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Abstract

We present a new perspective on loss minimization and the recent notion of Omniprediction
through the lens of Outcome Indistingusihability. For a collection of losses and hypothesis class,
omniprediction requires that a predictor provide a loss-minimization guarantee simultaneously for
every loss in the collection compared to the best (loss-speciĄc) hypothesis in the class. We present a
generic template to learn predictors satisfying a guarantee we call Loss Outcome Indistinguishability.
For a set of statistical tests Ű based on a collection of losses and hypothesis class Ű a predictor is Loss
OI if it is indistinguishable (according to the tests) from NatureŠs true probabilities over outcomes.
By design, Loss OI implies omniprediction in a direct and intuitive manner. We simplify Loss
OI further, decomposing it into a calibration condition plus multiaccuracy for a class of functions
derived from the loss and hypothesis classes. By careful analysis of this class, we give efficient
constructions of omnipredictors for interesting classes of loss functions, including non-convex losses.

This decomposition highlights the utility of a new multi-group fairness notion that we call
calibrated multiaccuracy, which lies in between multiaccuracy and multicalibration. We show that
calibrated multiaccuracy implies Loss OI for the important set of convex losses arising from General-
ized Linear Models, without requiring full multicalibration. For such losses, we show an equivalence
between our computational notion of Loss OI and a geometric notion of indistinguishability, formu-
lated as Pythagorean theorems in the associated Bregman divergence. We give an efficient algorithm
for calibrated multiaccuracy with computational complexity comparable to that of multiaccuracy.
In all, calibrated multiaccuracy offers an interesting tradeoff point between efficiency and generality
in the omniprediction landscape.
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1 Introduction

Loss minimization is the dominant paradigm in machine learning. Techniques for loss

minimization have played a critical role in the development of the theory and practice of

supervised learning [21, 4, 31, 30, 13]. A clean theoretical formulation of the underlying

problem is via the notion of agnostic PAC learning [30]. We consider real-valued loss functions

ℓ that take two arguments, a label y ∈ ¶0, 1♢ and an action t ∈ R. Given a loss ℓ, a base

class of hypotheses C, and approximation parameter ε, the goal is to Ąnd a hypothesis h

that achieves near-optimal expected loss (compared to c ∈ C) over a Ąxed, but unknown

distribution D:1

E
(x,y∗)∼D

[ℓ(y∗, h(x))] ≤ min
c∈C

E
(x,y∗)∼D

[ℓ(y∗, c(x))] + ε.

Researchers have devoted signiĄcant effort into developing different choices of loss functions

[25]. Different settings Ű so the conventional wisdom goes Ű require the design of different

loss functions (e.g., squared, zero-one, logistic) to better encode the objectives of the task at

hand (regression, classiĄcation, calibration). The choice of loss function dictates the updates

during training and hence the resulting loss minimizer. With different loss functions, there

are many different optimal hypotheses, and one needs to learn afresh for each loss.

Recent work pushes back against this conventional wisdom. The work of [10] introduces

a solution concept for agnostic PAC learning, which they call omniprediction. Intuitively, an

omnipredictor p̃ : X → [0, 1] is a predictor that can be used to simultaneously minimize loss

for many different losses. Formally, an omnipredictor is parameterized by a collection of loss

functions L, a class of hypotheses C, and approximation parameter ε. Given any loss ℓ ∈ L,

a decision-maker can treat p̃(x) as if it were the Bayes optimal predictor p∗(x) = E[y♣x],

selecting an action t that will minimize E[ℓ(ỹ, t)] where ỹ is drawn according to p̃. Even

though the true labels are drawn according to p∗(x), the resulting decision rule is ε-optimal

for ℓ over c ∈ C. Importantly, the omnipredictor p̃ is a single prediction function, Ąxed in

advance, but yields optimal decisions for all ℓ ∈ L. The Bayes optimal predictor p∗(x) is

easily seen to be an omnipredictor for all losses, the question is whether they can be learnt

efficiently. The main result in [10] is a sweeping feasibility result: they demonstrate that for

any efficiently learnable hypothesis class C and ε > 0, efficient omnipredictors exist for the

class Lcvx of all Lipschitz, convex loss functions. They prove this by showing a connection to

multicalibration, from the literature on fair prediction [14].

Multicalibration was developed with the goal of promoting fairness across subpopulations

encoded by a class of functions C. In contrast to the loss-minimization paradigm, multic-

alibration does not frame learning as loss minimization. Rather, the goal of learning is to

satisfy a collection of ŞindistinguishabilityŤ constraints. This view on multicalibration was

developed in the recent work of [6], who introduced an alternative paradigm for learning

called outcome indistinguishability (OI). OI considers two alternate worlds on individual-

outcome pairs: in the natural world, outcomes (x, y∗) are generated by NatureŠs true joint

1 This version where we do not restrict h to belong to C is sometimes called improper learning.
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distribution; in the other simulated world, outcomes (x, ỹ) are sampled according to the

predictive model ỹ ∼ Ber(p̃(x)). OI requires the learner to produce a predictor p̃ in which

the two worlds are computationally indistinguishable. More formally, OI is parameterized by

a class of distinguisher algorithms A. Each a ∈ A receives an individual x ∈ X , an outcome

y ∈ ¶0, 1♢, and the prediction p̃(x) and outputs a value in the interval [0, 1]. For such a

collection of algorithms A and approximation parameter ε, a predictor p̃ is (A, ε)-outcome

indistinguishable2 if no algorithm a ∈ A can distinguish between the two distributions over

individual-outcome pairs.

E
(x,y∗)∼D

[a(x, y∗, p̃(x))] ≈ε E
x∼D

ỹ∼Ber(p̃(x))

[a(x, ỹ, p̃(x))]

As multicalibration is a special case of OI, by the results of [10], one can view omni-

prediction for convex, Lipschitz losses as a consequence of OI, for an appropriate family

of distinguishers. While rigorous, this argument is rather indirect and in our view, it does

not provide clear intuition for why there should be a link between loss minimization and

indistinguishability. Moreover, the connection to multicalibration established in [10] is rather

constrained in terms of the family of loss functions L. If we want omnipredictors for a more

expressive class such as all Lipschitz functions, not just convex ones (where it is known

that multicalibration is insufficient [10, Lemma 6.7]), or simpler omnipredictors for a more

restricted class of convex loss functions (such as Lp losses), the results of prior work donŠt

shed much light on how we might proceed.

1.1 Our Contributions

Motivated by ominprediction, we establish a direct and intuitive connection between loss

minimization and outcome indistinguishability, through a notion which we call Loss OI.

Fundamental to our approach is to use loss functions as tools to construct distinguishers: given

a family L of loss functions and a family of hypotheses C, we devise a family of distinguishers

UL,C = ¶uℓ,c♢ℓ∈L,c∈C such that if p̃(x) is not an omnipredictor, then some distinguisher

from this family can tell apart the labels generated by Nature from those generated by the

predictorŠs simulation. We say that any predictor that fools every distinguisher from this

family satisĄes loss OI. By construction, loss OI implies omniprediction.

