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Abstract
We propose an algorithm that uses linear function
approximation (LFA) for stochastic shortest path
(SSP). Under minimal assumptions, it obtains sub-
linear regret, is computationally efficient, and uses
stationary policies. To our knowledge, this is the
first such algorithm in the LFA literature (for SSP
or other formulations). Our algorithm is a special
case of a more general one, which achieves re-
gret square root in the number of episodes given
access to a computation oracle.

1. Introduction
To cope with the massive state spaces of modern reinforce-
ment learning (RL) applications, a plethora of recent pa-
pers have studied function approximation. A particularly
tractable case is linear function approximation (LFA). Here
one assumes the transition kernel and cost vector are linear
in known d-dimensional feature vectors, where typically
d ≪ S and A (the number of states and actions). In the
online setting, an agent interacts with the Markov decision
process (MDP) over T time steps (for infinite horizon aver-
age and discounted cost problems) or K episodes (for finite
horizon and stochastic shortest path problems). At a high
level, one seeks algorithms with two properties:

• Statistically efficient: regret independent of S and A, sub-
linear (ideally, square root) in T or K, and polynomial in
d and any other parameters.

• Computationally efficient: time and space complexity
independent of S and polynomial in d, A, T or K, and
any other parameters.

For the finite horizon problem, several algorithms have been
shown to achieve both properties. A key question we ad-
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dress is whether such algorithms exist in stationary policy
settings, by which we mean those settings where station-
ary policies are guaranteed to be optimal (i.e., stochastic
shortest path (SSP) and average/discounted cost problems).
To our knowledge, this problem is essentially open: state-
of-the-art algorithms are either computationally inefficient,
or they sidestep the issue by using non-stationary policies
that often require access to unknown MDP parameters. See
Section 1.1 for details.

In addition to this theoretical point of interest, there is prac-
tical motivation for understanding stationary policies. First,
they are simpler to deploy and (compared to large, but fi-
nite, horizons) less costly to store. Second, they do not
require a notion of “time zero,” which may be ill-defined in
practice. Third, RL applications like games with a random
number of moves are best modeled in the stationary policy
setting, in particular as SSP problems, where the agent tries
to minimize cost before reaching a goal state.

Contributions: Motivated by these theoretical and practical
concerns, we provide an algorithm for episodic SSP with
LFA that is statistically and computationally efficient while
using stationary policies. Beyond SSP, it is the first LFA
algorithm with these three desirable properties in any setting.
In more detail, our contributions are as follows:

• Optimistic approximate fixed points (OAFPs): In Section
3, we show that under the LFA assumption, the optimal
policy in an SSP can be computed from the fixed point
of a d-dimensional Bellman operator, denoted by G (see
Proposition 1). This is a simple observation, but it leads
to an important definition of OAFPs (see Definition 1).
Roughly, these are d-dimensional vectors that have small
Bellman error with respect to a data-driven operator Ĝt

that we interpret as an optimistic approximation of G.

• Regret bound with oracle: In Section 4, we assume access
to an oracle that computes OAFPs from trajectories and
propose Algorithm 1, which uses the oracle to update its
policy. When the LFA assumption holds, the minimal
cost for non-goal states cmin is positive, and a proper
policy exists (see Assumptions 1-2), Theorem 1 shows
Algorithm 1 achieves sublinear regret, with the exponent
determined by the oracle’s quality (

√
K in the best case

– see Corollary 1). This reduces the problem of regret
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minimization to that of finding OAFPs (which exist with
high probability, by the same theorem).

• Oracle implementations: In Section 5, we show how to
compute OAFPs. Combined with the results of Section
4, this yields an efficient end-to-end algorithm with the
following regret scaling in K:

– K5/6 if Assumptions 1-2 hold (Theorem 2).
– K3/4 if Assumptions 1-2 hold and all stationary poli-

cies are proper (Theorem 3).
–
√
K if Assumptions 1-2 hold and the features are or-

thogonal in a certain sense (Theorem 4).

• Extensions: In Section 6, we provide generalizations of
Theorems 3 and 4 and remove the cmin > 0 assumption.
The latter point shows we can obtain sublinear regret and
computational efficiency with stationary policies under
the minimal assumptions. Again, this is a first in the LFA
literature, to the best of our knowledge.

1.1. Related work

Finite horizon LFA: Several efficient algorithms have been
proposed (of course, the policies are not stationary). To
our knowledge, the earliest are (Jin et al., 2020; Yang &
Wang, 2020; Zanette et al., 2020a), which (like us) as-
sume linear costs and transitions: c(s, a) = ϕ(s, a)Tθ and
P (s′|s, a) = ϕ(s, a)Tµ(s′) for known ϕ(s, a) ∈ Rd. The
most relevant is (Jin et al., 2020), which proposed an op-
timistic, least squares version of backward induction; our
algorithm is the value iteration analogue. Subsequent work
is too vast to survey here, but for later discussion, we note
(Zhang et al., 2021; Zhou et al., 2021a) proposed Berstein-
style confidence sets for the related linear mixture model
(LMM, see, e.g., (Ayoub et al., 2020; Jia et al., 2020)),
where P (s′|s, a) = φ(s′|s, a)Tϑ for known φ(s′|s, a).

Infinite horizon LFA: Comparatively little is known for
infinite horizons. (Wei et al., 2021; Wu et al., 2022) studied
average costs under the minimal assumption that the opti-
mal policy’s long-term average reward is independent of the
initial state (see references therein for work with stronger as-
sumptions). The first algorithm in (Wei et al., 2021) has

√
T

regret assuming access to a certain fixed point oracle (analo-
gous to our Algorithm 1) but no efficient oracle is provided.
The second is computationally efficient with T 3/4 regret
but approximates the infinite horizon problem with a finite
horizon one, so it uses non-stationary policies and requires
knowledge of the span of the optimal value function in order
to tune the finite horizon approximation. The third relies on
even stronger assumptions. (Wu et al., 2022) proved

√
T

regret for the LMM, but the algorithm is inefficient due to
computation1 of

∑
s′∈S h(s′)φ(s′|s, a) for certain h ∈ RS .

1Appendix B of (Zhou et al., 2021b) provides a scheme to esti-
mate the sums, but only in some special cases, and the estimation

Analogous algorithms are proposed in (Zhou et al., 2020;
2021b) for discounted costs, which are inefficient for the
same reason. Also, the discounted cost regret formulation
is a bit unsatisfying, as it compares to the optimal policy
along the algorithm’s trajectory; thus, one that stays in a
bad set of states and only learns on this set can still have
low regret. For SSP in the LMM, the concurrent work (Min
et al., 2022) establishes Õ(

√
B3

⋆d
2K/cmin) regret, where

B⋆ is the maximal cost-to-go of the optimal policy (see
Section 2). However, similar to the above LMM papers,
their algorithm is inefficient as it involves summing over
S; it also requires access to (an estimate of) the unknown
parameter B⋆, which we do not. Finally, the concurrent
work (Chen et al., 2022) proves Õ(

√
B2

⋆T⋆d3K) regret for
SSP under our linearity assumption, where T⋆ ≤ B⋆/cmin

is the expected hitting time for the goal state under the op-
timal policy. However, their algorithm relies on a finite
horizon approximation, so it uses non-stationary policies
and requires access to the unknown parameters B⋆ and T⋆

(again, we do not). They also provide an efficient parameter-
free algorithm with worse regret Õ(

√
B3

⋆d
3K/cmin), and

an inefficient one with Õ(
√
B2

⋆d
7K) regret. These latter

two algorithms also use finite horizon approximations and
thus non-stationary policies.

Tabular SSP, c−1
min dependent: (Tarbouriech et al., 2020)

proved Õ(D3/2S
√
AK/cmin) regret, where D ≥ B⋆

is a measure of the SSP diameter (see their Assump-
tion 2). (Rosenberg et al., 2020) improved this to
Õ(B

3/2
⋆ S

√
AK/cmin). Both algorithms use Hoeffding-

style confidence sets and can be generalized to the case
cmin = 0, though regret becomes K2/3 (see Section 6).

Tabular SSP, c−1
min independent: (Rosenberg et al., 2020)

also proved Õ(B⋆S
√
AK) regret when cmin = 0, and

the lower bound Ω̃(B⋆

√
SAK). Removing the c−1

min de-
pendence required Berstein-style confidence sets, which
(Chen et al., 2021; Cohen et al., 2021; Tarbouriech et al.,
2021; Jafarnia-Jahromi et al., 2021) also employed. The
former three showed UCB-based algorithms achieve the
lower bound; the latter showed posterior sampling obtains
Õ(B⋆S

√
AK) regret. See references therein for prior work

on SSP variants (e.g., adversarially changing costs).

2. Preliminaries
Notation: For m ∈ N, we let [m] = {1, . . . ,m}. We write
1(·) for the indicator function. We let ei be the vector with
j-th element ei(j) = 1(i = j). For x ∈ Rd and positive
definite Y ∈ Rd×d, we set ∥x∥Y =

√
xTY x.

SSP: An SSP instance is defined by (S,A, P, c, sgoal),
where S is a set of S = |S| < ∞ states, A is a set of

error is not accounted for in the regret analysis.
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A = |A| < ∞ actions, P is the transition kernel, c is
the cost vector, and sgoal ∈ S is an absorbing zero-cost
state, i.e., P (sgoal|sgoal, a) = 1 and c(sgoal, a) = 0 for any
a ∈ A. A stationary and deterministic policy π : S → A
induces a trajectory {sπt }∞t=1, where sπ1 is an initial state and
sπt+1 ∼ P (·|sπt , π(sπt )) for t ∈ N. We call π proper if sgoal
is reached with probability 1 from any sπ1 ∈ S; otherwise,
we call it improper. We make the following assumption,
which we discuss in Remark 1 below.

Assumption 1 (Basic properties). There exists at least one
proper policy, and for some cmin > 0 and any (s, a) ∈
(S \ {sgoal})×A, c(s, a) ∈ [cmin, 1].

For any π : S → A, we define the (possibly infinite) cost-
to-go function Jπ : S → R by

Jπ(s) = lim
T→∞

E

[
T∑

t=1

c(sπt , π(s
π
t ))

∣∣∣∣∣sπ1 = s

]
.

Given Assumption 1, the optimal policy π⋆, i.e., the π that
minimizes Jπ(s) over all s, is stationary, deterministic, and
proper (Bertsekas & Tsitsiklis, 1991). It also satisfies the
Bellman optimality equations

J⋆(s) = min
a∈A

Q⋆(s, a), π⋆(s) ∈ argmin
a∈A

Q⋆(s, a), (1)

where J⋆ = Jπ⋆

and the optimal state-action cost-to-go
function Q⋆ : S ×A → R is given by

Q⋆(s, a) = c(s, a) +
∑
s′∈S

J⋆(s′)P (s′|s, a). (2)

Finally, we define B⋆ = maxs∈S J⋆(s).

Remark 1 (Positive costs). We require c(s, a) ≥ cmin to
show that episodes incurring finite total cost must terminate
in finite time. In Section 6, we remove this assumption while
still achieving sublinear regret and computational efficiency
with stationary policies.

Linearity: As discussed in the introduction, we make the
following assumption to enable LFA.

Assumption 2 (Linearity). For some d ≥ 2, there exists
known {ϕ(s, a)}(s,a)∈S×A ⊂ Rd, unknown θ ∈ Rd, and
unknown {µ(s′)}s′∈S ⊂ Rd, such that, for any (s, a, s′) ∈
(S \ {sgoal})×A× S ,

c(s, a) = ϕ(s, a)Tθ, P (s′|s, a) = ϕ(s, a)Tµ(s′), (3)

∥ϕ(s, a)∥2 ≤ 1, ∥θ∥2 ≤
√
d, (4)∥∥∥∥∥∑

s′∈S
h(s′)µ(s′)

∥∥∥∥∥
2

≤
√
d∥h∥∞ ∀ h ∈ RS . (5)

This assumption naturally generalizes that of (Jin et al.,
2020) to SSP. We also assume d ≥ 2, which, given (3), only

eliminates a trivial case where ϕ(s, a) is independent of
(s, a). Finally, we assume without further loss of generality
that ϕ(sgoal, a) = 0 ∀ a ∈ A.
Remark 2 (Tabular case). Any SSP with c(s, a) ∈ [0, 1]
satisfies Assumption 2 with d = SA, ϕ(s, a) = e(s,a), θ = c,
and µ(s′) = {P (s′|s, a)}(s,a)∈S×A.
Remark 3 (Realizability). As shown in Appendix E.2, As-
sumption 2 implies Q⋆ is linear in ϕ. Ideally, we would only
assume this, but recent work for finite horizons (a special
case of SSP) has shown this problem is much harder (Du
et al., 2020; Wang et al., 2021; Weisz et al., 2021).

Regret: We consider a protocol with K episodes. For each
k ∈ [K], the agent begins at step h = 1 at initial state skh.
At step h, the agent takes action akh, incurs cost c(skh, a

k
h),

and transitions to skh+1 ∼ P (·|skh, akh). If skh+1 = sgoal,
the episode terminates (without taking action akh+1). We
assume sk1 ̸= sgoal without loss of generality but make
no further assumptions on the sequence of initial states
{sk1}Kk=1. We let (st, at, s′t) denote the t-th state-action-
state triple observed across all episodes. Hence, for each t,
s′t ∼ P (·|st, at), and s′t = st+1 unless an episode ends at
time t (in which case s′t = sgoal and st+1 = sk+1

1 , where
k is the episode that ended at t). We also let T denote the
random total number of steps across all K episodes.2 As in
the tabular SSP literature, we define the regret

R(K) =
T∑

t=1

c(st, at)−
K∑

k=1

J⋆(sk1),

which is the difference between the total cost of the agent
and the expected total cost of a “genie” who knows the
optimal policy a priori and runs it for K episodes.
Remark 4 (Challenge 1). Unlike finite horizon LFA, no
episode is guaranteed to end, since the agent may use im-
proper policies. In this case, T =∞ and we suffer infinite
regret. Thus, we will need to detect improper policies and
fix them within episodes, a challenge that does not arise for
finite horizon LFA.

3. Optimistic approximate fixed point
To motivate the definition of OAFPs, we begin with the
simple observation that for a linear SSP, the optimal pol-
icy can be computed from a feature space version of the
Bellman operator (when the model is known). The proof is
elementary; see Appendix E.2.
Proposition 1 (Feature space fixed point). Let Assumptions
1 and 2 hold. Define G : Rd → Rd by

Gw = θ +
∑
s∈S

min
a∈A

ϕ(s, a)Twµ(s) ∀ w ∈ Rd.

2We reiterate T is random for SSP, unlike the fixed T used in
the infinite horizon discussion of Section 1.
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Then w⋆ = θ +
∑

s∈S J⋆(s)µ(s) is a fixed point of G (i.e.,
Gw⋆ = w⋆), J⋆(s) = mina∈A ϕ(s, a)Tw⋆, and

π⋆(s) ∈ argmin
a∈A

ϕ(s, a)Tw⋆ ∀ s ∈ S. (6)

When the model is unknown, we instead must estimate
Gw from data. Formally, let {sτ , aτ , s′τ}tτ=1 denote the
first t state-action-state triples as in Section 2, and define
Λt = I +

∑t
τ=1 ϕ(sτ , aτ )ϕ(sτ , aτ )

T. Then the regularized
least-squares estimate of Gw is

G̃w = Λ−1
t

t∑
τ=1

ϕ(sτ , aτ )
(
c(sτ , aτ ) + min

a∈A
ϕ(s′τ , a)

Tw
)
.

Due to Assumption 2 and concentration, we should expect
G̃w ≈ Gw for any (bounded) w. Thus, it seems reasonable
to find a fixed point w̃⋆ of G̃ and define policies like (6),
with w⋆ replaced by w̃⋆. This is roughly our approach,
though we will modify G̃ in two ways. First, as is common
for LFA, we subtract linear bandit-style bonuses (Abbasi-
Yadkori et al., 2011) to encourage exploration. Namely, we
consider the optimistic estimates

ft(s, w) = min
a∈A

(
ϕ(s, a)Tw − αt∥ϕ(s, a)∥Λ−1

t

)
, (7)

where αt > 0 is the usual exploration parameter. Second,
and again common for LFA, we “clip” this estimate between
0 and some Bt > 0 (see Remark 5) to ensure bounded
random variables, i.e., we define

gt(s, w) = min{max{ft(s, w), 0}, Bt}. (8)

This yields the operator Ĝt : Rd → Rd given by

Ĝtw = Λ−1
t

t∑
τ=1

ϕ(sτ , aτ ) (c(sτ , aτ ) + gt(s
′
τ , w)) .

Thus far, everything has naturally generalized finite horizon
LFA. However, in the SSP setting, we will encounter several
additional challenges that do not arise in finite horizon LFA,
or in finite horizon approximations of infinite horizon prob-
lems like the algorithms in (Wei et al., 2021; Chen et al.,
2022) (see Section 1.1).

Remark 5 (Challenge 2). In finite horizon LFA, one sets
Bt = H (the known horizon). Since the optimal value is
[0, H]-valued, clipping as in (8) only improves the optimal
value estimate. In contrast, the analogous quantity in SSP
is B⋆, which is unknown. Hence, we will need to learn
an upper bound Bt ≥ B⋆ to ensure the clipping does not
distort our J⋆ estimate.

