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Abstract

In many learning theory problems, a central role is played by a hypothesis class: we might assume

that the data is labeled according to a hypothesis in the class (usually referred to as the realizable

setting), or we might evaluate the learned model by comparing it with the best hypothesis in the

class (the agnostic setting). Taking a step beyond these classic setups that involve only a single

hypothesis class, we study a variety of problems that involve two hypothesis classes simultaneously.

We introduce comparative learning as a combination of the realizable and agnostic settings in

PAC learning: given two binary hypothesis classes S and B, we assume that the data is labeled

according to a hypothesis in the source class S and require the learned model to achieve an accuracy

comparable to the best hypothesis in the benchmark class B. Even when both S and B have inĄnite

VC dimensions, comparative learning can still have a small sample complexity. We show that the

sample complexity of comparative learning is characterized by the mutual VC dimension VC(S, B)

which we deĄne to be the maximum size of a subset shattered by both S and B. We also show a

similar result in the online setting, where we give a regret characterization in terms of the analogous

mutual Littlestone dimension Ldim(S, B). These results also hold for partial hypotheses.

We additionally show that the insights necessary to characterize the sample complexity of

comparative learning can be applied to other tasks involving two hypothesis classes. In particular,

we characterize the sample complexity of realizable multiaccuracy and multicalibration using the

mutual fat-shattering dimension, an analogue of the mutual VC dimension for real-valued hypotheses.

This not only solves an open problem proposed by Hu, Peale, Reingold (2022), but also leads to

independently interesting results extending classic ones about regression, boosting, and covering

number to our two-hypothesis-class setting.
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1 Introduction

The seminal theoretical framework of PAC learning [75] provides a formalization of machine

learning that allows for rigorous theoretical analysis. In PAC learning, a learning algorithm

(learner) receives individual/label pairs (x, y) ∈ X × ¶−1, 1} as input data, drawn i.i.d. from

an unknown distribution µ. The learnerŠs goal is to output a model f : X → ¶−1, 1} that

assigns each individual in X a binary label. The performance of the model f is measured by

its classiĄcation error,
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error(f) := Pr(x,y)∼µ[f(x) ̸= y].

Because the classiĄcation error is evaluated over the entire distribution µ, a good learner

must go beyond simply memorizing the individuals and labels seen in the input data and be

able to correctly predict the labels of unseen individuals as well. This can be a difficult task,

and to make it possible to achieve a meaningfully small error given a limited amount of input

data, additional assumptions or relaxations are needed. This leads to two standard settings

of PAC learning: realizable and agnostic learning. In realizable learning, we assume that all

data points are labeled according to an unknown hypothesis h : X → ¶−1, 1}, i.e., y = h(x)

for every data point (x, y) drawn from µ, and we assume that h belongs to a hypothesis

class H known to the learner. Under this assumption, realizable learning requires the output

model f to achieve a low classiĄcation error (error(f) ≤ ε) with large probability. In agnostic

learning there is also a hypothesis class H known to the learner, but it does not impose

any assumption on the data. Instead, we aim for a relaxed goal speciĄed by H: achieving

error(f) ≤ infh∈H error(h) + ε with large probability.

At a high level, both realizable and agnostic learning involve the introduction of a

hypothesis class H, but H plays a very different role in each setting. In realizable learning, H

constrains the potential source hypotheses that might determine the ground-truth labeling of

the data. In contrast, agnostic learning places no assumptions on the ground-truth labeling,

but instead uses H as a benchmark class and only requires the learner to perform well

compared to the best benchmark hypothesis in H. Thus, realizable and agnostic learning

highlight two natural ways to simplify a learning task: constrain the potential hypotheses

that the ground-truth labeling is generated from, or constrain the set of hypotheses that the

output model is compared against.

Our work originates from the observation that these two ways of simplifying a learning

task need not be mutually exclusive. Instead, they can be treated as two ŞknobsŤ that can

be simultaneously adjusted to create new hybrid learning tasks. For any two hypothesis

classes S and B, we can deĄne a learning task by letting them play the two roles of H in the

realizable and agnostic settings, respectively. That is, we assume that there exists a source

hypothesis s ∈ S such that y = s(x) for every data point (x, y) drawn from µ, and we aim

for achieving, with large probability, an error comparable to the best benchmark hypothesis

b ∈ B: error(f) ≤ minb∈B error(b) + ε. We term this hybrid notion comparative learning.

Our research reveals that the notion of comparative learning is far more insightful than

just a thought experiment: it serves as an unexplored playground for the study of sample

complexity, and the new connections we establish to characterize the sample complexity of

comparative learning can be fruitfully applied to open questions about existing learning

tasks. Here, Şsample complexityŤ refers to one of the key characteristics of every learning

task: the minimum number of data points needed by a learner to solve the task. VC theory

provides a thorough understanding of the sample complexity of classic PAC learning in both

the realizable and agnostic settings: in both cases it is characterized by the VC dimension of

the hypothesis class H, deĄned as the maximum size of a subset of X on which all possible

labelings of the individuals can be realized by some hypothesis in H (we say a set is shattered

by H when this condition holds; see Section 2 for the exact deĄnition) [76, 17, 63]. Since then,

understanding the sample complexity of a wide variety of new and existing learning tasks

has remained an exciting area of research. These tasks include online learning [64, 13, 1, 26],

reliable and useful learning [69, 60, 59, 61], statistical query learning [53, 15], learning real-

valued hypotheses [56, 2, 11], multiclass learning [12, 19], learning partial hypotheses [66, 3],
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active learning [7, 8, 52, 43, 44, 42], property testing [30, 55, 14], differentially private learning

[4, 20, 27, 73, 50, 31], bounded-memory learning [32], and online learning in the smoothed

analysis model [38, 39]. A commonality of these learning tasks is that each of them only

explicitly involves a single hypothesis class, and thus the sample complexity is studied in

terms of complexity measures of single hypothesis classes, such as the VC dimension, the

Littlestone dimension, the statistical query dimension, the fat-shattering dimension, and

the DS dimension. To tightly characterize the sample complexity of comparative learning

where a pair of hypothesis classes S and B are involved, it is not sufficient to apply existing

complexity measures to S and B separately (see Section 1.1 for a more detailed discussion).

Instead, we must create new notions that measure the complexity of the interaction between

the two classes. We show that the correct way to measure the complexity of this interaction

in comparative learning is to look at the subsets of X that S and B both shatter, and we

deĄne the mutual VC dimension, VC(S, B), to be the maximum size of such subsets. We

show that the mutual VC dimension gives both upper and lower bounds on the sample

complexity of comparative learning. Similarly, in an online analogue of comparative learning,

we deĄne the mutual Littlestone dimension and prove upper and lower regret bounds.

Our sample complexity characterization for comparative learning turns out to be a

powerful tool for studying the sample complexity of other tasks involving two hypothesis

classes. In fact, our interest in comparative learning is derived in part from open questions

related to the sample complexity of realizable multiaccuracy (MA) and multicalibration

(MC) [41, 57, 48]. In these tasks, the hypothesis class H plays the same role as in realizable

learning, while the classiĄcation error error(f) is replaced with an alternative error measure

MA-errorD(f) or MC-errorD(f) speciĄed by an additional hypothesis class D that is sometimes

called the distinguisher class.1 For example, the multiaccuracy error MA-errorD(f) is deĄned

as follows:

MA-errorD(f) := supd∈D♣E(x,y)∼µ[(f(x) − y)d(x)]♣,

where the supremum is over all the distingushers d : X → [−1, 1] in the distinguisher class

D. As demonstrated by Hu, Peale and Reingold [48], the freedom in choosing the class D

allows the error to adapt to different goals that may arise in practice.

The introduction of the distinguisher class D makes sample complexity characterization

challenging because the characterization needs to depend on both the class H in realizable

learning and the additional distinguisher class D. Hu, Peale and Reingold [48] give a sample

complexity characterization for realizable multiaccuracy using a particular metric entropy

deĄned for every pair (H, D) (see Section 1.2 for more details), but their characterization is

in the distribution-specific setting where the marginal distribution µ♣X of x in a pair (x, y)

generated from the data distribution µ is Ąxed and known to the learner. In contrast, the

VC dimension characterization for PAC learning is in the distribution-free setting where the

learner has no explicit knowledge about µ♣X and must perform well for every µ♣X . The sample

complexity characterization for realizable multiaccuracy in the distribution-free setting is left

as an open question by Hu et al. [48].

1 The name Şdistinguisher classŤ comes from the observation that the no-access outcome indistinguishability
task studied in [48] can be equivalently framed as multiaccuracy (see Section 2.1.2 in [48]). In addition
to the difference in the error from realizable learning, realizable multiaccuracy and multicalibration
also allow the hypothesis class H and the model f to be real-valued (see Section 1.2 and Section 5).
It is also possible to replace the error in agnostic learning with MA-error and MC-error to get agnostic
multiaccuracy and agnostic multicalibration, but Hu et al. [48] show that the sample complexity of
agnostic multiaccuracy exhibits a non-monotone dependence on the complexity of the distinguisher
class D. We focus on deĄning multiaccuracy and multicalibration in the realizable setting throughout
the paper.
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In this work, we answer this open question by characterizing the sample complexity

of realizable multiaccuracy and multicalibration in the distribution-free setting using the

mutual fat-shattering dimension, which we deĄne similarly to the mutual VC dimension

but for two real-valued hypothesis classes. Our results on comparative learning turn out

to be especially useful for obtaining this characterization because there is an intimate

relationship between achieving the comparative learning goal error(f) ≤ minb∈B error(b) + ε

and achieving a low multiaccuracy (or multicalibration) error: MA-errorB(f) ≤ ε. Here, the

benchmark class B in comparative learning plays the role of the distinguisher class D in

multiaccuracy and multicalibration. This relationship has been observed in [41] and [34]

in a single-hypothesis-class setting, i.e., without the assumption that the labels from the

data distribution are generated according to a hypothesis in a pre-speciĄed source class. We

generalize this relationship to our two-hypothesis-class setting by showing a reduction from

realizable multiaccuracy and multicalibration to comparative learning while preserving the

interaction between the source and distinguisher/benchmark classes. This reduction leads to

a number of new learning tasks that also involve a pair of hypothesis classes. SpeciĄcally, the

reduction is accomplished via an intermediate task which we call correlation maximization,

and we show that with some adaptation the reduction also allows us to efficiently boost a weak

comparative learner to a strong one. Once we achieve multiaccuracy and multicalibration,

we apply the omnipredictor result of Gopalan et al. [34] to solve comparative regression, an

analogue of comparative learning but with real-valued hypotheses and general convex and

Lipschitz loss functions. We believe that there is a rich collection of learning tasks where

two or more hypothesis classes may interact in interesting ways, and our work is just a small

step towards a better understanding of a tiny fraction of these tasks.

1.1 Sample Complexity of Comparative Learning

As mentioned earlier, VC theory has provided a thorough understanding of the sample

complexities of both realizable and agnostic learning.