We show that loss OI admits a decomposition into two simpler outcome indistinguishability

requirements which we call hypothesis OI and decision OI. Hypothesis OI compares the

expected loss of the hypothesis c when labels are generated by Nature versus its simulation

by p̃, for each hypothesis in the class c ∈ C. Decision OI tests compares the expected loss

incurred when we take actions based on the optimal post-processing of the predictions of p̃

under the two distributions on labels. We give a characterization of these indistinguishability

conditions in terms of the discrete derivative ∂ℓ : [0, 1] → R of the loss function ℓ, deĄned

as ∂ℓ(t) = ℓ(1, t) − ℓ(0, t). Via this characterization, decision OI amounts to a weighted

calibration condition derived from ∂ℓ, which is implied by standard notions of calibration.

Hypothesis OI can be expressed as a multiaccuracy condition for the class of functions

∂L ◦ C = ¶∂ℓ ◦ c : ℓ ∈ L, c ∈ C♢. Multiaccuracy [14, 22] for a given hypothesis family C is a

weaker notion than multicalibration for C. Both notions require access to a weak agnostic

learner for C, but multiaccuracy admits simpler and more efficient algorithms in terms of

sample complexity and running time.

2 In fact, [6] introduce a more general hierarchy of OI notions, whose levels are based on the distinguishersŠ
access to the predictions given by p̃. The variant where we allow distinguishers access to p̃(x) (so-called,
sample-access OI) is known to be computationally equivalent to multicalibration.

ITCS 2023
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1.1.1 Loss OI for specific families

With this decomposition, we turn our attention to speciĄc collections of loss functions L.

Since decision OI follows from calibration, to achieve hypothesis OI and loss OI, we analyze

the structure of ∂L ◦ C, with the goal of bounding the complexity of such functions.

All losses: We begin with the family Lall of all losses satisfying minimal boundedness

conditions. The losses need not be convex or Lipschitz. We show that loss OI is possible

for Lall and any hypothesis class C, provided we can ensure calibration and multiaccuracy

over functions on the level sets of C. SpeciĄcally, we require multiaccuracy over the

collection level(C) = ¶f ◦ c♢ for all c ∈ C and all maps f : [−1, 1] → [−1, 1]. We can view

these as the set of all bounded functions over the level sets of c. This has immediate

consequences for Boolean (even discrete) hypothesis classes, since there, the class level(C)

is not much more complex than C itself: C-multiaccuracy plus calibration implies loss

minimization for any loss function.

Lipschitz losses: Under Lipschitzness (but still without convexity), a weaker multiac-

curacy condition suffices. We deĄne Int(C, α) to be the collection of Boolean functions,

which are the indicators of the events that c(x) lies in an interval of width α. We show

that for Lipschitz losses, ∂L ◦ C lies in the linear span of functions in Int(C, α). Hence,

calibration together with Int(C, α)-multiaccuracy guarantees loss OI for all Lipschitz loss

functions.

GLM losses: GLMs are a popular class of convex loss minimization based models, which

include basic learning algorithms such as linear and logistic regression. They can be

viewed as minimizing Bregman divergences for predictors which are derived from linear

combination of C. For the class of GLM losses LGLM, we show that ∂L ◦ C = C. Hence,

calibrated multiaccuracy Ű that is, calibration together with C-mulitaccuracy Ű guarantees

loss OI for all GLM losses. We give an equivalence between of predictors that satisfy Loss

OI for LGLM and the set of predictors satisfying a certain Pythagorean Theorem in the

geometry of the corresponding Bregman divergence.

Finally, we exhibit a reverse connection by showing that the optimal solution to any

L1-regularized GLM loss minimization problem is multiaccurate. This leads us to fast

and practical methods for achieving both multiaccuracy and calibrated multiaccuracy.

Our results for Loss OI are incomparable with the result of [10] on omnipredictors.

On one hand, loss OI is stronger than omniprediction. On the other hand, we require

weak agnostic learning for ∂L ◦ C, which might be a much more powerful primitive than

weak learning for C itself (which is sufficient for multicalibration). For the class of convex

Lipschitz losses Lcvx considered in [10], we show that multicalibration does not imply loss

OI, although it implies omniprediction. Our best Şupper boundŤ for (Lcvx, C)-loss OI comes

from Int(C, α)-multiaccuracy, and it applies even when the losses are non-convex. For the

subset LGLM ⊂ Lcvx, we show a stronger guarantee (loss OI versus omniprediction) from

weaker assumptions (calibrated multiaccuracy versus multicalibration).

1.1.2 Calibrated multiaccuracy

A key takeaway from our results is the surprising power of the notion of calibrated mul-

tiaccuracy, where we require predictors to satisfy both multiaccuracy with respect to C

and calibration. It implies loss OI for the class of GLM losses, and for the case when C

is Boolean. As a group fairness notion, it lies in between the notions of multiaccuracy

and multicalibration. We show the running time and sample complexity needed to achieve
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calibrated multiaccuracy are not much higher than that required for multiaccuracy, by giving

a simple algorithm that alternates between ensuring multiaccuracy is achieved (using gradient

descent for squared loss), and recalibrating the output. The key insight is that either of these

steps reduces the squared loss of the predictor. Hence the number of invocations of the weak

learner is not much more in the worst case from that required to achieve multiaccuracy, and

signiĄcantly smaller than that required for multicalibration.

1.1.3 Perspective

We see the key contribution of our work as conceptual: we bring the OI lens to the problem

of loss minimization. Reasoning about the simulated labels ỹ turns out to a powerful idea

in this context, which has not been explored before, even in prior work on omniprediction.

Our framework leverages this to give a compiler that translates loss OI for a pair (L, C) into

low-level calibration and multiaccuracy conditions. With this setup, the proofs of our results

are not technically hard. For instance, our result for GLMs uses the well-known fact that

the loss function for any GLM has the form ℓg(y, t) = g(t) − yt. It follows that ∂ℓ(t) = −t,

hence C-multiaccuracy suffices for hypothesis OI (assuming C is closed under negation).

The loss OI perspective establishes a natural and versatile link between loss minimization

and indistinguishability. It broadens our understanding of omniprediction. On one hand, it

shows it can be scaled up beyond convex, Lipschitz losses. But it can also scaled down for

more limited classes of loss functions to give more efficient constructions. It enables a range

of omniprediction guarantees, where the richness of the collection of losses scales with the

expressive power of the class for which we require multiaccuracy.

1.1.4 Structure of this manuscript

This manuscript represents an Extended Abstract of the full paper, which can be found

on the arXiv [9]. The full manuscript is structured as follows. In Section 2, we present a

high-level technical overview of our deĄnitions and results. We discuss related work in 2.4.

In Section 3, we give preliminaries and formal background. In Section 4, we introduce Loss

OI and its relationship to omniprediction and the other notions of indistinguishability. We

then show how Loss OI can be formulated in terms of multiaccuracy and calibration. In

Section 5, we instantiate present our main result on loss OI for Generalized linear models.

We also show an equivalence between our formulation of Loss OI for GLMs and Pythagorean

theorems in the geometry of Bregman divergences. In Section 6, we consider other families of

loss functions including those that are not necessarily convex or Lipschitz. In Section 7, we

present and analyze an efficient algorithm for calibrated multiaccuracy, and establish that

it is more efficient than multicalibration. We report on the results from some preliminary

experiments that aim to establish the efficiency and effectiveness of calibrated multiaccuracy

in Section 8. Proofs are occasionally deferred to Appendix A to streamline the Ćow.

