MiupMi ´ ytq in CET

for a generalized notion of error that dictates how far yt was from the forecasted interval
At :“ rpt0, pt1s. To do this, we use the distance from a point to a convex set: we replace
Mi with the projection of yt onto At, denoted projpyt, Atq. This is exactly what our POTC
version does, just expressed differently.

When we generalize the definition of calibration, it is notationally simpler to restrict the
forecasted interval endpoints to be the same m gridpoints, meaning that At “ rMi,Mi`1s

for some i ď m ´ 1 (rather than At “ Ii, the intervals whose midpoints are Mi). In this
case, we call a method that produces interval forecasts pItqtě1 as being ϵ-calibrated if:

max

˜

m
ÿ

i“1

∣∣∣∣∣ 1T
T

ÿ

t“1

1tprojpyt, Atq “ Miudistpyt, Atq

∣∣∣∣∣´ ϵ, 0

¸

“ op1q, (4)

where distpy,Aq :“ |y ´ projpy,Aq| is the distance of y to interval A. (When the interval
is a single point, we recover the original definition of calibration, but in this case we know
that randomization is necessary for ϵ-calibration.)
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Imprecise probability has also made an intriguing appearance in the simpler setting
commonly considered in machine learning, of achieving calibration in offline binary clas-
sification in the presence of i.i.d. data. This is a problem where theoretical progress has
been made on designing distribution-free algorithms that have calibration guarantees by
just assuming that the covariate-label pairs of data are i.i.d., while also performing well on
real data (Gupta et al., 2020; Gupta and Ramdas, 2021, 2022). Venn predictors are a class
of distribution-free algorithms that produce imprecise probability forecasts (Vovk et al.,
2003; Vovk and Petej, 2014). On observing the covariates of a new point, Venn predictors
output a particular interval of probabilities rp0, p1s for the unknown binary label. A strong,
but slightly odd, calibration property holds: the authors prove that pY (a random and
unknown prediction, since Y is unknown and random) achieves exact calibration in finite
samples. One can, in some sense, view our work as extending the use of such imprecise
interval forecasts to the online calibration setting with adversarial data.

2.2. The varied applications of the power of two choices

The power of two choices (POTC) refers to a remarkable result by Azar et al. (1994) for
the problem of load balancing. Suppose n balls are placed independently and uniformly
at random into n bins. It can be shown that with high probability, the maximum number
of balls in a bin (the maximum load) will be rΘplog nq. Consider a different setup where
the balls are placed sequentially, and for each ball, two bin indices are drawn uniformly at
random and offered to a load-balancer who gets to decide which of the two bins to place
the ball in. The load-balancer attempts to reduce the maximum load by following a natural
strategy: at each step, place the ball in the bin with lesser load. It turns out that with this
strategy the maximum load drops exponentially to rΘplog log nq.

The POTC result has led a number of applications. In a network where one of many
servers can fulfil a request, it is exponentially better to choose two servers (instead of one)
at random and allocate the server with fewer existing requests (Azar et al., 1994). Using
two hashes instead of one significantly reduces the load of a single hash bucket (Broder and
Mitzenmacher, 2001). In circuit routing, selecting one of two possible circuits provably leads
to decongestion (Cole et al., 1998). When allocating a task to one of many resources where
an intensive query needs to be made about the resource capacity, querying two resources is
often better than querying all resources, or querying a single resource (Azar et al., 1994).
Recently, Dwivedi et al. (2019) used the POTC to develop an online thinning algorithm
that produces low-discrepancy sequences on hypercubes, with applications to quasi Monte
Carlo integration. For further applications and a survey of mathematical techniques, we
refer the reader to the thesis of Mitzenmacher (1996), or the survey by Mitzenmacher et al.
(2001).

In this paper, we find yet another intriguing phenomenon involving the POTC, this time
in the context of calibration. We modify the classical setup of calibration (Calibration-
Game-I) to the POTC setup (Calibration-Game-II), by offering the forecaster two nearby
choices. We show that this change accords the forecaster with significant power, enabling
faster calibration, even without randomization.
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POTC-Cal: Algorithm for forecaster in Calibration-Game-II
(for notation, see Section 3 below)

• At time t “ 1, play pp10, p11q “ pM1,M1q. Thus p1 “ M1.

• At time t` 1 (t ě 1q, if

condition A: there exists an i P rms such that dti ď 0 and eti ď 0,

is satisfied, play pMi,Miq for any i that verifies condition A (that is, pt`1 “ Mi).
Otherwise,

condition B: there exists an i P rm´ 1s such that eti ą 0 and dti`1 ą 0,

must be satisfied (see Lemma 14). Play pMi,Mi`1q for any index i that verifies
condition B (that is, pt`1 “ Mi if yt`1 “ 0 and pt`1 “ Mi`1 if yt`1 “ 1).

3. Main results: algorithm and analysis

Consider the POTC game (Calibration-Game-II). Recall that the forecaster’s probabilities
correspond to the mid-points of the intervals I1 “ r0, 1{mq, . . . , Im “ r1´ 1{m, 1s, given by
M1 “ 1{2m, . . . ,Mm “ 1 ´ 1{2m. The forecaster can play either ppt0, pt1q “ pMi,Miq or
ppt0, pt1q “ pMi,Mi`1q for some i. We can also say that the forecaster predicts one of the
two intervals tMiu or rMi,Mi`1s respectively.

We introduce some notation to describe the algorithm. For i P rms :“ t1, 2, . . . ,mu and
t ě 1, define:

(left endpoint of interval i) li “ pi´ 1q{m,

(right endpoint of interval i) ri “ i{m,

(frequency of interval i) N t
i “ |t1tps “ Miu : s ď tu| ,

(observed average when Mi was forecasted) pti “

#

řt
s“1 ys1tps “ Miu{N

t
i if N t

i ą 0

Mi if N t
i “ 0,

(deficit) dti “ li ´ pti,

(excess) eti “ pti ´ ri.

The terminology ‘deficit’ alludes to the fact that if pti is smaller than desired (to the left of
li), then dti ą 0 (pti is ‘in deficit’). ‘Excess’ has the opposite interpretation.

3.1. Forecasting algorithm

The algorithm, presented on top of this page, is a variant of the one proposed by Foster
(1999). Foster’s forecaster isolates two relevant Mi’s and randomizes over them; we use
the same Mi’s to form the reported interval. At time t ` 1, if there is a forecast Mi that
is already ‘good’ in the sense that pti P rli, ris, the forecaster predicts Mi. Otherwise, the
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forecaster finds two consecutive values pMi,Mi`1q such that pti is in excess and pti`1 is in
deficit (such an i exists by Lemma 14, Appendix A). The forecaster plays pMi,Mi`1q. If
nature reveals yt`1 “ 0, then pt`1 “ Mi, and the excess of pti decreases. If nature reveals
yt`1 “ 1, then pt`1 “ Mi`1, and the deficit of pti`1 decreases.

3.2. Analysis of POTC-Cal

We now present our main result along with a short proof.