Remark 6 (Challenge 3). In light of Remark 5, Bt, and
thus αt (which needs to scale with Bt to ensure optimism),
become trajectory-dependent random variables. This stands
in contrast to other LFA settings, where the exploration
parameter is deterministic.

Remark 7 (Challenge 4). In SSP, we need to find fixed
points, which we will do by showing the iterates of Ĝt con-
verge (see Remark 12). In contrast, finite horizon LFA uses
a simple backward induction procedure, which basically
iterates the operator H times and does not require any sort
of convergence.

To overcome these issues, we break the problem into two
parts, which treat Challenges 1-3 and 4, respectively. First,
in Section 4, we assume an oracle provides OAFPs, which
we use to solve the regret minimization problem. Second,
in Section 5, we show how to compute OAFPs.

We define OAFPs as follows. In essense, we require the
estimate (7) to be optimistic with respect to J⋆ (when w in
(7) is the OAFP), and the vector to be a fixed point of Ĝt up
to some tolerance.

Definition 1 (OAFP). We say that w ∈ Rd is an optimistic
approximate fixed point (OAFP) if

ft(s, w) ≤ J⋆(s) ∀ s ∈ S, ∥Ĝtw − w∥Λt
≤ αt. (9)

Note that by Cauchy-Schwarz, the latter bound implies

|ϕ(s, a)T(Ĝtw − w)| ≤ αt∥ϕ(s, a)∥Λ−1
t
. (10)

Finally, we note that due to the bonuses and clipping, Ĝt

need not concentrate near G. Instead, Lemma 2 in Ap-
pendix B shows it concentrates near Ut, where Utw =
θ +

∑
s∈S gt(s, w)µ(s). More specifically, we show that

with high probability, for any bounded w,

|ϕ(s, a)T(Ĝtw−Utw)| = O(
√

log t)∥ϕ(s, a)∥Λ−1
t
. (11)

To prove (11), we use covering arguments to take union
bounds over w, and the random functions gt. This is similar
to (Jin et al., 2020), though we have the added complication
of random (and dependent) Bt and αt.

For later use, we also note that by Assumption 2,

ϕ(s, a)TUtw = c(s, a) + Es′gt(s
′, w), (12)

where Es′ is expectation with respect to s′ ∼ P (·|s, a), i.e.,

Es′gt(s
′, w) =

∑
s′∈S

gt(s
′, w)P (s′|s, a).

4. Regret minimization with oracle
We can now describe Algorithm 1, which assumes ac-
cess to an OAFP oracle – i.e., a black box that, given
{sτ , aτ , s′τ}tτ=1, returns an OAFP wt per Definition 1.

Inputs: The inputs are a failure probability δ and a sequence
{κt}∞t=1 that will be used to define the exploration parameter
αt in (7) (which we cannot do a priori due to Remark 6).
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Remark 8 (Choice of κt). In more detail, the forthcoming
Line 22 of Algorithm 1 shows that αt = Õ(κt) (where here
the Õ notation only shows dependence on κt), i.e., the algo-
rithm is more explorative for larger κt. For now, we keep
this parameter general. In the forthcoming theoretical re-
sults, we will specify an appropriate κt (i.e., an appropriate
degree of exploration) under various assumptions.

Intervals: As in tabular SSP, we split time into intervals
indexed by l. The l-th interval will end at time Ml, which
will either correspond to the end of an episode or an intra-
episode policy update (see Remark 4). At each such Ml, we
will call the oracle for an OAFP wMl

, which will define the
policy executed in interval l + 1.

Initialization: Lines 2-5 initialize the regularizer Λ0 = I ,
a (candidate) B⋆ upper bound B0 (see Remark 5), and the
time and interval indices t and l. We also set w0 = α0 =
M0 = 0 to ensure the forthcoming notation is well-defined.

Episodic protocol: Lines 6-10, 15-16, and 27 implement
the protocol from Section 2. Additionally, Line 9 chooses
the action to minimize the optimistic cost-to-go estimate (7)
with respect to the most recent OAFP wMl−1

, and Line 16
updates Λt. When (or if) the last episode ends, Lines 11-14
record the total number of intervals L and the total time T .

Cost-to-go bound: If the cost-to-go estimate exceeds Bt−1,
then since fMl−1

(s′t, wMl−1
) ≤ B⋆ by Definition 1, we

know Bt−1 was not an upper bound for B⋆, so we double it
(Lines 17-18). Otherwise, we let Bt = Bt−1 (Lines 19-20).
Having defined Bt, we use it and the input κt to define αt

(Line 22), as alluded to above.

Policy update conditions: Line 23 checks four conditions
that require policy updates. The first three cause updates
after the first observation, an episode ends, or Bt−1 doubles.
The fourth, taken from (Abbasi-Yadkori et al., 2011), is that
the determinant of Λt doubles. The idea is that, before this
doubling occurs,

∥ϕ(s, a)∥Λ−1
t
≤
√
2∥ϕ(s, a)∥Λ−1

Ml−1

∀ (s, a) ∈ S ×A,

which is analogous to tabular RL algorithms that wait to
update until the number of visits to some (s, a) double (e.g.,
(Jaksch et al., 2010)).

Policy update: If any of the conditions are met, Lines 24-
25 call the oracle for an OAFP wMl

and end the current
interval. Note that in the next interval, the policy in Line 9
will use this OAFP.

We can now present the main result of this section, Theorem
1. It assumes that the input κt to Algorithm 1 is O(tλ) for
some λ ∈ [0, 1

2 ), which implies the exploration parame-
ter αt is Õ(tλ) (see Remark 8). Provided this holds, the
theorem shows that Algorithm 1 obtains K

1
2+λ regret, i.e.,

smaller αt yields lower regret. The tradeoff is that smaller

Algorithm 1 Regret minimization with oracle
1: Input: δ ∈ (0, 1), {κt}∞t=1 ⊂ [1,∞)
2: Λ0 = Id (regularizer), B0 = cmin (B⋆ bound)
3: w0 = 0d (OAFP), α0 = 0 (explore parameter)
4: M0 = 0 (time 0-th interval ended)
5: t = 1 (current time), l = 1 (current interval)
6: for episode k = 1, . . . ,K do
7: h = 1 (current step), observe skh ∈ S \ {sgoal}
8: while skh ̸= sgoal do
9: Choose akh ∈ A to minimize

ϕ(skh, a
k
h)

TwMl−1
− αMl−1

∥ϕ(skh, akh)∥Λ−1
Ml−1

10: Observe c(skh, a
k
h) and skh+1 ∼ P (·|skh, akh)

11: if k = K and skh+1 = sgoal then
12: L = l (total number intervals), ML = t
13: T = t (total time elapsed)
14: else
15: (st, at, s

′
t) = (skh, a

k
h, s

k
h+1)

16: Λt = Λt−1 + ϕ(st, at)ϕ(st, at)
T

17: if fMl−1
(s′t, wMl−1

) > Bt−1 then
18: Bt = 2Bt−1

19: else
20: Bt = Bt−1

21: end if
22: αt = (Bt + 1)κt

√
log(t(Bt + 1)κt/δ)

23: if t = 1 or s′t = sgoal or Bt ̸= Bt−1 or
det(Λt) ≥ 2 det(ΛMl−1

) then
24: Call oracle for OAFP wt (Def. 1)
25: Ml = t, l← l + 1
26: end if
27: t← t+ 1, h← h+ 1
28: end if
29: end while
30: end for

αt requires the OAFP to have lower Bellman error and yield
sharper cost-to-go estimates (see Definition 1). In other
words, larger λ implies larger αt and thus (possibly unnec-
essary) exploration (see Remark 8), but it demands less of
the oracle (see Definition 1), which will allow for guarantees
under weaker assumptions.

Put differently, we would ideally choose λ = 0 to obtain√
K regret, but this choice means the oracle must com-

pute an OAFP with Õ(1) Bellman error. Computing such
OAFPs will present a challenge when we discuss oracle
implementation in the next section. However, if we dis-
regard computation and assume access to an oracle that
computes such OAFPs (e.g., by exhaustive search over an ϵ-
net), choosing λ = 0 presents no issue (because the theorem
also guarantees that such OAFPs exist).

Theorem 1 (General result). Suppose Assumptions 1 and
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2 hold and κt ∈ [9d,Ψtλ log(t + 1)] for some Ψ > 0
independent of t and some absolute constant λ ∈ [0, 1

2 ).
With probability at least 1− δ, there exists an OAFP for all
t ∈ [T ] and

R(K) = Õ
(
(B

3
2+λ
⋆ +B

1
2+λ
⋆ )d

1
2Ψ(K/cmin)

1
2+λ

+ (B⋆ + 1)
2

1−2λ d
1

1−2λΨ
2

1−2λ c
− 1+2λ

1−2λ

min

)
.

In summary, Algorithm 1 ensures
√
K regret when given an

oracle that returns OAFPs for λ = 0. This is analogous to
(Wei et al., 2021; Zanette et al., 2020b), which provide

√
K

regret for average cost and finite horizon problems when
given certain optimization oracles. More specifically, in the
best case κt = 9d permitted by Theorem 1, we have the
following corollary.

Corollary 1 (Best case). Suppose Assumptions 1 and 2 hold,
B⋆ ≥ 1, and κt = 9d. With probability at least 1− δ, there
exists an OAFP for all t ∈ [T ] and

R(K) = Õ
(√

B3
⋆d

3K/cmin +B2
⋆d

3/cmin

)
.

Note Corollary 1 also assumes B⋆ ≥ 1, which is natural
(otherwise, J⋆ can arbitrarily smaller than the cost upper
bound 1 ≥ c(s, a)). Of course, the B⋆ < 1 case can be
recovered from Theorem 1. Forthcoming results also as-
sume B⋆ ≥ 1, but the appendix contains bounds for the
case B⋆ < 1 as well. Note the regret bound in Corollary 1
matches the only efficient parameter-free bound from the
very recent paper (Chen et al., 2022), which does not use
stationary policies (see Section 1.1).

Theorem 1 proof sketch. The proof is in Appendix C but
we discuss the key ideas for the regret bound here. For
simplicity, we set λ = 0 and show R(K) = O(

√
K) while

hiding terms independent of K. Again for simplicity, we
use ft and its clipping gt interchangeably. Finally, we write
≈ to denote equalities that hold up to noise and bonus terms
that are bounded by standard linear bandit techniques.

Regret decomposition: Fix T̃ ∈ N and let K̃ and L̃ denote
the number of episodes and intervals completed by time
T ∧ T̃ . In light of Remark 4, we will bound regret by time
T ∧ T̃ , show it is finite, and let T̃ →∞. More specifically,
let R̃(T̃ ) = R̃1(T̃ ) + R̃2(T̃ ), where we define

R̃1(T̃ ) =
L̃−1∑
l=0

Ml+1∑
t=1+Ml

c(st, at)− J⋆(s1+Ml
)

as the per-interval regret, and

R̃2(T̃ ) =
L̃−1∑
l=0

J⋆(s1+Ml
)−

K̃∑
k=1

J⋆(sk1)

as the “excess regret” from intra-episode updates.

Cost-to-go bound: To bound both terms, we require a
bound on Bt. Since fMl−1

(s′t, wMl−1
) ≤ B⋆ by Definition

1, as soon as Bt−1 exceeds B⋆, the condition Line 17 will
stop occurring. This implies Bt ≤ 2B⋆.

Per-interval regret: First note that by (9),

R̃1(T̃ ) ≤
L̃−1∑
l=0

Ml+1∑
t=1+Ml

c(st, at)−fMl
(s1+Ml

, wMl
). (13)

Now fix l and t as the double summation. Then by the
chosen policy (Line 9 of Algorithm 1), we know

fMl
(st, wMl

) ≈ ϕ(st, at)
TwMl

,

where ≈ hides the bonus term αMl
∥ϕ(st, at)∥Λ−1

Ml

. Again

up to the bonus, (10) and (11) imply

ϕ(st, at)
TwMl

≈ ϕ(st, at)
TUtwMl

.

Finally, by (12), up to a conditionally zero-mean term,

ϕ(st, at)
TUtwMl

≈ c(st, at) + fMl
(st+1, wMl

).

Combining the last three inequalities, we obtain

c(st, at)− fMl
(st, wMl

) ≈ −fMl
(st+1, wMl

).

Iterating in (13), this implies R̃1(T̃ ) ≈ 0, where ≈ hides
a sum of T ∧ T̃ zero-mean terms and bonuses.3 Both are
Õ(
√
T ∧ T̃ ), because αt = Õ(1) by λ = 0 and the above

discussion that Bt ≤ 2B⋆ = O(1).

Excess regret: By definition, R̃2(T̃ ) ≤ B⋆(L̃− K̃), where
L̃ − K̃ is the number of intra-episode episodes, i.e., the
number of times Bt or det(Λt) double. The former occurs
O(1) times since Bt = O(1) and the latter Õ(1) times since
det(Λt) = O(t). Thus, R̃2(T̃ ) is dominated by R̃1(T̃ ) (in
terms of T̃ ).

Completing the proof: So far, we have argued R̃(T̃ ) =

O(
√
T ∧ T̃ ). By definition, we also know

(T ∧ T̃ )cmin ≤
T∧T̃∑
t=1

c(st, at) = R̃(T̃ ) +
K̃∑

k=1

J⋆(sk1).

Combining, we obtain T ∧ T̃ = O(
√

T ∧ T̃ +K), which
implies T ∧ T̃ = O(K). Thus, choosing T̃ ≫ K, we
conclude T = T ∧ T̃ = O(K), so R(K) = R̃(T̃ ) and√
T ∧ T̃ = O(

√
K). Plugging into the bound R̃(T̃ ) =

O(
√
T ∧ T̃ ) completes the proof.

3Again, we emphasize that ≈ suppresses terms that are handled
using standard techniques; the ≈ 0 notation is not intended to
suggest that R̃1(T̃ ) is enirely negligible.
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Algorithm 2 Computing OAFPs

Set n = 1, compute Ĝn
t 0 = Ĝt0 and Ĝn−1

t 0 = 0
while ∥Ĝn

t 0− Ĝn−1
t ∥Λt

> αt do
Set n← n+ 1, compute Ĝn

t 0 = Ĝt(Ĝ
n−1
t 0)

end while
Return wt = Ĝn−1

t 0

Remark 9 (Finite T ). It is tempting to choose T̃ = ∞ at
the start of the proof, show T = O(

√
T +K) as above, and

conclude T = O(K) <∞. However, such logic is circular:
it assumes T is finite (e.g., to justify adding/subtracting T
terms) in order to prove it is finite. We point out this mistake
(which some tabular SSP papers have made) so future work
can avoid it.

Remark 10 (Complexity). Algorithm 1’s runtime is dom-
inated by computation of {π(st)}Tt=1, which is O(Ad2T )
when Λ−1

t and det(Λt) are iteratively updated. In the proof,
we show T is polynomial in all parameters (see Remark 14
in Appendix C), so given an efficient oracle, Algorithm 1 is
itself efficient.

5. Oracle implementation
We next discuss how to compute OAFPs. The obvious
approach is to iterate Ĝt. This indeed yields optimistic
estimates, i.e., the first inequality in (9) will hold.

Lemma 1 (Informal version of Corollary 4 from Appendix
D). With high probability, if αt = Ω(

√
log t),

ft(s, Ĝ
n−1
t 0) ≤ J⋆(s) ∀ s ∈ S, n ∈ N, t ∈ [T ].

Proof sketch. When n = 0, the bound is immediate, since
ft(s, Ĝ

0
t0) = ft(s, 0) ≤ 0. If true for n, then

gt(s
′, Ĝn−1

t 0) ≤ max{ft(s′, Ĝn−1
t 0), 0} ≤ J⋆(s′).

Thus, by (12) and Bellman optimality (1),

ϕ(s, a)TUt(Ĝ
n−1
t 0) ≤ c(s, a) + Es′J

⋆(s′) = Q⋆(s, a),

so by (11), αt = Ω(
√
log t), and (1),

ft(s, Ĝ
n
t 0) ≤ min

a∈A
Q⋆(s, a) = J⋆(s).

We thus propose Algorithm 2 for OAFP computation, which
iterates Ĝt until the second inequality in (9) holds. The
first inequality in (9) holds by Lemma 1, so the algorithm
returns OAFPs if it terminates.4 Our next result shows

4Experiments suggest that this termination occurs more gener-
ally than the setting of Theorem 2 – in particular, even when λ = 0,
under which Corollary 1 promises a

√
K regret scaling (unlike

the forthcoming Theorem 2). Proving this, however, remained
surprisingly elusive, and we leave it as an open problem.

that, for appropriately chosen κt (see Remark 8), it indeed
terminates in polynomially many iterations. Combined with
Remark 10, this shows Algorithms 1 and 2 provide an end-
to-end statistically/computationally efficient scheme that
uses stationary policies – a first in the LFA literature.

Theorem 2 (End-to-end algorithm). Suppose Assumptions
1 and 2 hold, B⋆ ≥ 1, κt = 54dt1/3, and Algorithm 2 is the
oracle. With probability at least 1− δ, Algorithm 2 returns
an OAFP within O(dt1/6) iterations for each t ∈ [T ] it is
called, and

R(K) = Õ
(
B

11
6
⋆ d

3
2 (K/cmin)

5
6 +B6

⋆d
9c−5

min

)
.

