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Abstract

This work initiates the systematic study of explicit distributions that are indistinguishable from a

single exponential-size combinatorial object. In this we extend the work of Goldreich, Goldwasser

and Nussboim (SICOMP 2010) that focused on the implementation of huge objects that are

indistinguishable from the uniform distribution, satisfying some global properties (which they coined

truthfulness). Indistinguishability from a single object is motivated by the study of generative

models in learning theory and regularity lemmas in graph theory. Problems that are well understood

in the setting of pseudorandomness present signiĄcant challenges and at times are impossible when

considering generative models of huge objects.

We demonstrate the versatility of this study by providing a learning algorithm for huge in-

distinguishable objects in several natural settings including: dense functions and graphs with a

truthfulness requirement on the number of ones in the function or edges in the graphs, and a version

of the weak regularity lemma for sparse graphs that satisfy some global properties. These and

other results generalize basic pseudorandom objects as well as notions introduced in algorithmic

fairness. The results rely on notions and techniques from a variety of areas including learning theory,

complexity theory, cryptography, and game theory.
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1 Introduction

A pseudorandom distribution is indistinguishable from the uniform distribution to a set

of computationally bounded distinguishers. Pseudorandomness is a cornerstone of many

areas of computer science and mathematics. The variability of pseudorandom distributions

stems from the different objects they can generate (bit strings, functions, permutations and

more) and the different computational bounds that can be imposed on the distinguishers. In

the area of cryptography, it is typical to consider powerful distinguishers that are at least
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5:2 Generative Models of Huge Objects

Table 1 Comparison between problem settings.

What do we imitate? What do we construct?

Pseudorandomness distribution of objects distribution of objects

Explicit construction (e.g. expander graphs) distribution of objects single object

Our setup: generative models single object distribution of objects

polynomial time, giving rise to central notions such as pseudorandom generators [3, 41],

pseudorandom functions [8] and pseudorandom permutations [27]. More limited distinguishers

give rise to other fundamental notions such as k-wise independent hashing and ε-biased

distributions (cf. [40, 29]). In the area of explicit combinatorial constructions, we typically

try to emulate the uniform distribution by a single object, rather than with a distribution. A

primer example is the fundamental notion of expander graphs (see [16, 39] for surveys), with

its multiple variants (including various notions of randomness extractors). These are graphs

that are indistinguishable from a uniformly selected graph to a limited set of distinguishers

(such as distinguishers that check if a random edge crosses a given cut).

In these classic areas of pseudorandomness, a distribution, or even a single object, is

constructed to emulate a distribution (typically, the uniform distribution). In this paper we

ask for a distribution to emulate a single object (Table 1). This reversal may seem absurd

from the perspective of pseudorandomness but makes perfect sense from the perspective of

generative models. An early exposure of the TOC community to generative models was with

respect to the World Wide Web. These were models that produce distributions of graphs

that imitate some properties of the Web, such as power law on the degrees of nodes (see [28]

for a survey). At any given point, the web is a single graph, but it is also a very large graph

that does not have a simple description. Generative models gave a useful way to analyze, or

estimate through experimentation, the expected performance of protocols on the Web.

Other well studied generative models are the stochastic block model [15] and the more

elaborate mixed membership stochastic block model [1]. Consider a graph representing

some connections between individuals, such as the connectivity of the social network. The

stochastic block model partitions the vertices into disjoint communities and for every two

communities assigns a probability of connection. This model represents a distribution over

graphs where for each two vertices, an edge is placed independently with the probability

assigned to the pair of communities of its end points. (In the mixed-membership model,

each vertex is assigned a distribution over communities.) These models help identify useful

substructures within a social structure such as sub-communities or different social roles. But

given a single social network, B∗, what is an appropriate model to capture it? After all, a

model describes a distribution over networks rather than the single network we are trying

to explain. A prevalent approach is to aim at the maximum likelihood model. Out of all

models, the probability of sampling B∗ is maximized under the maximum likelihood model.

Heuristics for estimating the maximum likelihood model have been playing a major roles

in the generative-model literature and in its application in practice. It should be noted

that the probability that the model would produce B∗ is often very small. In this light,

the meaningfulness of a maximum-likelihood models may be debated and may depend on a

particular setting.

From the perspective of indistinguishability, it may be more natural to seek a model that

produce a distribution that is indistinguishable from B∗ to a meaningful set of distinguishers.

For example, in the case of the stochastic block model, natural distinguishers are deĄned
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by two sets of vertices U and V and ask what is the probability that a random edge in

the graph crosses from U to V . A stochastic block model that fool all such distinguishers

is exactly what is given by the Frieze-Kannan regularity lemma (also known as the weak

regularity lemma) [7]. The indistinguishability perspective on generative models and known

connections between learning and pseudrandomness, which we will discuss shortly, are both

a motivation as well as the starting point of this work.

1.1 Overall Goal: Indistinguishable Generative Models of Huge Objects

In many of the applications of generative models, such as modeling the Web or a social

network, the objects being modeled are huge. In this paper, we aim at a systematic theory

of efficiently learning and implementing huge generative models. Our models will generate a

distribution of objects satisfying some global properties that are indistinguishable from a

Ąxed combinatorial object. Such a theory presents non-trivial challenges that do not manifest

themselves neither when generating huge pseudorandom objects, nor in generative models of

polynomial-size objects.

Concretely, we assume that we have access to an object B∗ with exponential size. For

example, B∗ could be a function with an exponentially large domain, or a graph with

exponentially many vertices and edges. We are most interested in the case where the object

B∗ is too large to read or process as a whole, and we have to access it by sampling: for

example, when B∗ represents a function f : X → ¶0, 1♢ with ♣X♣ being exponentially large,

we may access B∗ by asking for random pairs (x, f(x)) ∈ X × ¶0, 1♢ (sample access) or

random inputs x ∈ X conditioned on f(x) = 1 (support access). Given access to the huge

object B∗, our goal is to create a generative model M for B∗. Here, our model M represents

a distribution over objects, and we want to ensure that this distribution is indistinguishable

from B∗ to all distinguishers D in a class D. SpeciĄcally, if we use DB ∈ ¶ŞacceptŤ, ŞrejectŤ♢

to denote the output of distinguisher D given sample/support access to object B, our

indistinguishability requirement is that for every D ∈ D,

♣ Pr[DB∗

= ŞacceptŤ] − EB∼M [Pr[DB = ŞacceptŤ]]♣ ≤ ε.

We aim for building an efficient learner L that can output a model M satisfying the

indistinguishability requirement above when given sample/support access to the true object

B∗. When B∗ is exponentially large (which is the case we are interested in), the output

model M also needs to generate exponentially large objects, and thus we cannot expect an

efficient learner to directly output M . Instead, we want our learner to output an efficient

implementation of M , which, roughly speaking, is a randomized algorithm that can efficiently

provide sample/support access to objects drawn from M (DeĄnitions 13 and 14).

