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Abstract. We present a method to edit complex indoor lighting from
a single image with its predicted depth and light source segmentation
masks. This is an extremely challenging problem that requires modeling
complex light transport, and disentangling HDR lighting from material
and geometry with only a partial LDR observation of the scene. We
tackle this problem using two novel components: 1) a holistic scene recon-
struction method that estimates reflectance and parametric 3D lighting,
and 2) a neural rendering framework that re-renders the scene from our
predictions. We use physically-based light representations that allow for
intuitive editing, and infer both visible and invisible light sources. Our
neural rendering framework combines physically-based direct illumination
and shadow rendering with deep networks to approximate global illumi-
nation. It can capture challenging lighting effects, such as soft shadows,
directional lighting, specular materials, and interreflections. Previous
single image inverse rendering methods usually entangle lighting and
geometry and only support applications like object insertion. Instead, by
combining parametric 3D lighting estimation with neural scene rendering,
we demonstrate the first automatic method for full scene relighting from
a single image, including light source insertion, removal, and replacement.

1 Introduction

Light sources of various shapes, colors and types, such as lamps and windows,
play an important role in determining indoor scene appearances. Their influence
leads to several interesting phenomena such as light shafts through an open
window on a sunlit day, highlights on specular surfaces due to incandescent
lamps, interreflections from colored walls, or shadows cast by furniture in the
room. Correctly attributing those effects to individual visible or invisible light
sources in a single image enables abilities for photorealistic augmented reality
that have previously been intractable — virtual furniture insertion under varying
illuminations with consistent highlights and shadows, virtual try-on of wall paints
with accurate global interreflections, or morphing a room under fluorescent lights
into one reflecting the sunrise through a window (Fig. 1).

Several recent works estimate lighting in indoor scenes [25,41,12,44], but
achieving the above outcomes requires estimating and editing light sources. While
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Fig. 1. We present the first method for globally consistent editing of indoor lighting from
a single LDR image. Given the input (a), our framework first estimates physically-based
light source parameters, for both visible and invisible lights, and then renders their
direct contributions and interreflections through a neural rendering framework (b).
Our framework can turn off visible and invisible light sources (¢ and d) with results
closely matching the ground truths (c.1 and d.1). It can insert virtual objects (e) with
consistent changes of highlight and shadow and edit materials with color bleeding being
correctly rendered image (f) and shading (f.1). It can also insert virtual lamps (g and
h) and open a virtual window (i and j) to let sunlight (i.1 and j.1) shine into the room.

both are highly ill-posed for single-image inputs, we posit that the latter presents
fundamentally different and harder challenges for computer vision. First, it
requires disentangling the individual contributions of both visible and invisible
light sources, independent of the effects of geometry and material. Second, it
requires reasoning about long-range effects such as interreflections, shadows and
highlights, while also being precise about highly localized 3D shapes, spectra,
directions and bandwidths of light sources, where minor errors can lead to global
artifacts due to the above distant interactions. Third, it requires photorealistic re-
rendering of the scene despite only partial observations of geometry and material,
while handling complex light transport. Figure 2 illustrates a few such challenges.

We solve the above challenges by bringing together a rich set of insights across
physically-based vision and neural rendering. Given a single LDR image of an
indoor scene, with predicted depth map and masks for visible lights, we propose
to estimate parametric models of both visible and invisible light sources, in
addition to per-pixel reflectance. Beyond a 3D location, our modeling accurately
supports physical properties such as geometry, color, directionality and fall-off.
Next, we design a neural differentiable renderer that judiciously uses classical
methods and learned priors to synthesize high-quality images from predicted
reflectance and light sources. We accurately model long-range light transport
through a physically-based Monte Carlo ray tracer with a learned shadow denoiser
to render direct illumination, and an indirect illumination network to infer non-
local interreflection. Our neural renderer injects the inductive bias of physical
image formation in training, while allowing rendering and editing of global light
transport from partial observations, as well as optimization to refine predictions.
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Our parametric light source estimation and physically-based neural renderer
allow intuitive editing of lamps and windows, with their global effects handled
explicitly. In Fig. 1 (c,d), we turn off each visible and invisible lamps. Beyond
standard object insertion of prior works (e), we visualize inserted objects by
“turning on” a new lamp (g,h) or “opening” a window with incoming sunlight (i,
j)- In each case, global effects such as highlights, shadows and interreflections are
accurately created for the entire scene by the neural renderer, and are also properly
handled when we edit materials of scene surfaces (f). In the accompanying video,
we show that these editing effects are consistent as we move virtual objects and
light sources, or gradually change materials. These abilities significantly surpass
prior methods for intrinsic decomposition or inverse rendering. As summarized
in Tab. 1 and Sec. 2, our method is the first to allow a broad range of single
image scene relighting abilities in the form of inserting objects, changing complex
materials and editing light sources, with consistent global interactions.

