Generative Models of Huge Objects

Lunjia Hu =
Department of Computer Science, Stanford University, CA, USA

Inbal Rachel Livni Navon &
Department of Computer Science, Stanford University, CA, USA

Omer Reingold &
Department of Computer Science, Stanford University, CA, USA

—— Abstract

This work initiates the systematic study of explicit distributions that are indistinguishable from a
single exponential-size combinatorial object. In this we extend the work of Goldreich, Goldwasser
and Nussboim (SICOMP 2010) that focused on the implementation of huge objects that are
indistinguishable from the uniform distribution, satisfying some global properties (which they coined
truthfulness). Indistinguishability from a single object is motivated by the study of generative
models in learning theory and regularity lemmas in graph theory. Problems that are well understood
in the setting of pseudorandomness present significant challenges and at times are impossible when
considering generative models of huge objects.

We demonstrate the versatility of this study by providing a learning algorithm for huge in-
distinguishable objects in several natural settings including: dense functions and graphs with a
truthfulness requirement on the number of ones in the function or edges in the graphs, and a version
of the weak regularity lemma for sparse graphs that satisfy some global properties. These and
other results generalize basic pseudorandom objects as well as notions introduced in algorithmic
fairness. The results rely on notions and techniques from a variety of areas including learning theory,
complexity theory, cryptography, and game theory.

2012 ACM Subject Classification Theory of computation — Pseudorandomness and derandomiza-
tion; Theory of computation — Random network models; Theory of computation — Generating
random combinatorial structures

Keywords and phrases pseudorandomness, generative models, regularity lemma
Digital Object Identifier 10.4230/LIPIcs.CCC.2023.5
Related Version Full Version: https://arxiv.org/abs/2302.12823 [17]

Funding Lunjia Hu: Supported by the Simons Foundation Collaboration on the Theory of Al-
gorithmic Fairness, Omer Reingold’s NSF Award IIS-1908774, and Moses Charikar’s Simons Invest-
igators award.

Inbal Rachel Livni Navon: Supported by the Simons Foundation Collaboration on the Theory of
Algorithmic Fairness, the Sloan Foundation Grant 2020-13941, and the Zuckerman STEM Leadership
Program.

Omer Reingold: Supported by the Simons Foundation Collaboration on the Theory of Algorithmic

Fairness and the Simons Foundation Investigators award 689988.

1 Introduction

A pseudorandom distribution is indistinguishable from the uniform distribution to a set
of computationally bounded distinguishers. Pseudorandomness is a cornerstone of many
areas of computer science and mathematics. The variability of pseudorandom distributions
stems from the different objects they can generate (bit strings, functions, permutations and
more) and the different computational bounds that can be imposed on the distinguishers. In
the area of cryptography, it is typical to consider powerful distinguishers that are at least

© Lunjia Hu, Inbal Rachel Livni Navon, and Omer Reingold; COMPUTATIONAL
oY licensed under Creative Commons License CC-BY 4.0 COMPLEXITY
38th Computational Complexity Conference (CCC 2023). CONFERENCE

Editor: Amnon Ta-Shma; Article No. 5; pp. 5:1-5:20

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:lunjia@stanford.edu
mailto:inballn@stanford.edu
mailto:reingold@stanford.edu
https://doi.org/10.4230/LIPIcs.CCC.2023.5
https://arxiv.org/abs/2302.12823
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 Generative Models of Huge Objects

Table 1 Comparison between problem settings.

What do we imitate? What do we construct?

Pseudorandomness distribution of objects distribution of objects
Explicit construction (e.g. expander graphs) distribution of objects single object

Our setup: generative models single object distribution of objects

polynomial time, giving rise to central notions such as pseudorandom generators [3, 41],
pseudorandom functions [8] and pseudorandom permutations [27]. More limited distinguishers
give rise to other fundamental notions such as k-wise independent hashing and e-biased
distributions (cf. [40, 29]). In the area of explicit combinatorial constructions, we typically
try to emulate the uniform distribution by a single object, rather than with a distribution. A
primer example is the fundamental notion of expander graphs (see [16, 39] for surveys), with
its multiple variants (including various notions of randomness extractors). These are graphs
that are indistinguishable from a uniformly selected graph to a limited set of distinguishers
(such as distinguishers that check if a random edge crosses a given cut).

In these classic areas of pseudorandomness, a distribution, or even a single object, is
constructed to emulate a distribution (typically, the uniform distribution). In this paper we
ask for a distribution to emulate a single object (Table 1). This reversal may seem absurd
from the perspective of pseudorandomness but makes perfect sense from the perspective of
generative models. An early exposure of the TOC community to generative models was with
respect to the World Wide Web. These were models that produce distributions of graphs
that imitate some properties of the Web, such as power law on the degrees of nodes (see [28]
for a survey). At any given point, the web is a single graph, but it is also a very large graph
that does not have a simple description. Generative models gave a useful way to analyze, or
estimate through experimentation, the expected performance of protocols on the Web.

Other well studied generative models are the stochastic block model [15] and the more
elaborate mixed membership stochastic block model [1]. Consider a graph representing
some connections between individuals, such as the connectivity of the social network. The
stochastic block model partitions the vertices into disjoint communities and for every two
communities assigns a probability of connection. This model represents a distribution over
graphs where for each two vertices, an edge is placed independently with the probability
assigned to the pair of communities of its end points. (In the mixed-membership model,
each vertex is assigned a distribution over communities.) These models help identify useful
substructures within a social structure such as sub-communities or different social roles. But
given a single social network, B*, what is an appropriate model to capture it? After all, a
model describes a distribution over networks rather than the single network we are trying
to explain. A prevalent approach is to aim at the maximum likelihood model. Out of all
models, the probability of sampling B* is maximized under the maximum likelihood model.
Heuristics for estimating the maximum likelihood model have been playing a major roles
in the generative-model literature and in its application in practice. It should be noted
that the probability that the model would produce B* is often very small. In this light,
the meaningfulness of a maximum-likelihood models may be debated and may depend on a
particular setting.

From the perspective of indistinguishability, it may be more natural to seek a model that
produce a distribution that is indistinguishable from B* to a meaningful set of distinguishers.
For example, in the case of the stochastic block model, natural distinguishers are defined

L. Hu, I.R. Livni Navon, and O. Reingold

by two sets of vertices U and V and ask what is the probability that a random edge in
the graph crosses from U to V. A stochastic block model that fool all such distinguishers
is exactly what is given by the Frieze-Kannan regularity lemma (also known as the weak
regularity lemma) [7]. The indistinguishability perspective on generative models and known
connections between learning and pseudrandomness, which we will discuss shortly, are both
a motivation as well as the starting point of this work.

1.1 Overall Goal: Indistinguishable Generative Models of Huge Objects

In many of the applications of generative models, such as modeling the Web or a social
network, the objects being modeled are huge. In this paper, we aim at a systematic theory
of efficiently learning and implementing huge generative models. Our models will generate a
distribution of objects satisfying some global properties that are indistinguishable from a
fixed combinatorial object. Such a theory presents non-trivial challenges that do not manifest
themselves neither when generating huge pseudorandom objects, nor in generative models of
polynomial-size objects.

Concretely, we assume that we have access to an object B* with exponential size. For
example, B* could be a function with an exponentially large domain, or a graph with
exponentially many vertices and edges. We are most interested in the case where the object
B* is too large to read or process as a whole, and we have to access it by sampling: for
example, when B* represents a function f : X — {0, 1} with | X| being exponentially large,
we may access B* by asking for random pairs (z, f(z)) € X x {0,1} (sample access) or
random inputs x € X conditioned on f(z) =1 (support access). Given access to the huge
object B*, our goal is to create a generative model M for B*. Here, our model M represents
a distribution over objects, and we want to ensure that this distribution is indistinguishable
from B* to all distinguishers D in a class D. Specifically, if we use D? € {“accept”, “reject”}
to denote the output of distinguisher D given sample/support access to object B, our
indistinguishability requirement is that for every D € D,

|Pr[DB* = “accept”] — Epar[Pr[D? = “accept”]]| < e.

We aim for building an efficient learner L that can output a model M satisfying the
indistinguishability requirement above when given sample/support access to the true object
B*. When B* is exponentially large (which is the case we are interested in), the output
model M also needs to generate exponentially large objects, and thus we cannot expect an
efficient learner to directly output M. Instead, we want our learner to output an efficient
implementation of M, which, roughly speaking, is a randomized algorithm that can efficiently
provide sample/support access to objects drawn from M (Definitions 13 and 14).