Proof sketch. The proof (and those of the forthcoming The-
orems 3 and 4) can be found in Appendix D. Given Theorem
1 and Lemma 1, the remaining challenge is to show Algo-
rithm 2 terminates, i.e., ∥Ĝn

t 0− Ĝn−1
t 0∥Λt

≤ αt for some
n = O(dt1/6). Equivalently, if we ignore the regularizer,
then by definition of ∥ · ∥Λt , we aim to show

t∑
τ=1

(ϕ(sτ , aτ )
T(Ĝn

t 0− Ĝn−1
t 0))2 ≤ α2

t . (14)

To bound the τ -th summand, we show Ut converges, Ĝt

tracks Ut, and use the triangle inequality.

Ut converges: Lemma 4.3 of (Bonet, 2007) implies the
standard Bellman iterates converge at rate SA

n . By (12),
ϕ(s, a)TUn

t 0 are basically the same iterates (up to bonuses
and clipping), which means they converge at rate SA

n as
well. The constant SA is infeasible, but with a more careful
analysis, we can exploit the low rank structure to show

max
(s,a)∈S×A

|ϕ(s, a)T(Un
t 0− Un−1

t 0)| = O
(d2
n

)
. (15)

Ĝt tracks Ut: Let xn = Ĝn
t 0 and yn = Un

t 0. By (11),

|ϕ(s, a)T(xn+1 − Utxn)| = Õ(1)|ϕ(s, a)∥Λ−1
t
.

On the other hand, (12) implies

|ϕ(s, a)T(Utxn − yn+1)| ≤ Es′ |gt(s′, xn)− gt(s
′, yn)|.

Combining and using the triangle inequality, we obtain

|ϕ(s, a)T(xn+1 − yn+1)| = Õ(1)|ϕ(s, a)∥Λ−1
t

+ Es′ |gt(s′, xn)− gt(s
′, yn)|. (16)

Finally, a straightforward calculation yields

|gt(s′, xn)− gt(s
′, yn)| ≤ max

a′
|ϕ(s′, a′)T(xn − yn)|.

This suggests bounding the average in (16) by the max (over
s′ ∈ S) and iterating. However, such a bound involves
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max(s,a)∈S×A ∥ϕ(s, a)∥Λ−1
t

, which is too large for our pur-
poses. The crucial idea of the proof is to take max only
over the explored states St, namely, those s′ ∈ S for which
maxa′ ∥ϕ(s′, a′)∥Λ−1

t
≪ α−1

t . The key implication is that
if s′ is unexplored, then αt∥ϕ(s′, a′)∥Λ−1

t
≫ 1 for some a′,

so ft(s
′, xn) ≤ 0 by definition and gt(s

′, xn) = 0 by clip-
ping (and similar for yn). This insight allows us to iterate
the above, but only over (s, a) ∈ St ×A, to obtain

max
(s,a)∈St×A

|ϕ(s, a)T(xn − yn)| = Õ(n/αt).

Plugging into (16) and recalling xn = Ĝn
t 0 and yn = Un

t 0,
this extends to all (s, a) ∈ S ×A as follows:

|ϕ(s, a)T(Ĝn
t 0−Un

t 0)| = Õ
(
∥ϕ(s, a)∥Λ−1

t
+

n

αt

)
. (17)

Completing the proof: By (15) and (17), the τ -th summand
in (14) is Õ(∥ϕ(s, a)∥2

Λ−1
t

+( n
αt

+ 1
n )

2) (in terms of n and t).
This yields a sum of squared bonuses, which is independent
of t, plus O(t( 1n + n

αt
)2). Finally, since αt = O(t1/3) by

choice of κt, after n = O(t1/6) iterations, t( 1n + n
αt
)2 =

O(t2/3) = O(α2
t ), as desired.

Remark 11 (Clipping). Most LFA papers use clipping to
show an event like (11) occurs with high probability, then
bound regret on this event, after which clipping becomes
somewhat of a nuisance. In contrast, the proof sketch shows
we exploit it on the high probability event.

Remark 12 (Convergence). The proof sketch shows
∥xt∥Λt = O(t1/3), where xt = Ĝnt

t 0 − Ĝnt−1
t 0 is the

fixed point error after nt = O(t1/6) iterations. Note the
norm equivalence ∥xt∥Λt

= O(
√
t)∥xt∥2 always holds, so

if it is reasonably tight (e.g., if ∥xt∥2 = o(t−1/3)∥xt∥Λt
),

then xt → 0 as t→∞ (i.e., Algorithm 2 yields a fixed point
asymptotically in t).

If we strengthen Assumption 1 to mandate that all stationary
policies are proper, we can improve Theorem 2’s regret
bound. While this assumption is technically stronger, it
seems perfectly reasonable for, e.g., games that eventually
end. The benefit is that the Bellman operator T : S ×A →
R given by

(T Q)(s, a) = c(s, a) + Es′ min
a′∈A

Q(s′, a′) (18)

is contractive. More precisely, for some ρ ∈ (0, 1) and
ω(s) > 0, if ∥x∥ = max(s,a)∈S×A ω(s)|x(s, a)|, then

∥T Q1 − T Q2∥ ≤ ρ∥Q1 −Q2∥. (19)

Define χ = maxs∈S ω(s)/mins∈S ω(s). Assuming non-
trivial upper bounds ρ̄ ∈ [ρ, 1) and χ̄ ∈ [χ,∞) are known,
our next result establishes K3/4 regret. (We soon show how
this last assumption can be avoided.)

Theorem 3 (All proper). Suppose Assumptions 1 and 2
hold, B⋆ ≥ 1, all stationary policies are proper, κt =
54dt1/4

√
Nt with Nt = log(3tχ̄)/(1− ρ̄), and Algorithm

2 is the oracle. With probability at least 1− δ, Algorithm 2
returns an OAFP within Nt iterations for each t ∈ [T ] it is
called, and

R(K) = Õ
(
B

7
4
⋆ d

3
2 (K/cmin)

3
4N

1/2
t +B4

⋆d
6N2

t c
−3
min

)
.

Proof sketch. Recall in the Theorem 2 proof sketch, we
showed ∥Ĝn

t 0 − Ĝn−1
t ∥Λt = O(

√
t( 1n + n

αt
)), where 1

n
was the Ut convergence rate. Under the stronger assumption
of Theorem 3, Ut inherits a contraction property from (19),
which improves the rate to ρn. Hence, after Nt iterations,
we have ∥Ĝn

t 0 − Ĝn−1
t ∥Λt

= Õ(
√
t/αt) = Õ(αt) by the

choice κt = Õ(t1/4).

Finally, we demonstrate a case where Algorithm 2 returns
OAFPs for the best case κt from Corollary 1. This case
generalizes the tabular one – where the features are the
elementary basis vectors in RS×A – to allow for any d ∈
N and any orthogonal features. While arguably stylized,
the main purpose is to exhibit a computationally efficient
algorithm that achieves

√
K regret beyond the tabular case,

and to demonstrate a different proof technique. Moreover,
this result will be generalized in the next section.

Theorem 4 (Orthogonal features). Suppose Assumptions
1 and 2 hold, B⋆ ≥ 1, {ϕ(s, a)}(s,a)∈S×A ⊂ {qi}di=1 for
some orthonormal set {qi}di=1, κt = 9d, and Algorithm 2
is the oracle. With probability at least 1 − δ, Algorithm 2
returns an OAFP within Õ(t) iterations for each t ∈ [T ] it
is called, and regret is bounded as in Corollary 1.

Proof sketch. The additional assumption yields an explicit
expression for Λ−1

t , which allows us to show Ĝt itself is
contractive. This enables a direct convergence proof, i.e.,
without comparing to the iterates of Ut.

6. Extensions
Before closing, we mention some extensions of our results.
We defer the details to Appendix A.

Generalizing Theorem 3: When the upper bounds χ̄ and
ρ̄ are unavailable, we can instead set Nt = t2γ for some
constant γ ∈ (0, 1

4 ) and modify Algorithm 2 to terminate
after Nt iterations (if it has not already). This approach is ef-
ficient by design, returns OAFPs for t ≥ Γ = Õ(( logχ

1−ρ )
1
2γ ),

and (combined with Algorithm 1) achieves the Theorem 1
regret bound with λ = 1

4 + γ and an additive Γ term.

Generalizing Theorem 4: When {ϕ(s, a)} is not orthogo-
nal but there at most d′ unique features, they can be orthog-
onalized to recover the

√
K regret bound from Theorem 4,
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with d′ replaced by d. This is efficient if d′ ≪ SA, which
is reminiscent of state aggregation.

Zero/vanishing costs: Suppose we modify Assumption 1
to allow for cmin = 0, which is the minimal assumption
in tabular SSP (the upper bound c(s, a) ≤ 1 can be easily
generalized to bounded costs). In this setting, we define
regret with respect to the optimal proper policy π⋆

prop. We
use the same algorithms but replace c(s, a) with c(s, a) +
η for a small perturbation η > 0 in the definition of Ĝt,
invoke Theorem 1 to bound the regret of this algorithm
with respect to the optimal policy in the perturbed SSP
(which remains linear), and compare the cost-to-go of the
latter with that of π⋆

prop. With κt scaling as tλ for some
λ ∈ [0, 1

2 ) (as in Theorem 1) and η as K(2λ−1)/(2λ+3), this
yields K(4λ+2)/(2λ+3) regret.5 Since 4λ+2

2λ+3 < 1 for any
λ ∈ [0, 1

2 ), Algorithms 1-2 with the Theorem 2 parameters
obtain statistical/computational efficiency with stationary
policies under minimal assumptions. Note this also works
if Assumption 1 holds but cmin is small. For example,
Corollary 1 only promises linear regret when cmin = K−1,
but choosing η = K−1/3 ensures K2/3 regret.

Remark 13 (c−1
min dependence). As seen above, the c−1

min

dependence of the leading term in our regret bound inflates
the scaling in K when dealing with small costs. This issue
also arises for the algorithm in (Min et al., 2022), the only
efficient parameter-free algorithm in (Chen et al., 2022), and
the earlier tabular algorithms, none of which use Bernstein-
style confidence bounds (see Section 1.1). For LFA, these
bounds have only been studied recently and only for simple
finite horizon problems (see Section 1.1). Thus, given the
unique LFA challenges that arise for SSP (see Remarks 4,
5, 6, and 7), we leave such bounds, and the improvement
regarding c−1

min dependence, for future work.

7. Conclusion
In this paper, we presented algorithms and regret bounds
for SSP with LFA, and more generally, the first efficient
LFA algorithm that uses stationary policies. Addressing the
remaining statistical/computational gap (i.e., proving

√
K

regret in general) is an important open problem. Given the
modular nature of the paper, one solution approach would
be to combine our results with an improved oracle.
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A. Section 6 details
A.1. Generalizing Theorem 3

As discussed in Section 6, we can use the following OAFP oracle, which modifies Algorithm 2 by returning the Nt-th iterate
if it reaches the Nt-th iteration. Let Nt = t2γ for some absolute constant γ ∈ (0, 1

4 ) and set κt = 54dt
1
4

√
Nt as in Theorem

3. We show in Appendix D (see Remark 16) that with probability at least 1− δ/2, for any t ≥ (log(3tχ)/(1− ρ))
1
2γ that

Algorithm 3 is called, it returns an OAFP within t2γ iterations.

Now suppose we run Algorithm 1 with Algorithm 3 as the oracle. Let Γ = Õ(( logχ
(1−ρ) )

1
2γ ). Then for the first Γ time steps,

Algorithm 3 need not return an OAFP (though it will terminate, so everything is well-defined) but does thereafter. Using
Assumption 1, we bound regret by Γ for the first Γ time steps, and by modifying the proof of Theorem 1, we can bound
regret by K

3
4+γ thereafter (in terms of K). Thus, regret will scale as K

3
4+γ for this algorithm, with a second-order term Γ

in addition to the one from Theorem 1.

Algorithm 3 Computing OAFPs with iteration limit

Set n = 1, compute Ĝn
t 0 = Ĝt0 and Ĝn−1

t 0 = 0
while ∥Ĝn

t 0− Ĝn−1
t ∥Λt

> αt and n ≤ Nt do
Set n← n+ 1, compute Ĝn

t 0 = Ĝt(Ĝ
n−1
t 0)

end while
Return wt = Ĝn−1

t 0

A.2. Generalizing Theorem 4

Let Assumption 1 hold and suppose ϕ(s, a), θ, and µ(s′) satisfy Assumption 2. Denote by {φi}d
′

i=1 the unique elements of
{ϕ(s, a)}(s,a)∈(S\{sgoal})×A. For any d′′ ∈ {d′, d′ + 1, . . .}, define

Φ =
[
φ1 · · · φd′

]
∈ Rd×d′

, Ξ =
[
Φ 0d×(d′′−d′)

]
∈ Rd×d′′

.

Let Ξ = RΦ̃ be an RQ decomposition, i.e., R ∈ Rd×d′′
is upper triangular Φ̃ ∈ Rd′′×d′′

is orthogonal. For (s, a) ∈
(S \ {sgoal}) × A, let ϕ̃(s, a) be the i(s, a)-th column of Φ̃, where i(s, a) ∈ [d′] is such that ϕ(s, a) = φi(s,a), and set
ϕ̃(sgoal, a) = 0 ∀ a ∈ A. We claim that ϕ̃(s, a), RTθ, and RTµ(s′) satisfy Assumption 2. To prove (3), we first observe
that for any (s, a, s′) ∈ (S \ {sgoal})×A,

ϕ̃(s, a)TRT = eTi(s,a)Φ̃
TRT = eTi(s,a)Ξ

T = eTi(s,a)Φ
T = ϕ(s, a)T,

so ϕ̃(s, a)TRTθ = ϕ(s, a)Tθ = c(s, a) and ϕ̃(s, a)TRTµ(s′) = ϕ(s, a)Tµ(s′) = P (s′|s, a), as desired. The first inequality
in (4) holds by construction. For the second inequality in (4), note φT

i θ is the cost of some state-action pair and thus lies in
[0, 1] by Assumption 1. Combined with the fact that Φ̃ is orthogonal,

∥RTθ∥22 = ∥Φ̃TRTθ∥22 = ∥ΞTθ∥22 =
d′∑
i=1

(φT
i θ)

2 ≤ d′ ≤ d′′.

Similarly, for (5), since φT
i µ(·) is a probability distribution over S , for any h ∈ RS , we have∥∥∥∥∥∑

s′∈S
h(s′)RTµ(s′)

∥∥∥∥∥
2

2

=
d′∑
i=1

(∑
s′∈S

h(s′)φT
i µ(s

′)

)2

≤ d′∥h∥2∞ ≤ d′′∥h∥2∞.

Algorithmically, this means that if Φ is known a priori, we can set d′′ = d′, compute Φ̃, and use features ϕ̃(s, a) ∈ Rd′

instead of ϕ(s, a). Alternatively, if a nontrivial bound d′′ = O(d′) is known, we can iteratively compute Φ̃ via Gram–Schmidt
(computing the i-th column when we observe unique features for the i-th time), increasing the dimension to d′′. In the
respective cases, our results follow with d replaced by d′ and d′′, respectively.
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A.3. Zero/vanishing costs

Finally, we extend our results to the case where only Assumption 2 and the following hold.

Assumption 3 (Weaker than Assumption 1). There exists a proper policy and c(s, a) ∈ [0, 1] ∀ (s, a) ∈ S ×A.

Now suppose the SSP instance (S,A, P, c, sgoal) only satisfies Assumptions 2 and 3. Let cη(s, a) = c(s, a) + η be the
perturbed cost discussed in Section 6. Then the instance (S,A, P, cη, sgoal) satisfies Assumption 1, with cmin = η (up to a
small constant, since cη(s, a) may be as large as 1 + η). Also define θη = θ + η

∑
s∈S µ(s). Then since Assumption 2

holds for the original instance, we have

cη(s, a) = c(s, a) + η = c(s, a) + η
∑
s′∈S

P (s′|s, a) = ϕ(s, a)Tθ + η
∑
s′∈S

ϕ(s, a)Tµ(s′) = ϕ(s, a)Tθη,

so it also holds for the perturbed instance (again, up to a constant, since we can only assert ∥θη∥2 ≤
√
d(1 + η)). Thus, if

we run Algorithm 1 on the original instance but replace c(s, a) with cη(s, a) in the definition of Ĝt, and if J⋆
η is the optimal

cost-to-go function on the perturbed instance, Theorem 1 ensures that

T∑
t=1

cη(st, at)−
K∑

k=1

J⋆
η (s

k
1) = Õ

((
B

3
2+λ
⋆ +B

1
2+λ
⋆

)
d

1
2Ψ(K/η)

1
2+λ + (B⋆ + 1)

2
1−2λ d

1
1−2λΨ

2
1−2λ η−

1+2λ
1−2λ

)
.

Also, since J⋆
η is optimal on the perturbed instance and both instances have the same transition kernel, we have

J⋆
η (s)− J⋆(s) ≤ J

π⋆
prop

η (s)− Jπ⋆
prop(s) ≤ ηT⋆ ∀ s ∈ S,

where (we recall from Section 6) π⋆
prop is the optimal proper policy and T⋆ is the maximum expected time it takes π⋆

prop to
reach the goal state from any starting state (since this policy is proper, T⋆ < ∞). Therefore, since c(s, a) ≤ cη(s, a) by
definition, we can bound regret (defined with respect to π⋆

prop, as in Section 6) by

R(K) ≤
T∑

t=1

cη(st, at)−
K∑

k=1

J
π⋆

prop
η (sk1) +

K∑
k=1

(
J
π⋆

prop
η (sk1)− Jπ⋆

prop(sk1)
)

= Õ
((

B
3
2+λ
⋆ +B

1
2+λ
⋆

)
d

1
2Ψ(K/η)

1
2+λ + ηT⋆K + (B⋆ + 1)

2
1−2λ d

1
1−2λΨ

2
1−2λ η−

1+2λ
1−2λ

)
.