For any binary hypothesis class H, VC theory characterizes the sample complexity of

realizable and agnostic learning using the VC dimension VC(H) of the hypothesis class

H, a combinatorial quantity with a simple deĄnition: the maximum size of a subset of X

shattered by H (see Section 2 for exact deĄnition) [76, 17, 63]. Moreover, the optimal sample

complexity in both the realizable and agnostic settings can be achieved by a simple algorithm:

the empirical risk minimization algorithm (ERM), which outputs the hypothesis in H with

the minimum empirical error on the input data points.

Because our notion of comparative learning combines these two settings, it would seem

natural to use techniques from VC theory to understand its sample complexity as well.

Compared to realizable learning for S, comparative learning for (S, B) has a relaxed goal

(speciĄed by the benchmark class B), and thus any learner solving realizable learning for S

also solves comparative learning for (S, B). This gives us a sample complexity upper bound

in terms of VC(S) for comparative learning. Similarly, any learner solving agnostic learning

for B also solves comparative learning for (S, B) because comparative learning only makes

additional assumptions on data (speciĄed by the source class S), so we get another sample

complexity upper bound in terms of VC(B).

However, perhaps surprisingly, these sample complexity upper bounds provided by the

classic VC theory are not optimal. Even when VC(S) and VC(B) are both inĄnite, comparative

learning may still have a Ąnite sample complexity. Imagine that the domain X of individuals

is partitioned into two large subsets X1 and X2. Suppose the source class S consists of all

binary hypotheses s : X → ¶−1, 1} satisfying s(x) = 1 for every x ∈ X1, and the benchmark
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s ∈ S
<latexit sha1_base64="tyN+3lMDM1RwKOwUM16OcBP6j14="></latexit>

b ∈ B
<latexit sha1_base64="RSiAk30Oo309VBQ1NMr8vDz+xYM=">AAACgnicbZHNTuMwEMfdAAvbhV0+jlwsChJCqEqaFfTAAcGBPbKrLVRqKuQ4E7Cwnch2gMjyS3CFF+NtcEsOUBjJ1l8zvxmPZ9KSM23C8KUVzM0vfFtc+t7+sbzy89fq2vqFLipFYUALXqhhSjRwJmFgmOEwLBUQkXK4TG9PJ/HLO1CaFfK/qUsYC3ItWc4oMd413E4TJvHJ9tVqJ+yGU8OfRdSIDmrs/GqtlSVZQSsB0lBOtB5FYWnGlijDKAfXTioNJaG35BpGXkoiQI/ttGGHd7wnw3mh/JEGT73vMywRWtci9aQg5kbPxibOr2KjyuT9sWWyrAxI+vZQXnFsCjz5Pc6YAmp47QWhivleMb0hilDjZ9RuJxnkfpDTfqyoU16Bs//OTpwN93EU9f110HezmIKsoXrx4T6Of3ss9pSEe1oIQWRmkwdnbfKh7oObQer3yKRm7ZzfSzS7hc/ioteN4m7vb69z3G82tIQ20RbaRRE6RMfoDzpHA0QRR4/oCT0H88FeEAXxGxq0mpwN9MGCo1fOr8Or</latexit>

f solving CompL
<latexit sha1_base64="64Ai2vOxmMQlYOBzwXqlPk8gbA0="></latexit>

Figure 1 An example where comparative learning requires no data points when VC(S) and VC(B)

are both inĄnite. The left two images show examples of hypotheses in S and B, both of which are

very complex, but on disjoint portions of the domain. In this case, a learner that always outputs

the model f in the rightmost image solves comparative learning because f always achieves smaller

or equal error compared to any benchmark hypothesis b ∈ B when the ground-truth labelling is

generated by a source hypothesis s ∈ S. See in-text description for more details.

ERM for S
<latexit sha1_base64="JOpXYQNrckAwdsIv00mUl8eCT4c="></latexit>

ERM for B
<latexit sha1_base64="8ly+c7uO0y8x82V5IIWIEh1TmwQ="></latexit>

s ∈ S
<latexit sha1_base64="tyN+3lMDM1RwKOwUM16OcBP6j14=">AAACgnicbZHNThsxEMedhdIQaAvtkYtFQEIVinazVcmhB9Qe4MhXIFI2Ql7vLFjY3pXthawsvwTX9sX6NjhhDxAYydZfM78Zj2fSkjNtwvB/K1ha/rDysb3aWVv/9PnLxubXS11UisKQFrxQo5Ro4EzC0DDDYVQqICLlcJXe/ZnFr+5BaVbIC1OXMBHkRrKcUWK8a7SjEybx+c71RjfshXPDb0XUiC5q7OR6s5UlWUErAdJQTrQeR2FpJpYowygH10kqDSWhd+QGxl5KIkBP7Lxhh3e9J8N5ofyRBs+9LzMsEVrXIvWkIOZWL8Zmzvdi48rkg4llsqwMSPr8UF5xbAo8+z3OmAJqeO0FoYr5XjG9JYpQ42fU6SQZ5H6Q836sqFNegbNnR7+dDfdxFA389XPgFjEFWUP144N9HP/wWOwpCQ+0EILIzCZTZ23yqu7ULSD1S2RWs3bO7yVa3MJbcdnvRXGvf9rvHg6aDbXRFtpGeyhCB+gQHaMTNEQUcfSI/qJ/wXLwPYiC+BkNWk3ON/TKgl9PFkPDzQ==</latexit>

data points seen by learner
<latexit sha1_base64="se6riZlleTJjPHjKs/fgaDx68fE="></latexit>

Figure 2 Empirical risk minimization (ERM) may fail to give us optimal sample complexity in

the same setting as Figure 1, where S and B are both very complex, but on disjoint domains. When

the source hypothesis s ∈ S is the constant function shown in the left image, the right two images

show examples of output models of ERM when run on S and B. Neither model is guaranteed to

achieve the low error required by comparative learning. See in-text description for more details.

class B consists of all binary hypotheses b : X → ¶−1, 1} satisfying b(x) = 1 for every x ∈ X2.

Both VC(S) and VC(B) can be large and even inĄnite, but comparative learning in this case

requires no data points: the learner can simply output the model f that maps every x ∈ X

to 1 because no benchmark hypothesis in B can achieve a smaller error than f when the

data points (x, y) ∼ µ satisfy y = s(x) for a source hypothesis s ∈ S (see Figure 1). Beyond

demonstrating that comparative learning may require far fewer samples than what our initial

naïve upper bound might suggest, this example also shows that the standard empirical risk

minimization (ERM) algorithm used for PAC learning does not give us the optimal sample

complexity for comparative learning. Assume that the source hypothesis s ∈ S maps every

x ∈ X to 1 and µ is the uniform distribution over X × ¶1}. In this case minb∈B error(b) = 0

and thus comparative learning requires a low classiĄcation error error(f) ≤ ε with large

probability. We have shown that this requirement can be achieved without any input data

points, but the ERM algorithm cannot achieve this requirement in general unless there

are many input data points: there can be many hypotheses in S and B that achieve zero

empirical error on the input data points, but when the data points are few, most of such

hypotheses do not achieve low classiĄcation error over the entire distribution µ (see Figure 2).

The example above shows that the VC dimensions VC(S) and VC(B) alone are not

informative enough to characterize the sample complexity of comparative learning. These VC

dimensions only tell us the complexity of S and B separately, but we also need to know the

complexity of their interaction. We measure the complexity of this interaction by deĄning

ITCS 2023
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the mutual VC dimension VC(S, B) to be the maximum size of a subset of X shattered by

both S and B, and we give a tight characterization for the sample complexity of comparative

learning in terms of VC(S, B).

As discussed earlier, new ideas are needed to prove this sample complexity characterization.

In particular, we need to design a learner that is different from the ERM algorithm. Our

technique is based on an interesting connection to learning partial binary hypotheses, a

learning task considered Ąrst in [9, 66] and studied more systematically in a recent work

by Alon, Hanneke, Holzman and Moran [3]. A partial binary hypothesis is a function

h : X → ¶−1, 1, ∗} that may assign some individuals x ∈ X the undefined label h(x) = ∗.

The notion of partial hypotheses is motivated in previous work either as an intermediate

step towards understanding real-valued hypotheses or as a way to describe data-dependent

assumptions that could not be captured by the standard PAC learning model. In this

work, we show that partial hypotheses have yet another application and can be used to

express the interaction between a source hypothesis s ∈ S and a benchmark hypothesis

b ∈ B in comparative learning: we construct an agreement hypothesis as,b which is a partial

hypothesis assigning the undeĄned label ∗ to an individual x whenever s(x) is different

from b(x), and giving the same label to x as s and b if s(x) equals b(x). We show that

comparative learning for (S, B) can be reduced to agnostically learning the class AS,B which

consists of all the partial hypotheses as,b for s ∈ S and b ∈ B, and conversely, we show

that realizable learning for AS,B reduces to comparative learning for (S, B). Our sample

complexity characterization for comparative learning then follows immediately from the

results by Alon et al. [3] for learning partial hypotheses. Moreover, our characterization

holds even when the source hypotheses and benchmark hypotheses themselves are partial.

We also show that this connection between comparative learning and learning the agreement

hypotheses as,b extends to the online setting, allowing us to show a regret characterization

for comparative online learning.

Our deĄnition of the mutual VC dimension is clearly symmetric: VC(S, B) = VC(B, S),

and thus our sample complexity characterization for comparative learning reveals an intriguing

phenomenon which we call sample complexity duality: comparative learning for (S, B) and

comparative learning for (B, S) always have similar sample complexities. In other words,

swapping the roles of the source class and the benchmark class does not change the sample

complexity by much. Previously in [48], Hu et al. showed that this phenomenon holds for

realizable multiaccuracy in the distribution-speciĄc setting, drawing an insightful connection

to a long-standing open question in convex geometry: the metric entropy duality conjecture

[68, 18, 6, 5, 67]. Our sample complexity characterizations imply that sample complexity

duality also holds in the distribution-free setting for realizable multiaccuracy as well as

multicalibration. We also show that sample complexity duality does not hold for many learning

tasks that we consider, including distribution-speciĄc comparative learning, distribution-

speciĄc realizable multicalibration, correlation maximization, and comparative regression.

In Table 1 we list whether sample complexity duality holds in general for every two-class

learning task we consider in this paper in both the distribution-speciĄc and distribution-free

settings.

1.2 Multiaccuracy and Multicalibration

A direct motivation of our work is a recent paper by Hu, Peale, and Reingold [48] that studies

a learning task called multiaccuracy, which was introduced in [41] and [57] originally as a

notion of multi-group fairness. In multiaccuracy, the learned model (presumably making

predictions about people) is required to be accurate in expectation when conditioned on
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Table 1 Duality (yes) VS non-duality (no). *The sample complexity duality result in [48] for

distribution-speciĄc multiaccuracy assumes that all hypotheses are total.

Distribution-speciĄc Distribution-free

Comparative learning no yes

Correlation maximization no no

Realizable multiaccuracy yes* [48] yes

Realizable multicalibration no yes

Comparative regression no no

each sub-community in a rich class (possibly deĄned based on demographic groups and their

intersections). This ensures that the predictions made by the model are not systematically

biased in any of the sub-communities.