Our goal of learning a generative model M indistinguishable from the true object B* is
analogous to the problem addressed by Goldreich, Goldwasser and Nussboim [9] in the area
of pseudorandomness. They study the problem of efficiently implementing a distribution
of huge objects, satisfying some global properties, that are indistinguishable from the
uniform distribution of such objects. Follow-up works of [9] such as [31, 30] study efficient

implementations that are indistinguishable from certain distributions of huge random graphs.

All these works aim to achieve indistinguishability from a known distribution of objects,
whereas in our problem of learning a generative model, we assume that the true object B*
is initially unknown, and to collect information about B*, we additionally need a learner L
that can use sample/support access to B* to efficiently construct an implementation of an
indistinguishable model.

5:3

CCC 2023

5:4

Generative Models of Huge Objects

Beyond indistinguishability, we also aim to achieve the notion of truthfulness introduced
in [9]. To demonstrate this notion, consider pseudorandom permutations fs : {0,1}" —
{0,1}™ [27]. A distribution of permutations is pseudorandom if it is indistinguishable
from the uniform distribution of permutations. It should be noted that a pseudorandom
{0,1}™ — {0,1}™ function [8] is also indistinguishable from a random permutation over
{0,1}" (as long as the number of queries are sufficiently smaller than 2"/2). Nevertheless,
insisting that the pseudorandom objects satisfy the global condition of being a permutation
is critical in the applications of pseudorandom permutations. This motivates the distinction
of [9] between indistinguishability (that the pseudorandom objects are indistinguishable from
a uniform object to a class of distinguishers) and truthfulness which is a global property that
needs to hold exactly or approximately in a statistical sense. In our setup, a generative model
M is truthful if every object B drawn from the distribution represented by M satisfies a
certain global property. For example, when the true object B* is a function f*: X — {0,1}
with support size [{x € X : f*(z) = 1}| being k, a truthful requirement on a generative
model M for B* may restrict M to always generate functions with support size k.

The study of implementing huge pseudorandom objects [32, 9, 31, 30] has pseudorandom
functions and permutations as vital building blocks. Besides these building blocks, our
techniques for learning generative models of huge objects also come from connections to the
regularity lemma and especially the work of Trevisan, Tulsiani and Vadhan [37]. In [37], they
construct an efficiently-implementable function f : X + [0, 1] which is indistinguishable from
some f*: X — [0,1] to a family of distinguishers represented by functions g : X + [0,1].
Indistinguishability here means that |E[f(z)g(z)] — E[f*(z)g(z)]| is smaller than some
error parameter . After [37], the problem of creating indistinguishable functions and its
applications to cryptography are further studied in [38, 22, 34, 35, 36, 4]. These works
assume that the true function f* is known and they do not explicitly deal with the problem
of learning f*, but the corresponding learning task has been studied in the algorithmic
fairness literature through the notions of multi-accuracy, multi-calibration, and outcome
indistinguishability [14, 23, 5, 13, 6]. When applying techniques from these works to solve
some problems in our setting, we need to deal with additional challenges such as the
truthfulness requirement that we want our generative model to satisfy.

1.2 Our Results

The main conceptual contribution of this paper is in suggesting a new frontier for the study of
indistinguishability, which is highly motivated and technically challenging. As we introduce
in Section 1.1, the notion of indistinguishability from a single huge object combines at its
core the areas of learning theory and pseudorandomness which, as recent research uncovered,
have deep connections, providing a way to describe and address a rich landscape of natural
problems. Below we summarize the main problems we address in this new framework.

Truthful Learning That Preserves Support Size

Suppose we have sample access to a function f*: {0,1}" — {0,1} and we want to build
an indistinguishable generative model for f*. Here sample access allows us to observe pairs
(x, f*(x)) with z drawn uniformly at random from {0, 1}", and accordingly, we assume that
every distinguisher also decides to accept or reject based on such a random pair (z, f(z)) from
a function f that may or may not be the true f*. This task of learning a generative model for a
binary function is closely related to the task of no-access outcome indistinguishability studied
in [5], and it has been observed that the task can be reduced to multi-accuracy. Indeed,

L. Hu, I.R. Livni Navon, and O. Reingold

assuming that the distinguishers have bounded complexity and can be learned efficiently,
using previous algorithms in [14, 23, 5], we can design an efficient learner that constructs a
generative model indistinguishable from f* (Theorem 19). The model constructed this way
is specified using a predictor p : {0,1}" — [0, 1], and the model represents the distribution of
functions f : {0,1}™ — {0,1} where the function value f(z) is distributed independently for
every = € {0,1}" according to the Bernoulli distribution Ber(p(z)) with mean p(x).

Learning generative models for binary functions becomes a more challenging task when we
additionally enforce truthfulness requirements. A natural choice of truthfulness requirement
is to preserve the support size of the function. Assuming that we know the support size
{z € {0,1}™ : f*(x) = 1}| of f* is k, we would like our model to only generate functions
that also have support size k. We show how to build an efficient learner that can output
such a truthful model which is also indistinguishable from the true function f*:

» Theorem 1 (Informal statement of Theorem 20). Let B be the class of sample-access
objects induced by binary functions f : {0,1}™ — {0,1} satisfying |supp(f)| = k, where
supp(f) := {z € {0,1}" : f(x) = 1}. Let D be a class of distinguishers that is efficiently
learnable. There exists an efficient (g,0)-learner L for B w.r.t. D and the learner always
outputs an efficient implementation of a model M that is truthful w.r.t. B.

Note that the truthfulness requirement on the support size cannot be enforced simply
using computationally-bounded distinguishers, because computing the support size of a
function f exactly requires reading the values f(x) for all the exponentially many inputs
x € {0,1}™. Also, this truthfulness requirement cannot be satisfied directly by a generative
model specified by a predictor p, where the function value f(z) is distributed according
to Ber(p(z)) independently of the function values f(z’) of other individuals 2/ # z. To
enforce a fixed support size, the function values of different individuals must coordinate in
a global manner, requiring us to use new techniques. We create a binary tree with leaves
corresponding to the function domain {0,1}", and following ideas in previous work such as
[9], we assign support size budgets from the root to the leaves. However, the true function
f* is a single unknown object and is very different from the uniform distribution considered
in [9], so there are no closed-from distributions (such as the binomial distributions used
in [9]) that can guide us to distribute the support size budget from a node two its two
children. Instead, we need to estimate how the budget should be divided, and this leads to
accumulated error towards the leaves and forces us to stop before reaching the leaves. To
efficiently propagate the budgets to the leaves, we solve a zero-sum game where player C
chooses the budgets for the leaves and player D distinguishes them from the target. We show
that if player D uses the multiplicative weights algorithm to minimize regret, we can create
an indistinguishable and truthful model from the empirical distribution over the optimal
responses from player C.

Learning a Function with Support Access

In the classic setting when learning a function f : {0,1} — {0, 1}, the learner receives random
samples of form (z, f(x)) for a uniform = € {0,1}. In this work, we also consider a function
object in which we receive a random positive entry. That is, the learner receives random z’s
such that f(x) = 1. This type of random access is natural is certain situations, for example
when we have information on the individuals that graduated some program, but not on those
that did not.

5:5

CCC 2023

5:6

Generative Models of Huge Objects

» Theorem 2 (Informal statement of Theorem 21). Let o > 0, and let f:{0,1} — {0,1} be
a function such that Pr[f(x) = 1] = a. Let D be a collection of distinguishers, each D € D
associated with a set Sp C [N] and accepts x if © € Sp. If there exists a weak agnostic
learner for D, then there exists a learning algorithm L running in time poly(n), that receives

random elements from the set {x|f(x) = 1} and outputs a model M that is indistinguishable
from f to all D € D.

The theorem holds when there is a weak agnostic learner for the collection of distinguishers
D under the distribution of a random support element (i.e. random z s.t. f(z) = 1). In the
full version [17] we show that if a collection of distinguishers D has a weak agnostic learner
over the standard sample access distribution, and the learner is a statistical query algorithm,
then there is a learner for D also under the distribution of random support element.

The proof of the theorem is similar to the classic boosting argument, with an additional
step that the learner performs of keeping the support size of the model approximately the
same as support size of f. This step is necessary because under the distribution of a random
support element, the boosting algorithm is only promised to work when the support sizes of
f and the model are approximately equal.

