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—— Abstract

We present a new perspective on loss minimization and the recent notion of Omniprediction
through the lens of Outcome Indistingusihability. For a collection of losses and hypothesis class,
omniprediction requires that a predictor provide a loss-minimization guarantee simultaneously for
every loss in the collection compared to the best (loss-specific) hypothesis in the class. We present a
generic template to learn predictors satisfying a guarantee we call Loss Outcome Indistinguishability.
For a set of statistical tests — based on a collection of losses and hypothesis class — a predictor is Loss
Ol if it is indistinguishable (according to the tests) from Nature’s true probabilities over outcomes.
By design, Loss OI implies omniprediction in a direct and intuitive manner. We simplify Loss
OI further, decomposing it into a calibration condition plus multiaccuracy for a class of functions
derived from the loss and hypothesis classes. By careful analysis of this class, we give efficient
constructions of omnipredictors for interesting classes of loss functions, including non-convex losses.

This decomposition highlights the utility of a new multi-group fairness notion that we call
calibrated multiaccuracy, which lies in between multiaccuracy and multicalibration. We show that
calibrated multiaccuracy implies Loss OI for the important set of convex losses arising from General-
ized Linear Models, without requiring full multicalibration. For such losses, we show an equivalence
between our computational notion of Loss OI and a geometric notion of indistinguishability, formu-
lated as Pythagorean theorems in the associated Bregman divergence. We give an efficient algorithm
for calibrated multiaccuracy with computational complexity comparable to that of multiaccuracy.
In all, calibrated multiaccuracy offers an interesting tradeoff point between efficiency and generality
in the omniprediction landscape.
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1 Introduction

Loss minimization is the dominant paradigm in machine learning. Techniques for loss
minimization have played a critical role in the development of the theory and practice of
supervised learning [21, 4, 31, 30, 13]. A clean theoretical formulation of the underlying
problem is via the notion of agnostic PAC learning [30]. We consider real-valued loss functions
¢ that take two arguments, a label y € {0,1} and an action ¢ € R. Given a loss ¢, a base
class of hypotheses C, and approximation parameter ¢, the goal is to find a hypothesis h
that achieves near-optimal expected loss (compared to ¢ € C) over a fixed, but unknown
distribution D:!
* : %

B hG)] <min B Iy ()] + =
Researchers have devoted significant effort into developing different choices of loss functions
[25]. Different settings — so the conventional wisdom goes — require the design of different
loss functions (e.g., squared, zero-one, logistic) to better encode the objectives of the task at
hand (regression, classification, calibration). The choice of loss function dictates the updates
during training and hence the resulting loss minimizer. With different loss functions, there
are many different optimal hypotheses, and one needs to learn afresh for each loss.

Recent work pushes back against this conventional wisdom. The work of [10] introduces
a solution concept for agnostic PAC learning, which they call omniprediction. Intuitively, an
omnipredictor p: X — [0,1] is a predictor that can be used to simultaneously minimize loss
for many different losses. Formally, an omnipredictor is parameterized by a collection of loss
functions £, a class of hypotheses C, and approximation parameter . Given any loss ¢ € L,
a decision-maker can treat p(x) as if it were the Bayes optimal predictor p*(z) = E[y|z],
selecting an action ¢ that will minimize E[¢(y,t)] where ¥ is drawn according to p. Even
though the true labels are drawn according to p*(x), the resulting decision rule is e-optimal
for ¢ over ¢ € C. Importantly, the omnipredictor p is a single prediction function, fixed in
advance, but yields optimal decisions for all £ € £. The Bayes optimal predictor p*(z) is
easily seen to be an omnipredictor for all losses, the question is whether they can be learnt
efficiently. The main result in [10] is a sweeping feasibility result: they demonstrate that for
any efficiently learnable hypothesis class C and € > 0, efficient omnipredictors exist for the
class L.yx of all Lipschitz, convex loss functions. They prove this by showing a connection to
multicalibration, from the literature on fair prediction [14].

Multicalibration was developed with the goal of promoting fairness across subpopulations
encoded by a class of functions C. In contrast to the loss-minimization paradigm, multic-
alibration does not frame learning as loss minimization. Rather, the goal of learning is to
satisfy a collection of “indistinguishability” constraints. This view on multicalibration was
developed in the recent work of [6], who introduced an alternative paradigm for learning
called outcome indistinguishability (OI). OI considers two alternate worlds on individual-
outcome pairs: in the natural world, outcomes (x,y*) are generated by Nature’s true joint

! This version where we do not restrict h to belong to C is sometimes called improper learning.
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distribution; in the other simulated world, outcomes (x,y) are sampled according to the
predictive model ¥ ~ Ber(p(x)). OI requires the learner to produce a predictor p in which
the two worlds are computationally indistinguishable. More formally, OI is parameterized by
a class of distinguisher algorithms A. Each a € A receives an individual € X'| an outcome
y € {0,1}, and the prediction p(x) and outputs a value in the interval [0,1]. For such a
collection of algorithms A and approximation parameter ¢, a predictor p is (A, £)-outcome
indistinguishable? if no algorithm a € A can distinguish between the two distributions over
individual-outcome pairs.

(x7yI*L‘)ND[a(x,y*,§(x))] Roe XPD la(x,y, p(x))]

y~Ber(p(x))

As multicalibration is a special case of OI, by the results of [10], one can view omni-
prediction for convex, Lipschitz losses as a consequence of OI, for an appropriate family
of distinguishers. While rigorous, this argument is rather indirect and in our view, it does
not provide clear intuition for why there should be a link between loss minimization and
indistinguishability. Moreover, the connection to multicalibration established in [10] is rather
constrained in terms of the family of loss functions £. If we want omnipredictors for a more
expressive class such as all Lipschitz functions, not just convex ones (where it is known
that multicalibration is insufficient [10, Lemma 6.7]), or simpler omnipredictors for a more
restricted class of convex loss functions (such as L, losses), the results of prior work don’t
shed much light on how we might proceed.

1.1 Qur Contributions

Motivated by ominprediction, we establish a direct and intuitive connection between loss
minimization and outcome indistinguishability, through a notion which we call Loss OI
Fundamental to our approach is to use loss functions as tools to construct distinguishers: given
a family £ of loss functions and a family of hypotheses C, we devise a family of distinguishers
Uec = {usctier,cec such that if p(x) is not an omnipredictor, then some distinguisher
from this family can tell apart the labels generated by Nature from those generated by the
predictor’s simulation. We say that any predictor that fools every distinguisher from this
family satisfies loss OI. By construction, loss OI implies omniprediction.

