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Abstract

The notion of omnipredictors (Gopalan, Kalai,

Reingold, Sharan and Wieder ITCS 2022), sug-

gested a new paradigm for loss minimization.

Rather than learning a predictor based on a known

loss function, omnipredictors can easily be post-

processed to minimize any one of a rich family

of loss functions compared with the loss of hy-

potheses in a class C. It has been shown that such

omnipredictors exist and are implied (for all con-

vex and Lipschitz loss functions) by the notion

of multicalibration from the algorithmic fairness

literature. In this paper, we introduce omnipredic-

tors for constrained optimization and study their

complexity and implications. The notion that we

introduce allows the learner to be unaware of the

loss function that will be later assigned as well

as the constraints that will be later imposed, as

long as the subpopulations that are used to define

these constraints are known. We show how to

obtain omnipredictors for constrained optimiza-

tion problems, relying on appropriate variants of

multicalibration. We also investigate the implica-

tions of this notion when the constraints used are

so-called group fairness notions.

1. Introduction

A predominant usage for outcome prediction is to inform

the choice of a related action. Predicting the probability of

a medical condition may help decide on a medical interven-

tion or determine a life insurance premium rate. Predicting

the probability of rain may help decide on the method of

commuting to work or on a vacation destination or on wed-

ding plans. For each possible action and outcome pair, there

may be an associated loss ± the cost of catching a cold while

riding to work on a bike in the rain or perhaps the cost of

changing a wedding venue at the last minute. A learning
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algorithm may try to come up with a hypothesis that de-

termines an action to minimize an expected loss based on

a particular loss function. The challenge in this prevalent

paradigm of loss minimization is that different loss func-

tions call for very different learning algorithms, which is

problematic for a variety of reasons (e.g. multiple relevant

loss functions or loss functions that are undetermined at

the time of learning). The notion of omnipredictors that

was introduced recently by Gopalan, Kalai, Reingold, Sha-

ran and Wieder (Gopalan et al., 2022) provides a way to

learn a single predictor that can be naturally post-processed

(without access to data) to an action that minimizes any one

of a very wide collection of loss functions. Gopalan et al.

(2022) showed that omniprediction is implied by multicali-

brated prediction, a notion introduced by HÂebert-Johnson,

Kim, Reingold and Rothblum in the algorithmic fairness

literature (HÂebert-Johnson et al., 2018).

While loss minimization is a natural goal, it may not be the

only consideration in choosing an action. There may, for

example, be capacity constraints (e.g. a limited number of

vaccines) as well as fairness and diversity considerations.

In this work, we introduce a notion of omniprediction that

applies to the task of loss minimization conditioned on a

set of constraints. For example, imagine we are deciding on

which patients would receive a medical intervention when

the budget for offering that intervention is limited (capacity

constraint), or when we want this intervention to be assigned

proportionally to the size of two subpopulations (statistical

parity), or when we want the probability of receiving an

intervention among patients who experience medical com-

plications to be the same in two different subpopulations

(equal opportunity). Our notion of omniprediction allows

learning a single predictor that could be used to minimize

a large collection of loss functions, even when arbitrary

subsets of constraints are imposed from a rich family of con-

straints. We show how to formalize such a notion (exposing

subtleties not existing in the original notion of omnipredic-

tion), how to obtain it using some variants of multicalibra-

tion, demonstrating that seeking an accurate depiction of

the current world may be useful even when the final goal

is a socially engineered action. Finally, we study the inter-

action between loss minimization and fairness constraints,

showing that loss minimization has the potential to support

fairness objectives.
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Unconstrained Omniprediction. We assume a distribu-

tion D, over pairs (x, y), where x ∈ X represents an indi-

vidual, and y represents an outcome associated with x. For

example, x is the attributes of a patient and y is whether

that patient experienced a specific medical condition (in this

paper, we will consider Boolean outcomes, i.e., y ∈ {0, 1},

but the notion could be generalized). We consider individ-

ual loss functions. A loss function ℓ is applied to an action

a and an outcome y and signifies the loss ℓ(y, a) incurred

when taking action a and observing outcome y (as we will

discuss below, our results apply to a more general set of

loss functions that can take into account membership of an

individual in some predefined subpopulation).