Learning an object under the distribution of random support element is potentially very
useful in the case of sparse objects. For a sparse function f, if we choose a uniform z € {0, 1},
then f(x) =0 with high probability, and a learner cannot hope to learn anything non-trivial
with random samples of form (z, f(z)). Unfortunately, the above theorem does not hold
for sparse functions, but in the next part we show how this theorem can be used to learn
different sparse objects - sparse graphs.

Learning Sparse Graphs Without Dense Subgraphs

Suppose G = ([N], E) is a graph represented by the N? length string of its adjacency matrix.
In this representation, receiving a random edge from G is equivalent to receiving a random
support element from the function representing its adjacency matrix. Therefore, Theorem 2
implies that we can learn a model for G that is indistinguishable for a set of distinguishers D
that have a weak agnostic learner. The theorem only holds for functions f with a constant
fraction of 1 entries, which corresponds to a dense graph. What about sparse graphs?
Learning a sparse graph, or a sparse object in general, is a very challenging task because
of the huge domain. The weak regularity lemma [7] has error that is proportional to N2,
which is too much in the case of sparse graphs (an empty graph is indistinguishable from a
sparse graph with this error). Therefore in the setting of a sparse graphs it is more natural to
require an € error from the distinguisher under the distribution of receiving a random edge.
Under this distribution, the error of the distinguishers scales with the number of edges. We
show a learner for a specific class of sparse graphs, those that have no dense subgraphs. We
note that a random sparse graph has no dense subgraphs, so many graphs have this property.

» Theorem 3 (Informal statement of Theorem 25). Let G = ([N], E) be a sparse graph with
no dense subgraphs. Let D be a collection of distinguishers, each D € D associated with
two sets Up,Vp C [N] and accepts an edge (u,v) if u € Up,v € Vp. If there exists a weak
agnostic learner for D, then there exists a learning algorithm L running in time polylog(N),
that receives random edges from G and outputs a model M that is indistinguishable from f
to all D € D.

The model that the learner outputs is dense, i.e. the model outputs graphs with ©(N?)
many edges. This is done because of technical reasons — to allow us to use rejection sampling
when training the model. This brings us to the question, is there a dense graph that is

L. Hu, I.R. Livni Navon, and O. Reingold

indistinguishable from our sparse graph G7 The answer to this question depends on G, and
in the full version [17] we show that if a sparse graph G has a very dense subgraph, then
there is no dense graph that is indistinguishable from G.

The proof of the theorem has two parts, in the first part we show that for every sparse
graph G with no dense subgraphs, there exists a dense graph H that is indistinguishable from
G. In this part of the proof we apply the strong regularity lemma for sparse graphs [26, 33|
on GG, and use the resulting partition to build the dense indistinguishable graph H. This part
of the proof is existential, and we do know how to find H efficiently, as the strong regularity
lemma does not have an efficient algorithm for finding the partition. It is not possible to use
the weak regularity lemma or its variants [7], because its error is too large. In the second
part of the proof, we reduce the learning G to learning H, and show that the resulted model
M is indistinguishable from G to all distinguishers D € D.

Other Results on Learning Generative Models

In this work we also show indistinguishable models in several other settings

Let f : {0,1}" — {0,1}" be a function. Learning such function is harder than
learning a binary function because the large domain makes f a sparse object (when
viewed as a graph for example it is an out-degree one graph). For such functions,
we show that there exists a learner that given samples from the distribution (z, f(z)),
outputs a model that is indistinguishable against the following set of distinguishers
D ={(Sp,jip)|Sp € {0,1}",jp € [n]} such that D =1 <= =z € Sp, f(x); = 1. This
appears on Section 3.4.
In Section 4.1 we apply the theorems for functions on the adjacency matrix of a dense
graph G = ([N], E). For a set of distinguishers D that have a weak agnostic leaner, we
have an efficient learner that outputs an indistinguishable model when G is:

1. A dense graph when the learner receives random adjacency matrix entries.

2. A dense graph with a fixed total number of edges m = ©(N?).

3. A directed graph with a fixed out-degree m = O(N).

4. A dense graph when the learner receives random edges.
For a directed graph G = ({0,1}", E') with constant out-degree d, we can treat each of the
d outgoing degrees as a function f; : {0,1}" — {0,1}". For the same set of distinguishers
that we can handle in the case of a length-preserving functions (the first item in this list),
we provide an efficient learner.
In the case of a uniform degree undirected graph, we provide in Section 4.3 a learn-
ing algorithm for an indistinghuishable model, albeit for a somewhat limited set of
distinguishers.

Impossibility Results

As we discussed earlier, our goal of learning a generative model is closely related to the
goal in [9] of implementing huge random objects, but a key difference is that we assume
the groundtruth is a single unknown object B*, whereas [9] considers a known uniform
distribution of objects. This means that we need an additional learning procedure to collect
information about B*, and we show in Section 5 that our task of efficiently learning a
generative model is only possible when the distinguisher class is efficiently learnable.
Besides the requirement of learning, our setting is more challenging than the setting
in [9] in many other ways. We demonstrate this by another two impossibility results
on fooling entry-access distinguishers and fooling stronger distinguishers than the model.

5:7

CCC 2023

5:8

Generative Models of Huge Objects

When we consider a pseudorandom function, fs, the function is indistinguishable from the
uniform distribution to distinguishers that have entry access to the function (allowed to ask
for an arbitrary string x and get fs(z)). Furthermore, while fs is computable in a fixed
polynomial time, the distinguishers can run in any polynomial time (and under reasonable
assumptions, even exponential time). [9] and subsequent work inherit these two properties -
indistinguishability to distinguishers that are computationally more complex than the models
and have entry access to the model. In Section 5 we argue that neither of these properties is
achievable in our setting.

For the impossibility of fooling distinguishers with entry access, in Theorem 27 we give
the example of a class D that contains a distinguisher D,, for every input € {0,1}"™ which
queries the function value f(z) for a function f and outputs “accept” if and only if f(z) = 1.
We argue that every model M that is indistinguishable from the true f* for the set of
distinguishers D has to be very close to f*. Since the size of f* is exponential and f* is
unknown, no efficient learner can output a model that is close to f*. We also show an
example, using an idea from [37], of a distinguisher and a true function f*, such that the
distinguisher can tell apart f* from any model M with a low complexity compared to the
distinguisher (Theorem 28). This highlights the fact that in our setting, the generative model
and the learner constructing the model have to be computationally comparable or stronger
than the distinguishers.

1.3 Related Work

As mentioned in Section 1.1, [9] introduced the problem of creating an indistinguishable
implementation of a random object. [9] as well as follow-up works [31, 30] also present
a collection of positive results for dense and sparse graphs or functions with a variety of
truthfulness conditions and access models of the distinguishers.

The connection between generative models and indistinguishability has been manifested
through the invention of generative adversarial networks (GANs) [10, 2]. Intuitively, a
GAN is trained to imitate a distribution of objects (say images). The generator is trained
in concert with a discriminator that could be interpreted as a distinguisher. Through
a sequence of rounds, the generator is trained to fool the discriminator which is then
trained to fail the generator. GANSs highlight the connection between generative models and
indistinguishability [21], but they do not naturally fall into our framework as they are more
directly described in terms of indistinguishability of two distributions.

The connection between indistinguishability and learning theory has been established in
many previous works (e.g. [37] applies the boosting technique from learning theory). More
recently, in the context of algorithmic fairness, the relation between learning theory and
indistinguishability has been dramatically expanded in the notions of multicalibration and
outcome indistinguishability [14, 5], in applications to learning and statistical inference
through the notions of omnipredictors and universal adapatability [12, 24, 18, 11, 25] and in
the emergence of research uncovering intricate and exciting connections while studying the
sample complexity of indistinguishability from a learning-theoretic perspective [20, 19].

It is possible to view our learning setting as a 2-players zero-sum game, between the
learner and the distinguishers, in which the learner’s goal is to output a model for an
indistinguishable object and the distinguishers try to tell apart the input and the model. In
this setting, there is a relation between min-max theorems and regularity-lemma theorems.
Such theorems prove that it is possible to express a complex object f by a function of a
few simpler objects g1, ... g that, in our setting, represent the distinguishers [37, 38]. There
have been works improving the parameters and also using such theorems for applications
in cryptography [38, 22, 34, 35, 36, 4]. In this work, our setting is slightly different, as we
assume that the object f is complex and unknown, and the learner has to learn it. The proof

L. Hu, I.R. Livni Navon, and O. Reingold

of Theorem 3 has an intermediate step that is existential and has a similar structure to a
weak regularity lemma theorems, but since the required error there is too small, we derive it
from the sparse strong regularity lemma.