We show that loss OI admits a decomposition into two simpler outcome indistinguishability
requirements which we call hypothesis OI and decision OI. Hypothesis Ol compares the
expected loss of the hypothesis ¢ when labels are generated by Nature versus its simulation
by p, for each hypothesis in the class ¢ € C. Decision OI tests compares the expected loss
incurred when we take actions based on the optimal post-processing of the predictions of p
under the two distributions on labels. We give a characterization of these indistinguishability
conditions in terms of the discrete derivative 9¢ : [0,1] — R of the loss function ¢, defined
as 00(t) = £(1,t) — £(0,t). Via this characterization, decision OI amounts to a weighted
calibration condition derived from 0¢, which is implied by standard notions of calibration.
Hypothesis OI can be expressed as a multiaccuracy condition for the class of functions
OLoC ={0loc:le L, ceC}. Multiaccuracy [14, 22] for a given hypothesis family C is a
weaker notion than multicalibration for C. Both notions require access to a weak agnostic
learner for C, but multiaccuracy admits simpler and more efficient algorithms in terms of
sample complexity and running time.

2 In fact, [6] introduce a more general hierarchy of Ol notions, whose levels are based on the distinguishers’
access to the predictions given by p. The variant where we allow distinguishers access to p(x) (so-called,
sample-access OI) is known to be computationally equivalent to multicalibration.
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1.1.1 Loss Ol for specific families

With this decomposition, we turn our attention to specific collections of loss functions L.
Since decision OI follows from calibration, to achieve hypothesis OI and loss OI, we analyze
the structure of 0L o C, with the goal of bounding the complexity of such functions.

All losses: We begin with the family £,; of all losses satisfying minimal boundedness
conditions. The losses need not be convex or Lipschitz. We show that loss OI is possible
for L, and any hypothesis class C, provided we can ensure calibration and multiaccuracy
over functions on the level sets of C. Specifically, we require multiaccuracy over the
collection level(C) = {f o c} for all ¢ € C and all maps f : [-1,1] — [—1,1]. We can view
these as the set of all bounded functions over the level sets of ¢. This has immediate
consequences for Boolean (even discrete) hypothesis classes, since there, the class level(C)
is not much more complex than C itself: C-multiaccuracy plus calibration implies loss
minimization for any loss function.

Lipschitz losses: Under Lipschitzness (but still without convexity), a weaker multiac-
curacy condition suffices. We define Int(C, a) to be the collection of Boolean functions,
which are the indicators of the events that ¢(z) lies in an interval of width a. We show
that for Lipschitz losses, 9L o C lies in the linear span of functions in Int(C, ). Hence,
calibration together with Int(C, a)-multiaccuracy guarantees loss OI for all Lipschitz loss
functions.

GLM losses: GLMs are a popular class of convex loss minimization based models, which
include basic learning algorithms such as linear and logistic regression. They can be
viewed as minimizing Bregman divergences for predictors which are derived from linear
combination of C. For the class of GLM losses Lgi,m, we show that 9L o C = C. Hence,
calibrated multiaccuracy — that is, calibration together with C-mulitaccuracy — guarantees
loss OI for all GLM losses. We give an equivalence between of predictors that satisfy Loss
OI for Lgpm and the set of predictors satisfying a certain Pythagorean Theorem in the
geometry of the corresponding Bregman divergence.

Finally, we exhibit a reverse connection by showing that the optimal solution to any
Lq-regularized GLM loss minimization problem is multiaccurate. This leads us to fast
and practical methods for achieving both multiaccuracy and calibrated multiaccuracy.

Our results for Loss OI are incomparable with the result of [10] on omnipredictors.
On one hand, loss OI is stronger than omniprediction. On the other hand, we require
weak agnostic learning for 9L o C, which might be a much more powerful primitive than
weak learning for C itself (which is sufficient for multicalibration). For the class of convex
Lipschitz losses L.y considered in [10], we show that multicalibration does not imply loss
OlI, although it implies omniprediction. Our best “upper bound” for (L¢yx,C)-loss OI comes
from Int(C, a)-multiaccuracy, and it applies even when the losses are non-convex. For the
subset Loy C Levx, we show a stronger guarantee (loss OI versus omniprediction) from
weaker assumptions (calibrated multiaccuracy versus multicalibration).

1.1.2 Calibrated multiaccuracy

A key takeaway from our results is the surprising power of the notion of calibrated mul-
tiaccuracy, where we require predictors to satisfy both multiaccuracy with respect to C
and calibration. It implies loss OI for the class of GLM losses, and for the case when C
is Boolean. As a group fairness notion, it lies in between the notions of multiaccuracy
and multicalibration. We show the running time and sample complexity needed to achieve
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calibrated multiaccuracy are not much higher than that required for multiaccuracy, by giving
a simple algorithm that alternates between ensuring multiaccuracy is achieved (using gradient
descent for squared loss), and recalibrating the output. The key insight is that either of these
steps reduces the squared loss of the predictor. Hence the number of invocations of the weak
learner is not much more in the worst case from that required to achieve multiaccuracy, and
significantly smaller than that required for multicalibration.

1.1.3 Perspective

We see the key contribution of our work as conceptual: we bring the OI lens to the problem
of loss minimization. Reasoning about the simulated labels y turns out to a powerful idea

in this context, which has not been explored before, even in prior work on omniprediction.

Our framework leverages this to give a compiler that translates loss OI for a pair (£,C) into
low-level calibration and multiaccuracy conditions. With this setup, the proofs of our results
are not technically hard. For instance, our result for GLMs uses the well-known fact that
the loss function for any GLM has the form ¢4(y,t) = g(t) — yt. It follows that 04(t) = —t,
hence C-multiaccuracy suffices for hypothesis OI (assuming C is closed under negation).

The loss OI perspective establishes a natural and versatile link between loss minimization
and indistinguishability. It broadens our understanding of omniprediction. On one hand, it
shows it can be scaled up beyond convex, Lipschitz losses. But it can also scaled down for
more limited classes of loss functions to give more efficient constructions. It enables a range
of omniprediction guarantees, where the richness of the collection of losses scales with the
expressive power of the class for which we require multiaccuracy.

1.1.4 Structure of this manuscript

This manuscript represents an Extended Abstract of the full paper, which can be found
on the arXiv [9]. The full manuscript is structured as follows. In Section 2, we present a

high-level technical overview of our definitions and results. We discuss related work in 2.4.