2 Technical Overview

In this section, we give a more detailed but still high-level explanation of how loss OI gives a

indistinguishability viewpoint on loss minimization and omniprediction. The starting point

for our investigation is understanding why the Bayes optimal predictor is an omnipredictor

for any loss and concept class. We use p∗ : X → [0, 1] to denote the Bayes optimal predictor,

which represents NatureŠs true probability of positive outcomes.

ITCS 2023
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p∗(x) = E
(x,y∗)∼D

[y∗♣x = x]

We consider loss functions ℓ : ¶0, 1♢ × [0, 1] → R
+ that take a label and action as arguments

and return a real valued loss. For such a loss ℓ, if the labels are drawn as y ∼ Ber(p), there

exists an optimal action kℓ(p) ∈ [0, 1] deĄned as

kℓ(p) = arg min
t∈[0,1]

E
y∼Ber(p)

[ℓ(y, t)]

We refer to kℓ as the optimal post-processing for ℓ. Since the Bayes optimal predictor

p∗ governs the conditional distribution over outcomes y∗, by averaging over x ∼ D, we

conclude that kℓ ◦ p∗ satisĄes the loss minimization guarantee for any loss, with respect to

any hypothesis class C.

E
(x,y∗)∼D

[ℓ(y∗, kℓ(p
∗(x)))] ≤ min

c∈C
E

(x,y∗)∼D
[ℓ(y∗, c(x))] (1)

The challenge of constructing an omnipredictor is, given speciĄc families of losses L and

hypotheses C respectively, to identify properties of p̃ that will allow us to replace p∗ with p̃

in the above statement, as long as ℓ ∈ L and c ∈ C. Formally, we say that a predictor p̃ is an

(L, C, ε)-omnipredictor if for every loss ℓ ∈ L, the post-processed predictor kℓ ◦ p̃ is an ε-loss

minimizer compared to the class C:

E
(x,y∗)∼D

[ℓ(y∗, kℓ(p̃(x)))] ≤ min
c∈C

E
(x,y∗)∼D

[ℓ(y∗, c(x))] + ε. (2)

2.1 Omniprediction from outcome indistinguishability

Omniprediction is a statement about NatureŠs distribution. Equation (2) makes no mention

of the simulated predictions ỹ. It is unclear how considering labels ỹ from the predictorŠs

simulation might be useful. Indeed, the simulated labels do not play a role in the [10]

derivation of omniprediction from multicalibration.

The key insight is that in the simulated world of labels ỹ, p̃ is the Bayes optimal predictor.

So Equation (2) holds with ε = 0. Indeed, we just apply Equation (1) with y∗ = ỹ and

p∗ = p̃ to get

E
x∼D

ỹ∼Ber(p̃(x))

[ℓ(ỹ, kℓ(p̃(x)))] ≤ min
c∈C

E
x∼D

ỹ∼Ber(p̃(x))

[ℓ(ỹ, c(x))] (3)

If p̃ has the property that the expectations on either side of the Equation donŠt change

much when we replace ỹ with y∗, then this will imply our desired omniprediction guarantee

(Equation (2)). But this condition is a form of outcome indistinguishability, tailored to

distinguishers constructed from L and C. Loss OI is a crisp formulation of this notion.

2.1.1 Loss OI

Loss OI is parameterized by a loss class L and a concept class C, which induce the following

collection of distinguishers:

uℓ,c(y, p, x) = ℓ(y, c(x)) − ℓ(y, kℓ(p)) (4)

UL,C = ¶uℓ,c : ℓ ∈ L, c ∈ C♢
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For a given loss ℓ, the distinguisher uℓ,c : Y × [0, 1] × X → R measures the excess loss of

the prediction c(x) compared to the optimal post-processing kℓ applied to the predicted

label distribution p. For a Ąxed x ∈ X , if we generated labels ỹ ∼ Ber(p̃(x), then kℓ(p̃(x))

is the optimal action, so uℓ,c(ỹ, p̃(x), x) ≥ 0. Hence, the expected value over x ∼ D is also

non-negative. For omniprediction to hold, it would suffice if

E
(x,y∗)∼D

[uℓ,c(y∗, p̃(x), x)] = E
(x,y∗)∼D

[ℓ(y∗, c(x))] − E
(x,y∗)∼D

[ℓ(y∗, kℓ(p̃(x)))] ≥ 0.

Loss OI imposes the stronger condition that the expectation under NatureŠs distribution

and the simulation are (approximately) equal. For a loss class L, a concept class C, ε > 0, a

predictor p̃ is (L, C, ε)-loss OI if for all ℓ ∈ L and for all c ∈ C, the following approximate

equality holds.

E
x∼D

ỹ∼Ber(p̃(x))

[uℓ,c(ỹ, p̃(x), x)] ≈ε E
(x,y∗)∼D

[uℓ,c(y∗, p̃(x), x)] (5)

By design, Loss OI guarantees omniprediction. In fact, it is a strictly stronger notion. In

Section 4.1, we show that while C-multicalibration implies omniprediction for Lcvx, it does

not imply loss OI even for the ℓ4 loss.

▶ Proposition 1. If a predictor p̃ is (L, C, ε)-loss OI, then p̃ is an (L, C, ε)-omnipredictor.

The converse does not hold.

The [10] proof of omniprediction was tailored speciĄcally to multicalibration and the

speciĄc class of convex loss functions Lcvx. In contrast, Loss OI is a versatile notion that

may be applied to any class of loss functions. By approaching the question of omniprediction

via loss OI, we arrive at an easy-to-state set of sufficient conditions to obtain omniprediction

for any class of losses L and hypothesis class C.

2.1.2 Characterizing Loss OI via calibration and multiaccuracy

We deĄne loss OI using distinguisher functions ¶uℓ,c♢ that depend on both c(x) and p̃(x). It

is known from the work of [6] that when distinguishers receive simultaneous access to c(x)

and p̃(x), outcome indistinguishability can implement (full) multicalibration. However, the

distinguishers uℓ,c have very speciĄc structure, which permits a decomposition of loss OI into

two modular conditions, involving two different distinguishers that each depend on the label

and one out of c(x) and p̃(x) separately. The Ąrst set of distinguishers will simply compare

the loss of hypotheses c ∈ C for each loss ℓ ∈ L, a condition we call hypothesis OI.

E[ℓ(ỹ, c(x))] ≈ε E[ℓ(y∗, c(x))] (6)

The second set of distinguishers evaluates the loss achieved by the predictor p̃ under optimal

post-processing for each loss, a condition we call decision OI.

E[ℓ(ỹ, kℓ(p̃(x)))] ≈ε E[ℓ(y∗, kℓ(p̃(x)))] (7)

Subtracting (7) from (6), we obtain (5), albeit with a slightly larger error parameter. In

other words, if p̃ satisĄes both hypothesis OI and decision OI, then p̃ satisĄes loss OI.

It turns out that decision OI is easy to achieve, we show that it is implied by calibration.

Recall that a predictor is α-calibrated if E[y♣p̃(x) = v] ≈α v. Using a more nuanced notion

called weighted calibration from [11], we can get an exact characterization of decision OI

(see Theorem 17).