Theorem 2 POTC-Cal satisfies, at any time T ě 1, for any strategy of nature,

ϵ-CET ď m{T. (5)

Proof Consider any t ě 1. We write each of the m terms in the calibration error at time
t, CEt, as follows:∣∣∣∣∣1t

t
ÿ

s“1

1tps “ MiupMi ´ ysq

∣∣∣∣∣ “ N t
i

∣∣Mi ´ pti
∣∣

t
“

N t
i pϵ`maxpdti, e

t
iqq

t
.

Define E
piq
t :“ N t

i maxpdti, e
t
iq, and observe that

ϵ-CET “ max

˜

m
ÿ

i“1

NT
i ϵ` E

piq
T

T
´ ϵ, 0

¸

“ max

˜

m
ÿ

i“1

E
piq
T

T
, 0

¸

.

We will show that for every i P rms, E
piq
T ď 1, proving the theorem.

Consider some specific i P rms. If action i is never played, then NT
i “ 0, and E

piq
T “ 0.

Suppose an action i has NT
i ą 0. For each 1 ď t ă T , if at`1 ‰ i, then E

piq
t`1 “ E

piq
t . If

at`1 “ i, then by Lemmas 3 and 4 (stated and proved below), E
piq
t`1 ď maxpE

piq
t , 1q. In other

words, at all t, the value of E
piq
t`1 either stays bounded by 1, or decreases compared to the

previous value E
piq
t . A trivial inductive argument thus implies E

piq
T ď 1. For completeness,

we verify the base case: since p1 “ M1, E
pi‰1q
1 “ 0 and E

p1q
1 ď 1 (as d11 ď 0 and e11 ď 1).

Lemma 3 Suppose condition A was satisfied at time t` 1 and the forecast was pt`1 “ Mi.
Then, N t`1

i maxpdt`1
i , et`1

i q ď 1.

Proof Since pt`1 “ Mi, N
t`1
i “ N t

i ` 1, and N t`1
i pt`1

i “ N t
i p

t
i ` yt`1. Then,

∣∣dt`1
i ´ dti

∣∣ “ ∣∣et`1
i ´ eti

∣∣ “ ∣∣pt`1
i ´ pti

∣∣ “ ∣∣∣∣N t
i p

t
i ` yt`1

N t
i ` 1

´
N t

i p
t
i ` pti

N t
i ` 1

∣∣∣∣
“

∣∣∣∣yt`1 ´ pti
N t

i ` 1

∣∣∣∣ ď 1

N t
i ` 1

“
1

N t`1
i

.

(6)

Since by condition A, maxpdti, e
t
iq ď 0, we obtain maxpdt`1

i , et`1
i q ď 1{N t`1

i .
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Lemma 4 Suppose condition A was not satisfied at time t` 1 and the forecast was pt`1 “

Mi, following condition B. Then N t`1
i maxpdt`1

i , et`1
i q ď maxpN t

i maxpdti, e
t
iq, 1q.

Proof Suppose yt`1 “ 0. Since we are playing as per condition B, eti ą 0. Since dti ` eti “
li ´ ri “ ´1{m, we have that dti ă 0. Thus,

yt`1 “ 0 ùñ eti ą 0 and dti ă 0.

Similarly, it can be verified that yt`1 “ 1 ùñ eti ă 0 and dti ą 0. Below we assume without
loss of generality that yt`1 “ 0. (A similar argument goes through for the case yt`1 “ 1.)

We derive how N t
i maxpdti, e

t
iq changes when going from t to t` 1. There are two cases:

et`1
i ě dt`1

i or et`1
i ă dt`1

i . If et`1
i ě dt`1

i , then

N t`1
i maxpdt`1

i , et`1
i q “ N t`1

i et`1
i “ N t`1

i pt`1
i ´N t`1

i ri

“ N t
i p

t
i ´N t`1

i ri (since yt`1 “ 0)

“ N t
i e

t
i ´ ri

“ N t
i maxpdti, e

t
iq ´ ri ď N t

i maxpdti, e
t
iq.

On the other hand if et`1
i ă dt`1

i , then,

N t`1
i maxpdt`1

i , et`1
i q “ N t`1

i dt`1
i

ď N t`1
i pdti `

∣∣dt`1
i ´ dti

∣∣q
p˚q

ă N t`1
i p0` 1{N t`1

i q “ 1.

Inequality p˚q holds since dti ă 0 and
∣∣dt`1

i ´ dti
∣∣ ď 1{N t`1

i (see set of equations (6)).

4. Ωp1{
?
T q lower bound for the classical calibration game

Calibration-Game-I can be viewed as a repeated game with vector-valued payoffs/rewards.
Such games were studied by Blackwell (1956), and are now commonly referred to as Black-
well approachability games. We review the reduction from calibration to Blackwell ap-
proachability and use it to prove the lower bound. Throughout this section, we denote the
action space of the forecaster as X “ tM1,M2, . . . ,Mmu and that of nature as Y “ t0, 1u.
The random plays of the forecaster lie in ∆pX q which is a probability simplex in m dimen-
sions. We embed ∆pX q in Rm to simplify discussion.

4.1. Calibration as an instance of Blackwell approachability

The fact that calibration can be modelled as a Blackwell approachability instance is well-
known (since Foster (1999); Hart and Mas-Colell (2000)). Suppose the actions of the fore-
caster and nature give a reward r : X ˆ Y Ñ Rm defined as follows: the i-th component of
the reward vector a “ rpp P X , y P Yq P Rm is given by

ai “ 1tp “ Miu ¨ pMi ´ yq. (7)

9
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Let āT :“
řT

i“1 rppt, ytq{T be the average reward vector given component-wise by āTi “
řT

t“1 1tpt “ MiupMi ´ ytq{T . Let Bϵ be the ℓ1-ball with radius ϵ, and dist the ℓ1-distance
function. Note that

distpāT , Bϵq “ max

˜

m
ÿ

i“1

∣∣∣∣∣ 1T
T

ÿ

t“1

1tpt “ MiupMi ´ ytq

∣∣∣∣∣´ ϵ, 0

¸

“ ϵ-CET .

Thus, the ϵ-calibration condition (2) is equivalent to limTÑ8 E
“

distpāT , Bϵq
‰

“ 0. If this
condition is satisfied, we say that āT approaches Bϵ in the limit. Blackwell (1956) established
necessary and sufficient conditions for approachability.

Theorem 5 (Corollary to Theorem 3 by Blackwell (1956)) Assume the same setup
as Calibration-Game-I, but the players receive a vector-valued reward r, as defined component-
wise in (7). The forecaster can ensure that limTÑ8 E

“

distpāT , Bϵq
‰

“ 0 if and only if for
every v P ∆pYq “ r0, 1s, there exists u P ∆pX q such that the expected reward belongs to Bϵ:

@v P ∆pYq, Du P ∆pX q : Ep„u,y„v rrpp, yqs “
m
ÿ

i“1

uipp1´vq ¨rpMi, 0q`v ¨rpMi, 1qq P Bϵ. (8)

The hypothetical situation considered in the theorem is akin to a one-shot game but with
the order of the players reversed: nature plays v first and the forecaster responds with u. If
the forecaster can respond to every play by nature and ensure that the expected reward lies
in Bϵ, then the forecaster can ensure that āT approaches Bϵ in the sequential game (where
nature goes second each time). Abernethy et al. (2011) call this response-satisfiability ; in
their words, Theorem 5 is interepreted as response-satisfiability ðñ approachability.