In Section 3, we give preliminaries and formal background. In Section 4, we introduce Loss
OI and its relationship to omniprediction and the other notions of indistinguishability. We
then show how Loss OI can be formulated in terms of multiaccuracy and calibration. In

Section 5, we instantiate present our main result on loss OI for Generalized linear models.

We also show an equivalence between our formulation of Loss OI for GLMs and Pythagorean
theorems in the geometry of Bregman divergences. In Section 6, we consider other families of
loss functions including those that are not necessarily convex or Lipschitz. In Section 7, we
present and analyze an efficient algorithm for calibrated multiaccuracy, and establish that
it is more efficient than multicalibration. We report on the results from some preliminary
experiments that aim to establish the efficiency and effectiveness of calibrated multiaccuracy
in Section 8. Proofs are occasionally deferred to Appendix A to streamline the flow.

2 Technical Overview

In this section, we give a more detailed but still high-level explanation of how loss OI gives a
indistinguishability viewpoint on loss minimization and omniprediction. The starting point
for our investigation is understanding why the Bayes optimal predictor is an omnipredictor
for any loss and concept class. We use p* : X — [0, 1] to denote the Bayes optimal predictor,
which represents Nature’s true probability of positive outcomes.

60:5
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()= E lx =x
ra= B k=1
We consider loss functions £ : {0,1} x [0,1] — R™ that take a label and action as arguments
and return a real valued loss. For such a loss ¢, if the labels are drawn as y ~ Ber(p), there
exists an optimal action k¢(p) € [0,1] defined as

ke(p) =argmin  E  [{(y,t)]
tef0,1] y~Ber(p)
We refer to k;, as the optimal post-processing for ¢. Since the Bayes optimal predictor
p* governs the conditional distribution over outcomes y*, by averaging over x ~ D, we
conclude that k, o p* satisfies the loss minimization guarantee for any loss, with respect to
any hypothesis class C.

E [(y* ko(p*(x <min E [ly* c(x 1
B kTGO S min B ()] (1)
The challenge of constructing an omnipredictor is, given specific families of losses £ and

hypotheses C respectively, to identify properties of p that will allow us to replace p* with p
in the above statement, as long as £ € £ and ¢ € C. Formally, we say that a predictor p is an
(L,C, e)-omnipredictor if for every loss £ € L, the post-processed predictor kg o p is an e-loss
minimizer compared to the class C:

E [y" ke(p(x)))] <min =~ E [l(y" c(x))] +e. (2)

(x,y*)~D ceC (x,y*)~D

2.1 Omniprediction from outcome indistinguishability

Omniprediction is a statement about Nature’s distribution. Equation (2) makes no mention
of the simulated predictions y. It is unclear how considering labels y from the predictor’s
simulation might be useful. Indeed, the simulated labels do not play a role in the [10]
derivation of omniprediction from multicalibration.

The key insight is that in the simulated world of labels y, p is the Bayes optimal predictor.
So Equation (2) holds with e = 0. Indeed, we just apply Equation (1) with y* =¥ and
p* =D to get

- - < mi -
B G RGE) <min B ) 3)
y~Ber(p(x)) y~Ber(p(x))

If p has the property that the expectations on either side of the Equation don’t change
much when we replace y with y*, then this will imply our desired omniprediction guarantee
(Equation (2)). But this condition is a form of outcome indistinguishability, tailored to
distinguishers constructed from £ and C. Loss Ol is a crisp formulation of this notion.

2.1.1 Loss Ol

Loss Ol is parameterized by a loss class £ and a concept class C, which induce the following
collection of distinguishers:

ué,c(yap7 J}) = f(y7 C(l‘)) - é(y7 kﬁ(p)) (4)
Up e ={ugc:LeLyceC}
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For a given loss ¢, the distinguisher ug. : Y % [0,1] x X — R measures the excess loss of
the prediction ¢(z) compared to the optimal post-processing k¢ applied to the predicted
label distribution p. For a fixed = € X, if we generated labels § ~ Ber(p(z), then k¢ (p(z))
is the optimal action, so ug (¥, p(x),x) > 0. Hence, the expected value over x ~ D is also
non-negative. For omniprediction to hold, it would suffice if
LB iy )0l = By et = By k()] 0.

Loss OI imposes the stronger condition that the expectation under Nature’s distribution
and the simulation are (approximately) equal. For a loss class £, a concept class C, £ > 0, a
predictor p is (£,C,¢e)-loss OI if for all £ € £ and for all ¢ € C, the following approximate
equality holds.

E lueeypx).x) = B Ture(y”, plx), x)] (5)
~ x~Z (x,y*)~D
y~Ber(p(x))

By design, Loss OI guarantees omniprediction. In fact, it is a strictly stronger notion. In
Section 4.1, we show that while C-multicalibration implies omniprediction for L.y, it does
not imply loss OI even for the ¢4 loss.

» Proposition 1. If a predictor p is (L,C,e)-loss OI, then p is an (L,C,e)-omnipredictor.
The converse does not hold.

The [10] proof of omniprediction was tailored specifically to multicalibration and the
specific class of convex loss functions L.yx. In contrast, Loss OI is a versatile notion that
may be applied to any class of loss functions. By approaching the question of omniprediction
via loss OI, we arrive at an easy-to-state set of sufficient conditions to obtain omniprediction
for any class of losses £ and hypothesis class C.

2.1.2 Characterizing Loss Ol via calibration and multiaccuracy

We define loss OI using distinguisher functions {ug .} that depend on both ¢(x) and p(x). It
is known from the work of [6] that when distinguishers receive simultaneous access to ¢(x)
and p(x), outcome indistinguishability can implement (full) multicalibration. However, the
distinguishers u, . have very specific structure, which permits a decomposition of loss OI into
two modular conditions, involving two different distinguishers that each depend on the label
and one out of ¢(x) and p(x) separately. The first set of distinguishers will simply compare
the loss of hypotheses ¢ € C for each loss £ € L, a condition we call hypothesis OL

E[((y, c(x))] = E[{(y", c(x))] (6)

The second set of distinguishers evaluates the loss achieved by the predictor p under optimal
post-processing for each loss, a condition we call decision OI.

E[U(y, ke(p(x)))] ~e E[l(y", ke(p(x)))] (7)

Subtracting (7) from (6), we obtain (5), albeit with a slightly larger error parameter. In
other words, if p satisfies both hypothesis OI and decision OI, then p satisfies loss OI.