ITCS 2023
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To present a characterization of hypothesis OI, we need a couple of deĄnitions. For a

class of functions C and approximation α ≥ 0, a predictor p̃ is (C, α)-multiaccurate if for

every c ∈ C, the correlation between c and y∗ − p̃(x) is at most α. Formally, we require

♣E[c(x) · (y∗ − p̃(x))]♣ ≤ α.

For a loss function ℓ, we deĄne the discrete derivative ∂ℓ as ∂ℓ(t) = ℓ(1, t) − ℓ(0, t).

For a loss class L and hypothesis class C, we consider the class of functions ∂L ◦ C =

¶∂ℓ ◦ c : ℓ ∈ L, c ∈ C♢. We can characterize Hypothesis OI in terms of ∂L ◦ C-multiaccuracy.

▶ Proposition 2 (Decomposition for Loss OI). For loss class L, hypothesis class C, and

ε ≥ 0, predictor p̃ is (L, C, ε)-hypothesis OI iff it is (∂L ◦ C, ε)-multiaccurate. Thus, if p̃

is ε-calibrated and (∂L ◦ C, ε)-multiaccurate, then it is (L, C, O(ε))-loss OI, and hence an

(L, C, O(ε))-omnipredictor.

Thus we have decomposed loss OI into two constraints on our predictors: calibration, and

multiaccuracy for the class ∂L ◦ C. This presents an alternative (and possibly more efficient)

route to obtaining omnipredictors than via multicalibration.

2.1.3 Non-convex losses

Using our decomposition theorem we show that, perhaps surprisingly, loss-OI and omni-

prediction are feasible even for non-convex losses, given a sufficiently powerful learner for

functions derived from C. We require the losses to be bounded: ∥∂ℓ∥∞ ≤ 1. But otherwise,

the losses can be arbitrary, we do not assume Lipschitzness or convexity. DeĄne the set

level(C) = ¶f ◦ c : f ∈ F , c ∈ C♢ where F = ¶f : Im(C) → [−1, 1]♢

That is, level(C) consists of all possible bounded post-processings of c ∈ C; in particular the

functions f ∈ F only get to distinguish between the level sets of each c ∈ C. The importance

of level(C) stems from the fact that ∂ℓ ◦ c belongs to this class, hence level(C)-multiaccuracy

suffices for Hypothesis-OI over all loss functions.

▶ Proposition 3. For any class of loss functions L, if p̃ is (level(C), α)-multiaccurate, then

p̃ is (L, C, α)-hypothesis OI. Hence if p̃ is α-calibrated and (level(C), α)-multiaccurate, then

for any loss class L, p̃ is (L, C, O(α))-loss OI.

Thus, omnipredictors for every bounded loss function are computable, with complexity

scaling with the complexity of weak agnostic learning for level(C). While level(C) could in

general be far more expressive than C itself, there are important special cases, including when

C is a family of Boolean functions, where it is not much larger than C. In these settings, we

get loss-OI for arbitrary losses from calibration and C-multiaccuracy. This includes natural

loss functions such as weighted 0-1 loss which are important for classiĄcation.

2.1.4 Lipschitz losses

If we are willing to assume that the losses are Lipschitz, then we can obtain hypothesis OI

from a weaker multiaccuracy condition. Intuitively, if the loss ℓ is Lipschitz in t, then so is

∂ℓ, so we only need to consider Lipschitz post-processings. We can achieve this guarantee by

enforcing multiaccuracy over the class of functions Int(C, α) which are the indicators of the

event that c(x) lies in a certain interval I ⊂ [−1, 1] of width α, over all c ∈ C and intervals I.

We show that Int(C, α)-multiaccuracy suffices to give Hypothesis OI for Lipschitz losses.
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▶ Proposition 4. For any class of 1-Lipschitz loss functions L, if p̃ is (Int(C, α), α2)-

multiaccurate then p̃ is (L, C, O(α))-hypothesis OI. If p̃ is also calibrated, then p̃ is a

(L, C, O(α))-omnipredictor.

2.2 Loss OI in GLMs

GLMs are a important class of models from statistics that generalize linear and logistic

regression [26, 1]. On a technical level, GLMs are constructed using the following recipe:

1. We start with an arbitrary monotone increasing transfer function g′ : R → R, so that its

integral g(t) is convex.

2. We deĄne its matching loss ℓg(y, t) = g(t) − yt which is a convex function of t.

3. We look for the model h ∈ H which minimizes E[ℓg(y, h(x))] where the hypothesis class

H is taken to be linear combinations over some base class C. This gives rise to a convex

optimization problem that can be solved efficiently [1, 28].

When we take g′(t) = t, this recipe gives linear regression with the squared loss. When

g′(t) = σ(t) is the sigmoid, we get logistic regression. The class of losses LGLM that arise in

this manner are convex. Thus, by the results of [10], C-multicalibration suffices to obtain

omniprediction for LGLM.

Our Ąrst result on GLMs shows that the class ∂LGLM ◦ C = C. This holds for the simple

reason that every loss ℓg ∈ LGLM has the form ℓg(y, t) = g(t) − yt, hence ∂ℓ(t) = −t is linear

in t. This means that C-multiaccuracy Ű not a derived class Ű plus calibration suffices for

loss OI for GLMs.

▶ Theorem 5 (Informal). If p̃ is (C, α)-multiaccurate and calibrated, then it is (LGLM, C, O(α))-

Loss OI.

These results highlight the power of calibrated multiaccuracy which gives omniprediction for

all GLM losses. Before this, we only knew how to achieve this using the stronger notion of

multicalibration. Is it really much easier to achieve calibrated multiaccuracy? A key piece of

the answer comes from our next result shows a reverse connection between multiaccuracy

and GLM optimality with ℓ1-regularization. We state the result informally here.

▶ Proposition 6 (Informal). For any GLM loss and α > 0, the optimizer of the ℓ1-regularized

GLM optimization over the class C is (C, α)-multiaccurate.

This result immediately gives a (number of) efficient avenues for computing a C-

multiaccurate predictor: run any ℓ1-regularized GLM learner, like Lasso [33] for linear

regression. It also suggests a template for achieving calibrated multiaccuracy: we can altern-

ate between the GLM learner and a calibration procedure such as isotonic regression until

convergence [34]. We will analyze a simple algorithm based on this template and show that

its complexity is comparable to that of achieving multiaccuracy, and considerably lower than

what is needed to achieve multicalibration.

Finally, we consider the Loss OI conditions for GLM losses. We show that, in this

setting, the computational indistinguishability notion of Loss OI is equivalent to a geometric

indistinguishability condition, formalized by Pythagorean theorems in the associated Bregman

divergence. We state the result fairly formally, deferring background on GLMs and Bregman

divergences to the technical section.

▶ Theorem 7 (Informal). Let g′ be strictly monotonically increasing, let f be the Legendre dual

of g, and let Df be the corresponding Bregman divergence. A predictor p̃ is (ℓg, H, α)-Loss

OI if and only if the following approximate Pythagorean theorem holds approximately.

E[Df (p∗(x), g′(h(x)))] ≈α E[Df (p∗(x), p̃(x))] + E[Df (p̃(x), g′(h(x)))]
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Intuitively, the Pythagorean theorem says that the ŞdistanceŤ between p∗ and a predictor

derived from the class H can be broken down into ŞorthogonalŤ components: the distance

between p∗ and p̃ plus the distance between p̃ and the predictor from H. In other words, if a

predictor p̃ is C-multiaccurate and calibrated, then it is simultaneously a ŞprojectionŤ of the

best GLMs towards the statistically optimal predictor p∗.