2 Related Work

Inverse rendering. Inverse rendering seeks to estimate factors of image formation
(shape, materials and lighting) [30], which has traditionally required multiple
images and controlled setups [14,9,45,7]. Several single-image works on material
acquisition [22,26], or object-level shape and reflectance reconstruction use known
[33,16] or semi-controlled lighting [27]. We consider a complex indoor scene under
unknown illumination and jointly estimate its geometry, material and lighting
from a single LDR image. Intrinsic decomposition [2,39,3,4,23,24] decomposes an
image into Lambertian reflectance and diffuse shading. A recent work also predicts
a shadow map [51]. Several deep learning methods estimate complex SVBRDFs
and lighting [38,25]. But none of the above can estimate or edit light sources.
We instead propose a novel physically-based 3D light source representation and
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Fig. 3. Overview of our method. We start from a LDR RGB image, with depth map
and visible light source masks estimated from the image or given as inputs. We first
estimate per-pixel reflectance (albedo, normal, roughness) using a network (blue). Next,
we estimate light sources (windows and lamps, visible and invisible) using four networks
(green). To render the predictions back into an image, we use a neural renderer with
three modules: direct shading, shadow (yellow), and indirect shading module (orange).
The result is per-pixel shading (diffuse irradiance), which can be turned into per-pixel
lighting (a grid of incoming radiance environment maps) using another network (red).

neural rendering framework that estimates and edits individual light sources with
distant shadows and global illumination being explicitly handled.

Lighting estimation and representation. Many single image approaches estimate
lighting as a single environment map [10,11,21], which cannot express spatial
variation of indoor illumination. Some recent works model spatial variations
as per-pixel environment maps [1,50,13,25], or volumes [41,44]. However, these
non-parametric representations can mainly be used for object insertion, while we
estimate editable light sources with physically meaningful properties (position,
geometry, direction, and intensity). Gardner et al. [12] predict a fixed number
of spherical Gaussian lobes to approximate indoor light sources but do not
handle light editing or its global effects. Zhang et al. recover geometry and
radiance of an empty room but cannot handle furniture inside [49]. Karsch et al.
reconstruct geometry, reflectance and lighting but do not model windows and
invisible scene contributions, require extensive user inputs [18] or face artifacts
from imperfect heuristics or optimization [19]. In contrast, our physically-based
neural renderer synthesizes photorealistic images with complex light transport,
to enable relighting, light source insertion and removal from a single image.

Neural rendering and relighting. NeRF [31] and other volumetric neural rendering
approaches have achieved photo-realistic outputs, but usually limited to view
synthesis [31,48,29]. A few recent works [6,5,8,10,16] handle relighting, but use a
per-object optimization from a large set of images. Philip et al. [35] demonstrate
relighting for outdoor scenes but require multiple images. Concurrent to our
work, Philip et al. [36] consider indoor relighting, but require a large number of
high-resolution RAW images, cannot reconstruct directional sunlight and do not
support material editing and object insertion with their neural renderer. As shown
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in Fig. 2 and Tab. 1, our modeling and neural rendering enable applications not
possible for prior works, such as light source insertion/removal, virtual objects
insertion and editing materials with non-local effects, from a single image.