Choosing η to decay as K(2λ−1)/(2λ+3) ensures the first two terms scale as K(4λ+2)/(2λ+3) and the third as K(2λ+1)/(2λ+3).
Since 2λ+1

2λ+3 ≤
4λ+2
2λ+3 < 1 for any λ ∈ [0, 1

2 ), we thus have sublinear regret.

B. Proof preliminaries
In this appendix, we collect some notation and results used in the proofs of multiple theorems.

B.1. Additional notation

We write Et for expectation conditioned on the first t − 1 state-action-state triples and the t-th state action pair, Et[·] =
E[·|{(sτ , aτ , s′τ}t−1

τ=1 ∪ {st, at}]. We let Es′t
denote expectation with respect to s′t. Hence, for h : S → R,

Et[h(s
′
t)] = Es′t

[h(s′t)] =
∑
s∈S

h(s)P (s|st, at).

However, we emphasize that since gt in Definition 1 is a random function of the first t state-action pairs, if τ < t,
we may have Eτ [gt(s

′
τ , w)] ̸=

∑
s∈S gt(s, w)P (s|sτ , aτ ) for some w ∈ Rd. On the other hand, Es′τ [gt(s

′
τ , w)] =∑

s∈S gt(s, w)P (s|sτ , aτ ) does hold for any w ∈ Rd.

As discussed in Section 3, we also define the (random) operators Ut, Et : Rd → Rd by

Utw = θ +
∑
s∈S

gt(s, w)µ(s) ∀ w ∈ Rd, Et = Ĝt − Ut.
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Here Ut can be roughly viewed as the expected value of Ĝt, so Et is the error between Ĝt and its mean. Note, however, that
since gt is a random function, Utw is a random vector (even for fixed w ∈ Rd). We also note the following identity, which
is an immediate consequence of Assumption 2 and is frequently used:

ϕ(s, a)TUtw = ϕ(s, a)Tθ +
∑
s′∈S

gt(s
′, w)ϕ(s, a)Tµ(s′) = c(s, a) +

∑
s′∈S

gt(s
′, w)P (s′|s, a).

As in Section 5, we iterate these operators in the usual way, e.g., Ĝn
t 0 = Ĝt(Ĝ

n−1
t 0) for n ∈ N with Ĝ0

t0 = 0.

Finally, for any b > 0, we define the clipping function Π[0,b] : R→ [0, b] by

Π[0,b](x) = min{max{x, 0}, b} = max{min{x, b}, 0}. (20)

Note that with this notation, we can more compactly write gt(·, ·) = Π[0,Bt](ft(·, ·)) in Definition 1.

B.2. Simple results

Claim 1 (Eigenvalues and norms). If Assumption 2 holds, then the eigenvalues of Λt lie in [1, t+ 1], and

∥w∥Λ−1
t
≤ ∥w∥2 ≤ ∥w∥Λt

≤
√
t+ 1∥w∥2 ≤

√
(t+ 1)d∥w∥∞ ∀ w ∈ Rd.

Proof. Let {λi}di=1 and {qi}di=1 be the eigenvalues and (unit) eigenvectors of Λt. Then

λi = λiq
T
i qi = qTi Λtqi = qTi qi +

t∑
τ=1

(ϕ(sτ , aτ )
Tqi)

2 = 1 +
t∑

τ=1

(ϕ(sτ , aτ )
Tqi)

2.

The eigenvalue bounds follow, since 0 ≤ (ϕ(sτ , aτ )
Tqi)

2 ≤ ∥ϕ(sτ , aτ )∥2∥qi∥2 ≤ 1 by Cauchy-Schwarz. For the norm
equivalences, we first use the eigenvalue bounds to write

∥w∥2
Λ−1

t
=

d∑
i=1

(qTi w)
2

λi
≤

d∑
i=1

(qTi w)
2 ≤ ∥w∥2Λt

=
d∑

i=1

λi(q
T
i w)

2 ≤ (t+ 1)
d∑

i=1

(qTi w)
2.

Since
∑d

i=1(q
T
i w)

2 = ∥w∥22 by orthogonality, this proves the first three norm bounds. The fourth is standard.

Claim 2 (Π[0,b] properties). For any b > 0 and x, y ∈ R, Π[0,b](x) ≤ max{x, 0} and |Π[0,b](x)−Π[0,b](y)| ≤ |x− y|.

Proof. The first bound holds by (20). For the second, assume without loss of generality that x ≥ y. By monotonicity,
it suffices to show Π[0,b](x) − Π[0,b](y) ≤ x − y. If x < 0 or y > b, then Π[0,b](x) = Π[0,b](y), so this is immediate.
Otherwise, (20) implies Π[0,b](x)−Π[0,b](y) ≤ max{x, 0} −min{y, b} = x− y.

Claim 3 (gt bounds). If Assumption 2 holds, then for any t ∈ [T ], s ∈ S , and w1, w2 ∈ Rd,

|gt(s, w1)− gt(s, w2)| ≤ |ft(s, w1)− ft(s, w2)| ≤ max
a∈A
|ϕ(s, a)T(w1 − w2)| ≤ ∥w1 − w2∥2 ≤

√
d∥w1 − w2∥∞.

Proof. The first bound follows from Claim 2. For the second, let ā ∈ A be any action attaining the minimum in the
definition of ft(s, w1), i.e., ā ∈ argmina∈A(ϕ(s, a)

Tw1 − αt∥ϕ(s, a)∥Λ−1
t
). Then

ft(s, w1)− ft(s, w2) ≥ ft(s, w1)−
(
ϕ(s, ā)Tw2 − αt∥ϕ(s, ā)∥Λ−1

t

)
= ϕ(s, ā)T(w1 − w2) ≥ −max

a∈A
|ϕ(s, a)T(w1 − w2)|.

By symmetry, we also have ft(s, w1) − ft(s, w2) ≤ maxa∈A |ϕ(s, a)T(w − w′)|; the second bound follows. The third
follows from Cauchy-Schwarz and the fourth from a standard norm equivalence.
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Claim 4 (Operator bounds). If Assumptions 1 and 2 hold, then for any t ∈ [T ], w ∈ Rd, and (s, a) ∈ S ×A,

∥Ĝtw∥∞ ≤
√
td

(
1 + max

s∈S
gt(s, w)

)
, ∥Ĝt0∥Λt

≤
√
t+ 1∥Ĝt0∥2 ≤ 2

√
(t+ 1)d,

∥Utw∥2 ≤
√
d

(
1 + max

s∈S
gt(s, w)

)
, ϕ(s, a)TUtw ∈ [0, Bt + 1].

Proof. First observe that by a standard norm equivalence and Claim 1, for any w ∈ Rd, we have

∥Λ−1
t w∥∞ ≤ ∥Λ−1

t w∥2 = ∥Λ−1/2
t w∥Λ−1

t
≤ ∥Λ−1/2

t w∥2 = ∥w∥Λ−1
t
≤ ∥w∥2. (21)

Combined with Cauchy-Schwarz and Lemma D.1 of (Jin et al., 2020), we obtain

t∑
τ=1

∥Λ−1
t ϕ(sτ , aτ )∥∞ ≤

t∑
τ=1

∥ϕ(sτ , aτ )∥Λ−1
t
≤

√√√√t
t∑

τ=1

∥ϕ(sτ , aτ )∥2Λ−1
t

≤
√
td,

so the first Ĝt bound follows from the triangle inequality. Next, because gt(s, 0) = 0 ∀ s ∈ S , we have

Ĝt0 = Λ−1
t

t∑
τ=1

ϕ(sτ , aτ )c(sτ , aτ ) = Λ−1
t

t∑
τ=1

ϕ(sτ , aτ )ϕ(sτ , aτ )
Tθ = Λ−1

t (Λt − I)θ = (I − Λ−1
t )θ.

Therefore, by Claim 1 and (21), we obtain

∥Ĝt0∥Λt
≤
√
t+ 1∥Ĝt0∥2 ≤

√
t+ 1(∥θ∥2 + ∥Λ−1

t θ∥2) ≤ 2
√
t+ 1∥θ∥2 ≤ 2

√
(t+ 1)d.

Finally, the Ut bounds hold by assumption.

Claim 5 (B⋆ estimate). If Assumption 1 holds, then supt≥0 Bt ≤ 2B⋆.

Proof. Since B0 = cmin ≤ B⋆ by assumption, it suffices to show Bτ ≤ 2B⋆ ∀ τ ∈ N. Suppose instead that Bτ > 2B⋆

for some such τ . Let t = min{τ ∈ N : Bτ > 2B⋆} be the first time it occurs. Then by Algorithm 1, we have
B⋆ < Bt/2 = Bt−1 < fMl−1

(s′t, wMl−1
) for some l ∈ N. If l = 1, this contradicts the fact that w0 = 0; otherwise, it

contradicts the fact that wMl
is an OAFP (see Definition 1).

B.3. Operator concentration

Define the random variables Wt and εt, and the event E , by

Wt = αt +
√
td(Bt + 1), εt = 5(Bt + 1)d

√
log(tαt/δ), E =

{
sup

w∈[−Wt,+Wt]d
∥Etw∥Λt ≤ εt ∀ t ∈ [T ]

}
.

The following is our main concentration result; the proof is lengthy so is deferred to Appendix E.1.
Lemma 2 (Error operator tail bound). If Assumptions 1 and 2 hold and mint∈N κt ≥ 9d, then P(E) ≥ 1− δ/2.

The error bound εt in the lemma is related to the exploration parameter αt in the following manner.
Claim 6 (Lower bound on αt). For any t ∈ N, if κt ≥ 9md for some m ≥ 1, then αt ≥ max{mεt, (Bt + 1)κt}.

Proof. For the first bound, since log x ≤ x ∀ x ∈ R, we have

αt = (Bt + 1)κt

√
log(t(Bt + 1)κt/δ) ≤ (Bt + 1)3/2κ

3/2
t t1/2/δ1/2.

Combined with 5
√

3/2 ≤ 9 and the assumption κt ≥ 9md, we obtain

mεt = 5md
√
log(tαt/δ)(Bt + 1) ≤ 5

√
3/2md

√
log(t(Bt + 1)κt/δ)(Bt + 1)

≤ 9md
√
log(t(Bt + 1)κt/δ)(Bt + 1) ≤ κt

√
log(t(Bt + 1)κt/δ)(Bt + 1) = αt.

For the second bound, simply note log(t(Bt + 1)κt/δ) ≥ log(9md) ≥ 1 and use the definition of αt.
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As corollaries, we have the following special cases of operator concentration.

Corollary 2 (Error at OAFP). For any t ∈ N, if κt ≥ 9d and wt is an OAFP, then on the event E ,

|ϕ(s, a)T(Ĝtwt − Utwt)| ≤ αt∥ϕ(s, a)∥Λ−1
t
∀ (s, a) ∈ S ×A.

Proof. By Claims 1 and 4 and Definition 1, we have

∥wt∥∞ ≤ ∥wt − Ĝtwt∥2 + ∥Ĝtwt∥∞ ≤ ∥wt − Ĝtwt∥Λt +
√
td(Bt + 1) ≤ αt +

√
td(Bt + 1) = Wt.

Hence, using κt ≥ 9d and Claim 6, we conclude ∥Etwt∥Λt ≤ αt on E . Combined with Cauchy-Schwarz,

|ϕ(s, a)T(Ĝtwt − Utwt)| = |ϕ(s, a)TEtwt| ≤ ∥ϕ(s, a)∥Λ−1
t
∥Et∥Λt ≤ ∥ϕ(s, a)∥Λ−1

t
αt.

Corollary 3 (Error at Ĝt iterates). For any t ∈ N, if κt ≥ 9md for some m ≥ 1, then on the event E , for any n ∈ N and
(s, a) ∈ S ×A,

|ϕ(s, a)T(Ĝn
t 0− Ut(Ĝ

n−1
t 0))| ≤ ∥Ĝn

t 0− Ut(Ĝ
n−1
t 0)∥Λt

∥ϕ(s, a)∥Λ−1
t
≤ εt∥ϕ(s, a)∥Λ−1

t
≤ αt∥ϕ(s, a)∥Λ−1

t
/m.

Proof. First note Ĝn
t 0−Ut(Ĝ

n−1
t 0) = Et(Ĝ

n−1
t 0). For n ≥ 2, ∥Ĝn−1

t 0∥∞ = ∥Ĝt(Ĝ
n−2
t 0)∥∞ ≤

√
td(Bt +1) ≤Wt by

Claim 4, and for n = 1, ∥Ĝn−1
t 0∥∞ = 0. Hence, for any n ∈ N, we have ∥Et(Ĝ

n−1
t 0)∥Λt

≤ εt on E by definition. The
desired bounds follow from Cauchy-Schwarz and Claim 6 similar to Corollary 2.

B.4. Operator convergence

We next show the operator Ut converges in a certain sense. We begin by proving some basic properties.

Claim 7 (Ut properties). If Assumptions 1 and 2 hold, then for any t ∈ [T ],

0 ≤ · · · ≤ ϕ(s, a)TUn−1
t 0 ≤ ϕ(s, a)TUn

t 0 ≤ · · · ≤ Bt + 1 ∀ (s, a) ∈ S ×A, (22)

max
(s,a)∈S×A

|ϕ(s, a)T(Un+1
t 0− Un

t 0)| ≤ max
(s,a)∈S×A

|ϕ(s, a)T(Un
t 0− Un−1

t 0)| ∀ n ∈ N. (23)

Proof. By Claim 4, we already know ϕ(s, a)TUn
t 0 ∈ [0, Bt + 1]. To complete the proof of (22), we show by induction on

n that min(s,a)∈S×A ϕ(s, a)T(Un
t 0− Un−1

t 0) ≥ 0. For n = 1, we simply have

min
(s,a)∈S×A

ϕ(s, a)T(Un
t 0− Un−1

t 0) = min
(s,a)∈S×A

ϕ(s, a)TUt0 = min
(s,a)∈S×A

c(s, a) ≥ 0.

Now assuming min(s,a)∈S×A ϕ(s, a)T(Un
t 0− Un−1

t 0) ≥ 0, we have mins′∈S(gt(s
′, Un

t 0)− gt(s
′, Un−1

t 0)) ≥ 0, so

min
(s,a)∈S×A

ϕ(s, a)T(Un+1
t 0− Un

t 0) = min
(s,a)∈S×A

∑
s′∈S

(gt(s
′, Un

t 0)− gt(s
′, Un−1

t 0))P (s′|s, a) ≥ 0.

Finally, (23) follows from Claim 3:

max
(s,a)∈S×A

|ϕ(s, a)T(Un+1
t 0− Un

t 0)| ≤ max
(s,a)∈S×A

∑
s′∈S
|gt(s′, Un

t 0)− gt(s
′, Un−1

t 0)|P (s′|s, a)

≤ max
(s,a)∈S×A

|ϕ(s, a)T(Un
t 0− Un−1

t 0)|.

The proof of Claim 7 shows that Ut is nonexpansive in the induced ℓ∞ norm ∥ · ∥ = ∥ΦT · ∥∞, where Φ is the matrix with
columns {ϕ(s, a)}(s,a)∈S×A. Combined with the claim’s monotonicity result, this is enough to show that Ut converges
at rate 1/n. However, because the induced norm lifts to |S × A|-dimensional space, a naive convergence proof yields a
constant that scales with |S × A|. The next claim will allow us to avoid this.

Claim 8 (A linear algebra result). Let Z = S ×A, Υ ∈ Rd×Z , and r = rank(Υ). For any Z ′ ⊂ Z , denote by Υ(Z ′) the
submatrix of Υ with columns Z ′, with Υ(z) = Υ({z}) for any z ∈ Z for simplicity. Then there exists Z ′ ⊂ Z such that
|Z ′| = r and ∥ΥTx∥∞ ≤ r∥Υ(Z ′)Tx∥∞ for any x ∈ Rd.
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Proof. We first assume r = d. Then we can find Z ′′ ⊂ Z such that |Z ′′| = d and det(Υ(Z ′′)) ̸= 0. Let Z ′ be whichever
such Z ′′ maximizes |det(Υ(Z ′′))|. Set H = ΥT(Υ(Z ′)T)−1, which is well-defined by choice of Z ′. Then letting
∥H∥∞ = maxz∈Z

∑
z′∈Z′ |H(z, z′)| denote the operator norm, for any x ∈ Rd, we obtain

∥ΥTx∥∞ = ∥HΥ(Z ′)Tx∥∞ ≤ ∥H∥∞∥Υ(Z ′)Tx∥∞ ≤ d max
z∈Z,z′∈Z′

|H(z, z′)|∥Υ(Z ′)Tx∥∞.

Thus, it suffices to show |H(z, z′)| ≤ 1. Toward this end, for any y ∈ Rd, let Υ(Z ′, y) be the matrix that results from
replacing the z′-th column of Υ(Z ′) with y. Then since Υ(z) =

∑
z′′∈Z′ H(z, z′′)Υ(z′′), we have

Υ(Z ′ ∪ {z} \ {z′}) = Υ(Z ′,Υ(z)) = Υ

(
Z ′,

∑
z′′∈Z′

H(z, z′′)Υ(z′′)

)
.