2.3 Algorithms for Calibrated Multiaccuracy

For a given hypothesis clas C, we deĄne the following classes of predictors.

Let MA(α) denote the set of predictors that are (C, α)-multiaccurate.

Let calMA(α) denote the set of predictors that are α-calibrated and (C, α)-multiaccurate.

Let MC(α) denote the set of predictors that are (C, α)-multicalibrated.

Then we have MA(α) ⊇ calMA(α) ⊇ MC(α). We compare the complexity of computing a

predictor in each of these classes given access to a (ρ, σ)-weak learner for C [3, 19, 17]. Such

a learner, when given access to a distribution (x, z) where x ∼ DX and z are labels in ¶±1♢,

if there exists c ∈ C such that E[c(x)z] ≥ ρ, will return c′ such that E[c′(x)z] ≥ σ. If no such

c exists it returns ⊥. The complexity of learning the predictor in any of the aforementioned

classes is governed by the number of oracle calls to the weak learner.

We present Algorithm 7.2 in [9] for achieving calibrated multiaccuracy that alternates

between ensuring multiaccuracy (using the weak learner), and calibrating the predictor. The

key insight that makes it efficient is that either step can be seen to reduce the same potential

function, which is the squared distance from the Bayes optimal predictor. This results in a

worst-case complexity for calMA that is not too different than just for achieving the weaker

guarantee of MA (since that algorithm is also analyzed using the same potential).

We compare the number of oracle calls needed for computing a predictor in each of MA,

calMA and MC. We emphasize that this is a comparison between the best known upper

bounds. For MA, we use the [14] algorithm as analyzed in Lemma 7.6. For calMA, we use

our analysis of Algorithm 7.2 in Theorem 17. For MC, we use the analysis of the algorithm

from [10, Section 9], which is derived from the boosting by branching programs algorithm

by [24].

For MA(α), the number of calls made by the algorithm of [14] is bounded by O(1/σ2).

For calMA(α), the number of calls made by Algorithm 7.2 bounded by O(1/σ2).

For MC(α), the number of calls made by the algorithm of [10] is bounded by O(1/α2σ4).

The weak learning assumption required is also somewhat stronger, see Section 7 and

Appendix A.5 for a detailed discussion.

The comparison above shows that MA and calMA have similar complexities in terms of

the worst-case number of calls to the weak learner. The number of calls required for MC

is signiĄcantly larger. These results suggest that calibrated multiaccuracy is an interesting

multi-group notion in its own right, that lies in between MA and MC. It offers an interesting

tradeoff point between efficiency and generality in the omniprediction landscape. It is an

interesting open problem to ask if it captures any of the desirable fairness properties of MC,

or even of low-degree multicalibration [11].

Finally, we show that calibrated multiaccuracy (and hence omniprediction for GLM losses)

cannot be achieved by any algorithm that outputs a hypothesis which is a Single Index Model

(SIM): these are functions of the form u(
∑

wcc(x)). In particular, this implies that known

algorithms like the Isotron [18, 15] which work in the realizable setting but produce a SIM

as hypothesis cannot give an omnipredictor in the non-realizable setting.
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We present some preliminary experiments which support the efficiency and omniprediction

claims in Section 8. Importantly, the implementation is fewer than 100 lines of python code

using standard regression and calibration libraries in sklearn, whereas multicalibration is

more complex [12]. For a collection of common losses (inclduing some non-GLM losses),

the calibrated MA predictor always competes with and sometimes outdoes the best linear

predictor tailored to the loss.

2.4 Related Work and Discussion

Our work is inspired by and most closely related to the work of [10] which introduced omni-

predictors, and the outcome indistinguishability framework of [6]. The relation of our results

to the former is detailed in depth in Section 1.1. The outcome indistinguishability framework

establishes general connections between multi-group fairness notions and appropriate levels

in OI hierarchy. Here, we use their framework to focus on more Ąne-grained notions of OI

that are tailored towards loss minimization and omniprediction. The framework of Loss OI

is quite versatile, and has already been extended by [23] to the ŞperformativeŤ prediction

setting, where predictions can inĆuence the distribution over outcomes.

Rothblum and Yona [29] employed the notion of outcome indistinguishability in order to

obtain loss-minimization over a rich family of sub populations. Their notion of loss functions

is more general than ours. But they Ąx a single loss function in their discussion whereas

we seek to address general families of loss functions. A major distinction is that our work

studies the complexity of loss OI for broad families of loss functions and relates them to

distinguishers that do not depend on the loss function.

The work of [11] on low-degree multicalibration was also motivated by the goal of Ąnding

intermediate notions of multigroup fairness between MA and MC. They propose the hierarchy

¶MCd♢ of degree-d multicalibrated predictors which interpolates between these two notions.

They show that several desirable fairness properties of MC are already achieved at low

levels of the hierarchy, at a computational cost similar to that of MA. Our results on

calibrated multiaccuracy are similar in spirit but incomparable, we show how omniprediction

for some important convex losses can already be obtained at calMA, at a computational cost

comparable to that of MA.

There is a vast body of work on Generalized Linear Models [1, 28]. Classically, the focus

is on the setting where the function f deĄning the Bregman divergence and hence the link

function f ′ and its inverse g′ are known. The resulting program is convex and can be solved

using the iteratively reweighted least squares algorithm [28, 26]. The set of convex losses

LGLM derived from GLMs are also referred to as matching losses in the literature [2].

The more challenging setting is where the link function is unknown. This is sometimes

called the SIM (single index model) problem in the literature. To our knowledge, all work

with provable guarantees (prior to the work of [10]) hold only for the realizable setting:

the data are generated so that E[y∗♣x] = g′(h(x)) for some h ∈ Lin(C), both g′ and h are

unknown. The Ąrst algorithm to give guarantees in this scenario was [16], who Ąnds a

hypothesis that is close in squared error to the ground truth g′ ◦ h, and is represented as

branching program. The elegant Isotron algorithm for this problem was introduced and

analyzed in [18, 15], it is a proper learning algorithm where the output is of the form u ◦ h̃,

where h̃ ∈ Lin(C) and u is monotone.

Both our work and the work of [10] depart from these works in that they do not require

the realizability assumption. We give a single predictor p̃, with the guarantee that for any

convex f (with Legendre dual g), Df (p∗, p̃) is comparable to Df (p∗, g′ ◦h) for any h ∈ Lin(C).

Under the realizability assumption, for any strongly convex function f bounding Df implies

ITCS 2023



60:12 Loss Minimization Through the Lens of Outcome Indistinguishability

a squared loss bound [15, 20], thus our results imply bounds for the squared loss. In the

agnostic setting, squared loss and bounds on the divergence Df are incomparable. The works

of [32, 8] apply polynomial kernel techniques to the problem of loss minimization when the

inverse link function is sigmoid or the ReLU for families of losses including ℓ1 and the squared

loss. In these settings, a polynomial dependence on the accuracy parameter ε is not possible.