3 Material and Light Source Prediction

Our overall framework is summarized in Fig. 3. In this section, we describe our
novel, physically meaningful and editable reflectance and light source representa-
tions, while Sec. 4 describes our neural renderer that is differentiable with respect
to light sources to facilitate training and editing of complex light transport.
For per-pixel reflectance, we train a U-net similar to [25] to predict material
parameters: diffuse albedo (A), normal (N) and roughness (R), following the
SVBRDF model of [17]. The inputs are a 240 x 320 LDR image (I) and its
corresponding depth map (D), which in our case can be predicted by a state-of-
the-art monocular depth prediction network [37]. We predict the normals directly,
instead of computing them as the normalized gradient of depth to avoid artifacts
and discontinuities. Thus, our prediction is given by {A, N, R} = MNet(I, D).

3.1 Light Source Representation

To enable high-quality indoor scene relighting, we need lighting representations
that are editable, expressive enough for different types of lighting and realistic
enough for convincing rendering of complex scenes. We model radiance and
geometry of two types of common light sources with very different properties: (a)
windows that can cover large areas and may induce strong directional sunlight,
and (b) lamps that tend to be small and with more complex geometry.

Radiance. The emitted radiance of lamps can be modeled by a standard Lam-
bertian model, where every surface point with intensity w emits light uniformly.
However, the radiance distribution of windows can be strongly directional due to
sunlight coming through on a clear day, which is important for capturing realistic
indoor lighting but often neglected by prior methods [42,36,41]. A recent work
[14] models directional lighting with a single spherical Gaussian (SG), but as
shown in Fig. 4, cannot recover ambient effects leading to suboptimal rendering.
Instead, we model the directional distribution of window radiance with 3 SGs
corresponding to the sun, sky and ground. Each SG is defined by three parameters
Gk = (Wi, Ak, dk), for intensity, bandwidth and direction of lighting. For a ray in
direction 1 that hits the window, its intensity is Lyy (1) = Yy wik exp (Ak(dk-1-1)),
where k € {sun, sky, grnd}. Fig. 4 shows that our representation with multiple
importance sampling leads to direct shading close to the ground-truth.

Geometry. Window geometry can be simply approximated by a rectangle {c,x,y},
where c is the center and x,y are the two axes. However, lamps present more
diverse geometry. Naively representing a lamp with a 3D bounding box {c,x,y,z}
works for invisible lamps, but it often leads to artifacts for visible lamps, as the
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imperfect shape generates incorrect highlights. Therefore, we carefully design
a new visible lamp representation shown in Fig. 5. We first identify the visible
surface based on the depth D and lamp segmentation mask M/, reconstruct the
invisible surface by reflecting the visible surface with respect to the lamp center ¢
and then add the boundary area. As shown in Fig. 5, our new representation can
effectively constrain the lamp geometry and achieve realistic rendering without
highlight artifacts for difficult real world examples. More details are in the supp.

3.2 Light Source Prediction

We use four neural networks to predict visible and invisible light sources for
the lamp and window categories. For visible light sources, the inputs include
extra instance segmentation masks. We can obtain the mask by either fine-
tuning a Mask R-CNN[15] for our dataset, combined with a graph-cut based post
processing to refine the boundaries, or manually draw the masks. While this is
not our main focus, we include both qualitative and quantitative analysis in the
supp. Let Myy be a mask for a window and M, be a mask for a lamp. We have

{c,w} = VisLampNet(I, A, D, M),
{07 XY, gsun7 gsky7 ggrnd} = VisWinNet(I, A, D, Mw)

We assume one invisible lamp and one invisible window. These are deliberate
simplifications: while invisible lights can contribute significant illumination, they
are hard to infer using only indirect cues. We limit the expressivity of the
representation to account for this ill-posedness and find it to be a good choice in
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practice’. When a scene has no invisible light source, their predicted intensities
are close to zero, as shown in Fig. 3 and Fig. 8. To learn a better separation of
visible and invisible light sources, we provide a mask M = >, Myy + > .M,
of all visible sources to the invisible light sources estimation networks:

{c,x,y,z} = InvLampNet(I, A,D, M),
{Ca XY, gsuna gskya ggrnd} = InVWinNEt(I, A, D, M)

4 Neural Rendering Framework

To achieve photorealistic indoor light editing, we need a rendering framework
that can handle complex light transport typical for indoor scenes, such as sharp
directional lighting, hard and soft shadows and non-local interreflections. While
existing differentiable path tracers can handle all these effects, they are compu-
tationally expensive. More importantly, they require the full reconstruction of
reflectance and geometry of the entire scene, including its invisible parts.