The learning task of loss minimization is to learn a func-

tion c mapping individuals to actions such that the expected

loss, E(x,y)∼D[ℓ(y, c(x))], is at least as small (up to some

error term) as E(x,y)∼D[ℓ(y, c
′(x))] for any function c′ in a

hypothesis class C. Note that different loss functions may re-

quire different functions c and different learning algorithms

to train them. The notion of omniprediction offers a way

for a single algorithm to learn a predictor p : X → [0, 1]
that allows optimizing any loss function in a rich family

(e.g. all loss functions that are convex and κ-Lipschitz in

the action). In this sense, p imitates the true probability

predictor p∗ : X → [0, 1] where p∗(x) = PrD[y = 1 | x].
Note that for every ªniceº loss function, it is fairly easy to

transform p∗(x) to an action a = τℓ(p
∗(x)) that individ-

ually minimizes ℓ(y, a) (conditioned on x). Loosely, p is

an (L, C)-omnipredictor if for every ℓ ∈ L, applying τℓ to

p to get c(x) = τℓ(p(x)) minimizes loss ℓ compared with

the class C. An omnipredictor resolves the aforementioned

disadvantage of traditional loss minimization as it can be

trained without knowledge of the specific loss function cho-

sen and the loss function is only needed to decide on an

action.

It has been shown in (Gopalan et al., 2022) that omnipredic-

tion is a somewhat surprising application of the notion of

multicalibration, introduced by HÂebert-Johnson et al. (2018)

with the motivation of preventing unfair discrimination. Cal-

ibration roughly asks that every prediction value be accurate

on average over the instances when the prediction value is

given. Multicalibration asks a predictor to be calibrated not

only over the entire population but also on many subpop-

ulations (thus, a multicalibrated predictor cannot trade the

accuracy of a relevant minority group for the benefit of the

majority population). Ignoring some subtleties, a predic-

tor p is C-multicalibrated (up to error α) if for all c ∈ C,
∑

v

∣

∣E(x,y)∼D[(y − v)c(x)1(p(x) = v)]
∣

∣ ≤ α, where the

summation is over v in the range of p (we assume the range

is finite). It is shown in (Gopalan et al., 2022) that a C-

multicalibrated predictor is also an (L, C)-omnipredictor for

a wide class of loss functions (all convex and Lipschitz loss

functions), and Gopalan et al. (2023) relax the multicali-

bration requirement to calibrated multiaccuracy when the

loss functions have additional properties (e.g. when they

are induced by generalized linear models). As we discuss

in Appendix G, many previous algorithms can construct

multiaccurate and multicalibrated predictors, and some of

these algorithms have been implemented in real applications

such as mortality risk prediction (Barda et al., 2020).

Constraints are Essential but Challenging. Omnipredic-

tors constructed in previous work (Gopalan et al., 2022;

2023) allow us to efficiently solve various downstream loss

minimization tasks. Each of these tasks aims to minimize

the expectation of a loss function and beyond that the solu-

tions to these tasks are not guaranteed to satisfy any non-

trivial constraints. However, many loss minimization prob-

lems in practice naturally come with constraints that can-

not be simply expressed as minimizing an expected loss

E(x,y)∼D[ℓ(y, c(x))]. For example, if an action c(x) repre-

sents the amount of resources allocated to individual x, it is

common to impose a budget constraint E[c(x)] ≤ B for an

average budget B per individual. Other natural constraints

come from the algorithmic fairness literature and are known

as group fairness notions. Here, we assume that the entire

set X of individuals is partitioned into t subpopulations (i.e.,

groups) S1, . . . , St. Common examples of group fairness

constraints include statistical parity (E[c(x)|x ∈ Si] being

approximately equal for every choice of i = 1, . . . , t), equal

opportunity (E[c(x)|x ∈ Si, y = 1] being approximately

equal for every i), and equalized odds (for every b = 0, 1,

the expectation E[c(x)|x ∈ Si, y = b] being approximately

equal for every i).

Constraints as basic as the budget constraint already im-

pose challenges to the omniprediction results in previous

work. This is because in previous work the final action

c(x) = τℓ(p(x)) is extremely local: it depends only on

the loss function ℓ and the prediction p(x) for that single

individual x. Even if p(x) equals the true conditional prob-

ability PrD[y = 1|x], such local actions that completely

ignore the marginal distribution over individuals and the

predictions p(x′) for other individuals x′ ∈ X \ {x} can-

not in general minimize the squared loss under even the

simplest budget constraint (see Appendix A). While a loss

function can be optimized for every individual separately, to

determine whether an action c(x) would violate the budget

constraint, it is necessary to know the actions c(x′) assigned

to other individuals x′ ∈ X \ {x}. When constraints are

present, omnipredictors are only possible when we allow

more flexible ways of turning predictions into actions.