Proposition 6 The forecaster can exhibit response satisfiability (8). Thus the forecaster
playing Calibration-Game-I can ensure limTÑ8 E

“

distpāT , Bϵq
‰

“ 0 and be ϵ-calibrated (2).

The proof of this well-known result is in Appendix A.3. A second question is of the
rate at which the expected reward vector approaches the desired set. As reviewed in the
introduction, a number of papers have shown that the rate of approachability for the ϵ-
calibration game is Op1{

?
T q. We show that this rate cannot be improved.

4.2. Ωp1{
?
T q lower bound for the ϵ-calibration error rate

Theorem 7 A forecaster playing Calibration-Game-I against an adversarial nature cannot
achieve ϵ-calibration at a rate faster than Op1{

?
T q. That is, for every strategy of the

forecaster, there is a strategy of nature that ensures

E rϵ-CET s “ Ωp1{
?
T q. (9)

Mannor and Perchet (2013) analyzed the convergence rate in approachability games and
characterized conditions, which if satisfied by a target set C, entail that nature can ensure
E

“

distpāT , Cq
‰

“ Ωp1{
?
T q. In particular, if these conditions are satisfied Bϵ, Theorem 7

follows immediately since distpāT , Cq “ ϵ-CET .

10
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Theorem 8 (Theorem 6.ii by Mannor and Perchet (2013)) Let C be a closed con-
vex set that is (i) minimal approachable, and (ii) mixed approachable. Then C cannot be
approached at a rate faster than Op1{

?
T q, or in other words, E

“

distpāT , Cq
‰

“ Ωp1{
?
T q,

where āT is the average reward vector.

In what follows, we introduce the conditions (i) minimal approachability and (ii) mixed
approachability in the context of our calibration game, and show that they are satisfied by
Bϵ (Lemma 10 and Lemma 13 respectively).

4.3. Minimal approachability

For a point u P Rm and a convex set K Ď Rm, define the distance of u from K as dKpuq “
infu1PK }u ´ u1}2. For any λ ą 0, a convex set K 1 Ď K is said to be a λ-shrinkage of K if
tu : dK1puq ď λu Ď K. In the following definition of minimal approachability, we implicitly
assume that the set of action sets of the players and the corresponding rewards have been
fixed, and the goal is to characterize which convex sets are approachable and which are not.

Definition 9 A set K is minimal approachable if K is approachable, but no λ-shrinkage
of K is approachable.

We now show the first condition required by Theorem 8.

Lemma 10 The set Bϵ is minimal approachable.

Proof Proposition 6 shows that Bϵ is approachable so it remains to show that the mini-
mality condition holds. Let K be a λ-shrinkage of Bϵ for some λ ą 0. We first argue that
K Ď Bϵ´λ. Suppose this were not the case, that is, there exists u P K such that u R Bϵ´λ.
By definition of the ℓ1-ball Bϵ´λ, this means that }u}1 ą ϵ ´ λ. We will show that such a
u cannot belong to any λ-shrinkage of Bϵ, in particular it cannot belong to K, leading to a
contradiction.

Consider the point u1 “ u` pλ{}u}2qu. Note that dKpu1q ď }u´ u1}2 “ λ. Since K is a
λ-shrinkage of Bϵ, this implies that u1 P Bϵ, or }u

1}1 ď ϵ. On the other hand, we have,

pϵ ěq }u1}1 “ }u}1p1` λ{}u}2q

ě }u}1p1` λ{}u}1q (for any vector v P Rm, }v}1 ě }v}2)

“ }u}1 ` λ ą pϵ´ λq ` λ “ ϵ,

which is a contradiction. Thus K Ď Bϵ´λ, as claimed.

It follows that K is approachable only if Bϵ´λ is approachable. We now show that for
every λ ą 0, Bϵ´λ is not approachable. As in the proof of Proposition 6, the i-th component
of the reward vector is given by uipMi´vq. Suppose v “ 1{m. Then for everyMi, |Mi ´ v| ě
1{2m “ ϵ, by definition of m. Thus |uipMi ´ vq| ě uiϵ, and

řm
i“1 |uipMi ´ vq| ě

ř

uiϵ “ ϵ.
Equivalently, E rrpp, yqs R Bϵ´λ. By Theorem 5, Bϵ´λ is not approachable.

In order to describe the second condition required by Theorem 8 and show that it holds for
Bϵ, we need additional technical setup. The following subsection serves this purpose.
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4.4. Reducing approachability to scalar-valued games

The vector-valued approachability game induces a number of scalar-valued min-max games,
one for each direction in Rm. The value of these scalar games is closely connected to the
question of approachability.

Consider the approachability of Bϵ with respect to individual directions, represented
by arbitrary vectors q P Rm (for intuition, one may equivalently think of q being direction
vectors, those with ℓ2-norm equal to one, but this restriction is technically unnecessary; we
stick to q P Rm). Let c P Bϵ be such that q belongs to the normal cone of Bϵ at c, that
is, xc, qy “ supc1PBϵ

xc1, qy “ ϵ}q}8. We call such a pair pc, qq as admissible. Consider the
following one-shot min-max game defined for every admissible pc, qq:

Valpc, qq “ min
uP∆pX q

max
vPr0,1s

xEp„u,y„v rrpp, yqs ´ c, qy

“ min
uP∆pX q

max
vPr0,1s

˜

m
ÿ

i“1

uiqipp1´ vqMi ` vpMi ´ 1qq ´ xc, qy

¸

“ min
uP∆pX q

max
vPr0,1s

˜

m
ÿ

i“1

uiqipMi ´ vq ´ ϵ}q}8

¸

.

To appreciate the relationship between the Valpc, qq games and the Bϵ-approachability game,
consider the following. Suppose the forecaster can guarantee one-shot approachability, that
is, there exists a fixed u‹ P ∆pX q such that for every v P r0, 1s, Ep„u‹,y„v rrpp, yqs P Bϵ.
By definition of the normal cone, for every admissible pc, qq, and any c1 P Bϵ, it holds that
xc1 ´ c, qy ď 0. In particular, Ep„u‹,y„v rrpp, yqs P Bϵ is such a c1. It follows that for every
admissible pc, qq, Val(c, q) ď 0.

This observation does not hold in the reverse direction: even if Valpc, qq ď 0 for every
admissible pc, qq, one-shot approachability need not hold. The intuition is that the optimal
u for different pc, qq can be different, and it is unclear how to merge them to achieve one-shot
forecasting for the approachability game. In a remarkable result, Blackwell (1956) showed
that the result does hold in the reverse direction for the repeated approachability game (as
opposed to the one-shot approachability game).

Theorem 11 (Theorem 1 by Blackwell (1956)) A convex set K is approachable if and
only if for every admissible pc, qq, Valpc, qq ď 0.