Our goal of learning a generative model M indistinguishable from the true object B∗ is

analogous to the problem addressed by Goldreich, Goldwasser and Nussboim [9] in the area

of pseudorandomness. They study the problem of efficiently implementing a distribution

of huge objects, satisfying some global properties, that are indistinguishable from the

uniform distribution of such objects. Follow-up works of [9] such as [31, 30] study efficient

implementations that are indistinguishable from certain distributions of huge random graphs.

All these works aim to achieve indistinguishability from a known distribution of objects,

whereas in our problem of learning a generative model, we assume that the true object B∗

is initially unknown, and to collect information about B∗, we additionally need a learner L

that can use sample/support access to B∗ to efficiently construct an implementation of an

indistinguishable model.

CCC 2023



5:4 Generative Models of Huge Objects

Beyond indistinguishability, we also aim to achieve the notion of truthfulness introduced

in [9]. To demonstrate this notion, consider pseudorandom permutations fs : ¶0, 1♢n 7→

¶0, 1♢n [27]. A distribution of permutations is pseudorandom if it is indistinguishable

from the uniform distribution of permutations. It should be noted that a pseudorandom

¶0, 1♢n 7→ ¶0, 1♢n function [8] is also indistinguishable from a random permutation over

¶0, 1♢n (as long as the number of queries are sufficiently smaller than 2n/2). Nevertheless,

insisting that the pseudorandom objects satisfy the global condition of being a permutation

is critical in the applications of pseudorandom permutations. This motivates the distinction

of [9] between indistinguishability (that the pseudorandom objects are indistinguishable from

a uniform object to a class of distinguishers) and truthfulness which is a global property that

needs to hold exactly or approximately in a statistical sense. In our setup, a generative model

M is truthful if every object B drawn from the distribution represented by M satisĄes a

certain global property. For example, when the true object B∗ is a function f∗ : X → ¶0, 1♢

with support size ♣¶x ∈ X : f∗(x) = 1♢♣ being k, a truthful requirement on a generative

model M for B∗ may restrict M to always generate functions with support size k.

The study of implementing huge pseudorandom objects [32, 9, 31, 30] has pseudorandom

functions and permutations as vital building blocks. Besides these building blocks, our

techniques for learning generative models of huge objects also come from connections to the

regularity lemma and especially the work of Trevisan, Tulsiani and Vadhan [37]. In [37], they

construct an efficiently-implementable function f : X 7→ [0, 1] which is indistinguishable from

some f∗ : X 7→ [0, 1] to a family of distinguishers represented by functions g : X 7→ [0, 1].

Indistinguishability here means that ♣E[f(x)g(x)] − E[f∗(x)g(x)]♣ is smaller than some

error parameter ε. After [37], the problem of creating indistinguishable functions and its

applications to cryptography are further studied in [38, 22, 34, 35, 36, 4]. These works

assume that the true function f∗ is known and they do not explicitly deal with the problem

of learning f∗, but the corresponding learning task has been studied in the algorithmic

fairness literature through the notions of multi-accuracy, multi-calibration, and outcome

indistinguishability [14, 23, 5, 13, 6]. When applying techniques from these works to solve

some problems in our setting, we need to deal with additional challenges such as the

truthfulness requirement that we want our generative model to satisfy.

1.2 Our Results

The main conceptual contribution of this paper is in suggesting a new frontier for the study of

indistinguishability, which is highly motivated and technically challenging. As we introduce

in Section 1.1, the notion of indistinguishability from a single huge object combines at its

core the areas of learning theory and pseudorandomness which, as recent research uncovered,

have deep connections, providing a way to describe and address a rich landscape of natural

problems. Below we summarize the main problems we address in this new framework.

Truthful Learning That Preserves Support Size

Suppose we have sample access to a function f∗ : ¶0, 1♢n → ¶0, 1♢ and we want to build

an indistinguishable generative model for f∗. Here sample access allows us to observe pairs

(x, f∗(x)) with x drawn uniformly at random from ¶0, 1♢n, and accordingly, we assume that

every distinguisher also decides to accept or reject based on such a random pair (x, f(x)) from

a function f that may or may not be the true f∗. This task of learning a generative model for a

binary function is closely related to the task of no-access outcome indistinguishability studied

in [5], and it has been observed that the task can be reduced to multi-accuracy. Indeed,
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assuming that the distinguishers have bounded complexity and can be learned efficiently,

using previous algorithms in [14, 23, 5], we can design an efficient learner that constructs a

generative model indistinguishable from f∗ (Theorem 19). The model constructed this way

is speciĄed using a predictor p : ¶0, 1♢n → [0, 1], and the model represents the distribution of

functions f : ¶0, 1♢n → ¶0, 1♢ where the function value f(x) is distributed independently for

every x ∈ ¶0, 1♢n according to the Bernoulli distribution Ber(p(x)) with mean p(x).

Learning generative models for binary functions becomes a more challenging task when we

additionally enforce truthfulness requirements. A natural choice of truthfulness requirement

is to preserve the support size of the function. Assuming that we know the support size

♣¶x ∈ ¶0, 1♢n : f∗(x) = 1♢♣ of f∗ is k, we would like our model to only generate functions

that also have support size k. We show how to build an efficient learner that can output

such a truthful model which is also indistinguishable from the true function f∗:

▶ Theorem 1 (Informal statement of Theorem 20). Let B be the class of sample-access

objects induced by binary functions f : ¶0, 1♢n → ¶0, 1♢ satisfying ♣supp(f)♣ = k, where

supp(f) := ¶x ∈ ¶0, 1♢n : f(x) = 1♢. Let D be a class of distinguishers that is efficiently

learnable. There exists an efficient (ε, δ)-learner L for B w.r.t. D and the learner always

outputs an efficient implementation of a model M that is truthful w.r.t. B.

Note that the truthfulness requirement on the support size cannot be enforced simply

using computationally-bounded distinguishers, because computing the support size of a

function f exactly requires reading the values f(x) for all the exponentially many inputs

x ∈ ¶0, 1♢n. Also, this truthfulness requirement cannot be satisĄed directly by a generative

model speciĄed by a predictor p, where the function value f(x) is distributed according

to Ber(p(x)) independently of the function values f(x′) of other individuals x′ ̸= x. To

enforce a Ąxed support size, the function values of different individuals must coordinate in

a global manner, requiring us to use new techniques. We create a binary tree with leaves

corresponding to the function domain ¶0, 1♢n, and following ideas in previous work such as

[9], we assign support size budgets from the root to the leaves. However, the true function

f∗ is a single unknown object and is very different from the uniform distribution considered

in [9], so there are no closed-from distributions (such as the binomial distributions used

in [9]) that can guide us to distribute the support size budget from a node two its two

children. Instead, we need to estimate how the budget should be divided, and this leads to

accumulated error towards the leaves and forces us to stop before reaching the leaves. To

efficiently propagate the budgets to the leaves, we solve a zero-sum game where player C

chooses the budgets for the leaves and player D distinguishes them from the target. We show

that if player D uses the multiplicative weights algorithm to minimize regret, we can create

an indistinguishable and truthful model from the empirical distribution over the optimal

responses from player C.