» Note 4. This is an abridged version of the paper. We refer the readers to the full version [17]
for proofs and other contents that are omitted in this version.

2 Preliminaries

Throughout the paper, we are interested in learning objects such as functions and graphs,
and we are particularly interested when these objects have exponential sizes (e.g. functions

with exponentially large domains and graphs with exponentially many vertices and edges).

We typically use B to denote an object, and use B to denote a class of objects. We view an
object B as a function B : @ — A4 that maps a query ¢ € @ to a distribution B(q) over
answers in A.

2.1 Functions

When the object is a function f: X — Y, we consider three access types. For sample access,
B returns a random pair (z, f(z)). For support access, it returns a random z such that
f(x) = 1. For entry access, upon querying x, B returns f(z).

» Definition 5 (Function-induced sample-access object). Let f : X — Y be a function and
let B : Q — A4 be an object. We say B is the sample-access object induced by f if
Q ={L},A=XxY, and B(L) is the distribution of (x, f(x)) € A where x is drawn
uniformly from X.

» Definition 6 (Function-induced support-access object). Let f : X — {0,1} be a binary
function. We define the support of f to be supp(f) :={x € X : f(x)=1}. Let B: Q — A4
be an object. Assuming supp(f) # 0, we say B is the support-access object induced by f if
Q={L},A=X, and B(L) is the uniform distribution over supp(f) C X.

» Definition 7 (Function-induced entry-access object). Let f: X — Y be a function and let
B:Q — A4 be an object. We say B is the entry-access object induced by f if @ = X, A=Y,
and for every q € Q, B(q) is the singleton distribution such that a ~ B(q) equals to f(q)
deterministically.

In this paper, we show positive results for learning generative models of functions with sample
access and support access (Section 3) whereas we show impossibility results for entry access
(Section 5). This separation is mainly because entry access makes the distinguishers stronger
and thus makes indistinguishability harder to achieve (see Definitions 10 and 11 below).

2.2 Graphs

For a graph G = (V, E') where we assume V has exponential size, we define two access types,
sample-access which corresponds to a random adjacency matrix entry, and support-access
which corresponds to a random edge in the graph.

» Definition 8 (Graph-induced sample-access object). Let G = (V,E) be a directed or
undirected graph and let B : Q — A4 be an object. We say B is the sample-access object
induced by G if @ = {L}, A=V xV x {0,1}, and B(L) is the distribution of (u,v,y) € A
where (u,v) is drawn uniformly from VXV, y =1 if (u,v) € E and y = 0 otherwise.

5:9

CCC 2023

5:10

Generative Models of Huge Objects

» Definition 9 (Graph-induced support-access object). Let G = (V, E) be a directed or
undirected graph and let B : Q — A4 be an object. Assuming E # (), we say B is the
support-access object induced by G if @ = {L},A =V x V, and B(L) is the uniform
distribution over E CV x V.

2.3 Indistinguishability

Each learner we design in this paper has access to a ground-truth object B*, and it aims
to output an object B that is indistinguishable from B*. In many cases, the learner does
not just output a single object B, but a distribution over objects, and we refer to such
distributions as models. Below we formally define the notion of indistinguishability.

» Definition 10 (Distinguisher). A distinguisher D is an algorithm that when given access to
an object B : Q — A 4, outputs “accept” or “reject”. That is, the distinguisher is allowed to
make queries ¢ € @ to the model, and for each query q the distinguisher receives an answer
a € A drawn independently from B(q) € Ayx. We allow the distinguisher D itself to be
randomized, and we use random variable DB to denote the output of the distinguisher D in
{“accept”, “reject”} when given access to B.

» Definition 11 (Indistinguishability). Let B* : Q — A4 be an object, and let model M be a
distribution over objects B : Q — A 4. We say model M is e-indistinguishable from object
B* w.r.t. a distinguisher D if

| Pr[DP" = “accept”] — Epn[Pr[D? = “accept”]]| < e. (1)

We say model M is e-indistinguishable from object B* w.r.t. a class D of distinguishers if
(1) holds for every D € D.

2.4 Truthfulness

In addition to indistinguishability, another desirable property of a model is truthfulness
introduced in [9]. Truthfulness requires every object generated from the model to satisfy a
certain (usually global) property which we formalize using an object class B:

» Definition 12 (Truthfulness). We say a model M is truthful w.r.t. an object class B if

PTBN]W[B S B] =1.

2.5 Implementations

Our goal is to design efficient learners, and thus we cannot expect the learner to output a
model M explicitly, especially when the objects drawn from M are huge. Instead, our learner
outputs an efficient implementation of a model, defined as follows.

» Definition 13 (Ordinary Implementation). For { € Z>g, let T be a randomized algorithm

that takes (r,q) € {0,1}* x Q as input, and outputs T(r,q) € A. We say T is an ordinary

implementation of a model M with seed length £ if for every seed r € {0,1}¢ there exists an

object B, : Q — A4 such that

1. for every q € Q, T(r,q) is distributed according to B(q), where the randomness in T(r, q)
comes from the internal randomness in algorithm T';

2. B, is distributed according to M when r is drawn uniformly from {0,1}.

L. Hu, I.R. Livni Navon, and O. Reingold

While our goal is to output an ordinary implementation with a polynomial-length seed,
following the approach in [9], it is more convenient to first build implementations using a

random oracle and then transform the implementation to an ordinary one using Lemma 15.

» Definition 14 (Random-Oracle Implementation). Let T be a randomized algorithm that

takes a function r : {0,1}* — {0,1} as an oracle. On an input ¢ € Q, the algorithm T

outputs T"(q) € A. We say T is a random-oracle implementation of a model M if for every

r:{0,1}* — {0,1} there exists an object B, : Q — A4 such that

1. for every q € Q, T"(q) is distributed according to B,(q), where the randomness in T"(q)
comes from the internal randomness in algorithm T';

2. B, is distributed according to M when r is a uniformly random function from {0,1}* to

{0,1}.

» Lemma 15 (Theorem 2.9 in [9]). Suppose that one-way functions exist. There exists an
algorithm H with the following properties. Let D be a class of distinguishers where each D € D
is a circuit of size at most W for some W > 1. Let T be a random-oracle implementation of
a model M with circuit complexity at most W. Given W, T and an arbitrary € € (0,1) as
input, the algorithm H runs in time poly(W,1/e) and outputs an ordinary implementation
T of a model M’ where T' has seed length and circuit complexity both being poly(W,1/e),
and

|Egronr Pr[DB/ = “accept”] — Egas Pr[D? = “accept”]| < e for every D € D.
Moreover, if M is truthful w.r.t. an object class B, then M’ is also truthful w.r.t. B.

Lemma 15 can be proved by using a pseudorandom function to emulate the random oracle.

2.6 Learning

We describe the learners we aim to design in the definition below.

» Definition 16 (Learner). Let B be a class of objects B : Q@ — A4 and D be a class of
distinguishers. An (g,0)-learner L for the class B w.r.t. D is an algorithm with the following
properties. For any B* € B, given access to B*, the learner outputs an implementation T
of a model M such that with probability at least 1 — 3§, M is e-indistinguishable from B*
w.r.t. D.

2.7 Other Notations
For v € R, we define cap(v) by capping its value into [0, 1], i.e.,
v, f0<v<1;

cap(v) =<1, ifv>1;
0, ifwv<0.

Given a list of values (v1,...,v;) we define Lcap(vy,...,v;) by summing over the list and
capping the value to [0, 1] in every iteration. We formally define it recursively:

Lcap(v1) = cap(v1),
Lcap(v1,-..,v:) = cap(Lcap(vy, ..., v—1) + v¢). (2)

5:11

CCC 2023

5:12

Generative Models of Huge Objects

3 Learning Functions with Exponentially Large Domains

The goal of this section is to efficiently learn a generative model that is indistinguishable
from a target function f* : X — Y to a class D of distinguishers. We allow the domain
X of the function to have exponential size N := |X|, and require our learner to run in
time polylog(N). This means that the learner cannot read the entire function f*, and can
only access it via random sample. Throughout the paper, our learners output an efficient
random-oracle implementation 7" of a model M, which can be turned in to an efficient
ordinary implementation by Lemma 15.