It turns out that decision Ol is easy to achieve, we show that it is implied by calibration.

Recall that a predictor is a-calibrated if E[y|p(x) = v] &, v. Using a more nuanced notion
called weighted calibration from [11], we can get an exact characterization of decision OI
(see Theorem 17).

60:7
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To present a characterization of hypothesis OI, we need a couple of definitions. For a
class of functions C and approximation a > 0, a predictor p is (C, a)-multiaccurate if for
every ¢ € C, the correlation between ¢ and y* — p(x) is at most . Formally, we require

[Ele(x) - (y" —p(x))]] < o

For a loss function ¢, we define the discrete derivative 9¢ as 9¢(t) = ((1,t) — £(0,¢).
For a loss class £ and hypothesis class C, we consider the class of functions 0L o C =
{0loc:Le L, ceC}. We can characterize Hypothesis OI in terms of 9L o C-multiaccuracy.

» Proposition 2 (Decomposition for Loss Ol). For loss class L, hypothesis class C, and
e > 0, predictor p is (L,C,¢e)-hypothesis OI iff it is (OL o C,e)-multiaccurate. Thus, if p
is e-calibrated and (0L o C,e)-multiaccurate, then it is (L,C,0(g))-loss OI, and hence an
(L,C,0(e))-omnipredictor.

Thus we have decomposed loss OI into two constraints on our predictors: calibration, and
multiaccuracy for the class OL o C. This presents an alternative (and possibly more efficient)
route to obtaining omnipredictors than via multicalibration.

2.1.3 Non-convex losses

Using our decomposition theorem we show that, perhaps surprisingly, loss-OI and omni-
prediction are feasible even for non-convex losses, given a sufficiently powerful learner for
functions derived from C. We require the losses to be bounded: ||0¢|| ., < 1. But otherwise,
the losses can be arbitrary, we do not assume Lipschitzness or convexity. Define the set

level(C) ={foc: feF, ceC} where F={f:Im(C) — [-1,1]}

That is, level(C) consists of all possible bounded post-processings of ¢ € C; in particular the
functions f € F only get to distinguish between the level sets of each ¢ € C. The importance
of level(C) stems from the fact that 92 o ¢ belongs to this class, hence level(C)-multiaccuracy
suffices for Hypothesis-OI over all loss functions.

» Proposition 3. For any class of loss functions L, if p is (level(C), a)-multiaccurate, then
p is (L£,C, a)-hypothesis OI. Hence if D is a-calibrated and (level(C), a)-multiaccurate, then
for any loss class L, p is (L,C,0(«))-loss OL.

Thus, omnipredictors for every bounded loss function are computable, with complexity
scaling with the complexity of weak agnostic learning for level(C). While level(C) could in
general be far more expressive than C itself, there are important special cases, including when
C is a family of Boolean functions, where it is not much larger than C. In these settings, we
get loss-Ol for arbitrary losses from calibration and C-multiaccuracy. This includes natural
loss functions such as weighted 0-1 loss which are important for classification.

2.1.4 Lipschitz losses

If we are willing to assume that the losses are Lipschitz, then we can obtain hypothesis OI
from a weaker multiaccuracy condition. Intuitively, if the loss ¢ is Lipschitz in ¢, then so is
ol, so we only need to consider Lipschitz post-processings. We can achieve this guarantee by
enforcing multiaccuracy over the class of functions Int(C, o) which are the indicators of the
event that c(x) lies in a certain interval I C [—1, 1] of width «, over all ¢ € C and intervals I.
We show that Int(C, a)-multiaccuracy suffices to give Hypothesis OI for Lipschitz losses.
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» Proposition 4. For any class of 1-Lipschitz loss functions L, if p is (Int(C,a),a?)-
multiaccurate then p is (L,C,0(«))-hypothesis OI If p is also calibrated, then D is a
(L,C,0(x))-omnipredictor.

2.2 Loss Ol in GLMs

GLMs are a important class of models from statistics that generalize linear and logistic

regression [26, 1]. On a technical level, GLMs are constructed using the following recipe:

1. We start with an arbitrary monotone increasing transfer function ¢’ : R — R, so that its
integral g(t) is convex.

2. We define its matching loss ¢,(y,t) = g(t) — yt which is a convex function of ¢.

3. We look for the model h € A which minimizes E[{,(y, h(z))] where the hypothesis class
‘H is taken to be linear combinations over some base class C. This gives rise to a convex
optimization problem that can be solved efficiently [1, 28].

When we take ¢'(t) = ¢, this recipe gives linear regression with the squared loss. When
g'(t) = o(t) is the sigmoid, we get logistic regression. The class of losses Lgpm that arise in
this manner are convex. Thus, by the results of [10], C-multicalibration suffices to obtain
omniprediction for Larm.

Our first result on GLMs shows that the class OLarm © C = C. This holds for the simple
reason that every loss ¢4 € Lgrm has the form £,(y,t) = g(t) — yt, hence 04(t) = —t is linear
in t. This means that C-multiaccuracy — not a derived class — plus calibration suffices for
loss OI for GLMs.

» Theorem 5 (Informal). If p is (C, a)-multiaccurate and calibrated, then it is (LaLm, C, O(a))-
Loss OI

These results highlight the power of calibrated multiaccuracy which gives omniprediction for
all GLM losses. Before this, we only knew how to achieve this using the stronger notion of
multicalibration. Is it really much easier to achieve calibrated multiaccuracy? A key piece of
the answer comes from our next result shows a reverse connection between multiaccuracy
and GLM optimality with ¢;-regularization. We state the result informally here.

» Proposition 6 (Informal). For any GLM loss and « > 0, the optimizer of the {1-regularized
GLM optimization over the class C is (C, a)-multiaccurate.

This result immediately gives a (number of) efficient avenues for computing a C-
multiaccurate predictor: run any ¢;-regularized GLM learner, like Lasso [33] for linear
regression. It also suggests a template for achieving calibrated multiaccuracy: we can altern-
ate between the GLM learner and a calibration procedure such as isotonic regression until
convergence [34]. We will analyze a simple algorithm based on this template and show that
its complexity is comparable to that of achieving multiaccuracy, and considerably lower than
what is needed to achieve multicalibration.