Learning a Function with Support Access

In the classic setting when learning a function f : ¶0, 1♢ → ¶0, 1♢, the learner receives random

samples of form (x, f(x)) for a uniform x ∈ ¶0, 1♢. In this work, we also consider a function

object in which we receive a random positive entry. That is, the learner receives random xŠs

such that f(x) = 1. This type of random access is natural is certain situations, for example

when we have information on the individuals that graduated some program, but not on those

that did not.

CCC 2023
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▶ Theorem 2 (Informal statement of Theorem 21). Let α > 0, and let f : ¶0, 1♢ → ¶0, 1♢ be

a function such that Pr[f(x) = 1] = α. Let D be a collection of distinguishers, each D ∈ D

associated with a set SD ⊆ [N ] and accepts x if x ∈ SD. If there exists a weak agnostic

learner for D, then there exists a learning algorithm L running in time poly(n), that receives

random elements from the set ¶x♣f(x) = 1♢ and outputs a model M that is indistinguishable

from f to all D ∈ D.

The theorem holds when there is a weak agnostic learner for the collection of distinguishers

D under the distribution of a random support element (i.e. random x s.t. f(x) = 1). In the

full version [17] we show that if a collection of distinguishers D has a weak agnostic learner

over the standard sample access distribution, and the learner is a statistical query algorithm,

then there is a learner for D also under the distribution of random support element.

The proof of the theorem is similar to the classic boosting argument, with an additional

step that the learner performs of keeping the support size of the model approximately the

same as support size of f . This step is necessary because under the distribution of a random

support element, the boosting algorithm is only promised to work when the support sizes of

f and the model are approximately equal.

Learning an object under the distribution of random support element is potentially very

useful in the case of sparse objects. For a sparse function f , if we choose a uniform x ∈ ¶0, 1♢,

then f(x) = 0 with high probability, and a learner cannot hope to learn anything non-trivial

with random samples of form (x, f(x)). Unfortunately, the above theorem does not hold

for sparse functions, but in the next part we show how this theorem can be used to learn

different sparse objects - sparse graphs.

Learning Sparse Graphs Without Dense Subgraphs

Suppose G = ([N ], E) is a graph represented by the N2 length string of its adjacency matrix.

In this representation, receiving a random edge from G is equivalent to receiving a random

support element from the function representing its adjacency matrix. Therefore, Theorem 2

implies that we can learn a model for G that is indistinguishable for a set of distinguishers D

that have a weak agnostic learner. The theorem only holds for functions f with a constant

fraction of 1 entries, which corresponds to a dense graph. What about sparse graphs?

Learning a sparse graph, or a sparse object in general, is a very challenging task because

of the huge domain. The weak regularity lemma [7] has error that is proportional to N2,

which is too much in the case of sparse graphs (an empty graph is indistinguishable from a

sparse graph with this error). Therefore in the setting of a sparse graphs it is more natural to

require an ε error from the distinguisher under the distribution of receiving a random edge.

Under this distribution, the error of the distinguishers scales with the number of edges. We

show a learner for a speciĄc class of sparse graphs, those that have no dense subgraphs. We

note that a random sparse graph has no dense subgraphs, so many graphs have this property.

▶ Theorem 3 (Informal statement of Theorem 25). Let G = ([N ], E) be a sparse graph with

no dense subgraphs. Let D be a collection of distinguishers, each D ∈ D associated with

two sets UD, VD ⊆ [N ] and accepts an edge (u, v) if u ∈ UD, v ∈ VD. If there exists a weak

agnostic learner for D, then there exists a learning algorithm L running in time polylog(N),

that receives random edges from G and outputs a model M that is indistinguishable from f

to all D ∈ D.

The model that the learner outputs is dense, i.e. the model outputs graphs with Θ(N2)

many edges. This is done because of technical reasons Ű to allow us to use rejection sampling

when training the model. This brings us to the question, is there a dense graph that is
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indistinguishable from our sparse graph G? The answer to this question depends on G, and

in the full version [17] we show that if a sparse graph G has a very dense subgraph, then

there is no dense graph that is indistinguishable from G.

The proof of the theorem has two parts, in the Ąrst part we show that for every sparse

graph G with no dense subgraphs, there exists a dense graph H that is indistinguishable from

G. In this part of the proof we apply the strong regularity lemma for sparse graphs [26, 33]

on G, and use the resulting partition to build the dense indistinguishable graph H. This part

of the proof is existential, and we do know how to Ąnd H efficiently, as the strong regularity

lemma does not have an efficient algorithm for Ąnding the partition. It is not possible to use

the weak regularity lemma or its variants [7], because its error is too large. In the second

part of the proof, we reduce the learning G to learning H, and show that the resulted model

M is indistinguishable from G to all distinguishers D ∈ D.

Other Results on Learning Generative Models

In this work we also show indistinguishable models in several other settings

Let f : ¶0, 1♢n → ¶0, 1♢n
be a function. Learning such function is harder than

learning a binary function because the large domain makes f a sparse object (when

viewed as a graph for example it is an out-degree one graph). For such functions,

we show that there exists a learner that given samples from the distribution (x, f(x)),

outputs a model that is indistinguishable against the following set of distinguishers

D = ¶(SD, jD)♣SD ⊂ ¶0, 1♢n
, jD ∈ [n]♢ such that D = 1 ⇐⇒ x ∈ SD, f(x)j = 1. This

appears on Section 3.4.

In Section 4.1 we apply the theorems for functions on the adjacency matrix of a dense

graph G = ([N ], E). For a set of distinguishers D that have a weak agnostic leaner, we

have an efficient learner that outputs an indistinguishable model when G is:

1. A dense graph when the learner receives random adjacency matrix entries.

2. A dense graph with a Ąxed total number of edges m = Θ(N2).

3. A directed graph with a Ąxed out-degree m = Θ(N).

4. A dense graph when the learner receives random edges.

For a directed graph G = (¶0, 1♢n, E) with constant out-degree d, we can treat each of the

d outgoing degrees as a function fi : ¶0, 1♢n → ¶0, 1♢n
. For the same set of distinguishers

that we can handle in the case of a length-preserving functions (the Ąrst item in this list),

we provide an efficient learner.

In the case of a uniform degree undirected graph, we provide in Section 4.3 a learn-

ing algorithm for an indistinghuishable model, albeit for a somewhat limited set of

distinguishers.

Impossibility Results

As we discussed earlier, our goal of learning a generative model is closely related to the

goal in [9] of implementing huge random objects, but a key difference is that we assume

the groundtruth is a single unknown object B∗, whereas [9] considers a known uniform

distribution of objects. This means that we need an additional learning procedure to collect

information about B∗, and we show in Section 5 that our task of efficiently learning a

generative model is only possible when the distinguisher class is efficiently learnable.

Besides the requirement of learning, our setting is more challenging than the setting

in [9] in many other ways. We demonstrate this by another two impossibility results

on fooling entry-access distinguishers and fooling stronger distinguishers than the model.