This condition has also been termed as halfspace-satisfiability by Abernethy et al. (2011).
The result was stated in the language of convex cones by Mannor and Perchet (2013). Notice
that for our problem, the min-max game does not depend on c, once we replace xc, qy with
ϵ}q}8. We thus simplify notation and index our games only by q P Rm:

Valpqq :“ min
uP∆pX q

max
vPr0,1s

˜

m
ÿ

i“1

uiqipMi ´ vq ´ ϵ}q}8

¸

. (10)

We know that Bϵ is approachable (Proposition 6) and hence by Blackwell’s result, halfspace-
satisfiability must hold. That is, for every q P Rm, Valpqq ď 0. For completeness, we verify
this in Proposition 15 (Appendix A).

Having defined the Valpqq games, we are now ready to define mixed approachability.
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4.5. Pure‹ game and mixed approachability

In order to achieve a small value in the Valpqq game, the forecaster may play a randomized
strategy, that is, u‹ ‰ ei, where ei is one of the canonical basis vectors of Rm. On the
other hand, since nature goes second, she has no incentive to randomize: there will exist an
optimal strategy v‹ P t0, 1u. In the following ‘pure’ game, the forecaster is also not allowed
to randomize over his actions.

Valppqq :“ min
pPX

max
yPt0,1u

xrpp, yq, qy ´ ϵ}q}8. (11)

The superscript ‘p’ in Valpp¨q refers to the min-max game being over pure actions p P X
and y P t0, 1u. Let us refer to this as the pure game, and the game (10) as the mixed game.

Suppose the approaching player (forecaster in our case) can ensure halfspace-satisfiability
using only pure actions: @q, Valppqq ď 0. Mannor and Perchet (2013) showed that if this is
true then then the approaching player can ensure approachability at a fast rate of Op1{nq.
However, it is possible to achieve the fast rate even if the above condition is not true. Char-
acterizing a situation where the fast rate is unachievable requires considering another game,
whose value lies between the pure and mixed games. Define

X ‹ “ tp P X : p P supportpu‹q, where u‹ is some optimal mixed strategy for the forecasteru;

Y‹ “ ty P t0, 1u : y P supportpv‹q, where v‹ is some optimal mixed strategy for natureu.

Then define the pure‹ game and its value as follows,

Val‹pqq :“ min
pPX ‹

max
yPY‹

xrpp, yq, qy ´ ϵ}q}8. (12)

It can be shown that for any q, Valpqq ď Val‹pqq ď Valppqq (Mannor and Perchet, 2013).
We now define mixed approachability.

Definition 12 An approachable set is said to be mixed approachable if there exists a q P Rm

such that while Valpqq “ 0, Val‹pqq ą 0.

The following lemma witnesses a q that shows that the mixed approachability condition
required by Theorem 8 is satisfied. The witnessed q in the proof is identified based on case
(d) in the proof of Proposition 15.

Lemma 13 There exists a q P Rm such that Val‹pqq ą Valpqq “ 0. Thus Bϵ is mixed
approachable.

The proof of Lemma 13 is deferred to Appendix A.4 due to space constraints. We briefly
note that the witnessed q is motivated by case (d) in the proof of Proposition 15, wherein
the optimal strategy for the forecaster is to randomize.

4.6. Relationship to previous lower bounds for calibration

Qiao and Valiant (2021) recently constructed a strategy of nature that ensures that the cal-
ibration error of any forecaster playing Calibration-Game-I satisfies E rCET s “ ΩpT´0.472q.
This bound is interesting on its own and neither weaker nor stronger than the bound we
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show in Theorem 7. By studying E rϵ-CET s, we allow the forecaster a slack of ϵ in his
calibration error, which is standard in several earlier cited works (see Section 1.2), and may
be sufficient in practice given that the forecasts are themselves on a 2ϵ-grid.

Qiao and Valiant (2021) also noted that E rCET s “ ΩpT´0.5q can be forced using a
Bernoulli strategy : at each time step, nature plays yt „ Bernoullippq for some fixed p P r0, 1s
unknown to the forecaster. However, in Appendix B, we provide initial (but not conclusive)
evidence that the Bernoulli strategy seems insufficient to guarantee E rϵ-CET s “ ΩpT´0.5q.
We construct an ϵ-calibrated forecaster that satisfies E rCET ´ ϵs ď Oppolyplog T q{T q for
the Bernoulli strategy (polyplog T q corresponds to polynomial terms in logpT q). We conjec-
ture that the stronger statement E rϵ-CET s “ E rmaxpCET ´ ϵ, 0qs ď Oppolyplog T q{T q also
holds, which would mean that the Bernoulli strategy is insufficient to derive a Ωp1{

?
T q

bound on the ϵ-calibration rate (as shown by Theorem 7).

5. Summary

This paper connects three rich areas of the literature in a natural way: online calibration,
the power of two choices, and imprecise probability. In summary, we show that by allowing
the forecaster to output a deterministic short interval of probabilities (of length at most 2ϵ),
we can achieve a faster rate of Op1{T q for ϵ-calibration against a fully adaptive adversarial
reality who presents the binary outcome after observing the interval forecast. This should
be compared to the Θp1{

?
T q rate achievable with randomized point forecasts (the upper

bound is a seminal result by Foster and Vohra (1998), the lower bound is ours), or the Θp1q
for deterministic point forecasts.

Arguably, such narrow intervals are as practically interpretable as point forecasts, and
since some sort of binning anyway underlies most calibration algorithms, it also feels nat-
ural to allow the forecaster to express their uncertainty in this fashion, especially since it
avoids randomization and improves calibration. Thus, we view our work as a theoretical
contribution with clear practical implications.

Several open questions remain, since we open a rather new line of investigation. We
mention two: (a) lower bounds for our setting are unknown, and (b) we don’t know if
models providing more than two choices could possibly improve the rate further. We suspect
that 1{T is the optimal rate since it corresponds to constant cumulative calibration error
(without normalization by T ), which is incurred at t “ 1 itself and seems unavoidable.
Finally, it would be interesting to (c) figure out multidimensional analogs of our paper. We
leave these for future work.

We also note some POTC-style results in online learning. Neu and Zhivotovskiy (2020)
show that for expert-based classification, providing the learner the choice to abstain from
making a prediction improves the regret from Ωp1{

?
T q to Op1{T q, similar to what we

obtain in Theorem 2. In zero-order convex optimization or bandit convex optimization,
allowing the learner two function evaluations enables the unknown gradient to be estimated
using finite difference, leading to significantly improved rates (Agarwal et al. (2010) and
follow-up work). For example, in the strongly convex case the rate improves from Ωp

?
T q to

Oplog T q. Such improvements also hold for non-smooth functions (Shamir, 2017). It would
be interesting to consider POTC setups for multi-armed bandits (two arm-pulls instead
of one) or expert-based online learning (choosing two experts instead of randomizing or
choosing one expert).
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Appendix A. Supplementary results and deferred proofs

A.1. Lemma 14 with proof

Lemma 14 In POTC-Cal, for any t ě 1, if condition A is not satisfied, then condition B
must be satisfied.

Proof Note that for all t, dt1 ď 0 and etm ď 0, since l1 “ 0 and rm “ 1 (there cannot be a
deficit for interval 1 or an excess for interval m). If condition A does not hold for i “ m,
dtm ą 0. Since dt1 ď 0 and dtm ą 0, there exists an i P rm´1s such that, dti ď 0 and dti`1 ą 0.
If condition A does not hold, then dti ď 0 implies eti ą 0. Thus we have that dti`1 ą 0 and
eti ą 0; in other words, condition B holds at the exhibited i.
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A.2. Proposition 15 with proof

Proposition 15 The forecaster in Calibration-Game-I can ensure halfspace-satisfiability.
That is, for every q P Rm, Valpqq ď 0.