Finally, we consider the Loss OI conditions for GLM losses. We show that, in this
setting, the computational indistinguishability notion of Loss Ol is equivalent to a geometric
indistinguishability condition, formalized by Pythagorean theorems in the associated Bregman
divergence. We state the result fairly formally, deferring background on GLMs and Bregman
divergences to the technical section.

» Theorem 7 (Informal). Let ¢’ be strictly monotonically increasing, let f be the Legendre dual
of g, and let Dy be the corresponding Bregman divergence. A predictor p is ({4, H, a)-Loss
Ol if and only if the following approzimate Pythagorean theorem holds approximately.

E[D;(p"(x), g'(h(x)))] ®a E[Df(p" (%), p(x))] + E[Df(p(x), g’ (h(x)))]
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Intuitively, the Pythagorean theorem says that the “distance” between p* and a predictor
derived from the class H can be broken down into “orthogonal” components: the distance
between p* and p plus the distance between p and the predictor from #H. In other words, if a
predictor p is C-multiaccurate and calibrated, then it is simultaneously a “projection” of the
best GLMs towards the statistically optimal predictor p*.

2.3 Algorithms for Calibrated Multiaccuracy

For a given hypothesis clas C, we define the following classes of predictors.

Let MA () denote the set of predictors that are (C, «)-multiaccurate.

Let calMA () denote the set of predictors that are a-calibrated and (C, a)-multiaccurate.

Let MC(«) denote the set of predictors that are (C, a)-multicalibrated.

Then we have MA(«) 2 calMA(«) 2 MC(«r). We compare the complexity of computing a
predictor in each of these classes given access to a (p, o)-weak learner for C [3, 19, 17]. Such
a learner, when given access to a distribution (x,z) where x ~ Dy and z are labels in {£1},
if there exists ¢ € C such that E[c(x)z] > p, will return ¢’ such that E[¢/(x)z] > o. If no such
c exists it returns L. The complexity of learning the predictor in any of the aforementioned
classes is governed by the number of oracle calls to the weak learner.

We present Algorithm 7.2 in [9] for achieving calibrated multiaccuracy that alternates
between ensuring multiaccuracy (using the weak learner), and calibrating the predictor. The
key insight that makes it efficient is that either step can be seen to reduce the same potential
function, which is the squared distance from the Bayes optimal predictor. This results in a
worst-case complexity for calMA that is not too different than just for achieving the weaker
guarantee of MA (since that algorithm is also analyzed using the same potential).

We compare the number of oracle calls needed for computing a predictor in each of MA,
calMA and MC. We emphasize that this is a comparison between the best known upper
bounds. For MA, we use the [14] algorithm as analyzed in Lemma 7.6. For calMA, we use
our analysis of Algorithm 7.2 in Theorem 17. For MC, we use the analysis of the algorithm
from [10, Section 9], which is derived from the boosting by branching programs algorithm
by [24].

For MA (), the number of calls made by the algorithm of [14] is bounded by O(1/0?).
For calMA («), the number of calls made by Algorithm 7.2 bounded by O(1/0?).

For MC(a), the number of calls made by the algorithm of [10] is bounded by O(1/a?c?).
The weak learning assumption required is also somewhat stronger, see Section 7 and
Appendix A.5 for a detailed discussion.

The comparison above shows that MA and calMA have similar complexities in terms of
the worst-case number of calls to the weak learner. The number of calls required for MC
is significantly larger. These results suggest that calibrated multiaccuracy is an interesting
multi-group notion in its own right, that lies in between MA and MC. It offers an interesting
tradeoff point between efficiency and generality in the omniprediction landscape. It is an
interesting open problem to ask if it captures any of the desirable fairness properties of MC,
or even of low-degree multicalibration [11].

Finally, we show that calibrated multiaccuracy (and hence omniprediction for GLM losses)
cannot be achieved by any algorithm that outputs a hypothesis which is a Single Index Model
(SIM): these are functions of the form u() w.e(x)). In particular, this implies that known
algorithms like the Isotron [18, 15] which work in the realizable setting but produce a SIM
as hypothesis cannot give an omnipredictor in the non-realizable setting.
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We present some preliminary experiments which support the efficiency and omniprediction
claims in Section 8. Importantly, the implementation is fewer than 100 lines of python code
using standard regression and calibration libraries in sklearn, whereas multicalibration is
more complex [12]. For a collection of common losses (inclduing some non-GLM losses),
the calibrated MA predictor always competes with and sometimes outdoes the best linear
predictor tailored to the loss.

2.4 Related Work and Discussion

Our work is inspired by and most closely related to the work of [10] which introduced omni-
predictors, and the outcome indistinguishability framework of [6]. The relation of our results
to the former is detailed in depth in Section 1.1. The outcome indistinguishability framework
establishes general connections between multi-group fairness notions and appropriate levels
in OI hierarchy. Here, we use their framework to focus on more fine-grained notions of OI
that are tailored towards loss minimization and omniprediction. The framework of Loss OI
is quite versatile, and has already been extended by [23] to the “performative” prediction
setting, where predictions can influence the distribution over outcomes.

Rothblum and Yona [29] employed the notion of outcome indistinguishability in order to
obtain loss-minimization over a rich family of sub populations. Their notion of loss functions
is more general than ours. But they fix a single loss function in their discussion whereas
we seek to address general families of loss functions. A major distinction is that our work
studies the complexity of loss OI for broad families of loss functions and relates them to
distinguishers that do not depend on the loss function.

The work of [11] on low-degree multicalibration was also motivated by the goal of finding
intermediate notions of multigroup fairness between MA and MC. They propose the hierarchy
{MCg4} of degree-d multicalibrated predictors which interpolates between these two notions.
They show that several desirable fairness properties of MC are already achieved at low
levels of the hierarchy, at a computational cost similar to that of MA. Our results on
calibrated multiaccuracy are similar in spirit but incomparable, we show how omniprediction
for some important convex losses can already be obtained at calMA, at a computational cost
comparable to that of MA.

There is a vast body of work on Generalized Linear Models [1, 28]. Classically, the focus
is on the setting where the function f defining the Bregman divergence and hence the link
function f’ and its inverse ¢’ are known. The resulting program is convex and can be solved
using the iteratively reweighted least squares algorithm [28, 26]. The set of convex losses
Lcrum derived from GLMs are also referred to as matching losses in the literature [2].