1.1. Our Contributions

We start by generalizing the powerful notion of omnipredic-

tion to more widely-applicable loss minimization tasks that

have constraints.
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Defining Omniprediction for Constrained Loss Min-

imization. We consider constrained loss minimization

tasks in general forms, where every task has an objective

function f0 : X ×A× {0, 1} → R and a collection of con-

straint functions fj : X×A×{0, 1} → R indexed by j ∈ J .

The goal of the task is to find an action function c : X → A
that minimizes the objective E(x,y)∼D[f0(x, c(x), y)] while

satisfying the constraints E(x,y)∼D[fj(x, c(x), y)] ≤ 0 for

every j ∈ J . Results in this paper extend to more gen-

eral tasks where we use an arbitrary Lipschitz function to

combine constraints as well as objectives (Appendix E).

Following previous work, for a class T of tasks and a class

C of hypotheses c : X → A, we say a predictor p : X →
[0, 1] is an omnipredictor if it allows us to ªefficiently solveº

any task T ∈ T compared to the hypotheses in C. More

specifically, in our constrained setting, an omnipredictor p
allows us to ªefficiently produceº a good action function

c : X → A for any task T ∈ T such that c approximately

satisfies all the constraints in T , and the objective achieved

by c does not exceed (up to a small error) the objective of

any c′ ∈ C that satisfy all the constraints of T .

A key challenge in formalizing omniprediction for con-

strained loss minimization is to specify the procedure of

ªefficiently turningº a predictor p : X → [0, 1] into an action

function c : X → A for a specific task T ∈ T . As discussed

earlier, previous work only allows c(x) to be τ(p(x)) for

a transformation function τ that only depends on T , and

this local transformation is not sufficient in our constrained

setting. We need more flexible transformations, and we

also need to maintain the efficiency of such transforma-

tions. We solve this challenge by examining the semantics

behind the transformation τ(p(x)) in previous work: this

transformation corresponds to solving the task T optimally

while pretending that p(x) is the true conditional probability

PrD[y = 1|x]. We thus use transformations induced by

solving the task on a simulated distribution defined by p in

our definition of omniprediction (Definition 2.1). We show

that this not only makes omniprediction possible for con-

strained problems, but also maintains the efficiency of the

transformation. Moreover, as we discuss below, we can con-

struct omnipredictors for important families of constrained

loss minimization problems from group-wise variants of the

multiaccuracy and/or multicalibration conditions. Note that

conditions such as multiaccuracy and multicalibration are

already needed in previous omniprediction results that do

not handle constraints!

Constructing Omnipredictors for Group Objectives and

Constraints. We develop omnipredictors for an important

class of constrained loss minimization tasks, namely, tasks

with group objectives and constraints. Here, as in many

problems in the fairness literature, we assume that the set X
of individuals is partitioned into t groups S1, . . . , St, and

we let g : X → [t] denote the group partition function,

i.e., g(x) = i if and only if x ∈ Si. We say an objec-

tive/constraint function f : X × A × {0, 1} → R is a

group constraint if there exists f ′ : [t]× A× {0, 1} → R

such that f(x, a, y) = f ′(g(x), a, y) for every (x, a, y) ∈
X×A×{0, 1}. Tasks with group objectives and constraints

are significantly more general than unconstrained tasks in

previous work with a loss function ℓ(y, a) that does not

depend on the individual x at all.

In Section 4, we show that omnipredictors for loss minimiza-

tion problems with group objectives and constraints can be

obtained from group-wise multiaccuracy and/or multical-

ibration conditions. Here, group-wise multiaccuracy and

multicalibration require the predictor to satisfy multiaccu-

racy and multicalibration when conditioned on every group

Si (see Section 2.3 for formal definitions). Specifically, we

show the following results from the simplest setting to more

challenging ones:

1. We start by considering a simple but general class of

objectives/constraints that are convex and special (Defi-

nition 4.2). Objectives in this class include the common

ℓ1 loss, the squared loss, loss induced by generalized

linear models (up to scaling), and group combinations

of these loss functions (e.g. each group chooses the ℓ1
or the squared loss). Constraints in this class include

budget constraints and group fairness constraints such

as statistical parity, equal opportunity, and equalize

odds. In Theorem 4.4, we show that omnipredictors

for tasks with convex and special group objectives and

constraints can be obtained from group multiaccuracy

w.r.t. the hypothesis class C plus group calibration. This

generalizes the results in (Gopalan et al., 2023) to our

constrained and multi-group setting.