CCC 2023



5:8 Generative Models of Huge Objects

When we consider a pseudorandom function, fs, the function is indistinguishable from the

uniform distribution to distinguishers that have entry access to the function (allowed to ask

for an arbitrary string x and get fs(x)). Furthermore, while fs is computable in a Ąxed

polynomial time, the distinguishers can run in any polynomial time (and under reasonable

assumptions, even exponential time). [9] and subsequent work inherit these two properties -

indistinguishability to distinguishers that are computationally more complex than the models

and have entry access to the model. In Section 5 we argue that neither of these properties is

achievable in our setting.

For the impossibility of fooling distinguishers with entry access, in Theorem 27 we give

the example of a class D that contains a distinguisher Dx for every input x ∈ ¶0, 1♢n which

queries the function value f(x) for a function f and outputs ŞacceptŤ if and only if f(x) = 1.

We argue that every model M that is indistinguishable from the true f∗ for the set of

distinguishers D has to be very close to f∗. Since the size of f∗ is exponential and f∗ is

unknown, no efficient learner can output a model that is close to f∗. We also show an

example, using an idea from [37], of a distinguisher and a true function f∗, such that the

distinguisher can tell apart f∗ from any model M with a low complexity compared to the

distinguisher (Theorem 28). This highlights the fact that in our setting, the generative model

and the learner constructing the model have to be computationally comparable or stronger

than the distinguishers.

1.3 Related Work

As mentioned in Section 1.1, [9] introduced the problem of creating an indistinguishable

implementation of a random object. [9] as well as follow-up works [31, 30] also present

a collection of positive results for dense and sparse graphs or functions with a variety of

truthfulness conditions and access models of the distinguishers.

The connection between generative models and indistinguishability has been manifested

through the invention of generative adversarial networks (GANs) [10, 2]. Intuitively, a

GAN is trained to imitate a distribution of objects (say images). The generator is trained

in concert with a discriminator that could be interpreted as a distinguisher. Through

a sequence of rounds, the generator is trained to fool the discriminator which is then

trained to fail the generator. GANs highlight the connection between generative models and

indistinguishability [21], but they do not naturally fall into our framework as they are more

directly described in terms of indistinguishability of two distributions.

The connection between indistinguishability and learning theory has been established in

many previous works (e.g. [37] applies the boosting technique from learning theory). More

recently, in the context of algorithmic fairness, the relation between learning theory and

indistinguishability has been dramatically expanded in the notions of multicalibration and

outcome indistinguishability [14, 5], in applications to learning and statistical inference

through the notions of omnipredictors and universal adapatability [12, 24, 18, 11, 25] and in

the emergence of research uncovering intricate and exciting connections while studying the

sample complexity of indistinguishability from a learning-theoretic perspective [20, 19].

It is possible to view our learning setting as a 2-players zero-sum game, between the

learner and the distinguishers, in which the learnerŠs goal is to output a model for an

indistinguishable object and the distinguishers try to tell apart the input and the model. In

this setting, there is a relation between min-max theorems and regularity-lemma theorems.

Such theorems prove that it is possible to express a complex object f by a function of a

few simpler objects g1, . . . gt that, in our setting, represent the distinguishers [37, 38]. There

have been works improving the parameters and also using such theorems for applications

in cryptography [38, 22, 34, 35, 36, 4]. In this work, our setting is slightly different, as we

assume that the object f is complex and unknown, and the learner has to learn it. The proof
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of Theorem 3 has an intermediate step that is existential and has a similar structure to a

weak regularity lemma theorems, but since the required error there is too small, we derive it

from the sparse strong regularity lemma.

▶ Note 4. This is an abridged version of the paper. We refer the readers to the full version [17]

for proofs and other contents that are omitted in this version.

2 Preliminaries

Throughout the paper, we are interested in learning objects such as functions and graphs,

and we are particularly interested when these objects have exponential sizes (e.g. functions

with exponentially large domains and graphs with exponentially many vertices and edges).

We typically use B to denote an object, and use B to denote a class of objects. We view an

object B as a function B : Q → ∆A that maps a query q ∈ Q to a distribution B(q) over

answers in A.

2.1 Functions

When the object is a function f : X → Y , we consider three access types. For sample access,

B returns a random pair (x, f(x)). For support access, it returns a random x such that

f(x) = 1. For entry access, upon querying x, B returns f(x).

▶ Definition 5 (Function-induced sample-access object). Let f : X → Y be a function and

let B : Q → ∆A be an object. We say B is the sample-access object induced by f if

Q = ¶⊥♢, A = X × Y , and B(⊥) is the distribution of (x, f(x)) ∈ A where x is drawn

uniformly from X.

▶ Definition 6 (Function-induced support-access object). Let f : X → ¶0, 1♢ be a binary

function. We deĄne the support of f to be supp(f) := ¶x ∈ X : f(x) = 1♢. Let B : Q → ∆A

be an object. Assuming supp(f) ̸= ∅, we say B is the support-access object induced by f if

Q = ¶⊥♢, A = X, and B(⊥) is the uniform distribution over supp(f) ⊆ X.

▶ Definition 7 (Function-induced entry-access object). Let f : X → Y be a function and let

B : Q → ∆A be an object. We say B is the entry-access object induced by f if Q = X, A = Y ,

and for every q ∈ Q, B(q) is the singleton distribution such that a ∼ B(q) equals to f(q)

deterministically.

In this paper, we show positive results for learning generative models of functions with sample

access and support access (Section 3) whereas we show impossibility results for entry access

(Section 5). This separation is mainly because entry access makes the distinguishers stronger

and thus makes indistinguishability harder to achieve (see DeĄnitions 10 and 11 below).

2.2 Graphs

For a graph G = (V, E) where we assume V has exponential size, we deĄne two access types,

sample-access which corresponds to a random adjacency matrix entry, and support-access

which corresponds to a random edge in the graph.

▶ Definition 8 (Graph-induced sample-access object). Let G = (V, E) be a directed or

undirected graph and let B : Q → ∆A be an object. We say B is the sample-access object

induced by G if Q = ¶⊥♢, A = V × V × ¶0, 1♢, and B(⊥) is the distribution of (u, v, y) ∈ A

where (u, v) is drawn uniformly from V × V , y = 1 if (u, v) ∈ E and y = 0 otherwise.
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▶ Definition 9 (Graph-induced support-access object). Let G = (V, E) be a directed or

undirected graph and let B : Q → ∆A be an object. Assuming E ̸= ∅, we say B is the

support-access object induced by G if Q = ¶⊥♢, A = V × V , and B(⊥) is the uniform

distribution over E ⊆ V × V .

2.3 Indistinguishability

Each learner we design in this paper has access to a ground-truth object B∗, and it aims

to output an object B that is indistinguishable from B∗. In many cases, the learner does

not just output a single object B, but a distribution over objects, and we refer to such

distributions as models. Below we formally deĄne the notion of indistinguishability.