The more challenging setting is where the link function is unknown. This is sometimes
called the SIM (single index model) problem in the literature. To our knowledge, all work
with provable guarantees (prior to the work of [10]) hold only for the realizable setting:
the data are generated so that E[y*|x] = ¢/(h(x)) for some h € Lin(C), both ¢’ and h are
unknown. The first algorithm to give guarantees in this scenario was [16], who finds a
hypothesis that is close in squared error to the ground truth ¢’ o h, and is represented as
branching program. The elegant Isotron algorithm for this problem was introduced and
analyzed in [18, 15], it is a proper learning algorithm where the output is of the form w o E,
where h € Lin(C) and v is monotone.

Both our work and the work of [10] depart from these works in that they do not require
the realizability assumption. We give a single predictor p, with the guarantee that for any
convex f (with Legendre dual g), Dy (p*,p) is comparable to D¢ (p*, ¢’ oh) for any h € Lin(C).
Under the realizability assumption, for any strongly convex function f bounding Dy implies
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a squared loss bound [15, 20], thus our results imply bounds for the squared loss. In the
agnostic setting, squared loss and bounds on the divergence Dy are incomparable. The works
of [32, 8] apply polynomial kernel techniques to the problem of loss minimization when the
inverse link function is sigmoid or the ReLU for families of losses including ¢; and the squared
loss. In these settings, a polynomial dependence on the accuracy parameter ¢ is not possible.

Bregman divergences and Pythagorean theorems for them are studied in information
geometry [27, 5], although the term is broadly used for inequalities arising from projections
onto convex bodies. That a stronger guarantee than omniprediction holds true for the squared
loss was observed in the work of [10, Lemma 8.4]. This guarantee was subsequently shown to
hold even with degree-2 multicalibration [11, Proposition A.1]. Our results generalize this to
all GLM losses, and only assumes calibrated multiaccuracy, while also showing that for such
losses, Pythagorean theorems are equivalent to loss OI.

3 Preliminaries

Let D be a distribution on labelled examples (x,y*) comprising of points x from a domain
X and binary outcomes® y* € {0,1}. We let D denote the marginal distribution over X
We will occasionally refer to the distribution D as Nature. We assume sample access to
Nature. Ber(p) denotes the Bernoulli distribution on {0, 1} with parameter p. For a real
valued function f: 7 — R, let || f|| ., = maxy |f(z)|. For a family of such functions F, let
[Flloe = maxser [ £l

Predictors. A predictor is a function p : X — [0, 1] be a predictor, where p(x) is interpreted
as an estimate of the label being 1, conditioned on z. For a predictor p : X — [0, 1], we
define the distribution (x,y) ~ D(p) on X x {0,1} where x ~ Dy is sampled according to
Nature’s marginal distribution over inputs and conditioned on x, ¥ ~ Ber(p(x)) so that

p(z) = E[ylx = z].
We use p*(x) € [0,1] to denote the Bayes optimal prediction for an individual z € X.

p*(z) = Ely"|x = 2]
In other words, using the optimal predictor D(p*) = D recovers the true distribution, Nature.
Calibration. Intuitively, a predictor is calibrated if, conditioned on the prediction p(x) = v,
the expected outcome is close to v.

Ely*|p(x) =v] =~ v
Formally, we quantify approximate calibration through expected calibration error.

» Definition 1 (ECE and Approximate calibration). We define the expected calibration error
(ECE) of a predictor p as

ECE(p) = E

p(x)

E [y—-p(x)]|.

yIp(x)

For a >0, a predictor p: X — [0,1] is a-calibrated if ECE(D) < a.

3 All our results can be extended to multi-class setting where there are finitely many distinct classes, but
we work with the binary setting for simplicity.
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A predictor p is perfectly calibrated if o = 0, so that Ep[y*|p(x) = v] = v. While the notion
of approximate calibration is well-defined for all predictors, checking for calibration efficiently
requires the predictor to be discretized. When efficiency is a consideration, we will assume
that the supported values of the predictor are multiples of some ¢ € [0, 1]; such assumptions
are standard in the calibration literature [7, 14]. For such predictors, one can check for
a-calibration given black-box access to p in time poly(1/«, 1/6), using labeled samples.

Following [11], we will allow for weighted notions of calibration, parametrized by a family
of weight functions W = {w : [0,1] — R}. Intuitively, we think of a weight function as
highlighting predictions belonging to certain regions of [0, 1].

» Definition 2. Let W = {w : [0,1] = R} be a family of weight functions. For a predictor
p: X —[0,1] we define

CE(W, p) = max |E[w(p(x))(y* - p(x))]|-

We collect some simple properties of weighted calibration in the next lemma, the proof is
in Appendix A.1. The first is that ECE is captured by considering weight functions bounded
in absolute value by 1. The second is that a-calibration implies a bound on CE(W, p) for
any family of weights W.

» Lemma 3.
1. Let WY denote the space of all functions w : [0,1] — [—1,1]. Then

ECE(p) = CEOW/, ).
2. If p is a-calibrated, then for any family W of weight functions,
CEW,p) < Wl a

We will sometimes use weaker notions of calibration. An important special case is where
we take W to be the set of all 1-Lipschitz weight functions bounded in the range [—1,1].
We say that a predictor p is a-smoothly calibrated if it CE(OWV;,p) < a.

Loss functions and decision functions. A loss function is a function £ : {0,1} x R — R.
For instance, we define the squared loss by f2(y,t) = ||y — t||3 and the £, loss by £,(y,t) =
ly —t[|b. We define by, the Lipschitz constant of £, to be the smallest constant so that
[0(y,t1) — (y, ta)| < belty — ta]. We let Lip, denote the set of all b-Lipschitz functions. We
say that a loss £ is convex, if for each y € {0,1}, ¢(y,t) is a convex function of ¢. In a generic
loss minimization problem, given a loss function ¢ and a class H of hypotheses, one tries to
find the hypothesis h € H which minimizes E[¢(y, h(x))]. We extend the definition of ¢ via
linearity so that the first argument can take values in [0,1]. We define

lp,t)y = E [y, t)]=p-L(1,t)+ (1 —p)-£0,¢).

y~Ber(p)

A decision function is a function k : [0,1] — R. We think of k as taking predictions
p € [0,1] from a predictor and mapping them to actions k(p) € R. Decision functions are
used to select a suitable action for a loss function, given a prediction of the distribution of
labels. For a loss ¢, we define the Bayes-optimal decision function k; : [0,1] — R by

ke(p) = argmin {(p, t).

teR

For proper losses like the squared error (y — t)2, k, is simply the identity function. For the
01 loss |y — t|, ke, (p) rounds p to the nearest value in {0, 1}.
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Hypotheses. A bounded hypothesis class is a family of functions C C {¢: X — [—1,1]}. We
will assume that C contains the constant function 1 and is closed under negation. Our results
will typically assume some learnability properties of the class C, such as having bounded
dimension and being weakly learnable. We define the class Lin(C, B) to contain all functions
of the form

h(z) = chc(x), Z |we| < B.
ceC ceC
Note that |h(z)| < B for all h € Lin(C, B). We will consider loss minimization problems with
the hypothesis class H = Lin(C, B) (e.g linear or logistic regression). Here B can be viewed
as a regularization parameter.