Next, observe that Υ(Z ′,Υ(z′′)) is rank deficient when z′′ ̸= z′; otherwise, when z′′ = z′, we have Υ(Z ′,Υ(z′′)) = Υ(Z ′).
Hence, by multilinearity of the determinant, we obtain

det

(
Υ

(
Z ′,

∑
z′′∈Z′

H(z, z′′)Υ(z′′)

))
=
∑

z′′∈Z′

H(z, z′′)det(Υ(Z ′,Υ(z′′))) = H(z, z′)det(Υ(Z ′)).

Combining the previous two identities with the definition of Z ′ yields the desired bound:

|H(z, z′)| = |det(Υ(Z ′ ∪ {z} \ {z′}))|/|det(Υ(Z ′))| ≤ 1.

If instead r < d, let Υ = UΣV T be the SVD. Then ΥTU = V ΣT = [Υ̃T 0], where Υ̃ ∈ Rr×Z has full rank. Hence, by the
previous case, we can find Z ′ ⊂ Z such that |Z ′| = r and ∥Υ̃Tx̃∥∞ ≤ r∥Υ̃(Z ′)Tx̃∥∞ for any x̃ ∈ Rr. Let U = [U1 U2]
with U1 ∈ Rd×r. Then for any x ∈ Rd, if we let x̃ = UT

1 x ∈ Rr, we obtain

ΥTx = ΥTUUTx =
[
Υ̃T 0

] [ x̃
UT
2 x

]
= Υ̃Tx̃.

Therefore, by the choice of Z ′, we have

∥ΥTx∥∞ = ∥Υ̃Tx̃∥∞ ≤ r∥Υ̃(Z ′)Tx̃∥∞ = r∥Υ(Z ′)Tx∥∞.

We can now show that Ut converges at rate 1/n with a constant depending only Bt + 1 and d.

Lemma 3 (Ut convergence). If Assumptions 1 and 2 hold, then for any t ∈ [T ] and n ∈ N,

max
(s,a)∈S×A

|ϕ(s, a)T(Un
t 0− Un−1

t 0)| ≤ (Bt + 1)d2

n
.

Proof. Suppose instead that for some n ∈ N, we have

max
(s,a)∈S×A

|ϕ(s, a)T(Un
t 0− Un−1

t 0)| > (Bt + 1)d2

n
.

Then combining Claims 7 and 8, we can find Z ′ ⊂ S ×A such that, for any m ∈ [n],

(Bt + 1)|Z ′|
n

≤ (Bt + 1)d2

nd
<

1

d
max

(s,a)∈S×A
|ϕ(s, a)T(Um

t 0− Um−1
t 0)| ≤ max

(s,a)∈Z′
|ϕ(s, a)T(Um

t 0− Um−1
t 0)|.

Thus, for each m ∈ [n], we can find zm ∈ Z ′ with |ϕ(zm)T(Um
t 0− Um−1

t 0)| > (Bt + 1)|Z ′|/n. But by Claim 7,

n =
∑
z∈Z′

n∑
m=1

1(zm = z) <
n

(Bt + 1)|Z ′|
∑
z∈Z′

n∑
m=1

ϕ(z)T(Um
t 0− Um−1

t 0) =
n

(Bt + 1)|Z ′|
∑
z∈Z′

ϕ(z)TUn
t 0 ≤ n,

which is a contradiction.
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C. Proof of Theorem 1
In this appendix, we prove Theorem 1 in two steps. First, in Appendix C.1, we show that OAFPs exist on the event E .
Second, in Appendix C.2, we prove the regret bound on the intersection of E and an event F defined in Lemma 7 that occurs
with probability at least 1− δ/2. Thus, by the union bound and Lemma 2, OAFPs exist and the regret bound holds with
probability at least 1− δ, which establishes the theorem.

C.1. Existence of OAFPs

We begin with optimism lemma for the operator Ut.

Lemma 4 (Ut optimism). Under the assumptions of Theorem 1, for any t ∈ [T ], n ∈ N, and (s, a) ∈ S ×A,

ϕ(s, a)TUn−1
t 0 ≤ Q⋆(s, a).

Proof. We fix t and use induction on n. For n = 1, we simply have ϕ(s, a)TUn−1
t 0 = 0 ≤ Q⋆(s, a). Assuming true for

n ∈ N, the Bellman optimality equation (1) implies

ft(s, U
n−1
t 0) = min

a∈A

(
ϕ(s, a)TUn−1

t 0− αt∥ϕ(s, a)∥Λ−1
t

)
≤ min

a∈A
Q⋆(s, a) = J⋆(s) ∀ s ∈ S.

Hence, by Claim 2, gt(s, Un−1
t 0) ≤ max{J⋆(s), 0} = J⋆(s). Again using Bellman optimality, we thus obtain

ϕ(s, a)TUn
t 0 = c(s, a) +

∑
s′∈S

gt(s
′, Un−1

t 0)P (s′|s, a) ≤ c(s, a) +
∑
s′∈S

J⋆(s′)P (s′|s, a) = Q⋆(s, a).

We now establish existence of OAFPs. First note that by Claim 3 and Lemma 3, for any norm ∥ · ∥, we have

∥Un+1
t 0− Un

t 0∥ ≤
√
dmax

s∈S
|gt(s, Un

t 0)− gt(s, U
n−1
t 0)|

√
d ≤ max

(s,a)∈S×A
|ϕ(s, a)T(Un

t 0− Un−1
t 0)| −−−−→

n→∞
0.

Hence, w⋆
t = limn→∞ Un

t 0 exists. By continuity, it is a fixed point:

w⋆
t = lim

n→∞
Un+1
t 0 = lim

n→∞
Ut(U

n
t 0) = Ut

(
lim
n→∞

Un
t 0
)
= Ut(w

⋆
t ).

Thus, by a standard norm equivalence and Claim 4, we have

∥w⋆
t ∥∞ ≤ ∥w⋆

t ∥2 = ∥Utw
⋆
t ∥2 ≤

√
d

(
1 + max

s∈S
gt(s, w

⋆
t )

)
≤
√
d(1 +Bt) ≤ αt +

√
td(Bt + 1) = Wt.

By Claim 6, on the event E , this implies

∥Ĝtw
⋆
t − w⋆

t ∥Λt = ∥Ĝtw
⋆
t − Utw

⋆
t ∥Λt = ∥Etw

⋆
t ∥Λt ≤ εt ≤ αt.

Finally, for any s ∈ S , using continuity, Lemma 4, and Bellman optimality, we obtain

ft(s, w
⋆
t ) ≤ min

a∈A
ϕ(s, a)Tw⋆

t = min
a∈A

ϕ(s, a)T lim
n→∞

Un
t 0 = min

a∈A
lim
n→∞

ϕ(s, a)TUn
t 0 ≤ min

a∈A
Q⋆(s, a) = J⋆(s).

Hence, on the event E , for any t ∈ [T ], w⋆
t is an OAFP by the previous two inequalities and Definition 1.

C.2. Regret bound

Recall from Algorithm 1 that Ml is the time the l-th interval ended and L is the total number of intervals completed. Fix
T̃ ∈ N and let L̃ = min{l ∈ [L] : Ml ≥ T ∧ T̃} denote the least number of intervals that encompass the times 1, . . . , T ∧ T̃ .
Also let K̃ = |{t ∈ [T ∧ T̃ ] : s′t = sgoal}| denote the number of episodes completed by time T ∧ T̃ . Finally, define the
regret incurred up to time T ∧ T̃ by

R̃(T̃ ) =
T∧T̃∑
t=1

c(st, at)−
K̃∑

k=1

J⋆(sk1) <∞.
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Lemma 5 (Regret decomposition). Under the assumptions of Theorem 1,

R̃(T̃ ) ≤
L̃−1∑
l=1

Ml+1∧T̃∑
t=1+Ml

c(st, at)− J⋆(s1+Ml
)

+ 2(B⋆ + 1)d log2(4B⋆(T ∧ T̃ )/cmin).

Proof. Since M1 = 1 in Algorithm 1 and c(s1, a1) ≤ 1, we can bound the total cost incurred by

T∧T̃∑
t=1

c(st, at) ≤ 1 +
T∧T̃∑
t=2

c(st, at) = 1 +
L̃−1∑
l=1

Ml+1∧T̃∑
t=1+Ml

c(st, at), (24)

where the equality holds because Ml+1 ∧ T̃ = Ml+1 for l < L̃− 1 and ML̃ ∧ T̃ = T ∧ T̃ by definition. On the other hand,
the expected cost for the optimal policy can be written as

K̃∑
k=1

J⋆(sk1) =
L̃∑

l=1

J⋆(s1+Ml
) +

 K̃∑
k=1

J⋆(sk1)−
L̃∑

l=1

J⋆(s1+Ml
)

 . (25)

Thus, we seek a lower bound for the term in parentheses. First note that since Algorithm 1 ends an interval each time an
episode ends, for each k ∈ [K̃], we can find l ∈ [L̃] such that sk1 = s1+Ml

. Hence, all summands cancel, except those
corresponding to intervals L = {l ∈ [L̃] : Ml = 1 or BMl

= 2BMl−1 or det(ΛMl
) ≥ 2det(ΛMl−1

)}, which may not have
reached the goal state. Taken together, and since J⋆(s1+Ml

) ≤ B⋆, we obtain

K̃∑
k=1

J⋆(sk1)−
L̃∑

l=1

J⋆(s1+Ml
) ≥ −

∑
l∈L

J⋆(s1+Ml
) ≥ −B⋆|L|. (26)

It remains to bound |L|. Clearly, |L| ≤ 1 +
∑2

i=1 |Li|, where L1 = {l ∈ [L̃] : BMl
= 2BMl−1} and L2 = {l ∈ [L̃] :

det(ΛMl
) ≥ 2det(ΛMl−1

)}. For L1, note supt≥0 Bt ≥ 2|L1|cmin in Algorithm 1, so by Claim 5,

|L1| = log2

(
2|L1|cmin/cmin

)
≤ log2

(
sup
t≥0

Bt/cmin

)
≤ log2(2B⋆/cmin). (27)

For L2, we have |L2| ≤ |L′
2|+ 1, where L′

2 = {l ∈ [L̃− 1] : det(ΛMl
) ≥ 2det(ΛMl−1

)} excludes L̃− 1 if it belongs to
L2. By definition, ML̃−1 < T ∧ T̃ , which by Claim 1 implies det(ΛML̃−1

) ≤ (1 + (T ∧ T̃ ))d ≤ (2(T ∧ T̃ ))d. Hence,
because det(ΛML̃−1

) ≥ 2|L
′
2|det(Λ0) = 2|L

′
2| by definition of L′

2, we obtain

|L2| ≤ log2(2
|L′

2|) + 1 ≤ log2(det(ΛML̃−1
)) + 1 ≤ d log2(2(T ∧ T̃ )) + 1. (28)

Recalling |L| ≤ 1 +
∑2

i=1 |Li| and combining (24), (25), (26), (27), and (28), we obtain

R̃(T̃ )−
L̃−1∑
l=1

Ml+1∧T̃∑
t=1+Ml

c(st, at)− J⋆(s1+Ml
)

 ≤ 1 +B⋆(log2(2B⋆/cmin) + d log2(2(T ∧ T̃ )) + 2)

≤ 2(B⋆ + 1)d log2(4B⋆(T ∧ T̃ )/cmin),

where the last inequality uses B⋆ ≥ cmin and d ≥ 2.

We next bound the summand in Lemma 5 by a martingale difference sequences and sum of bonuses.

Lemma 6 (Per-interval regret). Under the assumptions of Theorem 1 and on the event E , for any l ∈ [L̃− 1],

Ml+1∧T̃∑
t=1+Ml

c(st, at)− J⋆(s1+Ml
) ≤

Ml+1∧T̃∑
t=1+Ml

(gMl
(s′t, wMl

)− Et[gMl
(s′t, wMl

)]) + 3αMl

Ml+1∧T̃∑
t=1+Ml

∥ϕ(st, at)∥−1
ΛMl

.
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Proof. Define γτ =
∑Ml+1∧T̃

t=τ c(st, at)− fMl
(sτ , wMl

) for each τ ∈ {1 +Ml, . . . ,Ml+1 ∧ T̃} and γ1+Ml+1∧T̃ = 0. We

claim, and will return to prove, that for any τ ∈ {1 +Ml, . . . ,Ml+1 ∧ T̃},

γτ ≤ γτ+1 + gMl
(s′τ , wMl

)− Eτ [gMl
(s′τ , wMl

)] + 3αMl
∥ϕ(sτ , aτ )∥−1

ΛMl
. (29)

Assuming (29) holds, we prove the lemma. First, since wMl
is an OAFP, Definition 1 implies

fMl
(s1+Ml

, wMl
) ≤ J⋆(s1+Ml

), ∥ĜMl
wMl

− wMl
∥ΛMl

≤ αMl
. (30)

Using the first inequality in (30), we obtain

Ml+1∧T̃∑
t=1+Ml

c(st, at)− J⋆(s1+Ml
) ≤

Ml+1∧T̃∑
t=1+Ml

c(st, at)− fMl
(s1+Ml

, wMl
) = γ1+Ml

,

so the lemma follows from recursively applying (29). Hence, it only remains to prove (29). First observe

fMl
(sτ , wMl

) = ϕ(sτ , aτ )
TĜMl

wMl
+ ϕ(sτ , aτ )

T(wMl
− ĜMl

wMl
)− αMl

∥ϕ(sτ , aτ )∥Λ−1
Ml

≥ ϕ(sτ , aτ )
TĜMl

wMl
− 2αMl

∥ϕ(sτ , aτ )∥Λ−1
Ml

≥ ϕ(sτ , aτ )
TUMl

wMl
− 3αMl

∥ϕ(sτ , aτ )∥Λ−1
Ml

,

where the equality holds by the policy update in Algorithm 1 and the inequalities use Cauchy-Schwarz, the second bound in
(30), and Corollary 2. Now by definition, we have

ϕ(sτ , aτ )
TUMl

wMl
= c(sτ , aτ ) +

∑
s∈S

gMl
(s, wMl

)P (s|sτ , aτ )

= c(sτ , aτ ) + gMl
(s′τ , wMl

) + Eτ [gMl
(s′τ , wMl

)]− gMl
(s′τ , wMl

).

Combining the previous two inequalities and rearranging, we obtain

c(sτ , aτ )− fMl
(sτ , wMl

) ≤ −gMl
(s′τ , wMl

) + gMl
(s′τ , wMl

)− Eτ [gMl
(s′τ , wMl

)] + 3αMl
∥ϕ(sτ , aτ )∥Λ−1

Ml

. (31)

We complete the proof separately in each of two cases.

• If τ = Ml+1 ∧ T̃ , the left side of (31) is γτ and −gMl
(s′τ , wMl

) ≤ 0 = γτ+1, so (31) implies (29).

• Otherwise, an interval did not end between times 1 +Ml and τ (inclusive). This implies (A) s′τ ̸= sgoal, so s′τ = sτ+1,
(B) Bτ = BMl

, and (C) fMl
(s′τ , wMl

) ≤ Bτ . Taken together, (B) and (C) give fMl
(s′τ , wMl

) ≤ BMl
, so (D)

−gMl
(s′τ , wMl

) ≤ −fMl
(s′τ , wMl

) by definition. Combining (A) and (D) with (31), we obtain

c(sτ , aτ )− fMl
(sτ , wMl

) ≤ −fMl
(sτ+1, wMl

) + gMl
(s′τ , wMl

)− Eτ [gMl
(s′τ , wMl

)] + 3αMl
∥ϕ(s, a)∥Λ−1

Ml

.

Hence, recalling τ < Ml+1 ∧ T̃ , we can use the definitions of γτ and γτ+1 to obtain

γτ =

Ml+1∑
t=τ+1

c(st, at) + c(sτ , aτ )− fMl
(sτ , wMl

)

≤
Ml+1∑
t=τ+1

c(st, at)− fMl
(sτ+1, wMl

) + gMl
(s′τ , wMl

)− Eτ [gMl
(s′τ , wMl

)] + 3αMl
∥ϕ(s, a)∥Λ−1

Ml

= γτ+1 + gMl
(s′τ , wMl

)− Eτ [gMl
(s′τ , wMl

)] + 3αMl
∥ϕ(s, a)∥Λ−1

Ml

.

We next bound the martingale difference sequence from Lemma 6.
Lemma 7 (Martingale difference sequence). Under the assumptions of Theorem 1, for any δ > 0, if we define

F =


L̃−1∑
l=1

Ml+1∧T̃∑
t=1+Ml

(gMl
(s′t, wMl

)− Et[gMl
(s′t, wMl

)]) ≤ 2B⋆

√
(T ∧ T̃ ) log

8(T ∧ T̃ )

δ

 ,

then P(F) ≥ 1− δ/2.



Regret Bounds for Stochastic Shortest Path with Linear Function Approximation

Proof. The left side of the inequality is a martingale difference sequence. By definition and Claim 5, each term satisfies
gMl

(s′t, wMl
) − Et[gMl

(s′t, wMl
)]| ≤ Bt ≤ 2B⋆. The number of terms is ≤ ML̃ ∧ T̃ ≤ ML ∧ T̃ = T ∧ T̃ . The lemma

follows from Theorem D.1 of (Rosenberg et al., 2020) (an anytime version of Azuma’s inequality).