To address these limitations, we introduce a neural rendering framework that
combines the advantages of physically-based rendering and learning-based ren-
dering. It works with our light source representations, does not require full scene
reconstruction, achieves high performance, and is differentiable. Our framework,
illustrated in Fig. 3 (right), has 4 modules: (1) a physically-based direct shading
module that computes the direct irradiance from each light source through Monte
Carlo sampling; (2) a hybrid shadow module that can render hard/soft shadows
for each light source; (3) an indirect shading module that predicts non-local global
illumination; (4) a per-pixel lighting module that predicts per-pixel environment
map, which can be used to insert specular objects.

Our direct shading and shadows are computed based on ray tracing, while
global illumination and per-pixel lighting are predicted by networks. The reason is
that without full scene reconstruction, global illumination can only be computed
heuristically (Fig. 7), which is suited for neural networks. Conversely, direct
illumination and non-local shadowing can be efficiently computed by ray tracing,
but remain tricky for neural methods.

! The real scene in Fig. 1 has 4 invisible lamps and the last real scene in Fig. 6 has 2.
In both cases, we achieve reasonable approximation with one invisible lamp.
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4.1 Direct Shading Rendering Module

We use inspiration from physically-based rendering [34] to sample the surface of
each light source and connect those samples to the scene points. Formally, let
p be a shading point and q be a point uniformly sampled on the light surface,
with p—q the unit vector from p to q. The direct shading E; caused by light
source j is computed as:

area(j) Z L;(g—p) max(cos p, cos 04, 0) (1)

E;(p) = ;
! Nj lla—pll3

q

where cos 8, = p—q-N(p), cosq = q—p-N(q) and Nj is the number of samples
for light source j. While our Monte Carlo estimation in (1) converges fast for
lamps, it is not optimal for high-frequency directional sunlight coming through
windows, since only when q—p aligns with the sun direction, will the L(q—p)
return a significant contribution. To tackle this issue, with Pr(1) the probability
of sampling direction 1 from Gs,,, we also generate samples according to the
angular distribution of Ggun:

L;(1)I;(1) max(cos 6,0
1

where I;(1) is an indicator function to detect if ray 1 starting from p can hit
the window plane. Note that both (1) and (2) are unbiased but with different
variances, which we combine with multiple importance sampling (MIS) [43].
Details are in the supp. Fig. 4 compares the direct shading of a window, where
we observe that our MIS method can render high-quality direct shading with
much fewer samples, which makes training with rendering loss possible.

4.2 Depth-based Hybrid Shadow Rendering Module

Recall that in the above shading computation, Ej,7 € {W} U {L} does not
consider visibility and therefore cannot handle shadows. We could check visibility
by ray tracing during the Monte Carlo sampling above, but this causes artifacts
due to incomplete geometry, as shown in Fig. 6. We instead design a depth-based
shadow rendering framework that combines Monte Carlo ray tracing with learning-
based inpainting and denoising. Our shadow modules are not differentiable, as
this is not necessary for our application: we train our network on a synthetic
dataset, which provides the ground truth direct shading without the shadow
effects, so back-propagation of error through the shadow renderer is not necessary.

Our approach first creates a mesh from the depth map, and then uses a GPU-
based ray tracer to cast shadow rays from surfaces to light sources. To address
the boundary artifacts, we first modify the renderer to detect the occlusion
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boundaries, then train a CNN to fill in the shadow at these regions. This hybrid
approach outperforms both pure ray tracing and a CNN trained to clean up the
entire ray traced shadow image. Formally, let S™it be the initial shadow image
rendered from depth map D and let MS be the mask for occlusion boundaries.