Multicalibration. Originally introduced as a form of “multi-group” fairness [14], multic-
alibration and related notions have seen application beyond fair prediction in recent years.
Intuitively, multicalibration requires that the predictions of p appear calibrated even when
we restrict our attention to structured subpopulations. [14] formalizes the collection of
subpopulations through a concept class C. Importantly, the multicalibration guarantee holds
simultaneously for every ¢ € C.

First, we define a weaker notion called multiaccuracy [14, 22], which requires that
predictions appear accurate in expectation (unbiased) over each ¢ € C.

» Definition 4. Let C = {c: X — [-1,1]} be a family of hypotheses and o > 0. We say that
the predictor p: X — [0,1] is (C, a)-multiaccurate if for every ¢ € C it holds that

Ble()(y" ~5()]| <o

Multicalibration strengthens both calibration and multiaccuracy, requiring approximate
calibration over each ¢ € C. We adapt the definitions in [14, 10] to our notion of approximate
calibration.

» Definition 5. Let C = {c: X — [—1,1]} be a family of hypotheses and o« > 0. We say that
the predictor p: X — [0,1] is (C, «)-multicalibrated if for every ¢ € C it holds that

E

p(x)

By averaging over the predicted values, we can see that (C,«)-multicalibration im-
plies (C, @)-multiaccuracy. Since we assume 1 € C, (C,«)-multicalibration also implies
a-calibration.

In defining multiaccuracy and multicalibration, we assume that the hypotheses are
bounded by 1 in absolute value. For general hypotheses families H, we define the multiaccuracy
error as

MAE (7, 5) = max [|Elh(x)(y* — ()] ]

We will generally reserve the term (C, «)-multiaccuracy to denote a bounded hypothesis

E [e(x)(y" —P(x))]
ylp(x)

<«

class C where MAE(C,p) < a. The hypotheses classes H most relevant to us are of the form
H = Lin(C, B). For these, we can derive bounds on the multiaccuracy error from bounds for
the base hypotheses in C, that decay linearly with B. The proof is via linearity of expectation.

» Lemma 6. If the predictor p is (C,a)-multiaccurate, then for B > 1 and H = Lin(C, B)
we have

MAE(H, ) < Ba.



P. Gopalan, L. Hu, M. P. Kim, O. Reingold, and U. Wieder

Omnipredictors. The notion of omniprediction introduced by [10] asks for a single predictor
which can do as well as the best hypothesis in a hypothesis class H for a family £ of loss
functions.

» Definition 7. We say that the predictor p: X — [0,1] is an (L, H,d)-omnipredictor if for
every loss ¢ € L and hypothesis h € H,

E[l(y", ke(p(x)))) < E[L(y", h(x))] + 0.

Outcome Indistinguishability. Outcome indistinguishability introduced by [6] provides
an elegant framework for reasoning about the quality predictions made by a predictor
p, by measuring their ability to fool statistical tests when nature’s labels y* and re-
placed by simulated labels y. The notion is parameterized by a class of algorithms
AC{a: X x{0,1} x [0,1] = [-1,1]}, whose goal is to “distinguish” Nature’s distribution
and the modeled distribution.

» Definition 8 (Outcome Indistinguishability). A predictor p: X — [0,1] is (A, )-outcome
indistinguishable if for every a € A,

E Jaxy"px)] - _E _la(xy p(x))]| <e.
(.y*)~D (x,)~D(p)
In fact, [6] consider various levels of OI which are defined by the degree of access to the
predictions made available to the tests. In their language, Definition 8 corresponds to
“sample-access OI” where the distinguisher receives access to x, p(x), and outcomes sampled
either from y* ~ Ber(p*(x)) or y ~ Ber(p(x)).

Also of relevance to us are special cases of this model. The first, so-called “no-access
OI” corresponds to a restriction where the distinguishers do not receive p(x), and simply
has access to either (x*,y*) ~ D or (x,¥) ~ D(p). Sample-access OI and No-access OI are
in tight correspondence with multicalibration and multiaccuracy, respectively [6]. Another
interesting special case of sample-access Ol is when we are given access to p(x) but not to
the point x. Here, the goal is to distinguish between (y*,p(x)) ~ D and y,p(x)) ~ D(p).
OI for this model is tightly connected to calibration: for boolean outcomes, it follows that
perfect calibration implies that these distributions are identical.

4  Outcome Indistinguishability for loss functions

We define notions of outcome indistinguishability for a predictor p with regard to distinguishers
that are derived from a loss function /. We allow distinguishers that take on real values, such
a function distinguishes two distributions if its expected values differ significantly between
them.

We define the notion of Loss OI formally. Here we compare the difference (between Nature
and the predictor’s model) in the expected loss suffered when using the hypothesis ¢ € C
compared to when using the Bayes-optimal decision function k, based on the predictor p.

» Definition 9 (Loss Ol). Let £ be a family of loss functions, C be a family of hypotheses,
and € > 0. For each L € L,c € C, define the distinguisher ug: {0,1} x [0,1] x X = R by

ey, P(x), z) = Uy, c(x)) — Ly, ke(p()). (8)

We say that the predictor p is (L,C,e)-loss-OI if for every loss £ € L and hypothesisc € C,

g[uf,c(y*aﬁ(x)7x)] - E~ [Uﬁ,c(yaﬁ(x)vx)} <e.
D(p)
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We define two additional, simpler notions. First is that of decision OI, which informally
states that applying the Bayes optimal decision functions to the predictions of p and computing
the expected loss cannot distinguish between y* and y.

» Definition 10 (Decision Ol). Let L be a family of loss functions, and € > 0. We say that
predictor p is (L,e)-decision-OlI if for every ¢ € L it holds that

E[l(y" ke(p(x))] = E_[6(y, ke(p(x))]| < e
D(p)

Our next notion is hypothesis OI, which stipulates that no hypothesis from C results in
significantly different expected loss whether the labels come from nature or the simulation.