Taking a broad perspective beyond fairness, Hu et al. [48] view multiaccuracy as providing

a general, meaningful, and Ćexible performance measure for prediction models, and study

PAC learning with the usual classiĄcation error replaced by this new performance measure

from multiaccuracy. To be speciĄc, let us consider a real-valued source hypothesis class S

consisting of source hypotheses s : X → [−1, 1]. We use S to replace the binary hypothesis

class H in realizable learning and assume that every input data point (x, y) ∈ X × [−1, 1] is

generated i.i.d. from a distribution µ satisfying E(x,y)∼µ[y♣x] = s(x) for an unknown s ∈ S.

Suppose a learner which tries to learn s given the input data points produces an output

model f : X → [−1, 1]. This is a more general setting than binary classiĄcation because we

allow f(x) and s(x) to take any value in the interval [−1, 1], and accordingly, let us use the

ℓ1 error ℓ1-error(f) := Ex∼µ♣X
[♣f(x) − s(x)♣] as a generalization of the classiĄcation error (as

in, e.g., [11]). The multiaccuracy error of f is deĄned to be

MA-errorµ,B(f) := supb∈B ♣E(x,y)∼µ[(f(x) − y)b(x)]♣, (1)

where B is a distinguisher class consisting of distinguishers b : X → [−1, 1]. Here we use B

(rather than D) to denote the distinguisher class because a key idea we use in our work is to

relate the distinguisher class to the benchmark class in comparative learning. Due to our

assumption E(x,y)∼µ[y♣x] = s(x), the multiaccuracy error can be written equivalently as

MA-errorµ,B(f) = supb∈B ♣Ex∼µ♣X
[(f(x) − s(x))b(x)]♣.

The multiaccuracy error is a generalization and relaxation of the ℓ1 error in that if we

choose the distinguisher class B to contain all distinguishers b : X → [−1, 1], then the two

errors are equal: MA-errorB(f) = ℓ1-error(f). The multiaccuracy error can become a more

suitable performance measure than the ℓ1 error if we customize B to reĆect the goal we

want to achieve: we can choose B to consist of indicator functions of demographic groups to

achieve a fairness goal, and we can also choose B to speciĄcally catch serious errors that we

want to avoid (see [48] for more discussions).

The sample complexity of achieving a small ℓ1-error(f) has been studied in [56], [2]

and [11], who give a characterization in the distribution-free setting using the fat-shattering

dimension of the source class S, deĄned as the maximum size of a subset of X fat-shattered

by S (see Section 2.1 for a precise deĄnition). Their results are further improved in [9, 10]

and [62]. For a general distinguisher class B, the sample complexity of achieving a small

MA-errorB(f) depends on both classes S and B, and thus it becomes more challenging

to characterize. In the distribution-speciĄc setting where µ♣X is Ąxed and known to the

ITCS 2023
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learner, Hu et al. [48] characterize the sample complexity of achieving MA-errorB(f) ≤ ε

using log Nµ♣X ,B(S, Θ(ε)): the metric entropy of S w.r.t. the dual Minkowski norm deĄned

based on B and µ♣X . They also give an equivalent characterization using log Nµ♣X ,S(B, Θ(ε))

with the roles of S and B swapped. In the distribution-free setting where µ♣X is not known

to the learner, they only give a sample complexity characterization when S contains all

functions s : X → [−1, 1] using the fat-shattering dimension of B, and they leave the case of

a general source class S as an open question. In this work, we answer this open question by

giving a sample complexity characterization for arbitrary S and B in the distribution-free

setting using the mutual fat-shattering dimension of (S, B), which we deĄne to be the largest

size of a subset of X fat-shattered by both S and B.

To prove this sample complexity characterization for distribution-free realizable multiac-

curacy, we need a lower and an upper bound on the sample complexity. While we prove the

lower bound using relatively standard techniques, the upper bound is much more challenging

to prove. We prove the upper bound by reducing multiaccuracy for (S, B) to comparative

learning for multiple pairs of binary hypothesis classes (S′, B′) with VC(S′, B′) bounded

in terms of the mutual fat-shattering dimension of (S, B). We implement this reduction

via an intermediate task which we call correlation maximization, and the main challenge

here is that our learner L solving comparative learning for (S′, B′) is limited by the source

class S′ and can only handle data points realizable by a binary hypothesis in S′. Therefore,

we must carefully transform the data points from multiaccuracy to ones acceptable by the

comparative learner L. We implement this transformation by combining a rejection sampling

technique with a non-uniform covering type of technique used in a recent work by Hopkins,

Kane, Lovett, and Mahajan [45]. The difference between the real-valued class B and the

binary class B′ also poses a challenge, which we solve by taking multiple choices of B′ and

show that, roughly speaking, the convex hull of the chosen B′ approximately includes B.

Our characterization using the mutual fat-shattering dimension holds not only for mul-

tiaccuracy, but also for a related task called multicalibration [41]. Here, we replace MA-error

by the multicalibration error:

MC-errorµ,B(f) := sup
b∈B

∑

v∈V

♣E(x,y)∼µ[(f(x) − y)b(x)1(f(x) = v)]♣

= sup
b∈B

∑

v∈V

♣Ex∼µ♣X
[(f(x) − s(x))b(x)1(f(x) = v)]♣, (2)

where V is the range of f which we require to be countable. Multicalibration provides a

strong guarantee: Gopalan et al. [34] show that it implies a notion called omnipredictors,

allowing us to use our multicalibration results to show a sample complexity upper bound for

comparative regression.

Our results imply that multiaccuracy and multicalibration share the same sample com-

plexity characterization in the distribution-free realizable setting. In comparison, we show

that this is not the case in the distribution-speciĄc setting where there is a strong sample

complexity separation between them (see details in full paper). This strong separation only

appears in our two-hypothesis-class setting: if the source class S contains all hypotheses

s : X → [−1, 1], then realizable multiaccuracy and multicalibration share the same sample

complexity characterization (the metric entropy of B in the distribution-speciĄc setting, and

the fat-shattering dimension of B in the distribution-free setting).

1.3 Our Contributions

Below we summarize the main contributions of our paper.
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1.3.1 Comparative Learning

We introduce the task of comparative learning (DeĄnition 3) by combining realizable learning

and agnostic learning. SpeciĄcally, we deĄne comparative learning for any pair of hypothesis

classes S and B each consisting of partial binary hypotheses h : X → ¶−1, 1, ∗} (denoted by

S, B ⊆ ¶−1, 1, ∗}X). As in realizable learning, we assume the learner receives data points

(x, y) ∈ X × ¶−1, 1} generated i.i.d. from a distribution µ satisfying Pr(x,y)∼µ[s(x) = y] = 1

for a source hypothesis s ∈ S (in particular, Pr(x,y)∼µ[s(x) = ∗] = 0). As in agnostic learning,

we require the learner to output a model f : X → ¶−1, 1} satisfying

Pr(x,y)∼µ[f(x) ̸= y] ≤ infb∈BPr(x,y)∼µ[b(x) ̸= y] + ε (3)

with probability at least 1 − δ.

We characterize the sample complexity of comparative learning, which we denote by

#CompL(S, B, ε, δ), using the mutual VC dimension VC(S, B) which we deĄne as the largest

size of a subset X ′ ⊆ X shattered by both S and B (see Section 2.1 for the formal deĄnition

of shattering). In Theorem 4, assuming ε, δ ∈ (0, 1/4) and VC(S, B) ≥ 2, we show a sample

complexity upper bound of

#CompL(S, B, ε, δ) ≤ O



VC(S, B)

ε2
log2



VC(S, B)

ε



+
1

ε2
log



1

δ



, (4)

and a lower bound of

#CompL(S, B, ε, δ) ≥ Ω



VC(S, B)

ε
+

1

ε
log



1

δ



. (5)

These bounds imply that the sample complexity of comparative learning is Ąnite if and

only if the mutual VC dimension VC(S, B) is Ąnite. We show a similar sample complexity

characterization for a learning task involving an arbitrary number of hypothesis classes in

the full version of the paper.

1.3.2 Correlation Maximization

As an intermediate step towards characterizing the sample complexity of realizable mul-

tiaccuracy and multicalbration, we extend comparative learning to real-valued hypothesis

classes by introducing correlation maximization (DeĄnition 10). Here, the hypothesis classes

S and B can contain any partial real-valued hypotheses h : X → [−1, 1] ∪ ¶∗} (denoted by

S, B ⊆ ([−1, 1] ∪ ¶∗})X), and every data point (x, y) ∈ X × [−1, 1] can have a label y taking

any value in [−1, 1]. We assume that the data points are drawn i.i.d. from a distribution µ

over X × [−1, 1] satisfying E(x,y)∼µ[y♣x] = s(x) for a source hypothesis s ∈ S, and we require

the output model f : X → ¶−1, 1} to satisfy

E(x,y)∼µ[yf(x)] ≥ supb∈BE(x,y)∼µ[y ♢ b(x)] − ε

with probability at least 1 − δ. Here, we deĄne the generalized product u1 ♢ u2 for u1 ∈ R

and u2 ∈ [−1, 1] ∪ ¶∗} such that u1 ♢ u2 = u1u2 if u2 ∈ [−1, 1], and u1 ♢ u2 = −♣u1♣ if

u2 = ∗. The requirement that the output model f : X → ¶−1, 1} produces binary values

f(x) ∈ ¶−1, 1} rather than real values f(x) ∈ [−1, 1] is naturally satisĄed by our learners for

correlation maximization, but it is not essential to any of our results related to correlation

maximization. In the special case where S and B are both binary, correlation maximization

and comparative learning become equivalent for values of ε differing by exactly a factor of 2,

i.e., the goal (3) of comparative learning can be equivalently written as

E(x,y)∼µ[yf(x)] ≥ supb∈BPr(x,y)∼µ[y ♢ b(x)] − 2ε.

ITCS 2023
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We give an upper bound on the sample complexity of correlation maximization using the

mutual fat-shattering dimension fatη(S, B) which we deĄne as the largest size of a subset

X ′ ⊆ X that is η-fat shattered by both S and B (see Section 2.1 for the deĄnition of fat

shattering). In Theorem 12, assuming ε, δ ∈ (0, 1/2), we show that the sample complexity of

correlation maximization is upper bounded by

O



fatε/5(S, B)

ε4
log2



fatε/5(S, B)

ε



log



1

ε



+
1

ε4
log



1

ε



log



1

δ



.

We also consider a deterministic-label setting in the full version of the paper, which is a special

case of correlation maximization where the data distribution µ satisĄes Pr(x,y)∼µ[y = s(x)] = 1

for a source class s ∈ S. In this case, we prove the following improved sample complexity

upper bound:

O



fatε/5(S, B)

ε2
log2



fatε/5(S, B)

ε



+
1

ε2
log



1

εδ



.

We also show that the mutual fat-shattering dimension does not in general give a lower bound

for the sample complexity of correlation maximization. This is because sample complexity

duality does not hold for correlation maximization (see full paper for examples where duality

does not hold). In Theorem 12 we state a reĄned sample complexity upper bound for

correlation maximization and we leave it as an open question to determine whether there is

a matching lower bound.