Proof Our construction is directly inspired by the proof of calibration by Foster (1999).
We perform a case analysis for different values of q:

(a) Suppose any qi “ 0. Then, playing ui “ 1 and uj‰i “ 0 gives the objective value of
´ϵ}q}8 ď 0 irrespective of the value of v.

(b) Suppose q1 ą 0. Then, playing u1 “ 1 and ują1 “ 0 gives the objective value as
q1pM1 ´ vq ´ ϵ}q}8 ď q1ϵ´ ϵ}q}8 ď 0 (note that M1 “ ϵ and v ě 0).

(c) Suppose qm ă 0. Then, playing um “ 1 and ujăm “ 0 gives the objective value as
qmpMm ´ vq ´ ϵ}q}8 ď |qm| ϵ´ ϵ}q}8 ď 0 (note that Mm “ 1´ ϵ and v ď 1).

(d) Suppose that neither of cases (a), (b), or (c) hold. Namely, q1 ă 0, qm ą 0 and qi ‰ 0
for any i. Let j P rm´ 1s be the smallest index such that qj ă 0 and qj`1 ą 0. Then
consider u given by

uj “
|qj`1|

|qj |` |qj`1|
, uj`1 “

|qj |
|qj |` |qj`1|

, uiRtj,j`1u “ 0.

Observe two facts. First,
řm

i1
uiqiv “ pujqj`uj`1qj`1qv “ 0 since the value inside the

brackets is itself equal to 0 (any play v of nature is thus rendered ineffective). Second,

m
ÿ

i1

uiqiMi “ ujqjMj ` uj`1qj`1Mj`1

“ pujqj ` uj`1qj`1qMj ` uj`1qj`1pMj`1 ´Mjq

“ 0` 2uj`1qj`1ϵ

“
2 |qj | |qj`1| ϵ
|qj |` |qj`1|

ď
}q}8 |qj | ϵ
|qj |` |qj`1|

`
}q}8 |qj`1| ϵ
|qj |` |qj`1|

“ }q}8ϵ.

Thus the overall objective value is at most 0.

The cases considered for q are exhaustive, and in each case we verified that the forecaster
can guarantee that the objective value is at most 0.

A.3. Proof of Proposition 6

The i-th component of the expected reward vector (8) is uirp1 ´ vqMi ` vpMi ´ 1qs “

uipMi ´ vq. Suppose v P Ij . Consider playing u P ∆pX q given by uj “ 1, ui‰j “ 0. Then
|Ep„u,y„v rrpp, yqs| “ |

řm
i“1 uipMi ´ vq| “ |Mj ´ v|. Since v P Ij , Mj is the mid-point of Ij ,

and the radius of each interval is ϵ, |Mj ´ v| ď ϵ. Thus Eu,v rrpp, yqs P Bϵ.
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A.4. Proof of Proposition 13

Set q1:m´1 “ ´1 (i.e. qi “ ´1 for all i P rm ´ 1s) and qm “ 1. Let us compute Valpqq.
The game for nature reduces to maximizing p

řm´1
i“1 ui´umqv which can be done by playing

v “ 1tum ď
řm´1

i“1 uiu. We perform case work to identify the optimal play for the forecaster.

• If
řm´1

i“1 ui ď um, vpum ´
řm´1

i“1 uiq “ 0. The objective for the forecaster reduces to:

min
uP∆pX q,

řm´1
i“1 uiďum

umMm ´

m´1
ÿ

i“1

uiMi ´ ϵ.

Note that 0 ă M1 ă M2 ă . . . ă Mm. Thus the forecaster would set the minimum
possible value of um, which under the constraints is equal to 0.5. For the second term,
the largest coefficient of a ui in the summation is Mm´1. Thus in order to minimize, the
forecaster would set the maximum possible value of um´1, which under the constraints is
1´um “ 0.5. We conclude that the minimum occurs at um “ um´1 “ 0.5, uiRtm´1,mu “

0. The objective value is equal to 0.5pMm ´Mm´1q ´ ϵ “ 0.

• If
řm´1

i“1 ui ě um, v “ 1 is an optimal play for nature. The objective for the forecaster
reduces to:

min
uP∆pX q,

řm´1
i“1 uiěum

umpMm ´ 1q ´
m´1
ÿ

i“1

uipMi ´ 1q ´ ϵ.

As in the other case, this game is solved by observing that since M1 ă M2 ă . . . ă
Mm ă 1, the forecaster would want to put the maximum possible value on um which
is 0.5 under the constraints. Among u1:m´1, the multiplier of pMm´1 ´ 1q hurts the
least. Thus the forecaster sets um´1 “ 0.5 and uiRtm´1,mu. The objective value at the
minimum is equal to 0.

In each case, the forecaster’s optimal play is um “ um´1 “ 0.5, uiRtm´1,mu “ 0. This
essentially makes nature’s action irrelevant; nature’s optimal response is any v P r0, 1s.
Thus we have shown that Valpqq “ 0, X ‹ “ tMm´1,Mmu, and Y‹ “ t0, 1u. Let us now
compute

Val‹pqq “ min
pPX ‹

max
yPY‹

p1tp “ MmupMm ´ yq ´ 1tp “ Mm´1upMm´1 ´ yq ´ ϵq .

If the forecast is p “ Mm, nature can respond y “ 0 to achieve an overall objective of
1´ 2ϵ ą 0. (We have assumed m ě 2 so that ϵ ă 0.5.) If the forecast is p “ Mm“1, nature
can respond y “ 1 to achieve an overall objective of 2ϵ ą 0. Thus, Val‹pqq ą 0.

Appendix B. Bernoulli strategy seems insufficient to prove an Ωp1{
?
T q

lower bound on the ϵ-calibration rate

This section is in the setup of Calibration-Game-I. Nature plays the ‘Bernoulli strategy’:
for a fixed p P r0, 1s (unknown to the forecaster), nature plays yt „ Bernoullippq each time.
We describe a strategy for the forecaster that satisfies E rϵ-CET s “ Op1{

?
T q against a
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PI-F99: pre-initialized version of the ϵ-calibrated strategy by Foster (1999)

Fix T0 P N. Set Tk :“ 2kT0, Kk as in (13), T p0q :“ 0, and T pkq :“
řk´1

j“1 Tj “ p2k´1qT0.

For each time t “ 1, 2, . . .

• Identify smallest k P N such that t ď T pkq.

• Play PI-F99pTk´1q based on observations from T pk´1q ` 1 until t:

– if t ď T pk´1q `mKk (initialization phase):
identify j such that t´ T pk´1q P ppj ´ 1qKk ` jKks and predict Mj .