» Definition 11 (Hypothesis Ol). Let £ be a family of loss functions, C a family of hypotheses
and € > 0. We say that the predictor p is (L,C,e)-hypothesis-OI for e > 0 if for loss £ € L
and every hypothesis ¢ € C it holds that

[E[L(y", e(x))] = B[{(y, c(x))]| <e.

We show that Loss Ol is implied by having both Decision OI and Hypothesis OI simul-
taneously.

» Lemma 12 (Decomposition lemma). If the predictor p: X — [0,1] is (L, e1)-decision-OI
and (L,C,e2)-hypothesis-OI, then it is (L,C,e1 + e2)-loss-Ol.

Proof. For each ¢/ € £ and ¢ € C we can write

[UZ C(y*,p(x),x)] [ (yvﬁ( ) )]
= E[l(y", c(x)) = Uy", ke(P(x)))] — E[l(y, c(x)) — €3, ke(p(x)))]
= E[(t(y", ce(x))] — E[U(y, c(x))] + E[((y, k(p(x)))] — E[t(y", ke(p(x)))]- 9)

Hence by the triangle inequality,

[Eur,(y" P(x), x)] = Efug,c(y, P(x), ¥)]| < [E[(((y", ¢(x))] = E[((y, c(x))]|
+ B[, k(P(x))))] — Elt(y", ke(p(x)))]]

< e+ eo.
where the first term is bounded by hypothesis-OI and the second is bounded by decision-
OL <
4.1 Loss-Ol implies Omniprediction
Our interest in the notion of loss-OI stems from the fact that it implies omniprediction.

» Proposition 13 (Formal Restatement of Proposition 1). If the predictor p : X — [0,1] is
(L,C,e)-loss-OlI, then it is an (L,C,e)-omnipredictor.

Proof. A consequence of loss-Ol is that for every £ € £ and ¢ € C, we have
Elug,c(y", p(x),x)] = Elu,o(¥, p(x),x)] — & (10)
But for every z € X, by the definition of the Bayes-optimal decision function k, we have

Efug,(y, p(x),x)[x = 2] = E[{(y, c(x)) = (¥, ke(P(x))[x = 2] = 0
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since k¢(p(z)) is defined to be action that minimizes expected loss for y ~ Ber(p(x)).

Averaging over all x ~ D gives
Efug.(y,p(x),x)] = E[((y, c(x))] — E[£(y, ke(p(x))] = 0.
Plugging this into Equation (10) gives
Efug,(y",p(x),%)] = E[l(y", c(x)) = £(y", ke(p(x))] = —e.
Rearranging, we get that for every £ € L, c € C,
E[l(y", ke(p(x)))] < E[l(y", c(x))] +e.
hence p is an (£, C, £)-omnipredictor. <

The converse of this statement is not true. We show that omniprediction does not imply
Loss-OlI for any class £ than includes the ¢4 loss. We prove an even stronger statement, that
multicalibration does not imply loss-OI. This statement is stronger because of the result of

[10] that multicalibration implies omniprediction for a broad class of convex loss functions.

We define the ¢, loss for all p > 1 as
£o(y,2) = ~ly — 2I7
Yy,z)= -y —=
b P

where the normalization by p makes it 1-Lipschitz. Let L, = {¢,},>1. We prove the following
result which separates multicalibration from loss OI.

» Theorem 14. There exist a distribution D, a class C and a predictor p such that
p is (C,0)-multicalibrated, so it is an (L,,C,0)-omnipredictor.
D is not ({£4},C,€)-loss OI for any e < 4/9.

The proof which is given in Appendix A.2 uses Fourier analysis on the Boolean cube.

4.2 Loss Ol from Calibration and Multiaccuracy

In order to analyze the notions of OI, we need to compare the expected loss under different
distributions on labels for a certain action. The notion of discrete derivative of a loss function
will aid these comparisons.

» Definition 15. Given a loss £:{0,1} x R — R, define the function 9 : R — R as
oe(t) = £(1,t) — £(0,1).
The following lemma justifies the analogy to partial derivatives.

» Lemma 16. For random variables y,y’ € {0,1}, and t € R we have

E[l(y,t)] - E[t(y',1)] = El(y — y")oe(1)]. (11)
Proof. By definition

Ell(y,t)] = Elyl(1,t) + (1 - y)(0,1)] = E[ydL(t)] + £(0,1)

We write a similar expression for y’ and subtract. <
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We now present characterizations of decision-OI and hypothesis-OI in terms of weighted
calibration and multiaccuracy errors for suitably defined classes of functions. Combined
with Lemma 12, this gives a decomposition of loss OI as a calibration condition and a
multiaccuracy condition.

» Theorem 17. Let L be a family of loss functions and C be a hypothesis class.

1. Define the family of hypotheses 0L o C = {0 o c}lier cec. The predictor p: X — [0,1] is
(L,C,e1)-hypothesis-OI where e = MAE(C’, D).

2. Define the family of weight functions W' = {0 o ky}ecr. The predictor p: X — [0,1] is
(L, e2)-decision-OI where o = CE(W', D).

Proof. We first prove Part (1). Conditioned on x = z, by Equation (11) with ¢ = ¢(z) we
can write

E[((y, c(x))[x = 2] = E[l(y", c(x))[x = 2] = E[(p(x) — y*)0l(c(x))|[x = ].
Hence taking expectations over x and absolute values,

E[U(y, e(x))] — E[6(y", e(x))]| < max [E[(p(x) —y")0¢(c(x))]].

The LHS corresponds to hypothesis OI, while the RHS to C’ multiaccuracy error for ¢’ =
{0 o c}.
We now consider Part (2). Conditioned on x = x, by Equation (11) with ¢t = k,(p(x)),

E[((y, ke(p()))[x = 2] = E[U(y", ke(p(2)))[x = ] = E[(p(x) — y*)0l(ke(p()))[x = x].
We now take expectations over x, followed by absolute values to get
E[U(y, ke(p(2)))] — ElL(y", ke(p(2)))] = E[(p(z) — y*)0l(ke(p(x)))[x = z].

The LHS corresponds to loss-OI while the RHS measures the weighted calibration error
for W = {(% o kg}geg. <

Tt is easy to see that the characterizations above are tight. For instance if MAE(C’, p)
is larger than &', then there exist a c, £ pair that distinguishes between y* and y with
advantage ¢’
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