1.3.3 Realizable Multiaccuracy and Multicalibration

We study multiaccuracy and multicalibration in the same setting as in [48] with a focus on the

distribution-free realizable setting (DeĄnitions 13 and 14). As in correlation maximization,

the classes S, B ⊆ ([−1, 1] ∪ ¶∗})X can contain any partial real-valued hypotheses h : X →
[−1, 1] ∪ ¶∗}, and we assume that the data distribution µ satisĄes E(x,y)∼µ[y♣x] = s(x)

for a source hypothesis s ∈ S. The goal is to output a model f : X → [−1, 1] such that

MA-errorµ,B(f) ≤ ε (in multiaccuracy) or MC-errorµ,B(f) ≤ ε (in multicalibration) with

probability at least 1 − δ, where we generalize the deĄnitions of MA-errorµ,B and MC-errorµ,B

to partial hypothesis classes B. In Theorems 15 and 17, assuming ε, δ ∈ (0, 1/2), we show

the following lower and upper bounds on the sample complexity of realizable multiaccuracy

and multicalibration (denoted by #MA(S, B, ε, δ) and #MC(S, B, ε, δ), respectively):

Ω
(

fat√
3ε(S, B)

)

− 1

≤ #MA(S, B, ε, δ)

≤ #MC(S, B, ε, δ)

≤ O



fatε/7(S, B)

ε6
log2



fatε/7(S, B)

ε



log



1

ε



+
1

ε6
log



1

ε



log



1

εδ



. (6)

This implies that the sample complexity of realizable multiaccuracy and multicalibration

is Ąnite for every ε > 0 if and only if fatη(S, B) is Ąnite for every η > 0. Also, the sample

complexity is polynomial in 1/ε if and only if fatη(S, B) is polynomial in 1/η. This answers

an open question in [48]. We also show an improved sample complexity upper bound in

Theorem 16 for the special case where S is binary.

Our sample complexity upper and lower bounds stated in Theorems 15 and 17 are actually

stronger, and they use a Ąner deĄnition of the mutual fat-shattering dimension. SpeciĄcally,

if we deĄne fatη1,η2
(S, B) to be the largest size of a subset X ′ ⊆ X that is η1-fat shattered

by S and η2-fat shattered by B, then #MA(S, B, ε, δ) and #MC(S, B, ε, δ) are both Ąnite
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if fatη1,η2
(S, B) is Ąnite for some η1, η2 satisfying 2η1 + 4η2 < ε, and #MA(S, B, ε, δ) and

#MC(S, B, ε, δ) are both inĄnite if fatη1,η2
(S, B) is inĄnite for some η1, η2 satisfying η1η2 > 2ε.

An open question is whether this gap can be closed to provide an exact characterization of

the Ąniteness of #MA(S, B, ε, δ) and #MC(S, B, ε, δ) for every choice of (S, B, ε, δ).

1.3.4 Covering Number Bound

The sample complexity characterization for distribution-speciĄc realizable multiaccuracy

in [48] is in terms of a covering number deĄned for every pair of total hypothesis classes (S, B).

A consequence of our sample complexity characterization for distribution-free realizable

multiaccuracy and multicalibration is an upper bound on this covering number in terms of

the mutual fat-shattering dimension of (S, B). This can be viewed as a generalization of a

classic upper bound on the covering number of a binary hypothesis class H in terms of its

VC dimension. Interestingly, our covering number upper bounds in the two-hypothesis-class

setting hold despite the fact that a corresponding uniform convergence bound does not hold.

See the full paper for more details.

1.3.5 Boosting

Analogous to the weak agnostic learning task considered in [51] and [25], we introduce weak

comparative learning, where the goal (3) of comparative learning is relaxed to

Pr(x,y)∼µ[f(x) ̸= y] ≤ 1/2 − γ,

under the additional assumption that

infb∈BPr(x,y)∼µ[b(x) ̸= y] ≤ 1/2 − α.

Here, α, γ ∈ (0, 1/2) are parameters of the weak comparative learning task. Extending results

in [25], we show an efficient boosting algorithm that solves (strong) comparative learning

given oracle access to a learner solving weak comparative learning. This result also applies

to correlation maximization for real-valued S and B in the deterministic-label setting. Due

to space constraints, formal results and discussion of boosting appear only in the full version

of this paper.

1.3.6 Comparative Regression

We deĄne comparative regression by allowing the classes S and B in comparative learning to

be real-valued and replacing the classiĄcation error Pr(x,y)∼µ[f(x) ̸= y] with the expected

loss E(x,y)∼µ[ℓ(y, f(x))] for a general loss function ℓ. SpeciĄcally, we take a partial hypothesis

class S ⊆ ([−1, 1] ∪ ¶∗})X as the source class, and for simplicity, we take a total hypothesis

class B ⊆ [−1, 1]X as the benchmark class. Given a loss function ℓ : [−1, 1] × [−1, 1] → R,

we deĄne the comparative regression task as follows. We assume that the data distribution µ

over X × [−1, 1] satisĄes E(x,y)∼µ[y♣x] = s(x) for a source hypothesis s ∈ S, and the goal is

to output a model f : X → [−1, 1] such that the following holds with probability at least

1 − δ:

E(x,y)∼µ[ℓ(y, f(x))] ≤ infb∈BE(x,y)∼µ[ℓ(y, b(x))] + ε.

As an application of our sample complexity characterization for realizable multicalibration

and the omnipredictors result by Gopalan et al. [34], in Theorem 19, we give a sample

complexity upper bound in terms of fatη(S, B) for a special case of comparative regression
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(DeĄnition 18) where we assume that the label y in each data point is binary and the

loss function ℓ is convex and Lipschitz. We leave the study of other interesting settings of

comparative regression to future work.

1.3.7 Comparative Online Learning

We extend our notion of comparative learning to the online setting, where we assume that

the data points (x, y) are given sequentially, and the learner is required to predict the label

of the individual x in each data point before its true label y is shown. For binary hypothesis

classes S, B ⊆ ¶−1, 1, ∗}X , we introduce comparative online learning (DeĄnition 23) where

we assume that every data point (x, y) satisĄes y = s(x) for some source hypothesis s ∈ S and

we measure the performance of the learner by its regret, deĄned as the number of mistakes it

makes minus the minimum number of mistakes made by a benchmark hypothesis b ∈ B. The

goal of comparative online learning is to ensure that the expected regret does not exceed εn,

where n is the total number of data points given to the learner. In Section 7, we introduce the

mutual Littlestone dimension m := Ldim(S, B) and show that it characterizes the smallest ε

achievable in comparative online learning, denoted by ε∗ (Theorem 25):

min



1

2
,

m

2n

}

≤ ε∗ ≤ O



√

m

n
log

2m + n

m



.

To match the form of our other sample complexity bounds, we can Ąx ε ∈ (0, 1/2) and bound

the smallest n (denoted by n∗) for which we can ensure that the expected regret does not

exceed εn:

m

2ε
≤ n∗ ≤ O



m

ε2
log

1

ε



.

1.3.8 Sample Complexity Duality

Learning tasks involving two hypothesis classes can potentially satisfy sample complexity

duality, meaning that the sample complexity of the task changes minimally when we swap

the roles of the two hypothesis classes. Hu et al. [48] show that sample complexity duality

holds for distribution-speciĄc realizable multiaccuracy, assuming that the source class S and

the distinguisher class B are both total. SpeciĄcally, for S, B ⊆ [−1, 1]X , ε, δ ∈ (0, 1/2) and

a distribution µX over X, deĄning m := #MA(µX )(S, B, ε/8, δ) to be the sample complexity

of realizable multiaccuracy with source class S and distinguisher class B in the distribution-

speciĄc setting where the data distribution µ satisĄes µ♣X = µX , Hu et al. [48] show that

#MA(µX )(B, S, ε, δ) ≤ O


ε−2(m + log(1/δ))


.

Results in our work imply that sample complexity duality also holds for comparative learning

and realizable multiaccuracy/multicalibration in the distribution-free setting. SpeciĄcally, if

we deĄne m := #CompL(S, B, ε, δ) + 1 for ε, δ ∈ (0, 1/4) and any partial binary hypothesis

classes S, B ⊆ ¶−1, 1, ∗}X , then the following holds by (4) and (5):

#CompL(B, S, ε, δ) ≤ O



m log2 m

ε
+

1

ε2
log



1

δ



.

Similarly, if we deĄne m := #MA(S, B, ε2/147, δ) + 1 for ε, δ ∈ (0, 1/2) and any partial

real-valued hypothesis classes S, B ⊆ ([−1, 1] ∪ ¶∗})X , then the following holds because

of (6):
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#MA(B, S, ε, δ) ≤ O



m

ε6
log2

m

ε



log



1

ε



+
1

ε6
log



1

ε



log



1

δ



,

and the same inequality holds after replacing #MA with #MC. In the full version of this

paper, we show that sample complexity duality does not hold for other learning tasks we

consider in this paper, completing Table 1.

1.4 Related Work

Motivated by multi-group/sub-group fairness, many recent papers also study learning tasks

involving two (or more) hypothesis classes. Multi-group agnostic learning, introduced in [16]

and [71], involves a subgroup class G and a benchmark class B, where each subgroup g ∈ G

is a subset of the individual set X. The goal in multi-group agnostic learning is to learn a

model such that the loss experienced by each subgroup g ∈ G is not much larger than the

minimum loss for that group achievable by a benchmark b ∈ B. Tosh and Hsu [74] show

sample complexity upper bounds for multi-group agnostic learning in terms of the individual

complexities of G and B. Thus, the upper bound does not depend on the interaction

of the two classes. In contrast, the individual complexities of the source and benchmark

(resp. distinguisher) classes are not sufficient for our sample complexity characterizations

for comparative learning (resp. realizable multiaccuracy and multicalibration). In [29], the

authors propose algorithms that can improve the loss on subgroups in the spirit of multi-group

agnostic learning based on suggestions from auditors. A constrained loss minimization task

introduced in [54] also involves a subgroup class and a benchmark class, but the subgroup

class is used to impose (fairness) constraints on the learned model and the loss/error is

evaluated over the entire population (not on each subgroup). The results in [54] assume

that the complexities of both classes are bounded, whereas our sample complexity upper

bounds (for different tasks) in this paper can be Ąnite even when the complexities of both

classes are inĄnite. Motivated by the goal of learning proxies for sensitive features that can

be used to achieve fairness in downstream learning tasks, Diana et al. [22] consider a learning

task involving three hypothesis classes: a source class, a proxy class, and a downstream class.

Again, the sample complexity upper bounds in [22] are in terms of the individual complexities

of these classes. Two other recent works [72, 70] show uniform convergence bounds for

multicalibration in a two-hypothesis-class setting, but their bounds are yet again in terms of

the individual complexities of the two classes and are Ąnite only when the complexities of

both classes are Ąnite.