S = M® . DShdNet(S™* D, N) + (1 — MS) . snit, (3)

The total direct shading from all sources is Eq = Zj E;S;. As seen in Fig. 1, 6
and 7, our framework can render higher quality soft and hard shadows that are
closer to the ground-truths compared to a standard ray tracer. Tab. 2 shows that
our CNN reduces the shadow error by more than 50%.

4.3 Indirect Shading Prediction

To render indirect illumination with a ray tracer, we would need full reconstruction
of scene reflectance and geometry, which is infeasible from a single image. Instead,
we train a 2D CNN to predict indirect shading in screen space. A similar idea was
adopted by a recent work [17]. We use a network with large receptive field covering
the entire image to model non-local inter-reflections. Our indirect shading is
Ei1na = IndirectNet(Egq, D, N, A), which is added to the direct shading for the
final shading prediction. In Fig. 7, we compare the indirect illumination rendered
by our network and by a ray tracer using an incomplete textured mesh built from
depth map and reflectance map predicted from a single image. Quantitative and
qualitative results on real and synthetic examples show that our neural rendering
layer renders both direct and indirect illumination accurately, while a ray tracer
cannot handle indirect illumination with partial geometry and reflectance, leading
to a darker image with similar intensity as the one with direct illumination only.

4.4 Predicting Lighting From Shading

The above framework cannot yet handle specular reflectance, which motivates
us to add another network to infer spatially varying per-pixel lighting L, taking
the above shading (irradiance) E as input. We follow [25] to predict a grid of
environment maps. We use a similar network architecture but replace the input
image I with the shading E so that the predicted local lighting is a function of
our lighting representation: L = LightNet(E, M, A, N, R, D). The predicted L
can be used to render specular materials, shown in Fig. 11 and Fig. 12 in Sec. 5.
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4.5 Implementation Details

Dataset. We train on OpenRooms [28] — a large-scale synthetic indoor dataset
for inverse rendering — which is unique among currently available datasets in
providing ground truths for all our outputs, such as light source geometry, per-
light source shadings (with and without occlusion) and per-light source shadows.
Thus, it allows to train each module separately, significantly simplifying training.

Optimized light source parameters. We augment the OpenRooms dataset with
optimized light source parameters {Gsun, Gsky, Ggra} for windows, leading to
sharper and more interpretable predictions. To compute those, we minimize the
L, difference between the rendered direct shading without occlusion Ej, j € {W}
and its corresponding ground truth, through our differentiable Monte Carlo
rendering module (Sec 4.1). More details are in the supp. The optimized direct
shading is seen in Fig. 4 to closely match the ground truth.

Losses. We use Lo loss to train MNet. The loss function for light source
prediction is the sum of a rendering loss (LoSSyen), & geometry loss (Lossgeo),
and a light source loss (LossSgrc). For LoSspen, we define it to be the L; distance
between the rendered direct shading E; and its ground-truth, without shadows
applied. For Lossgeo, we uniformly sample points {q} from the ground-truth
and predicted light source geometry to compute their RMSE Chamfer distances
and add an L; loss for its surface area to encourage sharper lighting. For Lossgye,
we use Lo loss for direction d, log Ly loss for intensity w and bandwidth A. To
train the shadow network, we use scale-invariant gradient loss proposed in [32]
and find that it leads to many fewer artifacts compared to a simple Lo loss. We
supervise indirect shading with L, loss and per-pixel lighting with rendering loss
and log Lo loss similar to [25]. More details are in the supp.

Training and inference. We use Adam [20] with learning rate 10~* and 3 (0.9,
0.999). We first train the MNet and then use its predictions as inputs to train
InvLampNet, InvWinNet, VisLampNet and VisWinNet separately. We
also train rendering modules independently by providing them with ground-truth
Eq4 and S. The typical inference time is less than 3s. More details are in the supp.