2. In Theorem 4.6, we show that for general convex and

Lipschitz group objectives and constraints, we can con-

struct omnipredictors from group multicalibration w.r.t.

C. This generalizes the results in (Gopalan et al., 2022)

to our constrained and multi-group setting.

3. In Theorem 4.7, we show that for general (non-convex)

group objectives and constraints, omnipredictors can

be obtained from group calibration plus group level-

set multiaccuracy w.r.t. C, namely, being accurate in

expectation over individuals x ∈ Si with c(x) = a for

every group i, hypothesis c ∈ C, and action a.

We provide counterexamples in Appendix I to show that it

is necessary to strengthen multiaccuracy/multicalibration to

their group-wise and occasionally level-set variants in our

constrained setting.

We prove all our omniprediction results in a unified and

streamlined fashion using Lemma 3.1. Previously, Gopalan
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et al. (2023) also aim to build a unified framework for om-

nipredictors using the notion of outcome indistinguishability

(Dwork et al., 2021). While the initial omniprediction result

in (Gopalan et al., 2022) requires multicalibration (as an

unconstrained special case of our Theorem 4.6), Gopalan

et al. (2023) only require a weaker calibrated multiaccuracy

condition (as an unconstrained special case of our Theo-

rem 4.4) and they provide a simpler and more structured

analysis than Gopalan et al. (2022). However, the result in

Gopalan et al. (2023) requires the loss functions to satisfy

additional properties (we call such loss functions special

objectives in Definition 4.2), and it particularly focuses on

loss functions induced by generalized linear models. That

is, Gopalan et al. (2023) fall short of providing a simple

analysis that fully reconstructs the result in Gopalan et al.

(2022). By proving Theorems 4.4 and 4.6, we show that our

streamlined analysis using Lemma 3.1 can not only recon-

struct the results in Gopalan et al. (2022; 2023), but also

generalize them to the constrained setting.

Loss Minimization Can Augment Fairness. When solv-

ing an optimization task T using an omnipredictor p, for

fairness and interpretability reasons, it is natural to require

the solution c to be rank-preserving. That is, we require

c(x) ≥ c(x′) when p(x) ≥ p(x′). For example, this could

mean that we grant higher loans to individuals predicted

more likely to repay it. A violation of the rank-preserving

property corresponds to granting excessive loans to people

that are likely to default on it, which causes harm to these

individuals as well as the ones that deserve the loans more.

With group constraints, it makes more sense to only require

ranks to be preserved within each group, i.e., for individuals

x, x′ satisfying g(x) = g(x′). This is a necessary relaxation,

as group fairness constraints aim to increase opportunities

for individuals from certain groups (e.g. to rectify histori-

cal discrimination), which would not always preserve ranks

between individuals from different groups. However, some

unreasonable objectives would incentivize the solution to

be not rank-preserving even within a group. For example,

an unreasonable objective could be f(x, a, y) = 1− |a− y|
for all x ∈ Si, and f(x, a, y) = |a − y| for all other x,

assuming the actions a are in [0, 1] after scaling. This ob-

jective incentivizes giving loans to individuals in Si that

are likely to default on it, instead of those that are likely

to repay it. A group fairness constraint, such as parity, can

enforce giving a fair total amount of loan to the individuals

in Si but cannot promise that the loans are given to those

predicted to be more likely to repay it. This limitation of

group fairness notions has been repeatedly demonstrated (cf.

(Dwork et al., 2012) for an early example), and often abuses

of these notions lead to violations of the rank-preserving

requirement as in the example. In Section 5, we formally

study the conditions of the objective and constraints under

which we can ensure that the solution c obtained from an

omnipredictor p is rank-preserving within every group.