The notions of multiaccuracy and multicalibration can be viewed in the framework of

outcome indistinguishability [23, 24]. Multicalibrated predictors have been applied to solve

loss minimization for rich families of loss functions and/or under a variety of constraints,

leading to the notion of omnipredictors [34, 46, 28]. Recently, Gopalan et al. [33] show that

certain omnipredictors can be obtained from the weaker condition of calibrated multiaccuracy.

Multicalibrated predictors can also be used for statistical inference on rich families of target

distributions [58]. The notion of multicalibration has been extended to various settings in

[49, 77, 36, 35].

Many of our results in this paper are based on sample complexity characterizations of

learning partial hypotheses by Alon et al. [3]. Some of the key techniques used in [3] include

the 1-inclusion graph algorithm [40], sample compression schemes [65], sample compression

generalization bounds [37], and a reduction from agnostic learning to realizable learning [21].

▶ Note. Due to space constraints, this is an abridged version of our work. Readers are

directed to the full version of the paper for detailed proofs of all results and some extensions

of the main theorems.
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2 Preliminaries

Throughout the paper, we use X to denote a non-empty set and we refer to the elements in X

as individuals. We use the term hypothesis to refer to an arbitrary function h : X → R ∪ ¶∗}
assigning a label h(x) to each individual x ∈ X.

The label h(x) can be a real number or the undefined label ∗. We say a hypothesis h is

total if h(x) ̸= ∗ for every x ∈ X. When we do not require a hypothesis h to be total, we

often say h is partial to emphasize that h may or may not be total. We say a hypothesis h is

binary if h(x) ∈ ¶−1, 1, ∗} for every x ∈ X, and we say h is real-valued if h may or may not

be binary.

A hypothesis class H is a set consisting of hypotheses h : X → R∪¶∗}, i.e., H ⊆ (R∪¶∗})X

where we use BA to denote the set of all functions f : A → B for any two sets A and B. A

total hypothesis class is a set H ⊆ R
X , and a binary hypothesis class is a set H ⊆ ¶−1, 1, ∗}X .

We say a hypothesis class H is partial if it may or may not be total, and we say H is

real-valued if it may or may not be binary.

To avoid measurability issues, all probability distributions in this paper are assumed to

be discrete, i.e., to have a countable support. For any distribution µ over X ×R, we use µ♣X
to denote the marginal distribution of x with (x, y) drawn from µ.

2.1 VC and Fat-shattering Dimensions for Partial Hypothesis Classes

The VC dimension was introduced in [76] for any total binary hypothesis class. As in [9]

and [3], we consider a natural generalization of the VC dimension to all partial binary

hypothesis classes H ⊆ ¶−1, 1, ∗}X as follows. We say a subset X ′ ⊆ X is shattered by H if

for every total binary function ξ : X ′ → ¶−1, 1} there exists h ∈ H such that h(x) = ξ(x)

for every x ∈ X ′. The VC dimension of H is deĄned to be

VC(H) := sup¶♣X ′♣ : X ′ ⊆ X, X ′ is shattered by H}.

An analogous notion of the VC dimension for real-valued hypothesis classes is the fat-

shattering dimension introduced in [56]. The fat-shattering dimension was originally deĄned

for total hypothesis classes, but it is natural to generalize it to all partial hypothesis classes

in a similar fashion to the generalization of the VC dimension to partial binary classes: given

a hypothesis class H ⊆ (R ∪ ¶∗})X and a margin η ≥ 0, we say a subset X ′ ⊆ X is η-fat

shattered by H w.r.t. a reference function r : X ′ → R if for every total binary function

ξ : X ′ → ¶−1, 1}, there exists h ∈ H such that for every x ∈ X ′,

h(x) ̸= ∗ and ξ(x)(h(x) − r(x)) > η.

We sometimes omit the mention of r and say X ′ is η-fat shattered by H if such a function r

exists. The η-fat-shattering dimension of H is deĄned to be

fatη(H) := sup¶♣X ′♣ : X ′ ⊆ X, X ′ is η-fat shattered by H}.

2.2 An Abstract Learning Task

We study a variety of learning tasks throughout the paper, and to help deĄne each task

concisely, we Ąrst deĄne an abstract learning task Learn, of which each speciĄc task we

consider is a special case.
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Let Z and F be two non-empty sets. In the abstract learning task Learn, an algorithm

(learner) takes data points in Z as input and it outputs a model in F . We choose a distribution

class P consisting of distributions µ over Z, and for each distribution µ ∈ P , we choose a

subset Fµ ⊆ F to be the admissible set. When the input data points are drawn i.i.d. from

a distribution µ ∈ P , we require the learner to output a model f in the admissible set Fµ

with large probability. Formally, for n ∈ Z≥0 and δ ∈ R≥0, we say a (possibly inefficient and

randomized) learner L solves the learning task Learnn(Z, F, P, (Fµ)µ∈P , δ) if

1. L takes n data points z1, . . . , zn ∈ Z as input;

2. L outputs a model f ∈ F ;

3. For any distribution µ ∈ P , if the data points z1, . . . , zn are drawn i.i.d. from µ, then

with probability at least 1 − δ, the output model f belongs to Fµ. The probability is over

the randomness in the data points z1, . . . , zn and the internal randomness in learner L.

By a slight abuse of notation, we also use Learnn(Z, F, P, (Fµ)µ∈P , δ) to denote the set of

all learners L that solve the learning task. Clearly, the learner set Learnn(Z, F, P, (Fµ)µ∈P , δ)

is monotone w.r.t. n: for any nonnegative integers n and n′ satisfying n ≤ n′, we have

Learnn(Z, F, P, (Fµ)µ∈P , δ) ⊆ Learnn′(Z, F, P, (Fµ)µ∈P , δ)

because when given n′ data points, a learner can choose to ignore n′ − n data points and only

use the remaining n data points. We deĄne the sample complexity #Learn(Z, F, P, (Fµ)µ∈P , δ)

to be the smallest n for which there exists a learner in Learnn(Z, F, P, (Fµ)µ∈P , δ):

#Learn(Z, F, P, (Fµ)µ∈P , δ) := inf¶n ∈ Z≥0 : Learnn(Z, F, P, (Fµ)µ∈P , δ) ̸= ∅}. (7)

2.3 Learning Partial Binary Hypotheses

We deĄne realizable learning and agnostic learning for any partial binary hypothesis class H

as special cases of the abstract learning task Learn in Section 2.2. These learning tasks have

been studied in [9, 66, 3], and the results in these previous works are important for many of

our results throughout the paper.

▶ Definition 1 (Realizable learning (ReaL)). Given a partial binary hypothesis class H ⊆
¶−1, 1, ∗}X , an error bound ε ≥ 0, a failure probability bound δ ≥ 0, and a nonnegative

integer n, we define ReaLn(H, ε, δ) to be Learnn(Z, F, P, (Fµ)µ∈P , δ) where Z = X × ¶−1, 1},

F = ¶−1, 1}X , P consists of all distributions µ over X × ¶−1, 1} satisfying Pr(x,y)∼µ[h(x) =

y] = 1 for some h ∈ H, and Fµ consists of all models f : X → ¶−1, 1} satisfying

Pr(x,y)∼µ[f(x) ̸= y] ≤ ε.

A key assumption in realizable learning is that any data distribution µ ∈ P is consistent

with some hypothesis h ∈ H, i.e., Pr(x,y)∼µ[h(x) = y] = 1. In particular, this implies that

Pr(x,y)∼µ[h(x) = ∗] = 0 because y ∈ ¶−1, 1} cannot be the undeĄned label ∗. In agnostic

learning, we remove such assumptions on the data distribution:

▶ Definition 2 (Agnostic learning (AgnL)). Given a partial binary hypothesis class H ⊆
¶−1, 1, ∗}X , an error bound ε ≥ 0, a failure probability bound δ ≥ 0, and a nonnegative

integer n, we define AgnLn(H, ε, δ) to be Learnn(Z, F, P, (Fµ)µ∈P , δ) where Z = X × ¶−1, 1},

F = ¶−1, 1}X , P consists of all distributions µ over X × ¶−1, 1}, and Fµ consists of all

models f : X → ¶−1, 1} satisfying

Pr(x,y)∼µ[f(x) ̸= y] ≤ infh∈H Pr[h(x) ̸= y] + ε. (8)
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There is no assumption on the data distributions µ ∈ P in agnostic learning: µ can be any

distribution over X × ¶−1, 1}. The hypothesis class H is used to relax the objective in

agnostic learning: instead of requiring the error Pr(x,y)∼µ[f(x) ̸= y] of the model f to be

at most ε, we compare the error of f with the smallest error of a hypothesis h ∈ H as in

(8). Note that for (x, y) ∈ X × ¶−1, 1} and h : X → ¶−1, 1, ∗}, we have h(x) ̸= y whenever

h(x) = ∗.

For every learning task we deĄne throughout the paper, we also implicitly deĄne the

corresponding sample complexity as in (7). For example, the sample complexity of realizable

learning is

#ReaL(H, ε, δ) := inf¶n ∈ Z≥0 : ReaLn(H, ε, δ) ̸= ∅}.

We omit the sample complexity deĄnitions for all other learning tasks.

2.4 Other Notation

For a statement P , we deĄne its indicator 1(P ) such that 1(P ) = 1 if P is true, and 1(P ) = 0

if P is false. We deĄne sign : R → ¶−1, 1} such that for every u ∈ R, sign(u) = 1 if u ≥ 0, and

sign(u) = −1 if u < 0. For functions f1 : U1 → U2 and f2 : U2 → U3, we use f2 ◦f1 : U1 → U3

to denote their composition, i.e., (f2 ◦ f1)(u) = f2(f1(u)) for every u ∈ U1. We use log(·) to

denote the base-2 logarithm. For u ∈ R, we deĄne log+(u) := log(max¶2, u}). For u ∈ [−1, 1],

we use Ber∗(u) to denote the distribution over ¶−1, 1} with mean u (by analogy with the

Bernoulli distribution over ¶0, 1}).

3 Sample Complexity of Comparative Learning

Given a source class S ⊆ ¶−1, 1, ∗}X and a benchmark class B ⊆ ¶−1, 1, ∗}X , we formally

deĄne the task of comparative learning below by combining the distribution assumption in

realizable learning and the relaxed objective in agnostic learning:

▶ Definition 3 (Comparative learning (CompL)). Given two binary hypothesis classes S, B ⊆
¶−1, 1, ∗}X , an error bound ε ≥ 0, a failure probability bound δ ≥ 0, and a nonnegative integer

n, we define CompLn(S, B, ε, δ) to be Learnn(Z, F, P, (Fµ)µ∈P , δ) where Z = X × ¶−1, 1},

F = ¶−1, 1}X , P consists of all distributions µ over X × ¶−1, 1} such that Pr(x,y)∼µ[s(x) =

y] = 1 for some s ∈ S, and Fµ consists of all models f : X → ¶−1, 1} such that

Pr(x,y)∼µ[f(x) ̸= y] ≤ infb∈BPr(x,y)∼µ[b(x) ̸= y] + ε. (9)

The data distribution µ ∈ P in comparative learning is constrained to be consistent with a

source hypothesis s ∈ S, i.e., Pr(x,y)∼µ[s(x) = y] = 1, and the error of the output model f is

compared with the smallest error of a benchmark hypothesis b ∈ B as in (9).