Finally, we bound the sum of bonuses from Lemma 6.

Lemma 8 (Sum of bonuses). Under the assumptions of Theorem 1,

L̃−1∑
l=1

3αMl

Ml+1∧T̃∑
t=1+Ml

∥ϕ(st, at)∥Λ−1
Ml

≤ 6

√
(T ∧ T̃ )d log(2(T ∧ T̃ )) max

t∈[T∧T̃ ]
αt.

Proof. For each l ∈ [L̃ − 1] and t ∈ {2 + Ml, . . . ,Ml+1 ∧ T̃}, the (l + 1)-th interval did not end at time t − 1, which
implies det(Λt−1) ≤ 2det(ΛMl

). By Lemma 12 of (Abbasi-Yadkori et al., 2011) this implies ΛMl
− Λt−1/2 is positive

semidefinite, so Λ−1
Ml
− 2Λ−1

t−1 is negative semidefinite, so

∥ϕ(st, at)∥Λ−1
Ml

=
√

ϕ(st, at)TΛ
−1
Ml

ϕ(st, at) ≤
√

2ϕ(st, at)TΛ
−1
t−1ϕ(st, at) =

√
2∥ϕ(st, at)∥Λ−1

t−1
.

For any l ∈ [L̃− 1], the inequality clearly holds at time t = 1 +Ml as well. Combined with and Cauchy-Schwarz and the
fact that ML̃ ∧ T̃ ≤ML ∧ T̃ = T ∧ T̃ by definition, we thus obtain

L̃−1∑
l=1

3αMl

Ml+1∧T̃∑
t=1+Ml

∥ϕ(st, at)∥Λ−1
Ml

≤ 3
√
2 max
t∈[T∧T̃ ]

αt

T∧T̃∑
t=1

∥ϕ(st, at)∥Λ−1
t−1

≤ 3
√
2 max
t∈[T∧T̃ ]

αt

√√√√(T ∧ T̃ )
T∧T̃∑
t=1

∥ϕ(st, at)∥2Λ−1
t−1

.

Finally, by Lemma 11 of (Abbasi-Yadkori et al., 2011) and Claim 1, we have

T∧T̃∑
t=1

∥ϕ(st, at)∥2Λ−1
t−1

≤ 2 log
det(ΛT∧T̃ )

det(Λ0)
≤ 2d log((T ∧ T̃ ) + 1) ≤ 2d log(2(T ∧ T̃ )).

We can now prove the regret bound on E ∩ F . By Lemmas 5, 6, 7, and 8, we know

R̃(T̃ ) ≤ 6 max
t∈T∧T̃

αt

√
(T ∧ T̃ )d log(2(T ∧ T̃ )) + 2B⋆

√
(T ∧ T̃ ) log(8(T ∧ T̃ )/δ) (32)

+ 2(B⋆ + 1)d log2(4B⋆(T ∧ T̃ )/cmin)

Next, recall Bt + 1 ≤ 2B⋆ + 1 ≤ 2(B⋆ + 1) by Claim 5. Combined with the assumption that κt ≤ Ψtλ log(t+ 1) with
Ψ ≥ 9d and λ ∈ [0, 1

2 ) for any t ∈ [T ∧ T̃ ], we have

αt = (Bt + 1)κt

√
log(t(Bt + 1)κt/δ) ≤ 2(B⋆ + 1)Ψtλ log(t+ 1)

√
log(2(B⋆ + 1)Ψt1+λ log(t+ 1)/δ).

Since (B⋆ + 1)Ψtγ log(t+ 1)/δ ≥ 9 log 2 ≥ 1, log(t+ 1) ≤ t, and γ ≤ 1/2, we also have

t+ 1 ≤ 2t ≤ 2(B⋆ + 1)Ψt1+λ log(t+ 1)/δ ≤ 2(B⋆ + 1)Ψt5/2/δ ≤ (2(B⋆ + 1)Ψt/δ)5/2.

Hence, combining the previous two inequalities, we obtain

6αt ≤ 6 · 2(B⋆ + 1)Ψtγ(5/2) log(2(B⋆ + 1)Ψt/δ)
√
(5/2) log(2(B⋆ + 1)Ψt/δ)

= (30
√
5/2)(B⋆ + 1)Ψtγ log3/2(2(B⋆ + 1)Ψt/δ) < 48(B⋆ + 1)Ψtγ log3/2(2(B⋆ + 1)Ψt/δ)
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Since the right side is increasing in t, the first summand in (32) can thus be upper bounded by 48R̄(T̃ ), where

R̄(T̃ ) = (B⋆ + 1)
√
dΨ(T ∧ T̃ )

1
2+λ log2(2(B⋆ + 1)Ψ(T ∧ T̃ )/(cminδ)). (33)

Finally, Ψ ≥ 9d implies the other summands in (32) are bounded by R̄(T̃ ), so R̃(T̃ ) ≤ 50R̄(T̃ ).

Next, we show R(K) = R̃(T̃ ) when T̃ is large enough. Toward this end, first note that by Assumption 1 and definition of
R̃(T̃ ) and K̃, the bound R̃(T̃ ) ≤ 50R̄(T̃ ) from the previous paragraph implies

(T ∧ T̃ )cmin ≤
T∧T̃∑
t=1

c(st, at) = R̃(T̃ ) +
K̃∑

k=1

J⋆(sk1) ≤ 50R̄(T̃ ) +KB⋆. (34)

Now consider two cases. First, if T ∧ T̃ ≥ 100R̄(T̃ )/cmin, then 50R̄(T̃ ) ≤ (T ∧ T̃ )cmin/2, so T ∧ T̃ ≤ 2KB⋆/cmin by
(34). Otherwise, T ∧ T̃ ≤ 100R̄(T̃ )/cmin, which by definition (33) implies

T ∧ T̃ ≤
(
100(B⋆ + 1)

√
dΨ/cmin

)
(T ∧ T̃ )

1
2+λ log2

(
(2(B⋆ + 1)Ψ/(cminδ)) (T ∧ T̃ )

)
.

By Claim 9 below, this implies that for some ι1, ι2 > 0 depending only on λ (which, by assumption on λ, means that ι1, ι2
are absolute constants), we have

T ∧ T̃ ≤ T1 ≜

(
ι1(B⋆ + 1)

√
dΨ

cmin
log2

(
ι2(B⋆ + 1)dΨ

cminδ

)) 2
1−2λ

.

Combining the cases, we conclude T ∧ T̃ ≤ T2 ≜ max{2KB⋆/cmin, T1} < ∞. Hence, choosing T̃ ≥ T2, we obtain
T ∧ T̃ = T and K̃ = K, which together imply R(K) = R̃(T̃ ) <∞.

Finally, we establish the bounds of the theorem. Recall we have shown R(K) = R̃(T̃ ) ≤ 100R̄(T̃ ) for large T̃ and
T ∧ T̃ ≤ max{2KB⋆/cmin, T1}. We again consider two cases. First, if the bound T ∧ T̃ ≤ 2KB⋆/cmin holds, then by
R(K) = O(R̄(T̃ )) and the definition (33),

R(K) = Õ
((

B
3
2+λ
⋆ +B

1
2+λ
⋆

)
d

1
2Ψ(K/cmin)

1
2+λ

)
. (35)

If instead only T ∧ T̃ ≤ T1 holds, then (33) implies

R(K) = Õ
(
(B⋆ + 1)

√
dΨT

1
2+λ
1

)
= Õ

(
(B⋆ + 1)

2
1−2λ d

1
1−2λΨ

2
1−2λ c

− 1+2λ
1−2λ

min

)
.

Finally, bounding R(K) by the max of the cases, then the max by the sum, yields the desired bound.

Remark 14 (Bound for T ). As shown above, for T̃ ≥ T2, we have the bound T ≤ T2, or (by definition)

T = O

max

2KB⋆

cmin
,

(
(B⋆ + 1)

√
dΨ

cmin
log2

(
(B⋆ + 1)dΨ

cminδ

)) 2
1−2λ


 .

Remark 15 (Sharpening the tabular case). When K is large, the bound (35) holds and has
√
dΨ dependence on d. We

required Ψ (the constant component of κt) to be linear in d in order to match the scaling of the error bound εt from Appendix
B.3. In the tabular case, we can reduce εt’s dependence to

√
d, (see Remark 17 in Appendix E.1), so we can choose Ψ to

scale as
√
d, after which the regret bound’s dependence becomes linear in d.

Claim 9. Suppose x ≤ axc1 log2(bx) for some c1 ∈ (0, 1) and a, b, x ≥ 1. Then x ≤ (c2a log
2(c3ab))

1/(1−c1) for some
constants c2, c3 > 0 that depend only on c1.

Proof. By the assumed inequality and log y ≤ y ∀ y ≥ 0, we have

x ≤ 16axc
1

(1− c1)2

(
1− c1

4
log(bx)

)2

=
16axc1

(1− c1)2

(
log
(
(bx)

1−c1
4

))2
≤ 16axc1

(1− c1)2
(bx)

1−c1
2 =

16ab
1−c1

2

(1− c1)2
x

1+c1
2 .
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Solving for x, we obtain x ≤ (16a/(1 − c1)
2)2/(1−c1)b. Plugging back into the log term of the assumed inequality, and

since 2 ≤ 2/(1− c1), we obtain

x ≤ axc1

(
log

((
16a

(1− c1)2

) 2
1−c1

b2

))2

≤ axc1

(
2

1− c1
log

(
16ab

(1− c1)2

))2

= c2a log
2(c3ab)x

c1 ,

where we define c2 = 4/(1− c1)
2 and c3 = 16/(1− c1)

2. Solving for x gives the desired bound.

D. Proofs of Theorems 2-4
We begin with an optimism lemma used for all three proofs.

Lemma 9 (Ĝt optimism). If Assumptions 1 and 2 hold and κt ≥ 9d, then on the event E ,

ϕ(s, a)TĜn−1
t 0−Q⋆(s, a) ≤ εt∥ϕ(s, a)∥Λ−1

t
≤ αt∥ϕ(s, a)∥Λ−1

t
∀ (s, a) ∈ S ×A, n ∈ N, t ∈ [T ].

Proof. The proof is similar to that of Lemma 4. For n = 1, ϕ(s, a)TĜn−1
t 0 = 0 ≤ Q⋆(s, a), so the result is immediate.

Now assume the bound holds for n ∈ N. Then by the Bellman optimality equation (1), we obtain

ft(s, Ĝ
n−1
t 0) = min

a∈A

(
ϕ(s, a)TĜn−1

t 0− αt∥ϕ(s, a)∥Λ−1
t

)
≤ min

a∈A
Q⋆(s, a) = J⋆(s). (36)

Hence, by Claim 3, gt(s, Ĝn−1
t 0) ≤ J⋆(s) as well. Again by Bellman optimality, this implies

ϕ(s, a)TUt(Ĝ
n−1
t 0) = c(s, a) +

∑
s′∈S

gt(s, Ĝ
n−1
t 0)P (s′|s, a) ≤ c(s, a) +

∑
s′∈S

J⋆(s′)P (s′|s, a) = Q⋆(s, a).

On the other hand, by Corollary 3 and the assumption κt ≥ 9d, we have

ϕ(s, a)T(Ĝn
t 0− Ut(Ĝ

n−1
t 0)) ≤ εt∥ϕ(s, a)∥Λ−1

t
≤ αt∥ϕ(s, a)∥Λ−1

t
.

Combining the last two inequalities completes the inductive step.

As a simple corollary, we have the following formal version of Lemma 1 from the main text.

Corollary 4 (Ĝt optimism). If Assumptions 1 and 2 hold and κt ≥ 9d, then on the event E , for any t ∈ [T ], n ∈ N, and
(s, a) ∈ S ×A, we have ft(s, Ĝ

n−1
t 0) ≤ J⋆(s).

Proof. Rearrange the Lemma 9 bound and take minimum over a ∈ A as in (36).

The preceding corollary implies the optimism inequality in (9). For the fixed point inequality ∥Ĝn
t 0 − Ĝn−1

t 0∥Λt
≤ αt,

we use a similar approach for Theorems 2 and 3, so we will provide a general result (Lemma 12 below) for use in both
theorems. Toward this end, we begin with an intermediate claim. Note that, while the bound grows with n for fixed t, we
will later choose n in terms of t so that the bound vanishes as t→∞.

Claim 10 (Ĝt tracks Ut). If Assumptions 1 and 2 hold and κt ≥ 18d, then on the event E ,

|ϕ(s, a)T(Ĝn−1
t 0− Un−1

t 0)| ≤ εt∥ϕ(s, a)∥Λ−1
t

+
2(Bt + 1)(n− 1)εt

αt
∀ (s, a) ∈ S ×A, n ∈ N, t ∈ [T ]

Proof. First, for any n ∈ N, we use Corollary 3 and κt ≥ 18d to write

ϕ(s, a)TĜn
t 0 ≤ ϕ(s, a)TUt(Ĝ

n−1
t 0) + αt∥ϕ(s, a)∥Λ−1

t
/2.

By Claim 4, we also know ϕ(s, a)TUt(Ĝ
n−1
t 0) ≤ Bt + 1; combined with the previous inequality, we obtain

ϕ(s, a)TĜn
t 0− αt∥ϕ(s, a)∥Λ−1

t
≤ Bt + 1− αt∥ϕ(s, a)∥Λ−1

t
/2. (37)
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Now define the “explored” states at time t (i.e., those with small bonuses across actions) by

St =
{
s ∈ S : max

a∈A
∥ϕ(s, a)∥Λ−1

t
≤ 2(Bt + 1)

αt

}
.

Then for any unexplored state s ∈ S \ St, (37) implies that for some a ∈ A,

ϕ(s, a)TĜn
t 0− αt∥ϕ(s, a)∥Λ−1

t
≤ Bt + 1− αt

2
× 2(Bt + 1)

αt
= 0.

Taking minimum over a ∈ A on both sides gives ft(s, Ĝn
t 0) ≤ 0, which implies gt(s, Ĝn

t 0) = 0. Again using Claim 4, we
similarly obtain that for any s ∈ S \ St and some a ∈ A,

ϕ(s, a)TUn
t 0− αt∥ϕ(s, a)∥Λ−1

t
≤ Bt + 1− αt∥ϕ(s, a)∥Λ−1

t
≤ −(Bt + 1) < 0,

so gt(s, U
n
t 0) = 0 as well. Since n ∈ N was arbitrary and gt(s, Ĝ

0
t0) = gt(s, U

0
t 0) = g(s, 0) = 0, we conclude

gt(s, Ĝ
n−1
t 0) = gt(s, U

n−1
t , 0) = 0 ∀ s ∈ S \ St, n ∈ N.

Combined with Claim 3, this implies that for any n ∈ N and (s, a) ∈ S ×A,

|ϕ(s, a)T(Ut(Ĝ
n−1
t 0)− Ut(U

n−1
t 0))| ≤

∑
s′∈S
|gt(s′, Ĝn−1

t 0)− gt(s
′, Un−1

t 0)|P (s′|s, a)

≤ max
s′∈St

|gt(s′, Ĝn−1
t 0)− gt(s

′, Un−1
t 0)|

≤ max
(s′,a′)∈St×A

|ϕ(s′, a′)T(Ĝn−1
t 0− Un−1

t 0)|.

Hence, again using Corollary 3, for any n ∈ N and (s, a) ∈ S ×A, we obtain

|ϕ(s, a)T(Ĝn
t 0− Un

t 0)| ≤ |ϕ(s, a)T(Ĝn
t 0− Ut(Ĝ

n−1
t 0))|+ |ϕ(s, a)T(Ut(Ĝ

n−1
t 0)− Ut(U

n−1
t 0))| (38)

≤ εt∥ϕ(s, a)∥Λ−1
t

+ max
(s′,a′)∈St×A

|ϕ(s′, a′)T(Ĝn−1
t 0− Un−1

t 0)|.

Thus, taking the maximum over (s, a) ∈ St ×A on both sides, by definition of St, we have shown

max
(s,a)∈St×A

|ϕ(s, a)T(Ĝn
t 0− Un

t 0)| ≤
2(Bt + 1)εt

αt
+ max

(s,a)∈St×A
|ϕ(s, a)T(Ĝn−1

t 0− Un−1
t 0)| ∀ n ∈ N.

Iterating this inequality, and since Ĝ0
t0 = U0

t 0 = 0, we conclude

max
(s,a)∈St×A

|ϕ(s, a)T(Ĝn−1
t 0− Un−1

t 0)| ≤ 2(Bt + 1)εt(n− 1)

αt
∀ n ∈ N.

Substituting back into (38) and again using Ĝ0
t0 = U0

t 0 = 0, we obtain the desired result.

We can now state the aforementioned Lemma 10. Note that while we have already established a polynomial rate of
convergence for Ut in Lemma 3, we keep the rate general here, since Theorem 3 will use an improved rate.

Lemma 10 (Ĝt convergence). If Assumptions 1 and 2 hold and κt ≥ 18d, then on the event E ,

∥Ĝn
t 0− Ĝn−1

t 0∥Λt ≤ 5
√
dεt +

10
√
t(Bt + 1)nεt

αt
+ 3
√
t max
(s,a)∈S×A

|ϕ(s, a)T(Un
t 0− Un−1

t 0)| ∀ n ∈ N, t ∈ [T ].