3.1 Learning Sample-Access Binary Functions

We start by studying the case where the target object B* is the sample-access object induced
by a binary function f*: X — {0,1} (Definition 5). We assume that every distinguisher
D € D satisfies the following: when given access to a sample-access object B induced by
a function f : X — {0,1}, the distinguisher asks a single query L, receives an answer
a = (z,y) ~ B(L), and outputs D(x,y) € {“accept”, “reject”}. We allow the distinguisher
itself to be randomized, and each distinguisher D defines a function gp : X — [—1, 1] such
that

gp(x) = Pr[D(z,1) = “accept”] — Pr[D(z,0) = “accept”] for every z € X.
We use the following claim to relate a distinguisher D € D to the function gp : X — [—1,1]:

> Claim 17. For every distinguisher D € D, the following equation holds for every x € X
and y1, 92 € {0, 1}:

Pr[D(z,y1) = “accept”] — Pr[D(z, y2) = “accept”] = y19p(z) — y2gp ().

The claim can be easily proved by considering the four possible choices of (y1,y2) € {0,1} X
{0,1}.

As we show later in Section 5, it is necessary to impose certain learnability assumptions
on the distinguishers. To that end, we assume that there is an auditor for the function class
G :={gp : D € D}, defined as follows:

» Definition 18 (Auditor). Let D and G be defined as above. We say an algorithm A is an
(e,7,9)-auditor for G if it satisfies the following property. Given access to a sample-access
object B* induced by a function f*: X — {0,1} and taking a predictor p : X — [0,1] as an
oracle, if there exists g € G such that

[E[f*(2)g(2)] - E[p(z)g(2)]| = &,

then A outputs § : X — [—1, 1] satisfying the following with probability at least 1 —§:

E[f*(2)g(x)] — Elp(z)3(z)] = 7.

The auditor defined above can be viewed as a weak agnostic learner for the class G. When
the domain X is {0,1}" with size N = 2", many classes allow efficient auditors that run in
time poly(n) = polylog(N). Using an auditor for G, we prove the following theorem:

» Theorem 19. Let the distinguisher class D and the function class G be defined above.
Let €,7,8,0" € (0,1/2) be parameters satisfying v < € and §' < c6v? for a sufficiently small
absolute constant ¢ > 0. Let B be the class of sample-access objects induced by binary
functions f: X — {0,1}. Let A be an (e,v,d")-auditor for G (Definition 18). Then there

L. Hu, I.R. Livni Navon, and O. Reingold

exists an (g,0)-learner L for B w.r.t. D. Moreover, if the auditor A runs in time at most
W1 and always outputs a function with circuit size at most Wy, then the learner L runs
in time poly(y~1, log(6~1), W1) and always outputs implementations with circuit complezity
O(’Y_QWQ).

We prove the theorem by applying results from algorithmic fairness [37, 14, 23], see the full
version for more details.

3.2 Truthful Learning That Preserves Support Size

Some desirable properties of a generative model are global and cannot be enforced using
computationally bounded distinguishers alone. This motivated [9] to introduce the notion
of truthfulness that ensures such global properties beyond indistinguishability. Here we
focus on a natural global property of a binary function f : X — {0,1}: the size of its
support supp(f) := {z € X : f(x) = 1}. The model M we create in Section 3.1 using the
multiaccurate predictor p may generate functions f with support size different from the target
function f*. Indeed, even if) . p(x) = |supp(f*)|, a random function f with each entry
f(z) independently drawn from Ber(p(x)) is not guaranteed to satisfy |supp(f)| = |supp(f*)|.
Now we show an efficient learner that outputs truthful models that preserve the support size
of the generated functions.

An overview of the proof appears in the introduction, and the proof appears in the full
version [17].

» Theorem 20. Let the distinguisher class D and the function class G be defined as in
Section 3.1. Let ¢,v,0,6' € (0,1/2) be parameters satisfying v < ¢ and §' < cdy? for a
sufficiently small absolute constant ¢ > 0. Let B be the class of sample-access objects induced
by binary functions f: X — {0,1} satisfying |supp(f)| = k, where X = {0,1}". Let A be an
(e,7,0")-auditor for G (Definition 18). Then there exists an (g, d)-learner L for B w.r.t. D
and the learner always outputs a random-oracle implementation of a model M that is truthful
w.r.t. B. Moreover, if the auditor A runs in time at most W1 and always outputs a function
with circuit size at most Wy, then the learner L runs in time poly(n,y~ 1, log(6~1), W1) and
always outputs an implementation with circuit complezity poly(n,y~1, Wa).

3.3 Learning Support-Access Binary Functions

In the previous sections we showed how to learn and construct an implementation of an
indistinguishable model for a function induced sample-access object B*, i.e. there exists a
function f*: X — {0,1}, and the distinguishers and learner both receives random samples
of form (z, f*(x)). In this section, we learn a support-access object induced by a function see
Definition 6. For a binary function f* : X — {0,1}, the support-access object B* induced
by f* outputs random samples from the set {z|f*(z) = 1}. We show how to construct an
efficient implementation of a model that is indistinguishable from B*.

Distinguishers: Let D be a set of distinguishers, such that each D € D has an associated
subset Sp C X. Given access to a sample x from a object B,the distinguisher accepts if
z € Sp. We assume that for every D € D, the set Sp has known size and an efficient
description, that on input x answers if x € Sp.

Auditor: Let D be defined as above. We say that an algorithm AZ™? is an (e,~,9)
auditor for the collection of sets S = {Sp|D € D} if it has the following proper-
ties. Given access to a function-induced support access-object B* and query access
to a predictor p : X — [0,1]. If there exists S € S and b € {—1,1} such that

5:13

CCC 2023

5:14

Generative Models of Huge Objects

b (Pryp-(1)[@ € S] — Pryeplz € S]) > €. Then the auditor returns a set S’ such that
with probability 1 — 6, b (Prywp«(1)[z € S| = Pra~plz € S']) > 7. Where x ~ p is the
distribution generated from the predictor p, i.e. Proplz = 2] = p(2')/ > c x p(z").

» Theorem 21. Let o € [0,1] be a parameter, and let B be a collection of support access
object induced by binary functions, such that VB € B,E.cx[fp(x)] = a. Let D be a collection
of distinguishers as described above.

Let e,7,8, 6" be parameters such that §' < cdv?>a=2 for a sufficiently small constant c.
Let A be an (g,7,0") auditor A for D. Then there exists a (2g,8)-learner L for B with respect
to the distinguisher class D. The learner L runs in time poly(y~!log(6=Y)a™t, Wy, W),
where W7 is the running time of the auditor A and Wy the circuit complezity of its output.
The implementation T that the learner outputs runs in time poly(y~log(6—H)a™t, W)

The learner L in the theorem above has access to an auditor A that can audit support-access
objects. In the full version [17] we discuss under which conditions such auditor exists. The
learning algorithm is similar to the classic boosting algorithm, with an additional step of
keeping the expected value of the model to be approximately a. We note that if the function
is sparse, i.e. « is very small, then the algorithm is no longer efficient.

3.4 Learning Bit-String Functions

In this section we are interested in learning a function f : {0,1}" — {0,1}". This is a harder
than learning a binary function, because the range of the function is very large. Therefor we
only learn an indistinguishable model with respect to a very limited set of distinguishers,
with a product structure. In this setting, the sampling distribution is a pair (z, f(z)) for a
random input x.
Distinguishers: Let D, such that each distinguisher D € D has an set Sp C {0,1}" and a
coordinate j € [n]. The distinguisher D accept a sample (z, f(z)) if z € S and f(z); = 1.
Auditor: Let D be defined as above. We say that an algorithm AZ - is an (e,7,6) aud-
itor for the collection of sets S if it has the following properties. Given access to a
function-induced support access-object B* and query access to a set of n predictors
P1,...Pn, such that p; : {0,1}" — [0,1]. If there exists S € S and j € [n] such
that b (Pry[z € S, f(z); = 1] — Ez[pj(z) - 1(z € S)]) > e. Then the auditor returns a set
S’ C {0,1}" and j € [n] such that b (Pr [z € &', f(z); = 1] — E.[p;(z) - 1(xz € S")]) > v
with probability 1 — 4.

» Theorem 22. Let B be a collection of support access object induced by functions f :
{0,1}" — {0,1}". Let D be a collection of distinguishers as described above.