1.2. Related Work

Loss minimization under fairness or other constraints is a

rich research area. For any given fairness definition, it is nat-

ural to ask how to learn under the corresponding constraints

and how to minimize loss (or maximize utility). This has

been studied for various group notions of fairness (cf (Zafar

et al., 2017b)) but also for more refined notions such as met-

ric fairness and multi-group metric fairness (Dwork et al.,

2012; Rothblum & Yona, 2018; Kim et al., 2018). A com-

mon approach to combining loss minimization with fairness

constraints is to add a fairness regularizer to the risk mini-

mization (Donini et al., 2018; Kamishima et al., 2012; Zafar

et al., 2017b). Non-convex constraints have been considered

in (Cotter et al., 2019). Accordingly, they also formulate

the problem as a non-convex optimization problem which

may be hard to solve. There is also a line of empirical work

on loss minimization with fairness constraints (Zemel et al.,

2013; Zafar et al., 2017a; Goh et al., 2016). Finally, some

recent related works focus on other learning setting under

fairness constraint, like learning policies (Nabi et al., 2019),

online learning (Bechavod & Roth, 2022), federated learn-

ing (Hu et al., 2022b), and ranking (Dwork et al., 2019).

A key difference between our work and most previous work

on loss minimization is that we aim for learning a single

predictor that can efficiently solve a variety of downstream

constrained loss minimization tasks. Moreover, as we do

not make any assumption on the true data distribution D,

we consider it infeasible to learn the distribution D entirely

and we only require conditions such as multicalibration that

can be much easier to achieve using existing algorithms

in the literature. Some works, such as (Celis et al., 2019;

Agarwal et al., 2018; Narasimhan, 2018; Sharifi-Malvajerdi

et al., 2019), can deal with multiple loss minimization tasks

but they require approximately learning the true distribution

D within a small total variation distance or approximately

learning the true labels.

In an influential paper, Hardt, Price and Srebro (Hardt et al.,

2016) propose equalized odds and equal opportunity as

group notions of fairness. They give methods of post-

processing a predictor to enforce these constraints while

minimizing loss. They show optimality compared with solu-

tions that can be obtained from post-processing the predictor,

whereas in this work we directly aim for optimality with

respect to a rich pre-specified hypothesis class C. We con-

sider more general loss functions with real-valued actions

compared to the loss functions in (Hardt et al., 2016) that

only take binary values as input, and we also consider more

general constraints beyond the group fairness constraints in

(Hardt et al., 2016).

Rothblum & Yona (2021) use the notion of outcome in-
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distinguishability (Dwork et al., 2021), closely related to

multicalibration, to obtain loss minimization, not only on the

entire population but also on many subpopulations. Their

approach relies on a locality property of the loss function

which they term f -proper. When this property is satisfied,

for every fixed individual x0 ∈ X , the optimal action c(x0)
for that individual x0 only depends on E[y|x = x0] and not

on E[y|x = x1] for other individuals x1 ∈ X \ {x0}. In our

constrained setting, this locality property fails to hold: to

satisfy a group constraint, the action c(x0) must coordinate

with the actions c(x1) for other individuals x1 in or out of

the group/subpopulation of x0.

Independently of our work, Globus-Harris et al. (2022) also

study the problem of solving downstream tasks by post-

processing multicalibrated predictors. They focus on the

0-1 loss for classification tasks and thus their results do not

imply the full power of omnipredictors that handle arbitrary

loss functions from a rich family. They also focus on a

few specific group fairness constraints, whereas we consider

more general classes of constraints. By assuming multical-

ibration with respect to delicately-designed classes, their

predictors can be efficiently post-processed to satisfy con-

straints on intersecting groups. Again independently of our

work, Kim & Perdomo (2023) study omniprediction in an

(unconstrained) performative setting, where the distribution

of the outcome y of an individual x can change based on

the action c(x).

1.3. Limitations and Social Impacts

While our work is theoretical, we view it as giving a foun-

dation and proof-of-concept for potential omnipredictors to

be deployed in the real world with fairness considerations.

Omnipredictors allow us to efficiently solve optimization

problems and adapt to rich families of objectives and con-

straints, but carelessly choosing constraints and objectives

for the omnipredictors may not always lead to good deci-

sions. In some situations, different fairness constraints can

lead to contradictory fairness guarantees, and choosing a

wrong fairness constraint may lead to inappropriate actions.