Proof. We consider three cases (the last two are corner cases). For the first and most natural case, we assume that
∥Ĝn

t 0− Ĝn−1
t 0∥2 ≤ ∥Ĝn

t 0− Ĝn−1
t 0∥Λt

/
√
2. Then by definition of the induced norm,

∥Ĝn
t 0− Ĝn−1

t 0∥2Λt
≤ 2

t∑
τ=1

(ϕ(sτ , aτ )
T(Ĝn

t 0− Ĝn−1
t 0))2.
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Next, for any (s, a) ∈ S ×A and m ∈ {n− 1, n}, Claim 10 and Cauchy-Schwarz imply

(ϕ(s, a)T(Ĝm
t 0− Um

t 0))2 ≤
(
εt∥ϕ(s, a)∥Λ−1

t
+

2(Bt + 1)nεt
αt

)2

≤ 2ε2t∥ϕ(s, a)∥2Λ−1
t

+
8(Bt + 1)2n2ε2t

α2
t

,

which, after another application of Cauchy-Schwarz, gives

(ϕ(s, a)T(Ĝn
t 0− Ĝn−1

t 0))2 ≤ 3
n∑

m=n−1

(ϕ(s, a)T(Ĝm
t 0− Um

t 0))2 + 3(ϕ(s, a)T(Un
t 0− Un−1

t 0))2

≤ 12ε2t∥ϕ(s, a)∥2Λ−1
t

+
48(Bt + 1)2n2ε2t

α2
t

+ 3 max
(s′,a′)∈S×A

(ϕ(s′, a′)T(Un
t 0− Un−1

t 0))2.

By Lemma D.1 of (Jin et al., 2020), we know
∑t

τ=1 ∥ϕ(sτ , aτ )∥2Λ−1
t

≤ d. Combined with previous three inequalities,

∥Ĝn
t 0− Ĝn−1

t 0∥2Λt
≤ 24dε2t +

96t(Bt + 1)2n2ε2t
α2
t

+ 6t max
(s,a)∈S×A

(ϕ(s, a)T(Un
t 0− Un−1

t 0))2.

Taking square roots on both sides, bounding the square root of sum by the sum of square roots, and using
√
24 ≤ 5,√

96 ≤ 100, and
√
6 ≤ 3 yields the desired bound.

For the second case, suppose ∥Ĝn
t 0− Ĝn−1

t 0∥2 > ∥Ĝn
t 0− Ĝn−1

t 0∥Λt
/
√
2 and n ≥ 2. Then

∥Ĝn
t 0− Ĝn−1

t 0∥Λt
< 2

n∑
m=n−1

(
∥Ĝm

t 0− Ut(Ĝ
m−1
t 0)∥2 + ∥Ut(Ĝ

m−1
t 0)∥2

)
≤ 4(εt + d(Bt + 1)),

where we used Claim 1, Corollary 3, and Claim 4. By assumption κt ≥ 18d, we also know

εt/5 = (Bt + 1)d

√
log(t(Bt + 1)κt

√
log(t(Bt + 1)κt/δ)/δ) ≥ (Bt + 1)d ≥ 2. (39)

Hence, combining the previous two bounds, we obtain ∥Ĝn
t 0− Ĝn−1

t 0∥Λt
≤ 24εt/5 ≤ 5

√
dεt.

Finally, suppose ∥Ĝn
t 0− Ĝn−1

t 0∥2 > ∥Ĝn
t 0− Ĝn−1

t 0∥Λt
/
√
2 and n = 1. Then by Claim 4 and (39),

∥Ĝn
t 0− Ĝn−1

t 0∥Λt <
√
2∥Ĝn

t 0− Ĝn−1
t 0∥2 =

√
2∥Ĝt0∥2 ≤

√
8d ≤ 5

√
dεt.

We now proceed to the proofs of the theorems.

D.1. Proof of Theorem 2

We begin with a corollary of Lemmas 3 and 10 in the setting of Theorem 2. The proof is mostly algebra.

Corollary 5 (Ĝt convergence). Under the Assumptions of Theorem 2 and on the event E , for any t ∈ [T ],

min
n∈[⌈2dt1/6⌉]

∥Ĝn
t 0− Ĝn−1

t 0∥Λt
≤ αt.

Proof. Since κt = 54dt1/3 = 9(6t1/3)d by assumption in Theorem 2, Claim 6 implies

αt ≥ max{6t1/3εt, (Bt + 1)κt}. (40)

Hence, using the bound αt ≥ (Bt + 1)κt, we have

αt

9εt
=

κt

√
log(t(Bt + 1)κt/δ)

45d
√
log(tαt/δ)

≤ κt

40d
=

54t1/3

45
< 4t1/3.
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Thus, if we define Nt = d
√

αt/εt/3, we are guaranteed that Nt ≤ 2dt1/6, so ⌈Nt⌉ ∈ [⌈2dt1/6⌉]. Combining this result
with Lemmas 3 and 10 (we can invoke the latter since κt ≥ 18d), we obtain

min
n∈[⌈2dt1/6⌉]

∥Ĝn
t 0− Ĝn−1

t 0∥Λt ≤ ∥Ĝ
⌈Nt⌉
t 0− Ĝ

⌈Nt⌉−1
t 0∥Λt ≤ 5

√
dεt +

10
√
t(Bt + 1)⌈Nt⌉εt

αt
+

3
√
t(Bt + 1)d2

⌈Nt⌉
. (41)

For the third term in (41), since ⌈Nt⌉ ≥ Nt, we have

3
√
t(Bt + 1)d2/⌈Nt⌉ ≤ 3

√
t(Bt + 1)d2/Nt = 9

√
t(Bt + 1)d/

√
αt/εt.

For the second term, since Nt ≥ 2
√
6/3 ≥ 1 by (40), we have ⌈Nt⌉ ≤ 2Nt, so

10
√
t(Bt + 1)⌈Nt⌉εt/αt ≤ 21

√
t(Bt + 1)Ntεt/αt = 7

√
t(Bt + 1)d/

√
αt/εt.

Hence, because
√
αt/εt ≥ 2t1/6 and αt ≥ κt(Bt + 1) by (40), the last two terms in (41) can be bounded by

10
√
t(Bt + 1)⌈Nt⌉εt

αt
+

3
√
t(Bt + 1)d2

⌈Nt⌉
≤ 16

√
td(Bt + 1)√
αt/εt

≤ 8t1/3d(Bt + 1) =
8κt(Bt + 1)

54
≤ 8αt

54
≤ αt

6
.

Substituting into (41), and assuming for the moment that
√
d ≤ t1/3, we can use (40) to obtain

min
n∈[⌈2dt1/6⌉]

∥Ĝn
t 0− Ĝn−1

t 0∥Λt ≤ 5
√
d · εt +

αt

6
≤ 5t1/3 · αt

6t1/3
+

αt

6
= αt.

If instead
√
d > t1/3, then t1/6 <

√
d as well, so we can instead use Claim 4 and (40) to obtain

min
n∈[⌈2dt1/6⌉]

∥Ĝn
t 0− Ĝn−1

t 0∥Λt
≤ ∥Ĝt0∥Λt

≤
√
8td =

√
8t1/3t1/6d1/2 ≤

√
8t1/3d ≤ κt ≤ αt.

We can now prove Theorem 2. Recall from Appendix C that the regret bound in Theorem 1 holds on E ∩ F . Hence, on this
event, and since κt = 60dt1/3 in Theorem 2, we can set Ψ = 60d and λ = 1/3 to obtain

R(K) = Õ
((

B
11
6
⋆ +B

5
6
⋆

)
d

3
2 (K/cmin)

5
6 + (B⋆ + 1)6d9c−5

min

)
.

Finally, Corollaries 4 and 5 imply that on E , for any t ∈ [T ] Algorithm 2 is called, it returns an OAFP within O(dt1/6)
iterations. Together with Lemmas 2 and 7, which ensure P(E ∩ F) ≥ 1− δ, this completes the proof.

D.2. Proof of Theorem 3

As discussed above, we first establish geometric convergence using the contraction property.

Lemma 11 (Geometric Ut convergence). If Assumptions 1 and 2 hold and all stationary policies are proper,

|ϕ(s, a)T(Un
t 0− Un−1

t 0)| ≤ χρn−1 ∀ (s, a) ∈ S ×A, n ∈ N, t ∈ [T ].

Proof. Fix t. When n = 1, since χ ≥ 1 by definition, we simply have

|ϕ(s, a)T(Un
t 0− Un−1

t 0)| = |ϕ(s, a)Tθ| = |c(s, a)| ≤ 1 ≤ χ = χρn−1. (42)

It remains to show |ϕ(s, a)T(Un+1
t 0− Un

t 0)| ≤ χρn for all n ∈ N. Fix such an n. By monotoncity of Π[0,Bt],

gt(s, U
n
t 0) = min

a∈A
Π[0,Bt]

(
ϕ(s, a)TUn

t 0− α∥ϕ(s, a)∥Λ−1
t

)
.

Hence, if we define Qn ∈ RS×A to be the matrix with (s, a)-th element

Qn(s, a) = Π[0,Bt]

(
ϕ(s, a)TUn

t 0− αt∥ϕ(s, a)∥Λ−1
t

)
,
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we have gt(s, U
n
t 0) = mina∈A Qn(s, a). Thus, by definition of Ut, we obtain

ϕ(s, a)T(Un+1
t 0− Un

t 0) =
∑
s′∈S

(
min
a′∈A

Qn(s
′, a′)− min

a′∈A
Qn−1(s

′, a′)

)
P (s′|s, a) = (T Qn − T Qn−1)(s, a),

where T is the state-action operator defined in (18). By (19), this implies

max
(s,a)∈S×A

ω(s)|ϕ(s, a)T(Un+1
t 0− Un

t 0)| ≤ ρ max
(s,a)∈S×A

ω(s)|(Qn −Qn−1)(s, a)|

≤ ρ max
(s,a)∈S×A

ω(s)|ϕ(s, a)T(Un
t 0− Un−1

t 0)|,

where the last inequality holds by Claim 2. Iterating the previous inequality and using the bound |ϕ(s, a)T(U1
t 0−U0

t 0)| ≤ 1
from (42), we obtain that for any n ∈ N,

max
(s,a)∈S×A

ω(s)|ϕ(s, a)T(Un+1
t 0− Un

t 0)| ≤ ρn max
s∈S

ω(s).

Hence, for any (s, a) ∈ S ×A and n ∈ N, we obtain

|ϕ(s, a)T(Un+1
t 0− Un

t 0)| ≤
ω(s)|ϕ(s, a)T(Un+1

t 0− Un
t 0)|

mins′∈S ω(s′)
≤ maxs′∈S ω(s′)ρn

mins′∈S ω(s′)
= χρn.

Next, we have an analogue of Corollary 5, whose proof is also similar.

Corollary 6 (Ĝt convergence). If Assumptions 1 and 2 hold, all stationary policies are proper, and κt = 54dt1/4
√
N ′

t for
some N ′

t ≥ log(3tχ)/(1− ρ), then on the event E , for any t ∈ [T ],

min
n∈[⌈N ′

t⌉]
∥Ĝn

t 0− Ĝn−1
t 0∥Λt

≤ αt.

Proof. Because χ ≥ 1 and ρ ∈ (0, 1) by definition, we know N ′
t ≥ log 3 ≥ 1, so 1 ≤ ⌈N ′

t⌉ ≤ 2N ′
t . Combined with

Lemmas 10 and 11, we obtain

min
n∈[⌈N ′

t⌉]
∥Ĝn

t 0− Ĝn−1
t 0∥Λt

≤ ∥Ĝ⌈N ′
t⌉

t 0− Ĝ
⌈N ′

t⌉−1
t 0∥Λt

≤ 5
√
dεt +

24
√
t(Bt + 1)N ′

tεt
αt

+ 3
√
tχρN

′
t . (43)

On the other hand, since 6t1/4
√
N ′

t ≥ 1 (recall N ′
t ≥ 1), Claim 6 implies

αt ≥ max{6t1/4
√
N ′

tεt, (Bt + 1)κt}. (44)

Thus, using the assumption N ′
t ≥ log(3tχ)/(1− ρ), we can bound the third term in (43) by

3
√
tχρN

′
t ≤ 3

√
tχe−(1−ρ)N ′

t ≤ 1/
√
t ≤ 1 ≤ κt(Bt + 1)/54 ≤ αt/54.

For the second term in (43), we again use (44) to obtain

24
√
t(Bt + 1)N ′

tεt
αt

≤ 24
√
t(Bt + 1)N ′

t

6t1/4
√

N ′
t

= 4t1/4
√
N ′

t(Bt + 1) ≤ 4κt(Bt + 1)

54
≤ 4αt

54
.

Plugging the previous two inequalities into (43), and assuming
√
d ≤ t1/4, we can use (44) and N ′

t ≥ 1 to obtain

min
n∈[⌈Nt⌉]

∥Ĝn
t 0− Ĝn−1

t 0∥Λt ≤ 5
√
d · εt +

5αt

54
≤ 5t1/4 · αt

6t1/4
+

5αt

54
=

50αt

54
< αt.

If instead
√
d > t1/4, we simply use Claim 4 and N ′

t ≥ 1 to obtain

min
n∈[⌈Nt⌉]

∥Ĝn
t 0− Ĝn−1

t 0∥Λt
≤ ∥Ĝt0∥Λt

≤
√
8td =

√
8t1/4t1/4

√
d ≤
√
8t1/4d ≤ κt ≤ αt.
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We now prove Theorem 3. As for Theorem 2, it suffices to prove the guarantees on E ∩ F . Corollaries 4 and 6
establish the OAFP guarantee on E ∩ F (we choose N ′

t = Nt = log(3tχ̄)/(1 − ρ̄) in the latter). Next, setting
Ψ = 54d

√
3 log(3χ̄)/(1− ρ̄) and λ = 1/4, we have

κt = 54dt1/4
√
log(3tχ̄)/(1− ρ̄) = Ψtλ

√
log(3tχ̄)/(3 log(3χ̄)) ≤ Ψtγ log(t+ 1),

where the inequality holds because by χ̄ ≥ 1, we have

log(3tχ̄)

3 log(3χ̄)
=

1

3
+

log(t)

3 log(3χ̄)
≤ 1 + log(t)

3
≤

log(t+1)
log 2 + log(t)

3
≤

(
1

log 2 + 1

3

)
log(t+ 1) ≤ log(t+ 1).

Hence, on E ∩ F , we can use the Theorem 1 regret bound with this Ψ and λ to obtain

R(K) = Õ
((

B
7
4
⋆ +B

3
4
⋆

)
d

3
2 (K/cmin)

3
4N

1/2
t + (B⋆ + 1)4d6N2

t c
−3
min

)
.

Remark 16 (Unknown χ̄ and ρ̄). Suppose κt = 54dt
1
4

√
Nt as in Theorem 3 but Nt = t2γ as in Appendix A.1. Then

κt ≥ 9d for any t ∈ N and Nt ≥ log(3tχ)/(1− ρ) as soon as t ≥ (log(3tχ)/(1− ρ))
1
2γ , so we can use Corollaries 4 and

6 and Lemma 2 to obtain the following: with probability at least 1− δ/2, for any t ≥ (log(3tχ)/(1− ρ))
1
2γ that Algorithm

3 is called, it returns an OAFP in t2γ iterations.

D.3. Proof of Theorem 4

We begin by showing Ĝt is a contraction with respect to ∥ · ∥ = ∥QT · ∥∞, where Q is the orthogonal matrix with columns
{qi}di=1. Note ∥ · ∥ is a norm by orthogonality of Q.

Lemma 12 (Ĝt contraction). Under the assumptions of Theorem 4, for any t ∈ [T ] and w1, w2 ∈ Rd, we have

∥QT(Ĝtw1 − Ĝtw2)∥∞ ≤ e−t/(t+1)∥Q(w1 − w2)∥∞.

Proof. For (s, a) ∈ S ×A, let i(s, a) ∈ [d] be such that ϕ(s, a) = qi(s,a) (which exists by assumption). For i ∈ [d], define
di = |{τ ∈ [t] : i(sτ , aτ ) = i}|. Let D be the diagonal matrix with diagonal elements {di + 1}di=1. Then

Λt = I +
t∑

τ=1

ϕ(sτ , aτ )ϕ(sτ , aτ )
T =

d∑
i=1

qiq
T
i +

d∑
i=1

diqiq
T
i =

d∑
i=1

(1 + di)qiq
T
i = QDQT.

This implies Λ−1
t = QD−1QT, so for any i ∈ [d] and (s, a) ∈ S ×A, we have

eTi Q
TΛ−1

t ϕ(s, a) = eTi D
−1QTqi(s,a) =

eTi Q
Tqi(s,a)

di + 1
=

qTi qi(s,a)

di + 1
=
1(i(s, a) = i)

di + 1
.