– if t ą T pk´1q `mKk:
follow Foster’s strategy based on observations from T pk´1q ` 1 until t.

general strategy of nature; however, if nature is playing the Bernoulli strategy (instead of an
arbitrary strategy), then our proposed strategy satisfies E rCET ´ ϵs ď Oppolyplog T q{T q.
Our result stops short of proving the following stronger statement against the Bernoulli
strategy: E rϵ-CET s “ E rmaxpCET ´ ϵ, 0qs ď Oppolyplog T q{T q. We conjecture that this
stronger statement holds as well, meaning that the Bernoulli strategy is insufficient to derive
a Ωp1{

?
T q bound on the ϵ-calibration rate as shown in Theorem 7.

B.1. The strategy

The strategy we propose is a pre-initialized version of the ϵ-calibration strategy of Foster
(1999)—we call it PI-F99 (for pre-initialized-Foster-99). PI-F99 relies on a few constants: a
large enough doubling horizon T0 P N, doubled versions of T0, namely Tk “: 2kT0 for k P N,
and an initialization parameter

Kk :“
P

p0.85 log Tk{ϵq
2plog logpTk{2q ` 0.72 logp5.2mT 2

k qq
T

(13)

defined for each k. Kk is the sufficient number of samples required to estimate the bias of
m Bernoulli random variables simultaneously and uniformly across time to a certain degree
of reliability; further details become clear when analyzing. The constants in the definition
of Kk are not crucial (looser constants still lead to the same asymptotic dependence on T ),
but we identify them nevertheless in order to be precise.

PI-F99 is a concatenation of certain sub-strategies PI-F99pTkq for k P N, each of which
are strategies for Calibration-Game-I assuming the game only goes on until time t “ Tk.
The forecaster playing PI-F99pTkq first forecasts pt “ Mi, Kk times each, for each i P rms

(thus until time t ď mKk). This is the initialization phase. Then, for t P tmKk`1, . . . , Tku,
the forecaster follows Foster’s strategy initialized with current empirical frequencies for each
bin, based on what has been observed so far in the initialization phase.

The actual strategy of the forecaster corresponds to a concatenation of PI-F99pT0q,
PI-F99pT1q, PI-F99pT2q, and so on. This is a version of the doubling trick (Cesa-Bianchi
and Lugosi, 2006). The forecaster first plays PI-F99pT0q from t “ 1 to t “ T0, then plays
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PI-F99pT1q from t “ T0 ` 1 to t “ T0 ` T1, then PI-F99pT2q and so on. To be clear, when
switching from PI-F99pTk´1q to PI-F99pTkq, the forecaster completely ignores the forecasts
and observations so far, and restarts. The overall strategy is described in the box on top of
the previous page.

B.2. Analysis

Ignoring terms in m and ϵ which are constants in Tk, mKk “ Oplog2 Tkq !
?
Tk (for

sufficiently large T0 and all k ě 0). Assuming a worst case error of 1 for each time until
T ď mKk, we can show that the ϵ-calibration error of PI-F99pTkq at any time T ď Tk

satisfies the following:

E

«

max

˜

m
ÿ

i“1

∣∣∣∣∣ 1T
T

ÿ

t“1

1tpt “ MiupMi ´ ytq

∣∣∣∣∣´ ϵ, 0

¸ff

ď E

«

max

˜

m
ÿ

i“1

∣∣∣∣∣ 1T
mKk
ÿ

t“1

1tpt “ MiupMi ´ ytq

∣∣∣∣∣` m
ÿ

i“1

∣∣∣∣∣ 1T
T

ÿ

t“mKk`1

1tpt “ MiupMi ´ ytq

∣∣∣∣∣´ ϵ, 0

¸ff

ď
mKk

T
` E

«

max

˜

m
ÿ

i“1

∣∣∣∣∣ 1T
T

ÿ

t“mKk`1

1tpt “ MiupMi ´ ytq

∣∣∣∣∣´ ϵ, 0

¸ff

ď
Op

?
Tkq

T
` E

«

max

˜

m
ÿ

i“1

∣∣∣∣∣ 1T
T

ÿ

t“mKk`1

1tpt “ MiupMi ´ ytq

∣∣∣∣∣´ ϵ, 0

¸ff

.

To bound the second term, note that Foster’s strategy has a calibration rate of Op1{
?
T q

starting with any initialization. Thus,

E

«

max

˜

m
ÿ

i“1

∣∣∣∣∣ 1T
T

ÿ

t“mKk`1

1tpt “ MiupMi ´ ytq

∣∣∣∣∣´ ϵ, 0

¸ff

ď
Op

?
T ´mKkq

T
ď

C
?
Tk

T
,

(14)

for some constant C independent of T0 and k. Thus for PI-F99pTkq at any time T ď Tk,
we have shown that E rϵ-CET s ď Op1{

?
T q. From this, it follows that the overall strategy

PI-F99 satisfies fpT q “ Op1{
?
T q asymptotically. This is shown in Proposition 19, later in

this subsection. Next, we perform the analysis for the Bernoulli strategy.

Proposition 16 PI-F99 satisfies E rCET s ď ϵ ` Oppolyplog T q{T q if nature follows the
Bernoulli strategy.

Proof Following the notation of Section 3, let NT
i denote the number of times the mid-point

Mi is forecasted until time T . We have,

E

«

m
ÿ

i“1

∣∣∣∣∣ 1T
T

ÿ

t“1

1tpt “ MiupMi ´ ytq

∣∣∣∣∣
ff

“

ř

iPrms:|p´Mi|ąϵ E
”

NT
i

∣∣∣Mi ´
řT

t“1 1tpt “ Miuyt{N
T
i

∣∣∣ı
T

loooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooon

E1

`

ř

iPrms:|p´Mi|ďϵ E
”

NT
i

∣∣∣Mi ´
řT

t“1 1tpt “ Miuyt{N
T
i

∣∣∣ı
T

loooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooon

E2

.
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We will show that
E1 “ Oppolyplog T q{T q,

and
E2 “ ϵ`Op1{T q,

which will complete the argument. To this end, define AT as the number of times that the
forecast is ϵ-close to p, until time T :

AT :“
ÿ

iPrms:|p´Mi|ďϵ

NT
i . (15)

Lemma 17 shows that PI-F99 satisfies E
“

AT
‰

“ T ´ Oppolyplog T qq. This immediately

leads to the bound for E1; note that
∣∣∣Mi ´

řT
t“1 1tpt “ Miuyt{N

T
i

∣∣∣ ď 1, and thus

E1 ď

ř

iPrms:|p´Mi|ąϵ E
“

NT
i

‰

T
“ 1´

E
“

AT
‰

T
“ Oppolyplog T q{T q.

Bounding E2 takes more work. The proof relies on the following ‘good’ event occurring
with high probability:

G ” GT : for every i P rms,

∣∣∣∣∣p´ T
ÿ

t“1

1tpt “ Miuyt{N
T
i

∣∣∣∣∣ ď ϵ{2.

Due to the pre-initialization steps in PI-F99, it can be guaranteed that PrpGq “ PrpGT q “

1´Op1{T q. For the details, we refer the reader to the proof of Lemma 17 (see case (a) in the
proof), where we show a stronger version of this fact (namely, with ϵ{ log Tk instead of ϵ{2),
for PI-F99pTkq using a time-uniform concentration inequality (due to the time uniformity,
the implication holds for PI-F99 as well). We now do case work to bound E2.