Let g,7,8,8" be parameters such that §' < céy*n~1 for a sufficiently small constant c.
Let A be an (g,7,9¢") auditor for D. Then there exists a (2¢,d)-learner L to B with respect
to the distinguisher class D and the learner L runs in time poly(y~'log(6—H)a™t, Wy, W),
where W71 is the running time of the auditor A and Wy the circuit complexity of its output.
The implementation T that the learner outputs runs in time poly(y~*log(6~H)a™t, W)

4 Learning Exponential-Size Graphs

4.1 Learning Dense Graphs

The most basic setting for graphs is the dense model, where the graph-induced sample-access
object B induced by a graph G = ([N], E) can be thought of as getting a random entry
((u,v),b) for u,v € [N],b € {0,1} from the adjacency matrix of G (see Definition 8). We can

L. Hu, I.R. Livni Navon, and O. Reingold

think of the adjacency matrix of the graph as a function, where the graph imposes some

extra structure on the distinguishers. Therefore, some of the results from Section 3 follow

directly.

Distinguishers: Let D be a collection of distinguishers. Each distinguisher has two sets of
vertices Up, Vp C [N]. When getting a random entry ((u,v),b) from the graph-induced
sample-access object B*, it accepts if u € Up, v € Vp and b= 1.

Auditors: An algorithm A is an (g, ~, §)-auditor for a collection of tuples S containing pairs
(U, V) C [N] x [N] if it satisfies the following. The auditor received query access to a
predictor p : [N] x [N] — [0, 1] and to a graph-induced sample-access object B* induced
by a graph G* = ([N], E*). If there exists (U, V) € S such that

b- Pr ueUweV, (uv) € B —En, 1(u e Uwv e V)p(u,v)] | >e.
((U,v)E[N]X[N][(u,v)] = Euwyeiny< (v [1()p()])

Then with probability (1 — §), it outputs U’, V' such that

b- P cU,ve V' (u,v) € E*] —Epo 1lucU,veV’ , > 7.
(1 € U0 € Vs 000) € B7] = BrwpeimepmLu € U0 € Vp(u)]) 2
The setting of a dense graph can be derived directly from the function theorem, by applying
it on the adjacency matrix of the graph.

» Corollary 23 (Corollary of Theorem 19). Let the distinguisher class D be defined above.
Let £,7,6,8 > 0 be parameters satisfying &' < cdv? for a sufficiently small absolute constant
¢ > 0. Let B be the class of sample-access objects induced by graphs over vertex set [N]. Let
A be an (g,7v,8")-auditor for S = {(Up,Vp)|D € D}. Then there exists an (g,d)-learner L
for B w.r.t. D. Moreover, if the auditor A runs in time at most Wy and always outputs a
function with circuit size at most Wa, then the learner L runs in time poly(y~1, log(d~1), W)
and always outputs implementations with circuit complexity O(y~2Ws).

The same holds also for learning a graph with a fixed number of edges, by applying
Theorem 20. Similarly, we can derive a theorem on directed graphs by applying Theorem 19
or Section 3.2 on the directed graph adjacency matrix. It is also possible to generate a
directed graph with a fixed out-degree by applying Section 3.2 for every vertex individually.

4.2 Learning Sparse Graphs Without Dense Subgraphs

For a sparse graph, a sample-access graph object is not useful, because a random entry in
the adjacency matrix of the graph is nearly always 0. We study graph-induced support-
access objects (Definition 9), which corresponds to an object B* induced by a sparse graph
G = ([N], E), B(L) that outputs a random edge in the graph (u,v) € E.

Applying Theorem 21 implies a corollary for support-access graphs, but the theorem is
only efficient for dense graphs. In this section we show how to create a dense model for a
sparse graph, as long as the sparse graph does not have a subgraph which is too dense. We
do so by using the strong regularity lemma for sparse graphs [26, 33].

Distinguishers: Let D be a collection of distinguishers. Each distinguisher has two sets of
vertices Up, Vp C [N]. A distinguisher D on input (u,v) accepts if u € Up and v € Vp.
Auditors: An algorithm A is an (e, &', d)-auditor for a collection pairs of sets S, such that
(U, V) e S, U,V C [N] if it satisfies the following. The auditor received query access to
a predictor p : [N] x [N] — [0, 1] and access to a graph-induced support-access object

5:15

CCC 2023

5:16

Generative Models of Huge Objects

B* representing a graph G* = ([N], E*). If there exists a pair of sets (U,V) C S and
a bit b such that b - (Pr(u’v)wB*(L)[u cU,v € V] = Pryypyplu € Uyv € V]) > ¢, Then A
outputs sets U’, V' C [N] such that

b-(Pr [ueU,veV]— Pr [ueU'meV’])zs’.
(u,v)~B* (1) (u,v)~p

The distribution (u,v) ~ p is defined by the predictor p, i.e. for all u,v € [N] we have
Pr(u/,vf)wp[u’ =u, ’Ul = ’U] = p(u, ’U)/ Zu”,v”E[N] p(u", ’UN).

Graph Notations and Definitions

For a graph G = ([N], E) and U,V C [N], we define E¢(U,V) = {(u,v) € Elu € U,v € V}
to be the set of edges between U,V in G. We denote by pg(U, V) the edge density between
U, VinG, pg(U, V) = % We denote by pg = pa([N],[N]) the edge density of the
graph. We use the definition of upper-uniform graphs from [26, 33] with a small additional

requirement also for small sets.

» Definition 24 (Upper-uniform graphs). A graph G = ([N], E) is (n,~)-upper uniform, if for
every two disjoint sets U,V C [N], with min {|U]|, |V|} > nN we have that pc(U,V) < vpg,
and for U,V such that min {|U|,|V|} < 7N, we have that |E(U,V)| < ynpgN>.

We remark that a random sparse graph is upper-uniform for constants 7,7 with high
probability.

» Theorem 25. For cvery parameter v, &, , N X" > 0, such that X' < c\e’? for a sufficiently
large constant ¢. Then there exists n € [0,1] such that the following holds. Let B be a
collection of graph-induced support access objects, such that for each B* € B, the graph it
represents G- is (1n,7)-upper-uniform.

Let D be a collection of distinguishers. If there exists an (g,&',d")-auditor A for the
collection of sets C = {(Up,Vp)|D € D}, then there exists an (e,0”)-learning algorithm L
for all B* € B with respect to D.

The proof of the theorem appears in the full version [17]. In addition, we show how this
theorem can be combined with Theorem 20 to create a sparse uniform out-degree graph.

4.3 Learning Uniform Degree Graphs

Suppose we are interested in generating a truthful model for a uniform degree d graph.
That is, we want that all graph in our model has a uniform degree d. In previous sections
we discussed directed graphs with uniform out-degree. For undirected graphs, in [9] the
authors show a construction of a graph indistinguishable from random, by applying a random
permutation on a large girth expander. In this work we restrict the set of distinguishers to
those that can be described by a partition, and create a model by learning the densities of
the edges between each part in the partition and permuting the edges.

Distinguishers: Then the set of distinguishers D contains distinguishers D with sets (Up, Vp)
such that U,V € U. Every distinguisher D accepts an edge (u,v) if u € U,v € V. Let
U={U C[N]|3D st.U =Up or U = Vp}. We assume that U is a partition with ¢
parts, and that |Uy| is linear in N.

» Lemma 26. Let B be a collection of graph-induced support-access objects, such that for
all B* € B, the graph Gp~ has a uniform degree d. Let D be the distinguishers class defined
above. Then for every constant € there exists an (¢,0)— learning algorithm L for the class B
with respect to D. The algorithm runs in time poly(1/e,1og(1/9)).

L. Hu, I.R. Livni Navon, and O. Reingold

5 Impossibilities

A main difference in our work from [9] is in the target distribution/object we aim to be
indistinguishable from. In [9], the target distribution is fixed and uniform over many objects,
whereas in our setup the target is a single object which is initially unknown, and a learner is

needed to access the target object to make it possible to create an indistinguishable model.

This difference makes our setup challenging, and below we show example tasks that are
impossible to achieve in our setup because of this difference.