In this section, we characterize the sample complexity of comparative learning for every

source class S ⊆ ¶−1, 1, ∗}X and every benchmark class B ⊆ ¶−1, 1, ∗}X according to

Theorem 4 below. Our characterization is based on the mutual VC dimension VC(S, B),

which we deĄne as follows:

VC(S, B) := ¶♣X ′♣ : X ′ ⊆ X, X ′ is shattered by both S and B}. (10)



L. Hu and C. Peale 72:17

▶ Theorem 4. Let S, B ⊆ ¶−1, 1, ∗}X be binary hypothesis classes. For any ε, δ ∈ (0, 1/4),

the sample complexity of comparative learning satisfies the following upper bound:

#CompL(S, B, ε, δ) = O



VC(S, B)

ε2
log2

+



VC(S, B)

ε



+
1

ε2
log



1

δ



. (11)

When VC(S, B) ≥ 2, we have the following lower bound:

#CompL(S, B, ε, δ) = Ω



VC(S, B)

ε
+

1

ε
log



1

δ



. (12)

Our proof of Theorem 4 is based on results by Alon et al. [3] that characterize the sample

complexity of realizable and agnostic learning for a partial hypothesis class H ⊆ ¶−1, 1, ∗}X :

▶ Theorem 5 ([3]). Let H ⊆ ¶−1, 1, ∗}X be a binary hypothesis class. For any ε, δ ∈ (0, 1/4),

the sample complexity of agnostic learning satisfies

#AgnL(H, ε, δ) = O



VC(H)

ε2
log2

+



VC(H)

ε



+
1

ε2
log



1

δ



. (13)

When VC(H) ≥ 2, the sample complexity of realizable learning satisfies

#ReaL(H, ε, δ) = Ω



VC(H)

ε
+

1

ε
log



1

δ



. (14)

We prove the sample complexity upper bound (11) by reducing comparative learning for

a pair of binary hypothesis classes (S, B) to agnostic learning for a single partial hypothesis

class AS,B we deĄne below.

For every pair of hypotheses s, b : X → ¶−1, 1, ∗}, we deĄne an agreement hypothesis

as,b : X → ¶−1, 1, ∗} by

as,b(x) =















0, if s(x) = b(x) = 0;

1, if s(x) = b(x) = 1;

∗, otherwise.

For every pair of hypothesis classes S, B ⊆ ¶−1, 1, ∗}X , we deĄne the agreement hypothesis

class AS,B to be ¶as,b : s ∈ S, b ∈ B} ⊆ ¶−1, 1, ∗}X .

The following claim follows immediately from the deĄnition of as,b:

▷ Claim 6. For every (x, y) ∈ X ×¶−1, 1} and every pair of hypotheses s, b : X → ¶−1, 1, ∗},

we have as,b(x) = y if and only if s(x) = b(x) = y.

The following claim shows that the mutual VC dimension of (S, B) is equal to the VC

dimension of AS,B :

▷ Claim 7. Let S, B ⊆ ¶−1, 1, ∗}X be binary hypothesis classes. Then VC(AS,B) = VC(S, B).

Proof. A subset X ′ ⊆ X is shattered by both S and B if and only if for every ξ : X ′ → ¶−1, 1},

there exists s ∈ S and b ∈ B such that

s(x) = b(x) = ξ(x) for every x ∈ X ′. (15)

Similarly, by the deĄnition of AS,B , a subset X ′ ⊆ X is shattered by AS,B if and only if for

every ξ : X ′ → ¶−1, 1}, there exists s ∈ S and b ∈ B such that

as,b(x) = ξ(x) for every x ∈ X ′. (16)

By Claim 6, the conditions (15) and (16) are equivalent. ◁

ITCS 2023



72:18 Comparative Learning: A Sample Complexity Theory for Two Hypothesis Classes

We are now ready to state and prove the reduction that allows us to prove (11):

▶ Lemma 8. Let S, B ⊆ ¶−1, 1, ∗}X be binary hypothesis classes. For any ε, δ ∈ R≥0 and

n ∈ Z≥0, we have AgnLn(AS,B , ε, δ) ⊆ CompLn(S, B, ε, δ). In other words, any learner

solving agnostic learning for AS,B also solves comparative learning for (S, B) with the same

parameters ε and δ.

Proof. Let L be a learner in AgnLn(AS,B , ε, δ). For s ∈ S, let µ be a distribution over

X × ¶−1, 1} satisfying Pr(x,y)∼µ[s(x) = y] = 1. By the guarantee of L ∈ AgnLn(AS,B , ε, δ),

given n data points (x1, y1), . . . , (xn, yn) drawn i.i.d. from µ, with probability at least 1 − δ,

L outputs a model f satisfying

Pr(x,y)∼µ[f(x) ̸= y] ≤ inf
h∈AS,B

Pr(x,y)∼µ[h(x) ̸= y] + ε

= inf
s′∈S,b∈B

Pr(x,y)∼µ[as′,b(x) ̸= y] + ε (by deĄnition of AS,B)

≤ inf
b∈B

Pr(x,y)∼µ[as,b(x) ̸= y] + ε

= inf
b∈B

Pr(x,y)∼µ[s(x) ̸= y or b(x) ̸= y] + ε (by Claim 6)

= inf
b∈B

Pr(x,y)∼µ[b(x) ̸= y] + ε. (by Pr(x,y)∼µ[s(x) = y] = 1)

This proves that L ∈ CompLn(S, B, ε, δ), as desired. ◀

Our upper bound (11) follows immediately from Claim 7, Lemma 8, and (13). We defer the

detailed proof to the end of the section. To prove the lower bound (12), we reduce realizable

learning for AS,B to comparative learning for (S, B):

▶ Lemma 9. Let S, B ⊆ ¶−1, 1, ∗}X be binary hypothesis classes. For any ε, δ ∈ R≥0 and

n ∈ Z≥0, we have CompLn(S, B, ε, δ) ⊆ ReaLn(AS,B , ε, δ). In other words, any learner

solving comparative learning for (S, B) also solves realizable learning for AS,B with the same

parameters ε and δ.

Proof. Let L be a learner in CompLn(S, B, ε, δ). Let µ be a distribution over X × ¶−1, 1}
satisfying

Pr(x,y)∼µ[h(x) = y] = 1 for some h ∈ AS,B . (17)

By the deĄnition of AS,B , our assumption (17) implies that Pr(x,y)∼µ[as,b(x) = y] = 1 for

some s ∈ S and b ∈ B. By Claim 6, we have Pr(x,y)∼µ[s(x) = y] = Pr(x,y)∼µ[b(x) = y] = 1.

By the guarantee of L ∈ CompLn(S, B, ε, δ), given n data points (x1, y1), . . . , (xn, yn)

drawn i.i.d. from µ, with probability at least 1 − δ, L outputs a model f satisfying

Pr(x,y)∼µ[f(x) ̸= y] ≤ inf
b′∈B

Pr(x,y)∼µ[b′(x) ̸= y] + ε = ε,

where the last equation holds because Pr(x,y)∼µ[b(x) = y] = 1. The inequality above implies

L ∈ ReaLn(AS,B , ε, δ), as desired. ◀

Proof of Theorem 4. DeĄne m := VC(S, B). By Claim 7, we have m = VC(AS,B). Our

upper bound (11) holds because

#CompL(S, B, ε, δ) ≤ #AgnL(AS,B , ε, δ) (by Lemma 8)

≤ O



m

ε2
log2

+

m

ε



+
1

ε2
log



1

δ



. (by (13))
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Our lower bound (12) holds because

#CompL(S, B, ε, δ) ≥ #ReaL(AS,B , ε, δ) (by Lemma 9)

≥ Ω



m

ε
+

1

ε
log



1

δ



. (by (14))

◀

4 Sample Complexity of Correlation Maximization

As we deĄne in Section 3, the comparative learning task CompL requires the hypothesis

classes S and B to be binary. Here we introduce a natural generalization of CompL to

real-valued hypothesis classes S, B ⊆ ([−1, 1] ∪ ¶∗})X which we call correlation maximization.

We Ąrst generalize the product u1u2 of two real numbers u1, u2 ∈ R to the case where u2

may be the undeĄned label ∗. SpeciĄcally, for u1 ∈ R and u2 ∈ [−1, 1] ∪ ¶∗}, we deĄne their

generalized product u1 ♢ u2 to be

u1 ♢ u2 :=

{

u1u2, if u2 ∈ [−1, 1],

−♣u1♣, if u2 = ∗.

The idea behind the deĄnition is that when u2 = ∗, we treat u2 as being an unknown number

u′ in [−1, 1] and deĄne the product u1 ♢ u2 to be the smallest possible value of u1u′, i.e.,

u1 ♢ u2 = infu′∈[−1,1] u1u′ = −♣u1♣.
This generalized product allows us to rewrite the goal (9) of comparative learning. For

any y ∈ ¶−1, 1} and u ∈ ¶−1, 1, ∗}, it is easy to verify that

1(y ̸= u) =
1

2
(1 − y ♢ u). (18)

Therefore, the goal (9) of comparative learning can be equivalently written as

E(x,y)∼µ[yf(x)] ≥ supb∈BE(x,y)∼µ[y ♢ b(x)] − 2ε.

This reformulation is meaningful even when we relax B to be a real-valued hypothesis

class B ⊆ ([−1, 1] ∪ ¶∗})X . If we also relax the source class S, we obtain the deĄnition of

correlation maximization:

▶ Definition 10 (Correlation maximization (CorM)). Given two real-valued hypothesis classes

S, B ⊆ ([−1, 1] ∪ ¶∗})X , an error bound ε ≥ 0, a failure probability bound δ ≥ 0, and

a nonnegative integer n, we define CorMn(S, B, ε, δ) to be Learnn(Z, F, P, (Fµ)µ∈P , δ) with

Z, F, P, Fµ chosen as follows. We choose Z = X×[−1, 1] and F = ¶−1, 1}X . The distribution

class P consists of all distributions µ over X × [−1, 1] satisfying the following property:

there exists s ∈ S such that Prx∼µ♣X
[s(x) ̸= ∗] = 1 and E(x,y)∼µ[y♣x] = s(x). (19)

The admissible set Fµ consists of all models f : X → ¶−1, 1} satisfying

E(x,y)∼µ[yf(x)] ≥ supb∈BE(x,y)∼µ[y ♢ b(x)] − ε.

The name Şcorrelation maximizationŤ comes from viewing E(x,y)∼µ[yf(x)] as the (uncentered)

correlation between random variables y and f(x). In correlation maximization, any data

distribution µ ∈ P needs to satisfy E(x,y)∼µ[y♣x] = s(x) for a source hypothesis s ∈ S. This

restricts the conditional expectation of y given x, but we allow the conditional distribution of
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y given x to be otherwise unrestricted. That is, when conditioned on x ∈ X being Ąxed, the

label y ∈ [−1, 1] could be deterministically equal to s(x), but y could be also be random as

long as it has conditional expectation s(x).