(a) Suppose there exists an index j P rms such that |p´Mj | ď ϵ{2. This index must be unique
since the Mj ’s are 2ϵ apart. Further, no i ‰ j can satisfy |p´Mi| ď ϵ. We now obtain
the following (below, we use absp¨q instead of |¨| to avoid confusion with the conditioning
operator):

T ¨ E2 “ E

«

NT
j abspMj ´

T
ÿ

t“1

1tpt “ Mjuyt{N
T
j q

ff

ď E

«

NT
j abspMj ´

T
ÿ

t“1

1tpt “ Mjuyt{N
T
j q | G

ff

` p1´ PrpGqq ¨ T

“ E

«

NT
j abspMj ´

T
ÿ

t“1

1tpt “ Mjuyt{N
T
j q | G

ff

`Op1q

ď T ¨ E

«

abspMj ´

T
ÿ

t“1

1tpt “ Mjuyt{N
T
j q | G

ff

`Op1q

ď T ¨ E

«

|Mj ´ p|` abspp´
T

ÿ

t“1

1tpt “ Miuyt{N
T
j q | G

ff

`Op1q

ď T pϵ{2` ϵ{2q `Op1q “ Tϵ`Op1q,
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where the inequality in the last line follows by the case assumption and the definition of
G. Thus for this case, we have shown that E2 “ ϵ`Op1{T q.

(b) Suppose p is such that for every i, |p´Mi| ą ϵ{2. To bound E2, we are interested in the
Mi’s for which |p´Mi| ď ϵ. There can be at most two such Mi’s: an Mj that satisfies
Mj P pp` ϵ{2, p` ϵs, and an Ml that satisfies Mj P rp´ ϵ, p´ ϵ{2q.

Suppose there is an Mj satisfying Mj P pp`ϵ{2, p`ϵs. Set R “ 1
T

řT
t“1 1tpt “ MjupMj´ytq

and note that R P r´1, 1s. By Lemma 18, E r|R|s ď E rRs ` 2 ¨ PrpR ă 0q. Note that
PrpR ě 0q ě PrpGq, since if G holds,

R ¨ T “

T
ÿ

t“1

1tpt “ MjupMj ´ ytq

“

T
ÿ

t“1

1tpt “ MjuppMj ´ pq ` pp´ ytqq

ě

T
ÿ

t“1

1tpt “ Mjupϵ{2` pp´ ytqq

“ NT
i ϵ{2`

T
ÿ

t“1

1tpt “ Mjupp´ ytq

ě NT
i ϵ{2´

∣∣∣∣∣ T
ÿ

t“1

1tpt “ Mjupp´ ytq

∣∣∣∣∣
ě NT

i ϵ{2´NT
i ϵ{2 “ 0,

where the inequality in the last line is implied by G. Thus, PrpR ă 0q ď 1 ´ PrpGq “

Op1{T q. Next, we bound E rRs.

E rRs “
1

T

T
ÿ

t“1

E r1tpt “ MjupMj ´ ytqs

“
1

T

T
ÿ

t“1

E r1tpt “ MjupMj ´ E ryt | py1, . . . , yt´1q, pp1, . . . , ptqsqs

“
1

T

T
ÿ

t“1

E r1tpt “ MjupMj ´ pqs

“
ENT

j pMj ´ pq

T
ď

ENT
j

T
¨ ϵ.

Putting it together, we obtain E r|R|s ď ENT
j

T ¨ ϵ`Op1{T q.

Similarly, suppose there is an Ml satisfying Ml P rp ´ ϵ, p ´ ϵ{2q. For this l, define S “
1
T

řT
t“1 1tpt “ MlupMl´ytq. An identical argument as the one used for R goes through; we

use the inequality E r|S|s ď E r´Ss ` 2 ¨ PrpS ą 0q (from Lemma 18) and the relationship

of PrpS ą 0q to G to obtain E r|S|s ď ENT
l

T ¨ ϵ`Op1{T q.
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Finally, we conclude if both Mk and Ml with the given relationship to p exist, then E2 ď

E r|R|` |S|s; if only Mj exists, then E2 ď E r|R|s; if only Ml exists, then E2 ď E r|S|s. In
each case,

E2 ď
E

“

AT
‰

¨ ϵ

T
`Op1{T q ď ϵ`Op1{T q.

Since the two cases considered are exhaustive, this completes the proof.

Lemma 17 (for proving Proposition 16) PI-F99 satisfies E
“

AT
‰

“ T´Oppolyplog T qq,
where AT is defined in the proof of Proposition 16.

Proof We first show PI-F99pTkq satisfies E
“

AT
‰

“ T ´Oppolyplog T qq for T ď Tk once k
is large enough. We do so via two cases.

(a) For the first case, suppose p “ rj “ lj`1 for some j P rm ´ 1s, that is, the bias of
the Bernoulli is exactly at the common endpoint of two intervals. In other words,
AT “ NT

j `NT
j`1. We show that with high probability, the forecaster will learn this

index j in the initialization phase of each PI-F99pTkq, and continue playing either Mj

or Mj`1 until he switches to PI-F99pTk`1q.

Consider the strategy PI-F99pTkq for some k ě 0. From time t “ mKk onwards,
each Mi has been forecasted at least Kk times, so that the value of pti is close to p.
To formalize close, we will use a time-uniform sub-Gaussian concentration inequality
shown by Howard et al. (2021, equation (3.4)). We use their inequality, replacing
each instance of t with Kk{4, since a Bernoulli is p1{4q-sub-Gaussian and each Mi has
been forecasted at least Kk times. Additionally, we replace α with 1{mT 2

k . It can be
verified that the final deviation term inside the brackets is at most ϵ{ log Tk; in other
words, with probability at least 1 ´ 1{T 2

k , the following ‘good’ event occurs:

for all times mKk ď t ď Tk, max
iPrms

∣∣pti ´ p
∣∣ ď ϵ{ log Tk ď ϵ.

The radius of each interval is ϵ. Thus if the above event occurs, it follows that for
intervals i ă j, the right-endpoint ri ă p ´ ϵ ď pti, so we have an excess (eTi ą 0)
until Tk; and for intervals i ą j ` 1, the left-endpoint li ą p ` ϵ ě pti, so we have a
deficit (dTi ą 0) until Tk. For interval j, either both dtj , e

t
j ď 0 or etj ą 0; for interval

j ` 1, either both dtj , e
t
j ď 0 or dtj ą 0. Overall, with probability at least 1´ 1{T 2

k , for
times mKk ă t ď Tk, Foster’s algorithm randomizes between Mj and Mj`1 (possibly
playing one of them deterministically).

(b) The other case is when p belongs to the interior of some interval Ij , j P rms, or
p P t0, 1u. Then, there exists some δ ą 0 such that |p´Mi| ě ϵ`δ for all i ‰ j. For a
sufficiently large value of rk P N, δ ą ϵ{ logpT

rk
q. Consider the strategy PI-F99pTkq for

k ě rk. As noted in the previous case, our choice of Kk ensures that with probability
at least 1´1{T 2

k , for all times mKk ď t ď Tk, maxiPrms

∣∣pti ´ p
∣∣ ď ϵ{ log Tk ă δ. Using

triangle inequality, we conclude that
∣∣∣ptj ´Mj

∣∣∣ ď ϵ and
∣∣pti ´Mi‰j

∣∣ ą ϵ. It follows
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that for every i ‰ j, there is either a deficit or an excess, and for j there is neither.
Thus with probability at least 1´ 1{T 2

k , Foster’s algorithm plays Mj after time mKk.