▶ Definition 10 (Distinguisher). A distinguisher D is an algorithm that when given access to

an object B : Q → ∆A, outputs ŞacceptŤ or ŞrejectŤ. That is, the distinguisher is allowed to

make queries q ∈ Q to the model, and for each query q the distinguisher receives an answer

a ∈ A drawn independently from B(q) ∈ ∆A. We allow the distinguisher D itself to be

randomized, and we use random variable DB to denote the output of the distinguisher D in

¶ŞacceptŤ, ŞrejectŤ♢ when given access to B.

▶ Definition 11 (Indistinguishability). Let B∗ : Q → ∆A be an object, and let model M be a

distribution over objects B : Q → ∆A. We say model M is ε-indistinguishable from object

B∗ w.r.t. a distinguisher D if

♣ Pr[DB∗

= ŞacceptŤ] − EB∼M [Pr[DB = ŞacceptŤ]]♣ ≤ ε. (1)

We say model M is ε-indistinguishable from object B∗ w.r.t. a class D of distinguishers if

(1) holds for every D ∈ D.

2.4 Truthfulness

In addition to indistinguishability, another desirable property of a model is truthfulness

introduced in [9]. Truthfulness requires every object generated from the model to satisfy a

certain (usually global) property which we formalize using an object class B:

▶ Definition 12 (Truthfulness). We say a model M is truthful w.r.t. an object class B if

PrB∼M [B ∈ B] = 1.

2.5 Implementations

Our goal is to design efficient learners, and thus we cannot expect the learner to output a

model M explicitly, especially when the objects drawn from M are huge. Instead, our learner

outputs an efficient implementation of a model, deĄned as follows.

▶ Definition 13 (Ordinary Implementation). For ℓ ∈ Z≥0, let T be a randomized algorithm

that takes (r, q) ∈ ¶0, 1♢ℓ × Q as input, and outputs T (r, q) ∈ A. We say T is an ordinary

implementation of a model M with seed length ℓ if for every seed r ∈ ¶0, 1♢ℓ there exists an

object Br : Q → ∆A such that

1. for every q ∈ Q, T (r, q) is distributed according to Br(q), where the randomness in T (r, q)

comes from the internal randomness in algorithm T ;

2. Br is distributed according to M when r is drawn uniformly from ¶0, 1♢ℓ.
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While our goal is to output an ordinary implementation with a polynomial-length seed,

following the approach in [9], it is more convenient to Ąrst build implementations using a

random oracle and then transform the implementation to an ordinary one using Lemma 15.

▶ Definition 14 (Random-Oracle Implementation). Let T be a randomized algorithm that

takes a function r : ¶0, 1♢∗ → ¶0, 1♢ as an oracle. On an input q ∈ Q, the algorithm T

outputs T r(q) ∈ A. We say T is a random-oracle implementation of a model M if for every

r : ¶0, 1♢∗ → ¶0, 1♢ there exists an object Br : Q → ∆A such that

1. for every q ∈ Q, T r(q) is distributed according to Br(q), where the randomness in T r(q)

comes from the internal randomness in algorithm T ;

2. Br is distributed according to M when r is a uniformly random function from ¶0, 1♢∗ to

¶0, 1♢.

▶ Lemma 15 (Theorem 2.9 in [9]). Suppose that one-way functions exist. There exists an

algorithm H with the following properties. Let D be a class of distinguishers where each D ∈ D

is a circuit of size at most W for some W ≥ 1. Let T be a random-oracle implementation of

a model M with circuit complexity at most W . Given W, T and an arbitrary ε ∈ (0, 1) as

input, the algorithm H runs in time poly(W, 1/ε) and outputs an ordinary implementation

T ′ of a model M ′ where T ′ has seed length and circuit complexity both being poly(W, 1/ε),

and

♣EB′∼M ′ Pr[DB′

= ŞacceptŤ] − EB∼M Pr[DB = ŞacceptŤ]♣ ≤ ε for every D ∈ D.

Moreover, if M is truthful w.r.t. an object class B, then M ′ is also truthful w.r.t. B.

Lemma 15 can be proved by using a pseudorandom function to emulate the random oracle.

2.6 Learning

We describe the learners we aim to design in the deĄnition below.

▶ Definition 16 (Learner). Let B be a class of objects B : Q → ∆A and D be a class of

distinguishers. An (ε, δ)-learner L for the class B w.r.t. D is an algorithm with the following

properties. For any B∗ ∈ B, given access to B∗, the learner outputs an implementation T

of a model M such that with probability at least 1 − δ, M is ε-indistinguishable from B∗

w.r.t. D.

2.7 Other Notations

For v ∈ R, we deĄne cap(v) by capping its value into [0, 1], i.e.,

cap(v) =















v, if 0 ≤ v ≤ 1;

1, if v > 1;

0, if v < 0.

Given a list of values (v1, . . . , vt) we deĄne Lcap(v1, . . . , vt) by summing over the list and

capping the value to [0, 1] in every iteration. We formally deĄne it recursively:

Lcap(v1) = cap(v1),

Lcap(v1, . . . , vt) = cap(Lcap(v1, . . . , vt−1) + vt). (2)
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3 Learning Functions with Exponentially Large Domains

The goal of this section is to efficiently learn a generative model that is indistinguishable

from a target function f∗ : X → Y to a class D of distinguishers. We allow the domain

X of the function to have exponential size N := ♣X♣, and require our learner to run in

time polylog(N). This means that the learner cannot read the entire function f∗, and can

only access it via random sample. Throughout the paper, our learners output an efficient

random-oracle implementation T of a model M , which can be turned in to an efficient

ordinary implementation by Lemma 15.

3.1 Learning Sample-Access Binary Functions

We start by studying the case where the target object B∗ is the sample-access object induced

by a binary function f∗ : X → ¶0, 1♢ (DeĄnition 5). We assume that every distinguisher

D ∈ D satisĄes the following: when given access to a sample-access object B induced by

a function f : X → ¶0, 1♢, the distinguisher asks a single query ⊥, receives an answer

a = (x, y) ∼ B(⊥), and outputs D(x, y) ∈ ¶ŞacceptŤ, ŞrejectŤ♢. We allow the distinguisher

itself to be randomized, and each distinguisher D deĄnes a function gD : X → [−1, 1] such

that

gD(x) = Pr[D(x, 1) = ŞacceptŤ] − Pr[D(x, 0) = ŞacceptŤ] for every x ∈ X.

We use the following claim to relate a distinguisher D ∈ D to the function gD : X → [−1, 1]:

▷ Claim 17. For every distinguisher D ∈ D, the following equation holds for every x ∈ X

and y1, y2 ∈ ¶0, 1♢:

Pr[D(x, y1) = ŞacceptŤ] − Pr[D(x, y2) = ŞacceptŤ] = y1gD(x) − y2gD(x).

The claim can be easily proved by considering the four possible choices of (y1, y2) ∈ ¶0, 1♢ ×

¶0, 1♢.