In this section, we show a sample complexity upper bound for correlation maximization

for any source class S ⊆ ([−1, 1] ∪ ¶∗})X and benchmark class B ⊆ ([−1, 1] ∪ ¶∗})X . Since

S and B may no longer be binary, we cannot apply the mutual VC dimension as a way to

characterize their complexity. Instead, we turn to a classic generalization of the VC dimension

for real-valued hypotheses, the fat-shattering dimension (see Section 2.1 for deĄnition). Our

upper bound is in terms of the mutual fat-shattering dimension deĄned as follows, which

generalizes the mutual VC dimension to real-valued hypothesis classes.

Given a pair of real-valued hypothesis classes S, B ⊆ ([−1, 1] ∪ ¶∗})X and a margin

η ∈ R≥0, we deĄne the mutual fat-shattering dimension fatη(S, B) as follows:

fatη(S, B) := sup¶♣X ′♣ : X ′ ⊆ X, X ′ is η-fat shattered by both S and B}. (20)

In other words, fatη(S, B) is the largest size of a subset X ′ ⊆ X such that X ′ is η-fat

shattered by S w.r.t. a function r1 : X ′ → R and X ′ is η-fat shattered by B w.r.t. a function

r2 : X ′ → R (recall the deĄnition of fat shattering in Section 2.1).

Another equivalent way to deĄne the mutual fat-shattering dimension for real-valued

hypothesis classes S, B ⊆ ([−1, 1] ∪ ¶∗})X is by transforming them into binary classes and

using the mutual VC dimension after the transformation. These transformations are also

crucial in our proof of the sample complexity upper bound for correlation maximization

in this section. Given a real-valued hypothesis h : X → [−1, 1] ∪ ¶∗}, a reference function

r : X → R, and a margin η ∈ R≥0, we deĄne a binary hypothesis h
(r)
η : X → ¶−1, 1, ∗} such

that

h(r)
η (x) =















1, if h(x) ̸= ∗ and h(x) > r(x) + η;

−1, if h(x) ̸= ∗ and h(x) < r(x) − η;

∗, otherwise.

Given a real-valued hypothesis class H ⊆ ([−1, 1] ∪ ¶∗})X , we deĄne the binary hypothesis

class H
(r)
η ⊆ ¶−1, 1, ∗}X as

H(r)
η = ¶h(r)

η : h ∈ H}.

We can now transform any real-valued hypothesis class H ⊆ ([−1, 1] ∪ ¶∗})X into a binary

hypothesis class H
(r)
η for every choice of η ∈ R≥0 and r : X → R. This allows us to measure

the complexity of a pair of real-valued hypothesis classes S, B ⊆ ([−1, 1] ∪ ¶∗})X using

the mutual VC dimensions VC(S
(r1)
η1

, B
(r2)
η2

) of the binary hypothesis classes S
(r1)
η1

, B
(r2)
η2

for

various choices of η1, η2, r1, r2. The following claim shows that the mutual fat-shattering

dimension fatη(S, B) can be deĄned equivalently in this way.

▷ Claim 11. Let S, B ⊆ ([−1, 1] ∪ ¶∗})X be real-valued hypothesis classes. For every

η ∈ R≥0, fatη(S, B) = supr1,r2
VC(S

(r1)
η , B

(r2)
η ), where the supremum is over all function

pairs r1, r2 : X → R.

The claim follows from the fact that a subset X ′ ⊆ X is η-fat shattered by S if and only if

X ′ is shattered by the binary hypothesis class S
(r)
η for some r : X → R, and the same holds

with S replaced by B.
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Before we state our sample complexity upper bound for correlation maximization in

Theorem 12, we make some additional deĄnitions to simplify the statement. Let h : X →
[−1, 1]∪¶∗} be a real-valued hypothesis and H ⊆ ([−1, 1]∪¶∗})X be a real-valued hypothesis

class. For every real number θ ∈ R, we use h
(θ)
η and H

(θ)
η to denote h

(r)
η and H

(r)
η with the

reference function r : X → R being the constant function satisfying r(x) = θ for every x ∈ X.

▶ Theorem 12. Let S, B ⊆ ([−1, 1]∪¶∗})X be real-valued hypothesis classes. For η1, η2, β, δ ∈
(0, 1/2), defining m := supθ∈R

VC(S
(0)
η1

, B
(θ)
η2

), we have

#CorM(S, B, β + 2η1 + 2η2, δ)

≤ O



m

β4
log2

+



m

β



log



1

η1



+
1

β4
log



1

η1



log



1

δ



+
1

β2
log



1

η2



.

Moreover, for every ε ∈ (0, 1/2), choosing β = η1 = η2 = ε/5, we have m ≤ fatε/5(S, B) and

#CorM(S, B, ε, δ) ≤ O



m

ε4
log2

+

m

ε



log



1

ε



+
1

ε4
log



1

ε



log



1

δ



.

It remains an open question whether there is a sample complexity lower bound that matches

Theorem 12, although our sample complexity characterization for multiaccuracy and mul-

ticalibration in Section 5 does not rely on such a lower bound. Qualitatively, Theorem 12

implies that #CorM(S, B, β + 2η1 + 2η2, δ) is Ąnite if supθ∈R
VC(S

(0)
η1

, B
(θ)
η2

) is Ąnite. We thus

propose the following question about a qualitative lower bound: let S, B ⊆ ([−1, 1] ∪ ¶∗})X

be real-valued hypothesis classes. Suppose VC(S
(0)
η1

, B
(θ)
η2

) is inĄnite for some η1, η2 > 0 and

θ ∈ R. Does this imply that #CorM(S, B, ε, δ) is inĄnite for some ε, δ > 0?

5 Sample Complexity of Realizable Multiaccuracy and Multicalibration

In this section, we give a sample complexity characterization for realizable multiaccuracy

and multicalibration in the distribution-free setting. These tasks have been studied in [48]

for total hypothesis classes. Here we generalize their deĄnitions to partial hypothesis classes.

Given a distribution µ over X × [−1, 1] and a model f : X → [−1, 1], we Ąrst generalize

the deĄnition of MA-errorµ,B(f) and MC-errorµ,B(f) in (1) and (2) to partial hypothesis

classes B ⊆ [−1, 1] ∪ ¶∗}. It is not enough to directly use the generalized product ♢ as in

Section 4. For example, suppose we deĄne MA-errorµ,B(f) to be

supb∈B ♣E(x,y)∼µ[(f(x) − y) ♢ b(x)]♣.

Then MA-errorµ,B(f) is equal to the ℓ1 error E(x,y)∼µ[♣f(x)−y♣] even when B only contains a

single hypothesis b which assigns every individual x ∈ X the undeĄned label b(x) = ∗, making

it challenging to achieve a low MA-error even when B has fat-shattering dimension zero.

To avoid this issue, we note that for any u ∈ R, the absolute value ♣u♣ can be equivalently

written as supσ∈¶−1,1} uσ, leading us to the following deĄnitions:

MA-errorµ,B(f) := sup
b∈B

sup
σ∈¶−1,1}

E

[

(f(x) − y)σ


♢ b(x)
]

, and (21)

MC-errorµ,B(f) := sup
b∈B

∑

v∈V

sup
σ∈¶−1,1}

E

[

(f(x) − y)1(f(x) = v)σ


♢ b(x)
]

. (22)

In the deĄnition of MC-error, we use V to denote the range of f which we assume to be

countable. The supremum over σ ∈ ¶−1, 1} is inside the sum over v ∈ V , so σ is allowed to

depend on v.
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We can now deĄne realizable multiaccuracy and multicalibration for partial hypothesis

classes:

▶ Definition 13 (Realizable Multiaccuracy (MA)). Given two hypothesis classes S, B ⊆
([−1, 1] ∪ ¶∗})X , an error bound ε ≥ 0, a failure probability bound δ ≥ 0, and a nonnegative

integer n, we define MAn(S, B, ε, δ) to be Learnn(Z, F, P, (Fµ)µ∈P , δ) where Z = X × [−1, 1],

F = [−1, 1]X , P consists of all distributions µ over X × [−1, 1] satisfying (19), and Fµ

consists of all models f : X → [−1, 1] such that

MA-errorµ,B(f) ≤ ε. (23)

▶ Definition 14 (Realizable Multicalibration (MC)). We define MCn(S, B, ε, δ) in the same

way as we define MAn(S, B, ε, δ) in Definition 13 except that we replace (23) with

MC-errorµ,B(f) ≤ ε.

We prove the following upper bound (Theorems 15 and 16) and lower bound (Theorem 17)

on the sample complexity of realizable multiaccuracy and multicalibration in the full version

of this paper.

▶ Theorem 15. Let S, B ⊆ ([−1, 1]∪¶∗})X be real-valued hypothesis classes. For β, η1, η2, δ ∈
(0, 1/2), defining m := supr:X→R

supθ∈R
VC(S

(r)
η1

, B
(θ)
η2

), we have

#MA(S, B, β + 2η1 + 4η2, δ)

≤ #MC(S, B, β + 2η1 + 4η2, δ)

≤ O



m

β6
log2

+



m

β



log



1

η1



+
1

β6
log



1

η1



log



1

βδ



+
1

β4
log



1

η2



.

For ε ∈ (0, 1/2), choosing β = η1 = η2 = ε/7, we have m ≤ fatε/7(S, B) and

#MA(S, B, ε, δ) ≤ #MC(S, B, ε, δ) ≤ O



m

ε6
log2

+

m

ε



log



1

ε



+
1

ε6
log



1

ε



log



1

εδ



.

▶ Theorem 16. In the setting of Theorem 15, assume in addition that S is binary, i.e.,

S ⊆ ¶−1, 1, ∗}X and define m := supθ∈R
VC(S, B

(θ)
η2

). Then,

#MA(S, B, β + 4η2, δ) ≤ O



m

β4
log2

+



m

β



+
1

β4
log



1

η2βδ



,

#MC(S, B, β + 4η2, δ) ≤ O



m

β4
log2

+



m

β



+
1

β4
log



1

η2βδ



+
1

β5



.

▶ Theorem 17. Let S, B ⊆ ([−1, 1]∪¶∗})X be real-valued hypothesis classes. For η1, η2 ∈ R>0

and δ ∈ (0, 1), defining m := supr1,r2:X→R
VC(S

(r1)
η1

, B
(r2)
η2

), we have

#MC(S, B, η1η2/3, δ) ≥ #MA(S, B, η1η2/3, δ) ≥ log(1 − δ) + Ω(m).

For any ε ∈ (0, 1/2), choosing η1 = η2 =
√

3ε, we have m = fat√
3ε(S, B) and

#MC(S, B, ε, δ) ≥ #MA(S, B, ε, δ) ≥ log(1 − δ) + Ω(m).

Moreover, the constant 3 in the theorem can be replaced by any absolute constant c > 2.
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6 Comparative Regression via Omnipredictors

We formally deĄne the comparative regression task where the learning objective is to minimize

a general loss function.