Cases (a) and (b) lead to a lower bound on E
“

AT
‰

for PI-F99pTkq, the expected number

of times an Mi is forecasted that is ϵ-close to p. Namely, we obtain that for k ě rk, for the
strategy PI-F99pTkq that plays assuming a horizon of Tk from t “ 1 itself, we have for
T ď Tk:

E
“

AT
‰

ě p1´ 1{T 2
k qpT ´mKkq

ě T p1´ 1{T 2
k q ´Oppolyplog Tkqq

ě T ´Oppolyplog T qq. (16)

The final inequality above holds since T ď Tk.

We derive the implication for the overall strategy that is actually played, PI-F99. Recall
the notation T p0q “ 0 and T pkq “ T0 ` T1 ` . . .` Tk´1. In PI-F99, the PI-F99pTkq strategy
is played from time T pk´1q ` 1 to time T pk´1q ` Tk “ T pkq. Let T be such that T P

rT pkq ` 1, T pk`1qs for any k ě rk. Then by (16),

E
”

AT ´AT pkq
ı

ě T ´ T pkq ´Oppolyplog T qq.

Again by (16), the above holds with T Ð T pkq, T pkq Ð T pk´1q, if k ě rk` 1 (Ð corresponds
to replacing the term on the left with the term on the right):

E
”

AT pkq

´AT pk´1q
ı

ě T pkq ´ T pk´1q ´Oppolyplog T qq.

Instantiating this recursively for all k ě rk ` 1, and adding the inequalities together gives
us:

E
“

AT
‰

ě T ´ T prkq ´ logpT q ¨Oppolyplog T qq “ T ´Oppolyplog T qq,

since rk is some fixed constant (given p). This completes the argument.

Lemma 18 For any bounded random variable R P r´a, as,

E r|R|s ď minpE rRs ` 2a ¨ PrpR ă 0q,E r´Rs ` 2a ¨ PrpR ą 0qq. (17)

Proof Note that,

E r|R|s “ E rR ¨ 1tR ě 0u ´R ¨ 1tR ă 0us

“ E rR ¨ 1tR ě 0u `R ¨ 1tR ă 0u ´ 2R ¨ 1tR ă 0us

“ E rR´ 2R ¨ 1tR ă 0us

ď E rR` 2a ¨ 1tR ă 0us

“ E rRs ` 2a ¨ PrpR ă 0q.
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In the above proof, we can replace R with ´R everywhere, since ´R P r´a, as as well. Thus
we also obtain,

E r|R|s “ E r|´R|s ď E r´Rs ` 2a ¨ PrpR ą 0q.

Proposition 19 PI-F99 achieves a calibration rate of Op1{
?
T q against any strategy of

nature.

Proof Define T p0q “ 0 and T pkq “ T0 ` T1 ` . . . ` Tk´1 “ p2k ´ 1qT0, for k ě 1. Further,
define the cumulative (non-normalized) calibration error corresponding only to the times
t “ t1 ` 1 to t2 as follows:

CEpt1, t2q :“ E

«

max

˜

m
ÿ

i“1

∣∣∣∣∣ t2
ÿ

t“t1`1

1tpt “ MiupMi ´ ytq

∣∣∣∣∣ , ϵpt2 ´ t1q

¸ff

.

From (14), PI-F99 satisfies, for every k P N and T pk´1q ă t ď T pkq,

CEpT pk´1q, tq ď ϵpt´ T pk´1qq ` C
a

Tk´1 (18)

for some universal constant C that does not depend on k.

Now for a given T ą T p2q, let k ě 3 be such that T pk´1q ă T ď T pkq. By triangle
inequality and (18),

E

«

max

˜

m
ÿ

i“1

∣∣∣∣∣ T
ÿ

t“1

1tpt “ MiupMi ´ ytq

∣∣∣∣∣ , ϵT
¸ff

ď

k´1
ÿ

i“1

CEpT pi´1q, T piqq ` CEpT pk´1q, T q

ď

k´1
ÿ

i“1

pϵpT piq ´ T pi´1qq ` C
a

Ti´1q

` ϵpT ´ T pk´1qq ` C
a

Tk´1

“ ϵT `

k
ÿ

i“1

C
a

Ti´1

“ ϵT ` Cp
a

T0 `
a

2T0 `
a

4T0 ` . . .`
a

2k´1T0q

ď ϵT ` C
a

T0 ¨

?
2k ´ 1

?
2´ 1

ď ϵT ` C ¨

a

2kT0
?
2´ 1

.

ď ϵT ` C 1
?
T ,

where C 1 “ C ¨ 2{p
?
2´ 1q. The final inequality holds since for k ě 3,

a

2kT0 ď

b

4p2k´1 ´ 1qT0 “

a

4T pk´1q ă 2
?
T .
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Dividing by T and taking ϵ to the left-hand-size, we get that for all T ą T p2q,

E

«

max

˜

m
ÿ

i“1

∣∣∣∣∣ 1T
T

ÿ

t“1

1tpt “ MiupMi ´ ytq

∣∣∣∣∣´ ϵ, 0

¸ff

ď C 1
?
T “ Op1{

?
T q,

as needed.

Appendix C. Generalization of POTC-Cal to bounded outputs

If the output is bounded instead of binary (see Remark 1), then POTC-Cal can be modified
as follows. The forecaster maintains pTi as in the original algorithm, but these are now the
mean of the vt values instead of yt values. The choice of the index i and the final forecast
ppt0, pt1q is made identically to the original POTC-Cal. Finally, the forecaster plays

pt “ pt0 if vt ď ri, and pt “ pt1 if vt ą ri. (19)

Note that ri “ li`1 is the right (left) endpoint of interval i (interval i ` 1), and thus a
natural threshold for deciding which of the two intervals to play.

Lemmas 3 and 4 hold for this modified setup and algorithm, and thus the Op1{T q rate
showed by Theorem 2 also holds. Lemma 3 goes through since the set of equations (6) can
be modified as follows:∣∣dt`1

i ´ dti
∣∣ “ ∣∣et`1

i ´ eti
∣∣ “ ∣∣∣∣vt`1 ´ pti

N t
i ` 1

∣∣∣∣ ď 1

N t`1
i

.

In the proof of Lemma 4, we assumed without loss of generality that yt`1 “ 0. This
assumption can be modified to vt`1 ď ri in keeping with the forecaster’s updated strategy
(19). The case et`1

i ă dt`1
i goes through since it is a consequence of the set of equations

(6). For the case et`1
i ě dt`1

i , we have

N t`1
i maxpdt`1

i , et`1
i q “ N t

i p
t
i ` vt`1 ´N t`1

i ri

“ N t
i e

t
i ` pvt`1 ´ riq ď N t

i maxpdti, e
t
iq,

where the last inequality follows by the case assumption vt`1 ď ri.
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