As we show later in Section 5, it is necessary to impose certain learnability assumptions

on the distinguishers. To that end, we assume that there is an auditor for the function class

G := ¶gD : D ∈ D♢, deĄned as follows:

▶ Definition 18 (Auditor). Let D and G be deĄned as above. We say an algorithm Λ is an

(ε, γ, δ)-auditor for G if it satisĄes the following property. Given access to a sample-access

object B∗ induced by a function f∗ : X → ¶0, 1♢ and taking a predictor p : X → [0, 1] as an

oracle, if there exists g ∈ G such that

♣E[f∗(x)g(x)] − E[p(x)g(x)]♣ ≥ ε,

then Λ outputs ĝ : X → [−1, 1] satisfying the following with probability at least 1 − δ:

E[f∗(x)ĝ(x)] − E[p(x)ĝ(x)] ≥ γ.

The auditor deĄned above can be viewed as a weak agnostic learner for the class G. When

the domain X is ¶0, 1♢n with size N = 2n, many classes allow efficient auditors that run in

time poly(n) = polylog(N). Using an auditor for G, we prove the following theorem:

▶ Theorem 19. Let the distinguisher class D and the function class G be deĄned above.

Let ε, γ, δ, δ′ ∈ (0, 1/2) be parameters satisfying γ ≤ ε and δ′ ≤ cδγ2 for a sufficiently small

absolute constant c > 0. Let B be the class of sample-access objects induced by binary

functions f : X → ¶0, 1♢. Let Λ be an (ε, γ, δ′)-auditor for G (DeĄnition 18). Then there
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exists an (ε, δ)-learner L for B w.r.t. D. Moreover, if the auditor Λ runs in time at most

W1 and always outputs a function with circuit size at most W2, then the learner L runs

in time poly(γ−1, log(δ−1), W1) and always outputs implementations with circuit complexity

Õ(γ−2W2).

We prove the theorem by applying results from algorithmic fairness [37, 14, 23], see the full

version for more details.

3.2 Truthful Learning That Preserves Support Size

Some desirable properties of a generative model are global and cannot be enforced using

computationally bounded distinguishers alone. This motivated [9] to introduce the notion

of truthfulness that ensures such global properties beyond indistinguishability. Here we

focus on a natural global property of a binary function f : X → ¶0, 1♢: the size of its

support supp(f) := ¶x ∈ X : f(x) = 1♢. The model M we create in Section 3.1 using the

multiaccurate predictor p may generate functions f with support size different from the target

function f∗. Indeed, even if
∑

x∈X p(x) = ♣supp(f∗)♣, a random function f with each entry

f(x) independently drawn from Ber(p(x)) is not guaranteed to satisfy ♣supp(f)♣ = ♣supp(f∗)♣.

Now we show an efficient learner that outputs truthful models that preserve the support size

of the generated functions.

An overview of the proof appears in the introduction, and the proof appears in the full

version [17].

▶ Theorem 20. Let the distinguisher class D and the function class G be deĄned as in

Section 3.1. Let ε, γ, δ, δ′ ∈ (0, 1/2) be parameters satisfying γ ≤ ε and δ′ ≤ cδγ2 for a

sufficiently small absolute constant c > 0. Let B be the class of sample-access objects induced

by binary functions f : X → ¶0, 1♢ satisfying ♣supp(f)♣ = k, where X = ¶0, 1♢n. Let Λ be an

(ε, γ, δ′)-auditor for G (DeĄnition 18). Then there exists an (ε, δ)-learner L for B w.r.t. D

and the learner always outputs a random-oracle implementation of a model M that is truthful

w.r.t. B. Moreover, if the auditor Λ runs in time at most W1 and always outputs a function

with circuit size at most W2, then the learner L runs in time poly(n, γ−1, log(δ−1), W1) and

always outputs an implementation with circuit complexity poly(n, γ−1, W2).

3.3 Learning Support-Access Binary Functions

In the previous sections we showed how to learn and construct an implementation of an

indistinguishable model for a function induced sample-access object B∗, i.e. there exists a

function f∗ : X → ¶0, 1♢, and the distinguishers and learner both receives random samples

of form (x, f∗(x)). In this section, we learn a support-access object induced by a function see

DeĄnition 6. For a binary function f∗ : X → ¶0, 1♢, the support-access object B∗ induced

by f∗ outputs random samples from the set ¶x♣f∗(x) = 1♢. We show how to construct an

efficient implementation of a model that is indistinguishable from B∗.

Distinguishers: Let D be a set of distinguishers, such that each D ∈ D has an associated

subset SD ⊂ X. Given access to a sample x from a object B,the distinguisher accepts if

x ∈ SD. We assume that for every D ∈ D, the set SD has known size and an efficient

description, that on input x answers if x ∈ SD.

Auditor: Let D be deĄned as above. We say that an algorithm ΛB∗,p is an (ε, γ, δ)

auditor for the collection of sets S = ¶SD♣D ∈ D♢ if it has the following proper-

ties. Given access to a function-induced support access-object B∗ and query access

to a predictor p : X → [0, 1]. If there exists S ∈ S and b ∈ ¶−1, 1♢ such that
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b
(

Prx∼B∗(⊥)[x ∈ S] − Prx∼p[x ∈ S]
)

> ε. Then the auditor returns a set S′ such that

with probability 1 − δ, b
(

Prx∼B∗(⊥)[x ∈ S′] − Prx∼p[x ∈ S′]
)

> γ. Where x ∼ p is the

distribution generated from the predictor p, i.e. Prx∼p[x = x′] = p(x′)/
∑

x′′∈X p(x′′).

▶ Theorem 21. Let α ∈ [0, 1] be a parameter, and let B be a collection of support access

object induced by binary functions, such that ∀B ∈ B,Ex∈X [fB(x)] = α. Let D be a collection

of distinguishers as described above.

Let ε, γ, δ′, δ′′ be parameters such that δ′ ≤ cδγ2α−2 for a sufficiently small constant c.

Let Λ be an (ε, γ, δ′) auditor Λ for D. Then there exists a (2ε, δ)-learner L for B with respect

to the distinguisher class D. The learner L runs in time poly(γ−1 log(δ−1)α−1, W1, W2),

where W1 is the running time of the auditor Λ and W2 the circuit complexity of its output.

The implementation T that the learner outputs runs in time poly(γ−1 log(δ−1)α−1, W2)

The learner L in the theorem above has access to an auditor Λ that can audit support-access

objects. In the full version [17] we discuss under which conditions such auditor exists. The

learning algorithm is similar to the classic boosting algorithm, with an additional step of

keeping the expected value of the model to be approximately α. We note that if the function

is sparse, i.e. α is very small, then the algorithm is no longer efficient.

3.4 Learning Bit-String Functions

In this section we are interested in learning a function f : ¶0, 1♢n → ¶0, 1♢n
. This is a harder

than learning a binary function, because the range of the function is very large. Therefor we

only learn an indistinguishable model with respect to a very limited set of distinguishers,

with a product structure. In this setting, the sampling distribution is a pair (x, f(x)) for a

random input x.