Refinement. While so far our framework can achieve high-quality light source
prediction and indoor lighting editing in many cases, our differentiable neural
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Fig. 9. Light source prediction on our synthetic dataset for four types of light sources.
We visualize light source geometry and direct shading E; without occlusion. Our method
recovers both geometry and radiance of four types of light sources reasonably well.
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Fig. 10. Our reflectance, lighting and rendering results on a synthetic and a real example.
Ground truths for the synthetic example are shown in the insets. We observe that even
for invisible light sources, our framework accurately reconstructs their geometry and
radiance, which enables realistic rendering of shadings, shadows, interreflections and
per-pixel lighting and final images.

renderer enables us to further refine the light source parameters by minimizing the
rendering loss between the rendered and the input image. Fig. 8 shows an example
where we correct the intensity of an invisible lamp with our rendering loss-based
refinement. Note that as this is an extremely ill-posed problem, good initialization
from our network predictions is essential for the refinement to achieve good results.
More discussions are in the supp. We only apply the refinement to real images
shown in the paper, not to the synthetic images.

5 Experiments

We present light source estimation and neural rendering results on real and
synthetic data, as well as various scene editing applications, especially light
editing, on real data. For synthetic data, we test both ground-truth and predicted
depths from DPT [37] w/o fine-tuning and use ground truth light source masks.
For real data, we generate all depth predictions using DPT [37] and manually
draw light source masks. While not being our main focus, we also evaluate a
Mask RCNN [15] for light source detection in the supp.

Light source predictions and neural rendering. Fig. 9 shows qualitative results
on synthetic images with ground truth depth. Qualitative synthetic results with
predicted depth are in the supp. We observe that our method can recover both
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Vis. window|0.415| 1.14 ]0.849(0.952| Table 4. Quantitative errors for our neural

Inv. lamp [0.712| 0.988 |0.289(0.357| rendering framework on OpenRooms with
Inv. window| 3.50 | 3.71 [0.312]0.328| ground-truth and predicted depth. We re-
Table 3. Light source prediction on Open- port L loss for the sum of direct shading
Rooms with ground truth and predicted with shadows Eq and shading with global
depth. We report RMSE chamfer loss and illumination E. We report log Lo loss for
L, error of direct shading w/o shadows E;. per-pixel lighting L.

the geometry and radiance for all 4 types of light sources reasonably well, which
enables us to render their direct shading quite close to the ground-truths. The
major errors are global shifts of colors and intensities, while the locations of
highlights are usually correct. This is reasonable given the ambiguities between
materials and lighting. Tab. 3 reports the quantitative errors with both ground
truth and predicted. The errors for windows are larger than those of lamps,
since the outdoor lighting coming through windows is much more complicated
compared to area lighting. In addition, the direct shading errors for invisible light
sources are lower. This is because their overall contributions are usually lower
since many of them are far away from the camera location. We observe that our
method also achieves comparable rendering errors even with predicted depth,
suggesting that it can generalize well to inaccurate geometry.

Fig. 10 shows our neural rendering results on a synthetic and a real example.
Quantitative results are summarized in Table 4. For the synthetic example,
our shadow prediction network combined with Monte-Carlo ray tracing can
render distant shadows from a single depth map without boundary artifacts. Our
indirect shading prediction network models non-local interreflections from only
single-view reconstruction of geometry and materials. All the modules combined
together lead to accurate reconstruction of shading and per-pixel lighting. For
the real example, even though we do not have ground truths, we observe that
the light source position, the highlight in the direct shading and shadows are
all visually consistent. The re-rendered image closely matches the input, which
further demonstrates that our framework can generalize well to real examples.
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Gardner et al. [11]|Garon et al. [13]|Li et al. [28] Table 5. User study on Garon et
72.4% 69.2% 59.0% al. dataset.

Insert ub]ect (floating) Insert vis Iamp close window Edit materials Turn on inv lamp, close window

’l- -

Insert object (surface) Insert object (ﬂoatlng) Insert vis lamp, close inv lamp Edit materials Open window, turn off inv lamp

Insert object (surface)

_ | |
Insert object (surface) Insert object (floating)  Insert vis lamp, close inv lamp, Edit materials Open window, turn off inv lamp
close window

Fig. 12. Various editing applications demonstrated on 3 real examples. In addition
to high-quality object insertion (a, b and c), our framework allows editing geometry,
material and lighting of indoor scenes, with consistent non-local effects. This includes
distant shadows projected to the bed, table and floor (d, e, f and i) or to the entire
room when the object blocks the light source (g and h), changing color of walls that
causes non-local color bleeding (j, k and 1) and adding virtual light sources into the
scene (g, h, i, I, m, n, o), such as turning on a lamp or opening a virtual window.