Bregman divergences and Pythagorean theorems for them are studied in information

geometry [27, 5], although the term is broadly used for inequalities arising from projections

onto convex bodies. That a stronger guarantee than omniprediction holds true for the squared

loss was observed in the work of [10, Lemma 8.4]. This guarantee was subsequently shown to

hold even with degree-2 multicalibration [11, Proposition A.1]. Our results generalize this to

all GLM losses, and only assumes calibrated multiaccuracy, while also showing that for such

losses, Pythagorean theorems are equivalent to loss OI.

3 Preliminaries

Let D be a distribution on labelled examples (x, y∗) comprising of points x from a domain

X and binary outcomes3 y∗ ∈ ¶0, 1♢. We let DX denote the marginal distribution over X .

We will occasionally refer to the distribution D as Nature. We assume sample access to

Nature. Ber(p) denotes the Bernoulli distribution on ¶0, 1♢ with parameter p. For a real

valued function f : T → R, let ∥f∥∞ = maxT ♣f(x)♣. For a family of such functions F , let

∥F∥∞ = maxf∈F ∥f∥∞.

Predictors. A predictor is a function p̃ : X → [0, 1] be a predictor, where p̃(x) is interpreted

as an estimate of the label being 1, conditioned on x. For a predictor p̃ : X → [0, 1], we

deĄne the distribution (x, ỹ) ∼ D(p̃) on X × ¶0, 1♢ where x ∼ DX is sampled according to

NatureŠs marginal distribution over inputs and conditioned on x, ỹ ∼ Ber(p̃(x)) so that

p̃(x) = E[ỹ♣x = x].

We use p∗(x) ∈ [0, 1] to denote the Bayes optimal prediction for an individual x ∈ X .

p∗(x) = E[y∗♣x = x]

In other words, using the optimal predictor D(p∗) = D recovers the true distribution, Nature.

Calibration. Intuitively, a predictor is calibrated if, conditioned on the prediction p̃(x) = v,

the expected outcome is close to v.

E[y∗♣p̃(x) = v] ≈ v

Formally, we quantify approximate calibration through expected calibration error.

▶ Definition 1 (ECE and Approximate calibration). We deĄne the expected calibration error

(ECE) of a predictor p̃ as

ECE(p̃) = E
p̃(x)

∣∣∣∣∣ E
y♣p̃(x)

[y − p̃(x)]

∣∣∣∣∣ .

For α ≥ 0, a predictor p̃ : X → [0, 1] is α-calibrated if ECE(p̃) ≤ α.

3 All our results can be extended to multi-class setting where there are Ąnitely many distinct classes, but
we work with the binary setting for simplicity.
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A predictor p̃ is perfectly calibrated if α = 0, so that ED[y∗♣p̃(x) = v] = v. While the notion

of approximate calibration is well-deĄned for all predictors, checking for calibration efficiently

requires the predictor to be discretized. When efficiency is a consideration, we will assume

that the supported values of the predictor are multiples of some δ ∈ [0, 1]; such assumptions

are standard in the calibration literature [7, 14]. For such predictors, one can check for

α-calibration given black-box access to p̃ in time poly(1/α, 1/δ), using labeled samples.

Following [11], we will allow for weighted notions of calibration, parametrized by a family

of weight functions W = ¶w : [0, 1] → R♢. Intuitively, we think of a weight function as

highlighting predictions belonging to certain regions of [0, 1].

▶ Definition 2. Let W = ¶w : [0, 1] → R♢ be a family of weight functions. For a predictor

p̃ : X → [0, 1] we deĄne

CE(W, p̃) = max
w∈W

∣∣∣E
D

[w(p̃(x))(y∗ − p̃(x))]
∣∣∣ .

We collect some simple properties of weighted calibration in the next lemma, the proof is

in Appendix A.1. The Ąrst is that ECE is captured by considering weight functions bounded

in absolute value by 1. The second is that α-calibration implies a bound on CE(W, p̃) for

any family of weights W.

▶ Lemma 3.

1. Let Wf denote the space of all functions w : [0, 1] → [−1, 1]. Then

ECE(p̃) = CE(Wf , α).

2. If p̃ is α-calibrated, then for any family W of weight functions,

CE(W, p̃) ≤ ∥W∥∞ α.

We will sometimes use weaker notions of calibration. An important special case is where

we take W1 to be the set of all 1-Lipschitz weight functions bounded in the range [−1, 1].

We say that a predictor p̃ is α-smoothly calibrated if it CE(W1, p̃) ≤ α.

Loss functions and decision functions. A loss function is a function ℓ : ¶0, 1♢ × R → R.

For instance, we deĄne the squared loss by ℓ2(y, t) = ∥y − t∥2
2 and the ℓp loss by ℓp(y, t) =

∥y − t∥p
p. We deĄne bℓ, the Lipschitz constant of ℓ, to be the smallest constant so that

♣ℓ(y, t1) − ℓ(y, t2)♣ ≤ bℓ♣t1 − t2♣. We let Lipb denote the set of all b-Lipschitz functions. We

say that a loss ℓ is convex, if for each y ∈ ¶0, 1♢, ℓ(y, t) is a convex function of t. In a generic

loss minimization problem, given a loss function ℓ and a class H of hypotheses, one tries to

Ąnd the hypothesis h ∈ H which minimizes E[ℓ(y, h(x))]. We extend the deĄnition of ℓ via

linearity so that the Ąrst argument can take values in [0, 1]. We deĄne

ℓ(p, t) = E
y∼Ber(p)

[ℓ(y, t)] = p · ℓ(1, t) + (1 − p) · ℓ(0, t).

A decision function is a function k : [0, 1] → R. We think of k as taking predictions

p ∈ [0, 1] from a predictor and mapping them to actions k(p) ∈ R. Decision functions are

used to select a suitable action for a loss function, given a prediction of the distribution of

labels. For a loss ℓ, we deĄne the Bayes-optimal decision function kℓ : [0, 1] → R by

kℓ(p) = arg min
t∈R

ℓ(p, t).

For proper losses like the squared error (y − t)2, kℓ is simply the identity function. For the

ℓ1 loss ♣y − t♣, kℓ1
(p) rounds p to the nearest value in ¶0, 1♢.
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Hypotheses. A bounded hypothesis class is a family of functions C ⊆ ¶c : X → [−1, 1]♢. We

will assume that C contains the constant function 1 and is closed under negation. Our results

will typically assume some learnability properties of the class C, such as having bounded

dimension and being weakly learnable. We deĄne the class Lin(C, B) to contain all functions

of the form

h(x) =
∑

c∈C

wcc(x),
∑

c∈C

♣wc♣ ≤ B.

Note that ♣h(x)♣ ≤ B for all h ∈ Lin(C, B). We will consider loss minimization problems with

the hypothesis class H = Lin(C, B) (e.g linear or logistic regression). Here B can be viewed

as a regularization parameter.

Multicalibration. Originally introduced as a form of Şmulti-groupŤ fairness [14], multic-

alibration and related notions have seen application beyond fair prediction in recent years.

Intuitively, multicalibration requires that the predictions of p̃ appear calibrated even when

we restrict our attention to structured subpopulations. [14] formalizes the collection of

subpopulations through a concept class C. Importantly, the multicalibration guarantee holds

simultaneously for every c ∈ C.

First, we deĄne a weaker notion called multiaccuracy [14, 22], which requires that

predictions appear accurate in expectation (unbiased) over each c ∈ C.