Distinguishers: Let D, such that each distinguisher D ∈ D has an set SD ⊂ ¶0, 1♢n
and a

coordinate j ∈ [n]. The distinguisher D accept a sample (x, f(x)) if x ∈ S and f(x)j = 1.

Auditor: Let D be deĄned as above. We say that an algorithm ΛB∗,p is an (ε, γ, δ) aud-

itor for the collection of sets S if it has the following properties. Given access to a

function-induced support access-object B∗ and query access to a set of n predictors

p1, . . . pn, such that pj : ¶0, 1♢n → [0, 1]. If there exists S ∈ S and j ∈ [n] such

that b (Prx[x ∈ S, f(x)j = 1] − Ex[pj(x) · 1(x ∈ S)]) > ε. Then the auditor returns a set

S′ ⊆ ¶0, 1♢n
and j ∈ [n] such that b (Prx[x ∈ S′, f(x)j = 1] − Ex[pj(x) · 1(x ∈ S′)]) > γ

with probability 1 − δ.

▶ Theorem 22. Let B be a collection of support access object induced by functions f :

¶0, 1♢n → ¶0, 1♢n
. Let D be a collection of distinguishers as described above.

Let ε, γ, δ′, δ′′ be parameters such that δ′ ≤ cδγ2n−1 for a sufficiently small constant c.

Let Λ be an (ε, γ, δ′) auditor for D. Then there exists a (2ε, δ)-learner L to B with respect

to the distinguisher class D and the learner L runs in time poly(γ−1 log(δ−1)α−1, W1, W2),

where W1 is the running time of the auditor Λ and W2 the circuit complexity of its output.

The implementation T that the learner outputs runs in time poly(γ−1 log(δ−1)α−1, W2)

4 Learning Exponential-Size Graphs

4.1 Learning Dense Graphs

The most basic setting for graphs is the dense model, where the graph-induced sample-access

object B induced by a graph G = ([N ], E) can be thought of as getting a random entry

((u, v), b) for u, v ∈ [N ], b ∈ ¶0, 1♢ from the adjacency matrix of G (see DeĄnition 8). We can
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think of the adjacency matrix of the graph as a function, where the graph imposes some

extra structure on the distinguishers. Therefore, some of the results from Section 3 follow

directly.

Distinguishers: Let D be a collection of distinguishers. Each distinguisher has two sets of

vertices UD, VD ⊂ [N ]. When getting a random entry ((u, v), b) from the graph-induced

sample-access object B∗, it accepts if u ∈ UD, v ∈ VD and b = 1.

Auditors: An algorithm Λ is an (ε, γ, δ)-auditor for a collection of tuples S containing pairs

(U, V ) ⊂ [N ] × [N ] if it satisĄes the following. The auditor received query access to a

predictor p : [N ] × [N ] → [0, 1] and to a graph-induced sample-access object B∗ induced

by a graph G∗ = ([N ], E∗). If there exists (U, V ) ∈ S such that

b·



Pr
(u,v)∈[N ]×[N ]

[u ∈ U, v ∈ V, (u, v) ∈ E∗] − E(u,v)∈[N ]×[N ][1(u ∈ U, v ∈ V )p(u, v)]



≥ ε.

Then with probability (1 − δ), it outputs U ′, V ′ such that

b·



Pr
(u,v)∈[N ]×[N ]

[u ∈ U ′, v ∈ V ′, (u, v) ∈ E∗] − E(u,v)∈[N ]×[N ][1(u ∈ U ′, v ∈ V ′)p(u, v)]



≥ γ.

The setting of a dense graph can be derived directly from the function theorem, by applying

it on the adjacency matrix of the graph.

▶ Corollary 23 (Corollary of Theorem 19). Let the distinguisher class D be deĄned above.

Let ε, γ, δ, δ′ > 0 be parameters satisfying δ′ ≤ cδγ2 for a sufficiently small absolute constant

c > 0. Let B be the class of sample-access objects induced by graphs over vertex set [N ]. Let

Λ be an (ε, γ, δ′)-auditor for S = ¶(UD, VD)♣D ∈ D♢. Then there exists an (ε, δ)-learner L

for B w.r.t. D. Moreover, if the auditor Λ runs in time at most W1 and always outputs a

function with circuit size at most W2, then the learner L runs in time poly(γ−1, log(δ−1), W1)

and always outputs implementations with circuit complexity O(γ−2W2).

The same holds also for learning a graph with a Ąxed number of edges, by applying

Theorem 20. Similarly, we can derive a theorem on directed graphs by applying Theorem 19

or Section 3.2 on the directed graph adjacency matrix. It is also possible to generate a

directed graph with a Ąxed out-degree by applying Section 3.2 for every vertex individually.

4.2 Learning Sparse Graphs Without Dense Subgraphs

For a sparse graph, a sample-access graph object is not useful, because a random entry in

the adjacency matrix of the graph is nearly always 0. We study graph-induced support-

access objects (DeĄnition 9), which corresponds to an object B∗ induced by a sparse graph

G = ([N ], E), B(⊥) that outputs a random edge in the graph (u, v) ∈ E.

Applying Theorem 21 implies a corollary for support-access graphs, but the theorem is

only efficient for dense graphs. In this section we show how to create a dense model for a

sparse graph, as long as the sparse graph does not have a subgraph which is too dense. We

do so by using the strong regularity lemma for sparse graphs [26, 33].

Distinguishers: Let D be a collection of distinguishers. Each distinguisher has two sets of

vertices UD, VD ⊂ [N ]. A distinguisher D on input (u, v) accepts if u ∈ UD and v ∈ VD.

Auditors: An algorithm Λ is an (ε, ε′, δ)-auditor for a collection pairs of sets S, such that

(U, V ) ∈ S, U, V ⊂ [N ] if it satisĄes the following. The auditor received query access to

a predictor p : [N ] × [N ] → [0, 1] and access to a graph-induced support-access object
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B∗ representing a graph G∗ = ([N ], E∗). If there exists a pair of sets (U, V ) ⊂ S and

a bit b such that b ·
(

Pr(u,v)∼B∗(⊥)[u ∈ U, v ∈ V ] − Pr(u,v)∼p[u ∈ U, v ∈ V ]
)

≥ ε, Then Λ

outputs sets U ′, V ′ ⊂ [N ] such that

b ·



Pr
(u,v)∼B∗(⊥)

[u ∈ U ′, v ∈ V ′] − Pr
(u,v)∼p

[u ∈ U ′, v ∈ V ′]



≥ ε′.

The distribution (u, v) ∼ p is deĄned by the predictor p, i.e. for all u, v ∈ [N ] we have

Pr(u′,v′)∼p[u′ = u, v′ = v] = p(u, v)/
∑

u′′,v′′∈[N ] p(u′′, v′′).

Graph Notations and Definitions

For a graph G = ([N ], E) and U, V ⊂ [N ], we deĄne EG(U, V ) = ¶(u, v) ∈ E♣u ∈ U, v ∈ V ♢

to be the set of edges between U, V in G. We denote by ρG(U, V ) the edge density between

U, V in G, ρG(U, V ) = ♣EG(U,V )♣
♣U ♣♣V ♣ . We denote by ρG = ρG([N ], [N ]) the edge density of the

graph. We use the deĄnition of upper-uniform graphs from [26, 33] with a small additional

requirement also for small sets.