Our results in Section 5 are motivated by situations where

fairness constraints alone are not enough for acceptable ac-

tions and a good objective is needed to augment the fairness

constraints for arguably fairer actions. In terms of limita-

tions of the results, our omnipredictors rely on a fixed group

partition g and a fixed (unknown) distribution D, and it re-

mains an interesting question to construct omnipredictors

that can adapt to changes in g and D as well. Addressing

this limitation could help protect new and evolving subpopu-

lations. It is an interesting question whether our techniques

(in particular Lemma 3.1) can be applied to tasks with more

general outcomes beyond binary outcomes y ∈ {0, 1}. Un-

constrained versions of such tasks have been considered by

Gopalan et al. (2022), and we leave it for future work to

generalize their results to the constrained setting.

2. Problem Setup

Throughout the paper, we use X to denote a non-empty

set of individuals, and use D to denote a distribution over

X × {0, 1}. We use A to denote a non-empty set of ac-

tions, and use c : X → A to denote an action function

that assigns an action c(x) to every individual x ∈ X (e.g.

hiring the individual or not). We occasionally consider a

randomized action function c : X → ∆A that assigns every

individual x ∈ X a distribution c(x) ∈ ∆A over actions

in A. For generality we sometimes only make statements

about randomized action functions, where one should view

a deterministic action function c : X → A as the random-

ized action function c′ : X → ∆A where c′(x) ∈ ∆A is the

degenerate distribution supported on c(x) for every x ∈ X .

2.1. Constrained Loss Minimization Tasks

Given a loss function f0 : X × A × {0, 1} → R and a

collection of constraints fj : X ×A× {0, 1} → R indexed

by j ∈ J , we define a constrained loss minimization task T
to be the following optimization problem:

minimize
c:X→A

E
(x,y)∼D

f0(x, c(x), y) (1)

s.t. E
(x,y)∼D

fj(x, c(x), y) ≤ 0 for every j ∈ J.

It is often challenging to solve a task T optimally, and we

need to consider approximate and potentially randomized

solutions. For β ∈ R and ε ∈ R≥0, we define solD(T, β, ε)
to be the set of randomized action functions c : X → ∆A

satisfying

E
(x,y)∼D

E
a∼c(x)

f0(x, a, y) ≤ β, and

E
(x,y)∼D

E
a∼c(x)

fj(x, a, y) ≤ ε for every j ∈ J.

For a class C of functions c : X → ∆A, we define

optD(T, C, ε) := inf{β ∈ R : C ∩ solD(T, β, ε) ̸= ∅}.

Note that optD(T, C, ε) may take any value in R ∪ {±∞},

where we define inf ∅ = +∞. In Appendix E, we show how

results in this paper extend to more general tasks where we

combine constraints and objectives using arbitrary Lipschitz

functions.

2.2. Omnipredictors for Constrained Loss Minimization

An omnipredictor, as introduced by Gopalan et al. (2022),

allows us to solve a family of downstream loss minimiza-

tion tasks without training a different model from scratch

for every task in the family. Previous work focuses on om-

nipredictors for unconstrained loss minimization (Gopalan
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et al., 2022; 2023). We generalize this notion to constrained

loss minimization as follows.

For a distribution D over X × {0, 1} and a predictor

p : X → [0, 1], we define the simulated distribution Dp

to be the distribution of (x, y′) ∈ X ×{0, 1} where we first

draw (x, y) from D and then draw y′ from the Bernoulli dis-

tribution Ber(p(x)) with mean p(x). For a hypothesis class

C consisting of functions c : X → ∆A, suppose we want to

solve a downstream constrained loss minimization task T on

the true distribution D and we want a comparable or better

solution than the best hypothesis c ∈ C. An omnipredictor

p should allow us to achieve this goal by finding an approx-

imately optimal solution c′ from another, ideally simpler,

hypothesis class C′ for the same task T but on the simulated

distribution Dp defined by the omnipredictor p. Such an

omnipredictor is particularly powerful when it works for

tasks T from a rich family T and when solving any T ∈ T
on the simulated distribution Dp over hypothesis class C′

is significantly easier than directly solving T on the true

distribution D over hypothesis class C. This leads to the

following formal definition of an omnipredictor:

Definition 2.1. Let D be a distribution over X ×{0, 1} and

ε ≥ 0 be a parameter. Let T be a collection of constrained

loss minimization tasks and let p : X → [0, 1] be a predictor.