▶ Definition 4. Let C = ¶c : X → [−1, 1]♢ be a family of hypotheses and α ≥ 0. We say that

the predictor p̃ : X → [0, 1] is (C, α)-multiaccurate if for every c ∈ C it holds that
∣∣∣E
D

[c(x)(y∗ − p̃(x))]
∣∣∣ ≤ α

Multicalibration strengthens both calibration and multiaccuracy, requiring approximate

calibration over each c ∈ C. We adapt the deĄnitions in [14, 10] to our notion of approximate

calibration.

▶ Definition 5. Let C = ¶c : X → [−1, 1]♢ be a family of hypotheses and α ≥ 0. We say that

the predictor p̃ : X → [0, 1] is (C, α)-multicalibrated if for every c ∈ C it holds that

E
p̃(x)

∣∣∣∣∣ E
y♣p̃(x)

[c(x)(y∗ − p̃(x))]

∣∣∣∣∣ ≤ α

By averaging over the predicted values, we can see that (C, α)-multicalibration im-

plies (C, α)-multiaccuracy. Since we assume 1 ∈ C, (C, α)-multicalibration also implies

α-calibration.

In deĄning multiaccuracy and multicalibration, we assume that the hypotheses are

bounded by 1 in absolute value. For general hypotheses families H, we deĄne the multiaccuracy

error as

MAE(H, p̃) = max
h∈H

[∣∣∣E
D

[h(x)(y∗ − p̃(x))]
∣∣∣
]

.

We will generally reserve the term (C, α)-multiaccuracy to denote a bounded hypothesis

class C where MAE(C, p̃) ≤ α. The hypotheses classes H most relevant to us are of the form

H = Lin(C, B). For these, we can derive bounds on the multiaccuracy error from bounds for

the base hypotheses in C, that decay linearly with B. The proof is via linearity of expectation.

▶ Lemma 6. If the predictor p̃ is (C, α)-multiaccurate, then for B ≥ 1 and H = Lin(C, B)

we have

MAE(H, p̃) ≤ Bα.
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Omnipredictors. The notion of omniprediction introduced by [10] asks for a single predictor

which can do as well as the best hypothesis in a hypothesis class H for a family L of loss

functions.

▶ Definition 7. We say that the predictor p̃ : X → [0, 1] is an (L, H, δ)-omnipredictor if for

every loss ℓ ∈ L and hypothesis h ∈ H,

E[ℓ(y∗, kℓ(p̃(x)))] ≤ E[ℓ(y∗, h(x))] + δ.

Outcome Indistinguishability. Outcome indistinguishability introduced by [6] provides

an elegant framework for reasoning about the quality predictions made by a predictor

p̃, by measuring their ability to fool statistical tests when natureŠs labels y∗ and re-

placed by simulated labels ỹ. The notion is parameterized by a class of algorithms

A ⊆ ¶a : X × ¶0, 1♢ × [0, 1] → [−1, 1]♢, whose goal is to ŞdistinguishŤ NatureŠs distribution

and the modeled distribution.

▶ Definition 8 (Outcome Indistinguishability). A predictor p̃ : X → [0, 1] is (A, ε)-outcome

indistinguishable if for every a ∈ A,
∣∣∣∣∣ E
(x,y∗)∼D

[a(x, y∗, p̃(x))] − E
(x,̃y)∼D(p̃)

[a(x, ỹ, p̃(x))]

∣∣∣∣∣ ≤ ε.

In fact, [6] consider various levels of OI which are deĄned by the degree of access to the

predictions made available to the tests. In their language, DeĄnition 8 corresponds to

Şsample-access OIŤ where the distinguisher receives access to x, p̃(x), and outcomes sampled

either from y∗ ∼ Ber(p∗(x)) or ỹ ∼ Ber(p̃(x)).

Also of relevance to us are special cases of this model. The Ąrst, so-called Şno-access

OIŤ corresponds to a restriction where the distinguishers do not receive p̃(x), and simply

has access to either (x∗, y∗) ∼ D or (x, ỹ) ∼ D(p̃). Sample-access OI and No-access OI are

in tight correspondence with multicalibration and multiaccuracy, respectively [6]. Another

interesting special case of sample-access OI is when we are given access to p̃(x) but not to

the point x. Here, the goal is to distinguish between (y∗, p̃(x)) ∼ D and ỹ, p̃(x)) ∼ D(p̃).

OI for this model is tightly connected to calibration: for boolean outcomes, it follows that

perfect calibration implies that these distributions are identical.

4 Outcome Indistinguishability for loss functions

We deĄne notions of outcome indistinguishability for a predictor p̃ with regard to distinguishers

that are derived from a loss function ℓ. We allow distinguishers that take on real values, such

a function distinguishes two distributions if its expected values differ signiĄcantly between

them.

We deĄne the notion of Loss OI formally. Here we compare the difference (between Nature

and the predictorŠs model) in the expected loss suffered when using the hypothesis c ∈ C

compared to when using the Bayes-optimal decision function kℓ based on the predictor p̃.

▶ Definition 9 (Loss OI). Let L be a family of loss functions, C be a family of hypotheses,

and ε > 0. For each ℓ ∈ L, c ∈ C, deĄne the distinguisher uℓ,c : ¶0, 1♢ × [0, 1] × X → R by

uℓ,c(y, p̃(x), x) = ℓ(y, c(x)) − ℓ(y, kℓ(p̃(x)). (8)

We say that the predictor p̃ is (L, C, ε)-loss-OI if for every loss ℓ ∈ L and hypothesisc ∈ C,
∣∣∣∣∣ED[uℓ,c(y∗, p̃(x), x)] − E

D(p̃)

[uℓ,c(ỹ, p̃(x), x)]

∣∣∣∣∣ ≤ ε.
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We deĄne two additional, simpler notions. First is that of decision OI, which informally

states that applying the Bayes optimal decision functions to the predictions of p̃ and computing

the expected loss cannot distinguish between y∗ and ỹ.

▶ Definition 10 (Decision OI). Let L be a family of loss functions, and ε > 0. We say that

predictor p̃ is (L, ε)-decision-OI if for every ℓ ∈ L it holds that
∣∣∣∣∣ED[ℓ(y∗, kℓ(p̃(x))] − E

D(p̃)

[ℓ(ỹ, kℓ(p̃(x))]

∣∣∣∣∣ ≤ ε.

Our next notion is hypothesis OI, which stipulates that no hypothesis from C results in

signiĄcantly different expected loss whether the labels come from nature or the simulation.

▶ Definition 11 (Hypothesis OI). Let L be a family of loss functions, C a family of hypotheses

and ε > 0. We say that the predictor p̃ is (L, C, ε)-hypothesis-OI for ε ≥ 0 if for loss ℓ ∈ L

and every hypothesis c ∈ C it holds that

♣E[ℓ(y∗, c(x))] − E[ℓ(ỹ, c(x))]♣ ≤ ε.

We show that Loss OI is implied by having both Decision OI and Hypothesis OI simul-

taneously.

▶ Lemma 12 (Decomposition lemma). If the predictor p̃ : X → [0, 1] is (L, ε1)-decision-OI

and (L, C, ε2)-hypothesis-OI, then it is (L, C, ε1 + ε2)-loss-OI.