5.1 Fooling Distinguishers with Entry-Access is Hard

In [9], the distinguishers can query for specific entries of an object. Such distinguishers can be
impossible to fool in our setup. For example, suppose the target object B* is the entry-access
object induced by a function f*: X — {0,1} (Definition 7), and suppose our learner aims
to output a model M of entry-access objects B induced by functions f : X — {0,1}. For
every x € X, suppose there is a distinguisher that queries for the value of f(z) and outputs
“accept” if and only if f(x) = 1. To fool these distinguishers, we have to learn the target
function f* exactly, which is clearly impossible if the domain X has exponential size and the
learner can only make polynomially many queries.

» Theorem 27. Let X be a non-empty finite set. Let B be the class of entry-access objects
induced by all functions f : X — {0,1}. Let D be the class of distinguishers D, for every
x € X where given an object B, the distinguisher D, outputs “accept” if and only if the
answer a ~ B(x) is equal to 1. Let L be an (g,0)-learner for the class B w.r.t. D for
€,0 < 1/2. Then L needs to query every input x € X in the worst case.

5.2 Learned Model Needs to be Stronger than Distinguishers

The model learned in [9] can fool distinguishers with significantly larger circuit complexity
than the model itself. Below we show that this can become impossible in our setup where
the target is a single object.

» Theorem 28 (Remark 1.6 in [37]). Let n,W > 1 be positive integers satisfying WlogW <
2™ /C for a sufficiently large absolute constant C' > 0. There exists a sample-access object
B* induced by a function f*:{0,1}"™ — {0,1} and a distinguisher D with circuit complexity

O(nW) such that for any model M with circuit complexity at most W, it holds that

|Pr[D5" = “accept”] — Egar[Pr[D? = “accept”]]| > 1/3. (3)

5.3 The Distinguisher Class Needs to be Learnable

Since the target distribution in [9] is fixed, no learning is needed in order to produce an
indistinguishable model. In our setup, the learning task is usually performed using an auditor,
which can be viewed as a weak agnostic learner for the class of distinguishers. A natural
question is whether we can still achieve indistinguishability if such a weak agnostic learner does
not exist. Previous works [14, 11] have shown negative answers to this question for certain
notions of indistinguishability (such as calibrated multiaccuracy) by showing that these notions
imply (strong) agnostic learning for the distinguisher class. The indistinguishability notion
we use for generative models is closer to multiaccuracy, and below we show that efficiently
achieving this notion requires the distinguisher class to be efficiently realizably learnable. For
a true function f*: X — {0,1}, multiaccuracy requires a predictor p : X — [0, 1] to satisfy

5:17

CCC 2023

5:18

Generative Models of Huge Objects

[E[(f*(2) = p(x)g(@)]| < & (4)

for every function g in a class G. Now consider the case where G consists of functions
g: X — {—1,1}. For an arbitrary ¢g* € G, suppose the true function f* satisfies f*(x) =1 if
g*(z) =1 and f*(z) =0if g*(z) = —1. Then (4) implies

E[f*(x) = p(z)] <e. ()

Now we define §(z) = 1 if p(z) > 1/2, and define §(z) = —1 if p(z) < 1/2. Tt is easy to check
that if g(x) # ¢g*(x) for some = € X, then |f*(x) — p(z)| > 1/2, and thus (5) implies the
following realizable learning guarantee for the class G:

Prlg(z) # g"(z)] < 2e.

—— References

1 Edoardo M Airoldi, David M Blei, Stephen E Fienberg, and Eric P Xing. Mixed membership
stochastic blockmodels. Journal of machine learning research: JMLR, 9:1981-2014, 2008.

2 Sanjeev Arora, Rong Ge, Yingyu Liang, Tengyu Ma, and Yi Zhang. Generalization and
equilibrium in generative adversarial nets (GANs). In Doina Precup and Yee Whye Teh,
editors, Proceedings of the 34th International Conference on Machine Learning, volume 70 of
Proceedings of Machine Learning Research, pages 224-232. PMLR, 06-11 August 2017. URL:
https://proceedings.mlr.press/v70/aroral7a.html.

3 Manuel Blum and Silvio Micali. How to generate cryptographically strong sequences of
pseudorandom bits. STAM Journal on Computing, 13(4):850-864, 1984. doi:10.1137/0213053.

4 Yi-Hsiu Chen, Kai-Min Chung, and Jyun-Jie Liao. On the complexity of simulating auxiliary
input. In Advances in cryptology—EUROCRYPT 2018. Part 111, volume 10822 of Lecture Notes
in Comput. Sci., pages 371-390. Springer, Cham, 2018. doi:10.1007/978-3-319-78372-7_12.

5 Cynthia Dwork, Michael P Kim, Omer Reingold, Guy N Rothblum, and Gal Yona. Outcome
indistinguishability. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory
of Computing, pages 1095-1108, 2021.

6 Cynthia Dwork, Daniel Lee, Huijia Lin, and Pranay Tankala. New insights into multi-
calibration. arXiv preprint, 2023. arXiv:2301.08837.

7 Alan Frieze and Ravi Kannan. Quick approximation to matrices and applications. Combinat-
orica, 19(2):175-220, 1999.

8 Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions.
Journal of the ACM, 33(4):792-807, October 1986.

9 Oded Goldreich, Shafi Goldwasser, and Asaf Nussboim. On the implementation of huge
random objects. SIAM Journal on Computing, 39(7):2761-2822, 2010.

10 Tan Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets.
In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K.Q. Weinber-
ger, editors, Advances in Neural Information Processing Systems, volume 27. Cur-
ran Associates, Inc., 2014. URL: https://proceedings.neurips.cc/paper/2014/file/
5ca3e9b122f61£8£f06494c97blafccf3-Paper.pdf.

11 Parikshit Gopalan, Lunjia Hu, Michael P. Kim, Omer Reingold, and Udi Wieder. Loss
Minimization Through the Lens Of Outcome Indistinguishability. In Yael Tauman Kalai,
editor, 14th Innovations in Theoretical Computer Science Conference (ITCS 2023), volume
251 of Leibniz International Proceedings in Informatics (LIPIcs), pages 60:1-60:20, Dagstuhl,
Germany, 2023. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik. doi:10.4230/LIPIcs.
ITCS.2023.60.

https://proceedings.mlr.press/v70/arora17a.html
https://doi.org/10.1137/0213053
https://doi.org/10.1007/978-3-319-78372-7_12
https://arxiv.org/abs/2301.08837
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://doi.org/10.4230/LIPIcs.ITCS.2023.60
https://doi.org/10.4230/LIPIcs.ITCS.2023.60

L. Hu, I.R. Livni Navon, and O. Reingold

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Parikshit Gopalan, Adam Tauman Kalai, Omer Reingold, Vatsal Sharan, and Udi Wieder.
Omnipredictors. In Mark Braverman, editor, 13th Innovations in Theoretical Computer
Science Conference, ITCS 2022, January 31 — February 3, 2022, Berkeley, CA, USA, volume
215 of LIPIcs, pages 79:1-79:21. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2022.
d0i:10.4230/LIPIcs.ITCS.2022.79.

Parikshit Gopalan, Michael P Kim, Mihir A Singhal, and Shengjia Zhao. Low-degree multical-
ibration. In Po-Ling Loh and Maxim Raginsky, editors, Proceedings of Thirty Fifth Conference
on Learning Theory, volume 178 of Proceedings of Machine Learning Research, pages 3193-3234.
PMLR, 02-05 July 2022. URL: https://proceedings.mlr.press/v178/gopalan22a.html.
Ursula Hébert-Johnson, Michael Kim, Omer Reingold, and Guy Rothblum. Multicalibration:
Calibration for the (computationally-identifiable) masses. In International Conference on
Machine Learning, pages 1939-1948. PMLR, 2018.

Paul W. Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. Stochastic blockmodels:
First steps. Social Networks, 5(2):109-137, 1983. doi:10.1016/0378-8733(83)90021-7.
Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs and their applications.
Bulletin of the AMS, 43(4):439-561, 2006.

Lunjia Hu, Inbal Livni-Navon, and Omer Reingold. Generative models of huge objects, 2023.
arXiv:2302.12823.

Lunjia Hu, Inbal Livni-Navon, Omer Reingold, and Chutong Yang. Omnipredictors for
constrained optimization. arXiv preprint, 2022. arXiv:2209.07463.

Lunjia Hu and Charlotte Peale. Comparative Learning: A Sample Complexity Theory for
Two Hypothesis Classes. In Yael Tauman Kalai, editor, 14th Innovations in Theoretical
Computer Science Conference (ITCS 2023), volume 251 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 72:1-72:30, Dagstuhl, Germany, 2023. Schloss Dagstuhl —
Leibniz-Zentrum fir Informatik. doi:10.4230/LIPIcs.ITCS.2023.72.