Using this identity, we obtain

eTi Q
T(Ĝtw1 − Ĝtw2) =

t∑
τ=1

eTi Q
TΛ−1

t ϕ(sτ , aτ )(gt(s
′
τ , w1)− gt(s

′
τ , w2))

=

∑
τ∈[t]:i(sτ ,aτ )=i(gt(s

′
τ , w1)− gt(s

′
τ , w2))

di + 1

On the other hand, for any s ∈ S , we know

|gt(s, w1)− gt(s, w2)| ≤ max
a∈A
|ϕ(s, a)T(w1 − w2)| = max

a∈A
|eTi(s,a)Q

T(w1 − w2)| ≤ ∥QT(w1 − w2)∥∞,

where we used Claim 3 for the first inequality. Combining the last two expressions, we obtain

∥QT(Ĝtw1 − Ĝtw2)∥∞ = max
i∈[d]

∣∣∣∣∣
∑

τ∈[t]:i(sτ ,aτ )=i(gt(s
′
τ , w1)− gt(s

′
τ , w2))

di + 1

∣∣∣∣∣ ≤ max
i∈[d]

di
di + 1

∥QT(w1 − w2)∥∞.

This completes the proof, since di/(di + 1) ≤ t/(t+ 1) ≤ e−t/(t+1).
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Using Lemma 12, we can show Algorithm 2 terminates within O(t log(td)) iterations.

Corollary 7. Under the assumptions of Theorem 4, for any t ∈ [T ],

min
n∈[⌈1+(t+1) log((t+1)d)/2⌉]

∥Ĝn
t 0− Ĝn−1

t 0∥Λt
≤ αt.

Proof. For any n ∈ N, we can iterate the bound from Lemma 12 to obtain

∥QT(Ĝn
t 0− Ĝn−1

t 0)∥∞ ≤ e−
n−1
t+1 ∥QTĜt0∥∞.

By a standard norm equivalence, orthogonality, and Claim 4, we also have

∥QTĜt0∥∞ ≤ ∥QTĜt0∥2 = ∥Ĝt0∥2 ≤ 2
√
d.

By Claim 1, orthogonality, and a standard equivalence, we also know

∥w∥Λt
≤
√
(t+ 1)d∥w∥2 =

√
(t+ 1)d∥QTw∥2 ≤

√
(t+ 1)d2∥QTw∥∞ ∀ w ∈ Rd.

Hence, combining the previous three inequalities, we obtain

∥Ĝn
t 0− Ĝn−1

t 0∥Λt ≤
√

(t+ 1)d2∥QT(Ĝn
t 0− Ĝn−1

t 0)∥∞ ≤
√
(t+ 1)d2e−

n−1
t+1 ∥QTĜt0∥∞ ≤ 2

√
(t+ 1)d3e−

n−1
t+1 .

Therefore, if n ≥ 1 + (t+ 1) log((t+ 1)d)/2, then the previous bound, the assumed choice κt = 9d in Theorem 4, and
Claim 6 imply ∥Ĝn

t 0− Ĝn−1
t 0∥Λt

≤ 2d ≤ κt ≤ αt.

Similar to the above, on E ∩ F , Corollaries 4 and 7 show Algorithm 2 returns OAFPs in O(t log(td)) iterations, and since
κt = 9d in Theorem 4, we obtain the regret bound from Corollary 1.

E. Other proofs
E.1. Proof of Lemma 2

For any t ∈ N and b > 0, define the following bad event:

Bt,b =

{
sup

w∈[−Wt,+Wt]d
∥Etw∥Λt

> εt

}
∩ {Bt = b}.

Our main goal is to prove the following claim.

Claim 11. Under the assumptions of Lemma 2, for any t ∈ N and b > 0, we have P(Bt,b) ≤ δ/(2t(t+ 1)2).

Before proving the claim, we show it implies the lemma. First note Bt is {2i−1cmin}ti=1-valued, so

EC = ∪t∈N

{
sup

w∈[−Wt,+Wt]d
∥Etw∥Λt

> εt

}
= ∪t∈N ∪b∈{2i−1cmin}t

i=1
Bt,b.

Hence, taking union bounds over t and b and invoking Claim 11, we obtain

P(EC) ≤
∞∑
t=1

∑
b∈{2i−1cmin}t

i=1

P(Bt,b) ≤
δ

2

∞∑
t=1

1

(t+ 1)2
≤ δ

2

∫ ∞

t=1

dt

t2
=

δ

2
.

Thus, it only remains to prove Claim 11. We fix t and b for the remainder of this appendix. For x ∈ Rd and Y ∈ Rd×d
≻0 (the

set d× d positive definite matrices), we define fx,Y : S → R and gx,Y : S → R by

fx,Y (s) = min
a∈A

(
ϕ(s, a)Tx− ∥ϕ(s, a)∥Y

)
, gx,Y (s) = Π[0,b](fx,Y (s)).

Here Π[0,b](·) clips between 0 and b as in (20). Hence, we have the following implication:

Bt = b ⇒ gt(s, w) = gw,α2
tΛ

−1
t
(s) ∀ s ∈ S, w ∈ Rd. (45)
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Claim 12. Under the assumptions of Lemma 2, for any x1, x2 ∈ Rd, Y1, Y2 ∈ Rd×d
≻0 , and s ∈ S ,

|gx1,Y1
(s)− gx2,Y2

(s)| ≤
√
d∥w1 − w2∥∞ +max

a∈A
|∥ϕ(s, a)∥Y1

− ϕ(s, a)∥Y2
| .

Proof. The proof is almost identical to Claim 3, except the bonus terms ∥ϕ(s, a)∥Yi
do not cancel.

We now derive a bound on the error operator that removes the bias introduced by the regularizer. Here and moving forward,
for any τ ∈ [t], we use the shorthand ϕτ = ϕ(sτ , aτ ).

Claim 13. Under the assumptions of Lemma 2, if Bt = b, then for any w ∈ Rd,

∥Etw∥Λt
≤

∥∥∥∥∥
t∑

τ=1

ϕτ (gw,α2
tΛ

−1
t
(s′τ )− Es′τ gw,α2

tΛ
−1
t
(s′τ ))

∥∥∥∥∥
Λ−1

t

+
√
d(b+ 1).

Proof. Fix w ∈ Rd. If Bt = b, then by (45),

Ĝtw = Λ−1
t

t∑
τ=1

ϕτ (c(sτ , aτ ) + Es′τ gt(s
′
τ , w)) + Λ−1

t

t∑
τ=1

ϕτ (gw,α2
tΛ

−1
t
(s′τ )− Es′τ gw,α2

tΛ
−1
t
(s′τ )).

The first term can be rewritten as

Λ−1
t

t∑
τ=1

ϕτϕ
T
τ

(
θ +

∑
s∈S

µ(s)gt(s, w)

)
= (I − Λ−1

t )Utw.

Combining the previous two identities, we obtain

Etw = Ĝtw − Utw = Λ−1
t

(
t∑

τ=1

ϕτ (gw,α2
tΛ

−1
t
(s′τ )− Es′τ gw,α2

tΛ
−1
t
(s′τ ))− Utw

)
.

Thus, by the triangle inequality, we have

∥Etw∥Λt
≤

∥∥∥∥∥
t∑

τ=1

ϕτ (gw,α2
tΛ

−1
t
(s′τ )− Es′τ gw,α2

tΛ
−1
t
(s′τ ))

∥∥∥∥∥
Λ−1

t

+ ∥Utw∥Λ−1
t
.

This completes the proof, because when Bt = b, ∥Utw∥Λ−1
t
≤ ∥Utw∥2 ≤

√
d(b+ 1) by Claims 1 and 4.

Since gw,α2
tΛ

−1
t

is a random function that depends on the random state-action pairs before time t, we take a union bound
over it using a covering argument. Toward this end, let

αt|b = (b+ 1)κt

√
log(t(b+ 1)κt/δ), Wt|b = (αt|b) +

√
td(b+ 1), εt = 5(b+ 1)d

√
log(t(αt|b)/δ),

denote the values of the random variables αt, Wt, and εt when Bt = b. Thus, αt = αt|Bt (and similar for Wt and εt). Next,
let X be a 1/(

√
dt)-net of [−Wt|b,+Wt|b]d in the ℓ∞ norm; explicitly, we define

X =
{
[ij/(
√
dt)]dj=1 : ij ∈

{
−
⌈
(Wt|b)

√
dt
⌉
, . . . ,

⌈
(Wt|b)

√
dt
⌉}
∀ j
}
.

Finally, let Y be a 1/(dt2)-net of {Y ∈ Rd×d
≻0 : |Y (i, j)| ≤ (αt|b)2 ∀ i, j}, where we view the matrices as vectors:

Y =
{[

ij1,j2/(dt
2)
]d
j1,j2=1

: ij1,j2 ∈
{
−
⌈
(αt|b)2dt2

⌉
, . . . ,

⌈
(αt|b)2dt2

⌉}
∀ j1, j2

}
∩ Rd×d

≻0 .

Moving forward, we discard the cumbersome ·|b notation. However, we emphasize that X and Y are deterministic sets,
irrespective of the value taken by Bt.

We next show that when Bt = b, gw,α2
tΛ

−1
t

is close to some element of the function class {gx,Y : X × Y}.
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Claim 14. Under the assumptions of Lemma 2, if Bt = b, then for any w ∈ [−Wt,+Wt]
d, there exists x ∈ X and Y ∈ Y

such that ∥∥∥∥∥
t∑

τ=1

ϕτ (gw,α2
tΛ

−1
t
(s′τ )− Es′τ gw,α2

tΛ
−1
t
(s′τ ))

∥∥∥∥∥
Λ−1

t

≤

∥∥∥∥∥
t∑

τ=1

ϕτ (gx,Y (s
′
τ )− Es′τ gx,Y (s

′
τ ))

∥∥∥∥∥
Λ−1

t

+ 2.

Proof. By Claim 1 and a standard spectral norm inequality, we have |α2
tΛ

−1
t (i, j)| ≤ α2

t ∥Λ−1
t ∥2 ≤ α2

t ∀ i, j. Hence, we
can find Y ∈ Y such that maxi,j |Y (i, j)− α2

tΛ
−1
t (i, j)| ≤ 1/(dt2). For such Y and any (s, a) ∈ S ×A, we then obtain

|ϕ(s, a)T(Y − α2
tΛ

−1
t )ϕ(s, a))| ≤

∑
i,j∈[d]

|ϕi(s, a)||ϕj(s, a)||Y (i, j)− α2
tΛ

−1
t (i, j)|

≤ ∥ϕ(s, a)∥
2
1

dt2
≤ ∥ϕ(s, a)∥

2
2

t2
≤ 1

t2
,

which implies that

∥ϕ(s, a)∥Y ≤
√
α2
tϕ(s, a)

TΛ−1
t ϕ(s, a) + |ϕ(s, a)T(Y − α2

tΛ
−1
t )ϕ(s, a)| ≤ αt∥ϕ(s, a)∥Λ−1

t
+ 1/t.

Hence, by symmetry, we conclude that ∣∣∣∥ϕ(s, a)∥Y − αt∥ϕ(s, a)∥Λ−1
t

∣∣∣ ≤ 1/t. (46)

Also, we can clearly find x ∈ X such that ∥w − x∥∞ ≤ 1/(
√
dt). Hence, for any s ∈ S , we obtain

|gx,Y (s)− gw,α2
tΛ

−1
t
(s)| ≤

√
d∥w − x∥∞ +max

a∈A

∣∣∣∥ϕ(s, a)∥Y − αt∥ϕ(s, a)∥Λ−1
t

∣∣∣ ≤ 2/t, (47)

where we used Claim 12, (46) and the choice of x. Also, defining ∆(s) = gw,α2
tΛ

−1
t
(s)− gx,Y (s) ∀ s ∈ S , we have∥∥∥∥∥

t∑
τ=1

ϕτ (gw,α2
tΛ

−1
t
(s′τ )− Es′τ gw,α2

tΛ
−1
t
(s′τ ))

∥∥∥∥∥
Λ−1

t

≤

∥∥∥∥∥
t∑

τ=1

ϕτ (gx,Y (s
′
τ )− Es′τ gx,Y (s

′
τ ))

∥∥∥∥∥
Λ−1

t

+

∥∥∥∥∥
t∑

τ=1

ϕτ (∆(s′τ )− Es′τ∆(s′τ ))

∥∥∥∥∥
Λ−1

t

.

By the triangle inequality, Claim 1, and (47), the second term satisfies∥∥∥∥∥
t∑

τ=1

ϕτ (∆(s′τ )− Es′τ∆(s′τ ))

∥∥∥∥∥
Λ−1

t

≤
t∑

τ=1

∥ϕτ∥2|∆(s′τ )− Es′τ∆(s′τ )| ≤ 2.

Our final ingredient for proving Claim 11 is the following bound on εt.

Claim 15. Under the assumptions of Lemma 2, if Bt = b, then

εt ≥

√√√√2b2 log

(√
det(Λt)

det(Λ0)

2t(t+ 1)2|X ||Y|
δ

)
+
√
d(b+ 1) + 2.

Proof. We first observe that by assumption κt ≥ 9d and d ≥ 2, we have

αt = κt(b+ 1)
√
log(t(b+ 1)κt/δ) ≥ 9d(b+ 1) ≥ 9d ≥ 18. (48)

Using this bound, we (coarsely) bound the sizes of the nets. For X , we first recall that Wt = αt +
√
td(b+ 1), so by (48)

and (1/
√
9) + (1/9) = (1/3) + (1/9) = 4/9, we have

Wt

√
dt = αt

√
dt+ (b+ 1)dt3/2 ≤ αt

√
αt/9t+ (αt/9)t

3/2 ≤ 4(αtt)
3/2/9.
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Again using (48), we have 3 ≤ 3(αtt)
3/2/183/2 ≤ (αtt)

3/2/9. Thus, because d ≥ 2, we obtain

|X | ≤ (1 + 2⌈Wt

√
dt⌉)d ≤ (3 + 2Wt

√
dt)d ≤ (αtt)

3d/2 ≤ (αtt)
d2

.

For Y , we can use (48) to obtain 3 ≤ 3α3
t t

2/183 ≤ α3
t t

2/4 and 2d ≤ αt/4, so

|Y| ≤ (3 + 2dt2α2
t )

d2

≤ (α3
t t

2/2)d
2

= 2−d2

α3d2

t t2d
2

.

Next, observe det(Λt)/det(Λ0) ≤ (t+ 1)d by Claim 1, so again using d ≥ 2, we have

2t(t+ 1)2
√
det(Λt)/det(Λ0) ≤ 2t(t+ 1)2+d/2 ≤ (2t)3+d/2 ≤ (2t)(3d

2/4)+(d2/4) = (2t)d
2

.

Combining the previous three inequalities, and since δ ≥ δ4d
2

, we obtain

2t(t+ 1)2
√
det(Λt)/det(Λ0)|X ||Y|/δ ≤ (αtt/δ)

4d2

.

Since d ≥ 2, we also have
√
d(b+ 1) + 2 ≤ 2(b+ 1)d. Combined with the previous inequality,√√√√2b2 log

(√
det(Λt)

det(Λ0)

2t(t+ 1)2|X ||Y|
δ

)
+
√
d(b+ 1) + 2

≤
√
8b2d2 log(αtt/δ) + 2(b+ 1)d ≤ (

√
8 + 2)(b+ 1)d

√
log(αtt/δ) ≤ 5(b+ 1)d

√
log(αtt/δ) = εt.

Remark 17 (Sharpening the tabular case). In the tabular case, Λ−1
t is diagonal, so we can replace Y with Y ′ = {Y ∈

Y : Y is diagonal}. Since |Y ′| is exponential in d (instead of d2), we can define εt to have square root (instead of linear)
dependence on d.

Proof of Claim 11. For each (x, Y ) ∈ X × Y , define the event

Cx,Y =


∥∥∥∥∥

t∑
τ=1

ϕτ (gx,Y (s
′
τ )− Es′τ gx,Y (s

′
τ ))

∥∥∥∥∥
Λ−1

t

>

√√√√2b2 log

(√
det(Λt)

det(Λ0)

2t(t+ 1)2|X ||Y|
δ

) .

Then since gx,Y is a deterministic [0, b]-valued function, gx,Y (s′τ )−Es′τ gx,Y (s
′
τ ) are conditionally zero-mean [−b, b]-valued

random variables, so are b-subgaussian. Hence, by Theorem 1 of (Abbasi-Yadkori et al., 2011), we have P(Cx,Y,b) ≤
δ/(2t(t+ 1)2|X ||Y|). Combined with Claims 13, 14, and 15 and the union bound,

P(Bt,b) ≤ P(∪(x,Y )∈X×YCx,Y ∩ {Bt = b}) ≤ P(∪(x,Y )∈X×YCx,Y ) ≤
∑

(x,Y )∈X×Y

P(Cx,Y ) ≤
δ

2t(t+ 1)2
.

E.2. Proof of Proposition 1

By Assumption 2 and the definition of Q⋆ (2), for any s ∈ S , we have

ϕ(s, a)Tw⋆ = ϕ(s, a)T

(
θ +

∑
s′∈S

J⋆(s′)µ(s′)

)
= c(s, a) +

∑
s′∈S

J⋆(s′)P (s′|s, a) = Q⋆(s, a).

Hence, by the Bellman optimality equations (1),

J⋆(s) = min
a∈A

Q⋆(s, a) = min
a∈A

ϕ(s, a)Tw⋆, π⋆(s) ∈ argmin
a∈A

Q⋆(s, a) = argmin
a∈A

ϕ(s, a)Tw⋆.

The first equality also implies that w⋆ is a fixed point of G:

Gw⋆ = θ +
∑
s∈S

µ(s)min
a∈A

ϕ(s, a)Tw⋆ = θ +
∑
s∈S

µ(s)J⋆(s) = w⋆.