Proof. For each ℓ ∈ L and c ∈ C we can write

E[uℓ,c(y∗, p̃(x), x)] − E[uℓ,c(ỹ, p̃(x), x)]

= E[ℓ(y∗, c(x)) − ℓ(y∗, kℓ(p̃(x)))] − E[ℓ(ỹ, c(x)) − ℓ(ỹ, kℓ(p̃(x)))]

= E[(ℓ(y∗, c(x))] − E[ℓ(ỹ, c(x))] + E[ℓ(ỹ, k(p̃(x)))] − E[ℓ(y∗, kℓ(p̃(x)))]. (9)

Hence by the triangle inequality,

♣E[uℓ,c(y∗, p̃(x), x)] − E[uℓ,c(ỹ, p̃(x), x)]♣ ≤ ♣E[(ℓ(y∗, c(x))] − E[ℓ(ỹ, c(x))]♣

+ ♣E[ℓ(ỹ, k(p̃(x))))] − E[ℓ(y∗, kℓ(p̃(x)))]♣

≤ ε1 + ε2.

where the Ąrst term is bounded by hypothesis-OI and the second is bounded by decision-

OI. ◀

4.1 Loss-OI implies Omniprediction

Our interest in the notion of loss-OI stems from the fact that it implies omniprediction.

▶ Proposition 13 (Formal Restatement of Proposition 1). If the predictor p̃ : X → [0, 1] is

(L, C, ε)-loss-OI, then it is an (L, C, ε)-omnipredictor.

Proof. A consequence of loss-OI is that for every ℓ ∈ L and c ∈ C, we have

E[uℓ,c(y∗, p̃(x), x)] ≥ E[uℓ,c(ỹ, p̃(x), x)] − ε. (10)

But for every x ∈ X , by the deĄnition of the Bayes-optimal decision function kℓ we have

E[uℓ,c(ỹ, p̃(x), x)♣x = x] = E[ℓ(ỹ, c(x)) − ℓ(ỹ, kℓ(p̃(x))♣x = x] ≥ 0
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since kℓ(p̃(x)) is deĄned to be action that minimizes expected loss for ỹ ∼ Ber(p̃(x)).

Averaging over all x ∼ D gives

E[uℓ,c(ỹ, p̃(x), x)] = E[ℓ(ỹ, c(x))] − E[ℓ(ỹ, kℓ(p̃(x))] ≥ 0.

Plugging this into Equation (10) gives

E[uℓ,c(y∗, p̃(x), x)] = E[ℓ(y∗, c(x)) − ℓ(y∗, kℓ(p̃(x))] ≥ −ε.

Rearranging, we get that for every ℓ ∈ L, c ∈ C,

E[ℓ(y∗, kℓ(p̃(x)))] ≤ E[ℓ(y∗, c(x))] + ε.

hence p̃ is an (L, C, ε)-omnipredictor. ◀

The converse of this statement is not true. We show that omniprediction does not imply

Loss-OI for any class L than includes the ℓ4 loss. We prove an even stronger statement, that

multicalibration does not imply loss-OI. This statement is stronger because of the result of

[10] that multicalibration implies omniprediction for a broad class of convex loss functions.

We deĄne the ℓp loss for all p ≥ 1 as

ℓp(y, z) =
1

p
♣y − z♣p

where the normalization by p makes it 1-Lipschitz. Let Lp = ¶ℓp♢p≥1. We prove the following

result which separates multicalibration from loss OI.

▶ Theorem 14. There exist a distribution D, a class C and a predictor p̃ such that

p̃ is (C, 0)-multicalibrated, so it is an (Lp, C, 0)-omnipredictor.

p̃ is not (¶ℓ4♢, C, ε)-loss OI for any ε < 4/9.

The proof which is given in Appendix A.2 uses Fourier analysis on the Boolean cube.

4.2 Loss OI from Calibration and Multiaccuracy

In order to analyze the notions of OI, we need to compare the expected loss under different

distributions on labels for a certain action. The notion of discrete derivative of a loss function

will aid these comparisons.

▶ Definition 15. Given a loss ℓ : ¶0, 1♢ × R → R, deĄne the function ∂ℓ : R → R as

∂ℓ(t) = ℓ(1, t) − ℓ(0, t).

The following lemma justiĄes the analogy to partial derivatives.

▶ Lemma 16. For random variables y, y′ ∈ ¶0, 1♢, and t ∈ R we have

E[ℓ(y, t)] − E[ℓ(y′, t)] = E[(y − y′)∂ℓ(t)]. (11)

Proof. By deĄnition

E[ℓ(y, t)] = E[yℓ(1, t) + (1 − y)ℓ(0, t)] = E[y∂ℓ(t)] + ℓ(0, t)

We write a similar expression for y′ and subtract. ◀

ITCS 2023
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We now present characterizations of decision-OI and hypothesis-OI in terms of weighted

calibration and multiaccuracy errors for suitably deĄned classes of functions. Combined

with Lemma 12, this gives a decomposition of loss OI as a calibration condition and a

multiaccuracy condition.

▶ Theorem 17. Let L be a family of loss functions and C be a hypothesis class.

1. DeĄne the family of hypotheses ∂L ◦ C = ¶∂ℓ ◦ c♢ℓ∈L,c∈C. The predictor p̃ : X → [0, 1] is

(L, C, ε1)-hypothesis-OI where ε1 = MAE(C′, p̃).

2. DeĄne the family of weight functions W ′ = ¶∂ℓ ◦ kℓ♢ℓ∈L. The predictor p̃ : X → [0, 1] is

(L, ε2)-decision-OI where ε2 = CE(W ′, p̃).

Proof. We Ąrst prove Part (1). Conditioned on x = x, by Equation (11) with t = c(x) we

can write

E[ℓ(ỹ, c(x))♣x = x] − E[ℓ(y∗, c(x))♣x = x] = E[(p̃(x) − y∗)∂ℓ(c(x))♣x = x].

Hence taking expectations over x and absolute values,

♣E[ℓ(ỹ, c(x))] − E[ℓ(y∗, c(x))]♣ ≤ max
c∈C

♣E[(p̃(x) − y∗)∂ℓ(c(x))]♣ .

The LHS corresponds to hypothesis OI, while the RHS to C′ multiaccuracy error for C′ =

¶∂ℓ ◦ c♢.

We now consider Part (2). Conditioned on x = x, by Equation (11) with t = kℓ(p̃(x)),

E[ℓ(ỹ, kℓ(p̃(x)))♣x = x] − E[ℓ(y∗, kℓ(p̃(x)))♣x = x] = E[(p̃(x) − y∗)∂ℓ(kℓ(p̃(x)))♣x = x].

We now take expectations over x, followed by absolute values to get

E[ℓ(ỹ, kℓ(p̃(x)))] − E[ℓ(y∗, kℓ(p̃(x)))] = E[(p̃(x) − y∗)∂ℓ(kℓ(p̃(x)))♣x = x].

The LHS corresponds to loss-OI while the RHS measures the weighted calibration error

for W ′ = ¶∂ℓ ◦ kℓ♢ℓ∈L. ◀

It is easy to see that the characterizations above are tight. For instance if MAE(C′, p̃)

is larger than ε′, then there exist a c, ℓ pair that distinguishes between y∗ and ỹ with

advantage ε′.
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