For classes C, C′ of functions c : X → ∆A, we say p is

a (T , C, C′, ε)-omnipredictor on D if the following holds

for any T ∈ T . Defining β := optD(T, C, 0) ∈ R and

β′ := optDp
(T, C′, ε/3) ∈ R, we have

C′ ∩ solDp
(T, β′ + ε/3, 2ε/3) ⊆ solD(T, β + ε, ε).

Suppose we have an omnipredictor p as in the definition

above, and we want to solve an arbitrary constrained loss

minimization task T ∈ T in comparison with the class C,

i.e., we want to find a solution in solD(T, β + ε, ε). Instead

of collecting data points from D and solve the task from

scratch, we just need to find a solution in C′ ∩ solDp
(T, β′ +

ε/3, 2ε/3), i.e., a solution c′ ∈ C′ that approximately solves

the task on the simulated distribution Dp. This is usually

much easier than solving the task on the original distribution

D for the following two reasons:

Simplicity from Dp. First, since we know p, we know

the conditional distribution of y given x in (x, y) ∼ Dp,

and thus the only unknown part about Dp is the marginal

distribution of x, which can be learned from unlabeled data

drawn from D (i.e., examples of x in (x, y) ∼ D with y
concealed). For all the omniprediction results in this paper,

we assume that the downstream tasks have a group structure

specified by a fixed group partition function g : X →
[t] (see Section 4). To solve such tasks on the simulated

distribution Dp, all we need to know about the marginal

distribution of x is the probability that x belongs to each of a

few subsets defined independently of the actual downstream

task. We can estimate these probabilities when we train the

omnipredictor p, and no additional data (labeled or not) is

needed at all when we use p to solve downstream tasks (see

Appendix H).

Simplicity from C′. Second, solving downstream tasks

over the new class C′ can be computationally much more

efficient than solving them over the original class C. In all

of the omniprediction results in this paper, we choose C′ to

be very simple (as Cp,g and Crand
p,g in Definition 4.3) so that

its complexity depends on the number of groups and the

size of the range of p, which can be made to be very small

(O(1/ε)), whereas C can be significantly more complex.

Specifically, every function in Cp,g (resp. Crand
p,g ) assigns

the same action (resp. same distribution over actions) to

individuals x with the same p(x) and g(x). In Appendix H

we give very efficient algorithms for solving constrained

loss minimization tasks given omnipredictors.

In previous work on omniprediction without constraints,

the optimal solution c on the simulated distribution Dp

is trivial to find: it is given by choosing c(x) so that

Ey∼Ber(p(x)) f0(x, c(x), y) is minimized (Bayes optimal so-

lution). That is, the optimal c(x) depends only on x, f0,

and p(x) (often f0 does not depend on x and thus c(x) only

depends on f0 and p(x)). Because of this locality property,

previous definitions of omniprediction for unconstrained

loss minimization simply explicitly uses the optimal solu-

tion on the simulated distribution Dp without defining a

task on Dp or even without defining Dp at all. Our Defi-

nition 2.1 not only generalizes these previous definitions,

but also deals with more challenging tasks with constraints

where the locality property fails to hold.

2.3. Group Multiaccuracy and Multicalibration

A main contribution of this paper is showing that om-

nipredictors for a variety of constrained loss minimization

problems can be obtained from group-wise multiaccuracy

and/or multicalibration conditions. The notions of multi-

accuracy and multicalibration are introduced by HÂebert-

Johnson et al. (2018) and Kim et al. (2019), and there are

many algorithms for achieving these notions in previous

work (see Appendix G). We define these notions here as

special cases of the following generalized multicalibration

notion. For the definitions below, we assume D is a distri-

bution over X × {0, 1} and ε ≥ 0 is a parameter.

Definition 2.2 (Generalized multicalibration (GenMC) (see

e.g. Kim et al., 2022, Definition 1.1 in Supplementary Infor-

mation)). Let W be a class of functions w : X × [0, 1] →
R. We say a predictor p : X → [0, 1] satisfies (W, ε)-
generalized multicalibration w.r.t. distribution D if

∣

∣

∣

∣

E
(x,y)∼D

[(y − p(x))w(x, p(x))]

∣

∣

∣

∣

≤ ε for every w ∈ W.
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For simplicity, we additionally require the range of p,

range(p) := {p(x) : x ∈ X}, to be a finite subset of [0, 1].1

We use GenMCD(W, ε) to denote the set of predictors p
satisfying the conditions above.