▶ Definition 18 (Comparative Regression (CompR)). Given a partial hypothesis class S ⊆
([−1, 1]∪¶∗})X , a total hypothesis class B ⊆ [−1, 1]X , a loss function ℓ : ¶−1, 1}×[−1, 1] → R,

an error bound ε ≥ 0, a failure probability bound δ ≥ 0, and a nonnegative integer n,

we define CompRn(S, B, ℓ, ε, δ) to be Learnn(Z, F, P, (Fµ)µ∈P , δ) with Z, F, P, Fµ chosen as

follows. We choose Z = X × ¶−1, 1} and F = [−1, 1]X . The distribution class P consists of

all distributions µ over X × ¶−1, 1} satisfying the following property:

there exists s ∈ S such that Prx∼µ♣X
[s(x) ̸= ∗] = 1 and E(x,y)∼µ[y♣x] = s(x). (24)

The admissible set Fµ consists of all models f : X → [−1, 1] such that

E(x,y)∼µ[ℓ(y, f(x))] ≤ infb∈BE(x,y)∼µE[ℓ(y, b(x))] + ε. (25)

In the deĄnition above, we assume that the benchmark class B is total so that we do not

need to deĄne ℓ(y, b(x)) when b(x) = ∗. We assume that the ranges of the model f and any

benchmark b ∈ B are bounded between −1 and 1, but any bounded range can be reduced

to this setting by a scaling. We also assume that the label y in a data point (x, y) ∼ µ is

binary: y ∈ ¶−1, 1}, and thus (24) implies that the conditional distribution of y given x

is Ber∗(s(x)). We focus on this binary-label setting because it is the main setting of the

omnipredictor result in [34], which our results are based on. There are certainly other natural

and interesting settings of comparative regression (e.g. the deterministic-label setting where

y ∈ [−1, 1] and Pr(x,y)∼µ[s(x) = y] = 1 for some s ∈ S). We leave further study of these

settings for future work.

We prove the following sample complexity upper bound for comparative regression in

terms of the mutual fat-shattering dimension:

▶ Theorem 19. Let S ⊆ ([−1, 1] ∪ ¶∗})X be a partial hypothesis class and B ⊆ [−1, 1]X

be a total hypothesis class. Let ℓ : ¶−1, 1} × [−1, 1] → R be a loss function such that

ℓ(y, ·) is convex and κ-Lipschitz for any y ∈ ¶−1, 1}. For β, η1, η2, δ ∈ (0, 1/2), defining

m := supr:X→R
supθ∈R

VC(S
(r)
η1

, B
(θ)
η2

),

#CompR(S, B, ℓ, κ(β + 2η1 + 4η2), δ)

≤ O



m

β6
log2

+



m

β



log



1

η1



+
1

β6
log



1

η1



log



1

βδ



+
1

β4
log



1

η2



.

We prove Theorem 19 using the omnipredictor result of Gopalan et al. [34], which shows

that any model with a low MC-error w.r.t. B and a low overall calibration error can be easily

transformed to a model that achieves a low loss compared to the best benchmark in B. Here,

the overall calibration error of a model f is deĄned as follows:

C-errorµ(f) :=
∑

v∈V

♣E(x,y)∼µ[(y − f(x))1(f(x) = v)]♣, (26)

where V is the range of f which we require to be countable. The name Şoverall calibration

errorŤ comes from the fact that C-errorµ(f) = MC-errorµ,B(f) when B only contains a single

hypothesis b such that b(x) = 1 for every x ∈ X.
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▶ Theorem 20 (Omnipredictor [34]). Let ℓ : ¶−1, 1} × [−1, 1] → R be a loss function such

that ℓ(y, ·) is convex and κ-Lipschitz for any y ∈ ¶−1, 1}. Define τ : [−1, 1] → [−1, 1] such

that

τ(u) ∈ arg minq∈[−1,1]Ey∼Ber∗(u)[ℓ(y, q)].

Let µ be a distribution over X × ¶−1, 1} and B ⊆ [−1, 1]X be a total hypothesis class. Let

f : X → [−1, 1] be a model satisfying MC-errorµ,B(f) ≤ α and C-errorµ(f) ≤ ε. Then,

E(x,y)∼µ[ℓ(y, τ(f(x)))] ≤ inf
b∈B

E(x,y)∼µ[ℓ(y, b(x))] + (α + 3ε)κ.

The authors of [34] only proved Theorem 20 in the special case where ε = 0. Since

achieving C-errorµ(f) = 0 is in general impossible with Ąnitely many data points, it is

important to prove Theorem 20 for a general ε > 0. We include a proof of Theorem 20 in

the full version of this paper.

We prove Theorem 19 by combining Theorem 20 with our sample complexity upper

bound for realizable multicalibration in Section 5. A challenge here is that in addition to

achieving MC-errorµ,B(f) ≤ α, Theorem 20 also requires us to achieve C-errorµ(f) ≤ ε. This

is similar to the situation in boosting (Section 1.3) where we need to simultaneously achieve

a low MA-error and a low sign-C-error. We include a more detailed proof of Theorem 19 in

the full paper.

7 Comparative Online Learning

In this section, we study comparative learning in the online setting. We show that the con-

nections we make in Section 3 between comparative learning and learning partial hypotheses

can be extended to the online setting, allowing us to show regret bounds for comparative

online learning in Theorem 25.

SpeciĄcally, in the online setting, the data points (x, y) ∈ X × ¶−1, 1} are not given

to the learner all at once. Instead, they come one-by-one and the learner sequentially

makes predictions about the label of every individual x before the true label y is revealed.

Additionally, the data points are not assumed to be drawn i.i.d. from some distribution.

Formally, a (possibly inefficient and randomized) online learner L does the following on a

stream of data points (x1, y1), . . . , (xn, yn): for every i = 1, . . . , n, given i − 1 labeled data

points (x1, y1), . . . , (xi−1, yi−1) ∈ X × ¶−1, 1} and an extra unlabeled data point xi ∈ X, the

learner outputs a prediction ŷi ∈ ¶−1, 1}. The performance of the learner L is measured by

mistake(L; (xi, yi)
n
i=1) :=

1

n

n
∑

i=1

Pr[ŷi ̸= yi],

where the probability is over the internal randomness in A. We also measure the performance

of a hypothesis h : X → ¶−1, 1, ∗} by

mistake(h; (xi, yi)
n
i=1) :=

1

n

n
∑

i=1

1(h(xi) ̸= yi).

Researchers have studied online learning for partial binary hypothesis classes H ⊆
¶−1, 1, ∗}X in the realizable and agnostic settings:
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▶ Definition 21 (Realizable online learning). Given a hypothesis class H ⊆ ¶−1, 1, ∗}X ,

a regret bound ε ≥ 0, and a positive integer n, we use ReaOLn(H, ε) to denote the set

of all online learners L such that for every h ∈ H and every sequence of data points

(x1, y1), . . . , (xn, yn) ∈ X × ¶−1, 1} satisfying yi = h(xi) for every i = 1, . . . , n, it holds that

mistake(L; (xi, yi)
n
i=1) ≤ ε.

▶ Definition 22 (Agnostic online learning). Given a hypothesis class H ⊆ ¶−1, 1, ∗}X , a regret

bound ε ≥ 0, and a positive integer n, we use AgnOLn(H, ε) to denote the set of all online

learners L such that for any sequence of data points (x1, y1), . . . , (xn, yn) ∈ X × ¶−1, 1}, it

holds that

mistake(L; (xi, yi)
n
i=1) ≤ inf

h∈H
mistake(h; (xi, yi)

n
i=1) + ε.

We combine the realizable and agnostic settings to deĄne comparative online learning:

▶ Definition 23 (Comparative online learning). Given hypothesis classes S, B ⊆ ¶−1, 1, ∗}X ,

a regret bound ε ≥ 0, and a positive integer n, we use CompOLn(S, B, ε) to denote the

set of all online learners L such that for every s ∈ S and every sequence of data points

(x1, y1), . . . , (xn, yn) ∈ X × ¶−1, 1} satisfying yi = s(xi) for every i = 1, . . . , n, it holds that

mistake(L; (xi, yi)
n
i=1) ≤ inf

b∈B
mistake(b; (xi, yi)

n
i=1) + ε.

Analogous to the question of sample complexity, a basic question in online learning is

to understand the optimal regret, i.e., the minimum ε for which there exists a learner that

solves the tasks above given a sequence of n data points. Given a total binary hypothesis

class H, the optimal regret in realizable and agnostic online learning has been characterized

in [64] and [13] using the Littlestone dimension, and this characterization has been extended

to partial hypothesis classes in [3]. The Littlestone dimension of a partial hypothesis class

H ⊆ ¶−1, 1, ∗}X is deĄned as follows. Given m ∈ Z≥0, suppose we associate an individual

xζ ∈ X to every binary string ζ ∈ ∪m−1
i=0 ¶−1, 1}i. There are 2m − 1 such strings ζ in

total, so (xζ)ζ∈∪m−1

i=0
¶−1,1}i ∈ X2m−1. We say (xζ)ζ∈∪m−1

i=0
¶−1,1}i is shattered by H if for every

ξ = (ξ1, . . . , ξm) ∈ ¶−1, 1}m, there exists h ∈ H such that h(xξ<i
) = ξi for every i = 1, . . . , m,

where ξ<i ∈ ¶−1, 1}i−1 is the preĄx of ξ of length i − 1. The Littlestone dimension of H is

deĄned to be

Ldim(H) := sup¶m ∈ Z≥0 : there exists (xζ)ζ∈∪m−1

i=0
¶−1,1}i ∈ X2m−1 shattered by H}.

To give a regret characterization for comparative online learning, we deĄne the mutual

Littlestone dimension for a pair of hypothesis classes S and B to be

Ldim(S, B) :=

sup¶m ∈ Z≥0 : there exists (xζ)ζ∈∪m−1

i=0
¶−1,1}i ∈ X2m−1 shattered by both S and B}.

Similarly to Claim 7 for the mutual VC dimension, the mutual Littlestone dimension of

(S, B) is equal to the Littlestone dimension of the agreement hypothesis class AS,B (deĄned

in Section 3):

▷ Claim 24. Let S, B ⊆ ¶−1, 1, ∗}X be partial binary hypothesis classes. We have

Ldim(S, B) = Ldim(AS,B).
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We omit the proof of the claim because the proof of Claim 7 can be applied here with only

minor changes. Our main result in this section is the following regret characterization for

comparative online learning.

▶ Theorem 25. For every S, B ⊆ ¶−1, 1, ∗}X and n ∈ Z>0, define m := Ldim(S, B) and

ε∗ := inf¶ε ∈ R≥0 : CompOLn(S, B, ε) ̸= ∅}.

Then

min



1

2
,

m

2n

}

≤ ε∗ ≤ O



√

m

n
log

2m + n

m



.

Our proof of Theorem 25 uses the same strategy as in our proof of Theorem 4. Relying

on the sample complexity characterizations proved in [3] for AgnOL and ReaOL, we reduce

CompOL for (S, B) to AgnOL for AS,B, and conversely reduce ReaOL for AS,B to CompOL

for (S, B).
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