Lunjia Hu, Charlotte Peale, and Omer Reingold. Metric entropy duality and the sample
complexity of outcome indistinguishability. In Sanjoy Dasgupta and Nika Haghtalab, editors,
Proceedings of The 33rd International Conference on Algorithmic Learning Theory, volume
167 of Proceedings of Machine Learning Research, pages 515-552. PMLR, 29 March—-01 April
2022. URL: https://proceedings.mlr.press/v167/hu22a.html.

Russell Impagliazzo. Lecture on learning models: connections between boosting, hard-core
distributions, dense models, GAN, and regularity I. https://www.ias.edu/video/csdm/2017/
1113-RussellImpagliazzo, 2017.

Dimitar Jetchev and Krzysztof Pietrzak. How to fake auxiliary input. In Theory of cryptography,
volume 8349 of Lecture Notes in Comput. Sci., pages 566-590. Springer, Heidelberg, 2014.
doi:10.1007/978-3-642-54242-8_24.

Michael P Kim, Amirata Ghorbani, and James Zou. Multiaccuracy: Black-box post-processing
for fairness in classification. In Proceedings of the 2019 AAAI/ACM Conference on Al, Ethics,
and Society, pages 247-254, 2019.

Michael P. Kim, Christoph Kern, Shafi Goldwasser, Frauke Kreuter, and Omer Reingold.
Universal adaptability: Target-independent inference that competes with propensity scoring.
Proceedings of the National Academy of Sciences, 119(4):¢2108097119, 2022. doi:10.1073/
pnas.2108097119.

Michael P. Kim and Juan C. Perdomo. Making Decisions Under Outcome Performativity.
In Yael Tauman Kalai, editor, 14th Innovations in Theoretical Computer Science Conference
(ITCS 2023), volume 251 of Leibniz International Proceedings in Informatics (LIPIcs), pages
79:1-79:15, Dagstuhl, Germany, 2023. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik.
doi:10.4230/LIPIcs.ITCS.2023.79.

Yoshiharu Kohayakawa and Vojtech Rédl. Szemerédi’s regularity lemma and quasi-randomness.
Recent advances in algorithms and combinatorics, pages 289-351, 2003.

Michael Luby and Charles Rackoff. How to construct pseudorandom permutations from
pseudorandom functions. SIAM Journal on Computing, 17(2):373-386, 1988.

5:19

CCC 2023

https://doi.org/10.4230/LIPIcs.ITCS.2022.79
https://proceedings.mlr.press/v178/gopalan22a.html
https://doi.org/10.1016/0378-8733(83)90021-7
https://arxiv.org/abs/2302.12823
https://arxiv.org/abs/2209.07463
https://doi.org/10.4230/LIPIcs.ITCS.2023.72
https://proceedings.mlr.press/v167/hu22a.html
https://www.ias.edu/video/csdm/2017/1113-RussellImpagliazzo
https://www.ias.edu/video/csdm/2017/1113-RussellImpagliazzo
https://doi.org/10.1007/978-3-642-54242-8_24
https://doi.org/10.1073/pnas.2108097119
https://doi.org/10.1073/pnas.2108097119
https://doi.org/10.4230/LIPIcs.ITCS.2023.79

5:20

Generative Models of Huge Objects

28

29

30

31

32

33

34

35

36

37

38

39

40

41

Michael Mitzenmacher. A Brief History of Generative Models for Power Law and Lognormal
Distributions. Internet Mathematics, 1(2):226-251, 2003.

Joseph Naor and Moni Naor. Small-bias probability spaces: Efficient constructions and
applications. STAM Journal on Computing, 22(4):838-856, August 1993.

Moni Naor and Asaf Nussboim. Implementing huge sparse random graphs. In Moses Charikar,
Klaus Jansen, Omer Reingold, and José D. P. Rolim, editors, Approzimation, Randomization,
and Combinatorial Optimization. Algorithms and Techniques, 10th International Workshop,
APPROX 2007, and 11th International Workshop, RANDOM 2007, Princeton, NJ, USA,
August 20-22, 2007, Proceedings, volume 4627 of Lecture Notes in Computer Science, pages
596-608. Springer, 2007. doi:10.1007/978-3-540-74208-1_43.

Moni Naor, Asaf Nussboim, and Eran Tromer. Efficiently constructible huge graphs that
preserve first order properties of random graphs. In Joe Kilian, editor, Theory of Cryptography,
Second Theory of Cryptography Conference, TCC 2005, Cambridge, MA, USA, February
10-12, 2005, Proceedings, volume 3378 of Lecture Notes in Computer Science, pages 66—85.
Springer, 2005. doi:10.1007/978-3-540-30576-7_5.

Moni Naor and Omer Reingold. Constructing pseudo-random permutations with a prescribed
structure. J. Cryptol., 15(2):97-102, January 2002. doi:10.1007/s00145-001-0008-5.
Alexander Scott. Szemerédi’s regularity lemma for matrices and sparse graphs. Combinatorics,
Probability and Computing, 20(3):455-466, 2011.

Maciej Skorski. Simulating auxiliary inputs, revisited. In Theory of cryptography. Part
I, volume 9985 of Lecture Notes in Comput. Sci., pages 159-179. Springer, Berlin, 2016.
doi:10.1007/978-3-662-53641-4_7.

Maciej Skérski. A subgradient algorithm for computational distances and applications to
cryptography. Cryptology ePrint Archive, 2016.

Maciej Skérski. A cryptographic view of regularity lemmas: simpler unified proofs and refined
bounds. In Theory and applications of models of computation, volume 10185 of Lecture Notes
in Comput. Sci., pages 586—599. Springer, Cham, 2017. doi:10.1007/978-3-319-55911-7.
Luca Trevisan, Madhur Tulsiani, and Salil P. Vadhan. Regularity, boosting, and efficiently
simulating every high-entropy distribution. In Proceedings of the 24th Annual IEEE Conference
on Computational Complexity, CCC 2009, Paris, France, 15-18 July 2009, pages 126-136.
IEEE Computer Society, 2009. doi:10.1109/CCC.2009.41.

Salil Vadhan and Colin Jia Zheng. A uniform min-max theorem with applications in cryp-
tography. In Advances in Cryptology—CRYPTO 2013: 83rd Annual Cryptology Conference,
Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part I, pages 93—110. Springer,
2013.

Salil P. Vadhan. Pseudorandomness. Foundations and Trends® in Theoretical Computer
Science, 7(1-3):1-336, 2012. doi:10.1561/0400000010.

Mark N. Wegman and J. Lawrence Carter. New hash functions and their use in authentication
and set equality. Journal of Computer and System Sciences, 1981.

Andrew C. Yao. Theory and applications of trapdoor functions. In 23rd annual symposium on
foundations of computer science (Chicago, Ill., 1982), pages 80-91. IEEE, New York, 1982.

https://doi.org/10.1007/978-3-540-74208-1_43
https://doi.org/10.1007/978-3-540-30576-7_5
https://doi.org/10.1007/s00145-001-0008-5
https://doi.org/10.1007/978-3-662-53641-4_7
https://doi.org/10.1007/978-3-319-55911-7
https://doi.org/10.1109/CCC.2009.41
https://doi.org/10.1561/0400000010

	1 Introduction
	1.1 Overall Goal: Indistinguishable Generative Models of Huge Objects
	1.2 Our Results
	1.3 Related Work

	2 Preliminaries
	2.1 Functions
	2.2 Graphs
	2.3 Indistinguishability
	2.4 Truthfulness
	2.5 Implementations
	2.6 Learning
	2.7 Other Notations

	3 Learning Functions with Exponentially Large Domains
	3.1 Learning Sample-Access Binary Functions
	3.2 Truthful Learning That Preserves Support Size
	3.3 Learning Support-Access Binary Functions
	3.4 Learning Bit-String Functions

	4 Learning Exponential-Size Graphs
	4.1 Learning Dense Graphs
	4.2 Learning Sparse Graphs Without Dense Subgraphs
	4.3 Learning Uniform Degree Graphs

	5 Impossibilities
	5.1 Fooling Distinguishers with Entry-Access is Hard
	5.2 Learned Model Needs to be Stronger than Distinguishers
	5.3 The Distinguisher Class Needs to be Learnable