▶ Definition 24 (Upper-uniform graphs). A graph G = ([N ], E) is (η, γ)-upper uniform, if for

every two disjoint sets U, V ⊂ [N ], with min ¶♣U ♣ , ♣V ♣♢ ≥ ηN we have that ρG(U, V ) ≤ γρG,

and for U, V such that min ¶♣U ♣ , ♣V ♣♢ < ηN , we have that ♣E(U, V )♣ ≤ γηρGN2.

We remark that a random sparse graph is upper-uniform for constants η, γ with high

probability.

▶ Theorem 25. For every parameter γ, ε, ε′, λ′λ′′ > 0, such that λ′ ≤ cλε′2 for a sufficiently

large constant c. Then there exists η ∈ [0, 1] such that the following holds. Let B be a

collection of graph-induced support access objects, such that for each B∗ ∈ B, the graph it

represents GB∗ is (η, γ)-upper-uniform.

Let D be a collection of distinguishers. If there exists an (ε, ε′, δ′)-auditor Λ for the

collection of sets C = ¶(UD, VD)♣D ∈ D♢, then there exists an (ε, δ′′)-learning algorithm L

for all B∗ ∈ B with respect to D.

The proof of the theorem appears in the full version [17]. In addition, we show how this

theorem can be combined with Theorem 20 to create a sparse uniform out-degree graph.

4.3 Learning Uniform Degree Graphs

Suppose we are interested in generating a truthful model for a uniform degree d graph.

That is, we want that all graph in our model has a uniform degree d. In previous sections

we discussed directed graphs with uniform out-degree. For undirected graphs, in [9] the

authors show a construction of a graph indistinguishable from random, by applying a random

permutation on a large girth expander. In this work we restrict the set of distinguishers to

those that can be described by a partition, and create a model by learning the densities of

the edges between each part in the partition and permuting the edges.

Distinguishers: Then the set of distinguishers D contains distinguishers D with sets (UD, VD)

such that U, V ∈ U . Every distinguisher D accepts an edge (u, v) if u ∈ U, v ∈ V . Let

U = ¶U ⊂ [N ]♣∃D s.t. U = UD or U = VD♢. We assume that U is a partition with t

parts, and that ♣UJ ♣ is linear in N .

▶ Lemma 26. Let B be a collection of graph-induced support-access objects, such that for

all B∗ ∈ B, the graph GB∗ has a uniform degree d. Let D be the distinguishers class deĄned

above. Then for every constant ε there exists an (ε, δ)− learning algorithm L for the class B

with respect to D. The algorithm runs in time poly(1/ε, log(1/δ)).
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5 Impossibilities

A main difference in our work from [9] is in the target distribution/object we aim to be

indistinguishable from. In [9], the target distribution is Ąxed and uniform over many objects,

whereas in our setup the target is a single object which is initially unknown, and a learner is

needed to access the target object to make it possible to create an indistinguishable model.

This difference makes our setup challenging, and below we show example tasks that are

impossible to achieve in our setup because of this difference.

5.1 Fooling Distinguishers with Entry-Access is Hard

In [9], the distinguishers can query for speciĄc entries of an object. Such distinguishers can be

impossible to fool in our setup. For example, suppose the target object B∗ is the entry-access

object induced by a function f∗ : X → ¶0, 1♢ (DeĄnition 7), and suppose our learner aims

to output a model M of entry-access objects B induced by functions f : X → ¶0, 1♢. For

every x ∈ X, suppose there is a distinguisher that queries for the value of f(x) and outputs

ŞacceptŤ if and only if f(x) = 1. To fool these distinguishers, we have to learn the target

function f∗ exactly, which is clearly impossible if the domain X has exponential size and the

learner can only make polynomially many queries.

▶ Theorem 27. Let X be a non-empty Ąnite set. Let B be the class of entry-access objects

induced by all functions f : X → ¶0, 1♢. Let D be the class of distinguishers Dx for every

x ∈ X where given an object B, the distinguisher Dx outputs ŞacceptŤ if and only if the

answer a ∼ B(x) is equal to 1. Let L be an (ε, δ)-learner for the class B w.r.t. D for

ε, δ < 1/2. Then L needs to query every input x ∈ X in the worst case.

5.2 Learned Model Needs to be Stronger than Distinguishers

The model learned in [9] can fool distinguishers with signiĄcantly larger circuit complexity

than the model itself. Below we show that this can become impossible in our setup where

the target is a single object.

▶ Theorem 28 (Remark 1.6 in [37]). Let n, W > 1 be positive integers satisfying W log W ≤

2n/C for a sufficiently large absolute constant C > 0. There exists a sample-access object

B∗ induced by a function f∗ : ¶0, 1♢n → ¶0, 1♢ and a distinguisher D with circuit complexity

Õ(nW ) such that for any model M with circuit complexity at most W , it holds that

♣ Pr[DB∗

= ŞacceptŤ] − EB∼M [Pr[DB = ŞacceptŤ]]♣ > 1/3. (3)

5.3 The Distinguisher Class Needs to be Learnable

Since the target distribution in [9] is Ąxed, no learning is needed in order to produce an

indistinguishable model. In our setup, the learning task is usually performed using an auditor,

which can be viewed as a weak agnostic learner for the class of distinguishers. A natural

question is whether we can still achieve indistinguishability if such a weak agnostic learner does

not exist. Previous works [14, 11] have shown negative answers to this question for certain

notions of indistinguishability (such as calibrated multiaccuracy) by showing that these notions

imply (strong) agnostic learning for the distinguisher class. The indistinguishability notion

we use for generative models is closer to multiaccuracy, and below we show that efficiently

achieving this notion requires the distinguisher class to be efficiently realizably learnable. For

a true function f∗ : X → ¶0, 1♢, multiaccuracy requires a predictor p : X → [0, 1] to satisfy

CCC 2023
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♣E[(f∗(x) − p(x))g(x)]♣ ≤ ε (4)

for every function g in a class G. Now consider the case where G consists of functions

g : X → ¶−1, 1♢. For an arbitrary g∗ ∈ G, suppose the true function f∗ satisĄes f∗(x) = 1 if

g∗(x) = 1 and f∗(x) = 0 if g∗(x) = −1. Then (4) implies

E ♣f∗(x) − p(x)♣ ≤ ε. (5)

Now we deĄne ĝ(x) = 1 if p(x) ≥ 1/2, and deĄne ĝ(x) = −1 if p(x) < 1/2. It is easy to check

that if ĝ(x) ̸= g∗(x) for some x ∈ X, then ♣f∗(x) − p(x)♣ ≥ 1/2, and thus (5) implies the

following realizable learning guarantee for the class G:

Pr[ĝ(x) ̸= g∗(x)] ≤ 2ε.
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