Comparisons with prior works. We reiterate that our method enables applications
(e.g. light source editing) that are not possible with any prior work. While this
makes direct comparisons challenging, we compare on a subset of tasks like
object insertion that prior works support. We use Garon et al. dataset [13] for
comparison, which is a widely-used, real dataset for spatially-varying lighting
evaluation. We conduct a user study by requiring 200 users to compare our
results with prior results and report the percentage of users who believes ours
are better. Even though we are solving a harder problem, both qualitative
and quantitative results in Fig. 11 and Tab. 5 show that our method achieves
performance comparable to the prior state-of-the-arts which only handle local
editing of the scene. Our per-pixel lighting prediction can be used to render
specular objects realistically, with highlights, shadows and spatial consistency
being correctly modeled. Specifically, our window representation and MIS based
rendering layer can better handle high-frequency, complex sunlight, leading to
rendering results closer to the ground truths, as presented in Fig. 11.

Novel scene editing applications. In addition to object insertion (a, b, ¢) with
realistic highlights and shadows, the true advantage of our framework is its ability
to handle non-local effects in novel scene editing applications, which is only made
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Input image Predicted light sources Turn off the visible lamp Turn off the invisible lamp
e o

Fig.13. Our accurate recon-
struction of visible/invisible light
sources allows separating their
contributions and turn them on
and off. Our results closely match
the ground-truth insets.

Input image Predicted light sources Turn off the visible window Turn off the invisible lamp

possible by our accurate reconstruction of indoor light sources and high-quality
neural rendering framework. These non-local effects include distant shadows
and highlights, which is shown in (d, e, f) of Fig. 12 where the inserted virtual
objects block the light coming from the visible window or the invisible lamp.
This is further demonstrated in (g, h, i), where the inserted virtual lamp causes
highlights on the nearby geometry and shadows that cover the whole wall behind
the virtual bunny and sphere. Moreover, our framework can model non-local
interreflection accurately. As shown in (j, k, 1), as we change the color of walls to
orange and blue, our indirect shading network paints the inserted white objects
with correct color bleeding. In (m, n, o), we demonstrate our framework’s ability
to turn on an invisible lamp or open a virtual window. In n, o, we use the 3 SG
approximation of the environment map shown in n.1 and o.1 respectively. Our
representation combined with our neural renderer can render realistic directional
sunlight. Our accurate reconstruction of indoor light sources further allows us
to separate their contributions. As shown in both Fig. 1 and 13, our framework
allows turning off visible and invisible, lamps or windows in the scene, with
changed appearance similar to the ground-truth insets?.

Please see supplementary material for ablation studies, error distributions,
failure cases, limitations and a video illustrating consistent scene editing effects
as we move virtual objects and light sources, or gradually change the wall color.

6 Conclusions

We presented a method that enables full indoor scene relighting and other editing
operations from a single LDR image with its predicted depth and light source
segmentation masks. The first key innovation is our lighting representation; we
estimate multiple global 3D parametric lights (lamps and windows), both visible
and invisible. The second is our hybrid neural renderer, capable of producing
high-quality images from our representations using a combination of Monte Carlo
and neural techniques. We show that this careful combination can for the first
time handle challenging scene editing applications including object insertion,
material editing, light source insertion and editing, with realistic global effects.
Ack. We thank NSF CAREER 1751365, 2110409, 1703957, CHASE-CI, ONR
N000142012529, N000141912293, a Google Award, gifts from Adobe, Ron L.
Graham Chair, UCSD Center for Visual Computing and Qualcomm Fellowship.

2 The second example is from the internet so we do not have its ground truth.
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