We define multiaccuracy and multicalibration below as spe-

cial cases of GenMC in a general group-wise setting, by

choosing an appropriate function class W in every definition.

Here, we assume that the set X of individuals is partitioned

into t groups (i.e., subpopulations). We use g : X → [t]
to denote the group partition function that assigns every

individual x ∈ X a group index g(x) ∈ [t] := {1, . . . , t}.

Definition 2.3 (Group Multiaccuracy (GrpMA)). For a class

H of functions h : X → R and group index g : X → [t],
we define GrpMAD(H, g, ε) to be the set GenMCD(W, ε)
where W consists of all functions w : X × [0, 1] → R

such that there exist h ∈ H and τ : [t] → [−1, 1] satisfy-

ing w(x, v) = h(x)τ(g(x)) for every (x, v) ∈ X × [0, 1].
We say a predictor p is (H, g, ε)-multiaccurate w.r.t. dis-

tribution D if p ∈ GrpMAD(H, g, ε). When the distribu-

tion D is clear from context, we often drop it and write

GrpMA(H, g, ε) (similarly for other definitions below).

In Appendix B we give an equivalent definition of GrpMA

in a form closer to similar definitions in the literature. We

do this for other definitions below in this section as well.

Definition 2.4 (Group Multicalibration (GrpMC)). For a

class H of functions h : X → R and group index

g : X → [t], we define GrpMCD(H, g, ε) to be the

set GenMCD(W, ε) where W consists of all functions

w : X × [0, 1] → R such that there exist h ∈ H
and τ : [t] × [0, 1] → [−1, 1] satisfying w(x, v) =
h(x)τ(g(x), v) for every (x, v) ∈ X × [0, 1]. We say a

predictor p is (H, g, ε)-multicalibrated w.r.t. distribution D
if p ∈ GrpMCD(H, g, ε).

The following definition of group calibration is a special

case of group multicalibration where H only contains the

constant function h that maps every x ∈ X to 1:

Definition 2.5 (Group Calibration (GrpCal)). We define

GrpCalD(g, ε) to be the set GenMCD(W, ε) where W con-

sists of all functions w : X × [0, 1] → [−1, 1] such

that there exists τ : [t] × [0, 1] → [−1, 1] satisfying

w(x, v) = τ(g(x), v) for every (x, v) ∈ X × [0, 1]. We

say a predictor p is (g, ε)-calibrated w.r.t distribution D if

p ∈ GrpCalD(g, ε).

The following definition is a variant of group multiaccuracy

where the transformation τ also takes the function value

1As we discuss in Appendix H, a simple discretization allows
us to get a predictor p with range(p) ⊆ {0, 1/m, 2/m, . . . , 1} for
m = O(1/ε) that satisfy all the group multiaccuracy and multical-
ibration requirements we need for our results. Also, all previous
algorithms for achieving multicalibration naturally produce predic-
tors with such discrete ranges.

h(x) as input, and we view individuals x with the same

h(x) as belonging to the same level set of h.

Definition 2.6 (Group Level-Set Multiaccuracy (GrpLMA)).

For an arbitrary finite set A and a class H of functions

h : X → A, we define GrpLMAD(H, g, ε) to be the

set GenMCD(W, ε) where W consists of all functions

w : X × [0, 1] → [−1, 1] such that there exist h ∈ H and

τ : [t] × A → [−1, 1] satisfying w(x, v) = τ(g(x), h(x))
for every (x, v) ∈ X × [0, 1]. We say a predictor p
is (H, g, ε)-level-set multiaccurate w.r.t distribution D if

p ∈ GrpLMAD(H, g, ε).

When the group partition function g is a constant function

g0 that assigns every individual to the same group, we re-

cover notions in the standard single-group setting: multiac-

curacy (MAD(H, ε) := GrpMAD(H, g0, ε)), multicalibra-

tion (MCD(H, ε) := GrpMCD(H, g0, ε)), and calibration

(CalD(ε) := GrpCalD(g0, ε)).

3. Our Approach

We describe our general approach for constructing and an-

alyzing omnipredictors for constrained loss minimization

tasks. Our approach is similar in spirit to the outcome indis-

tinguishability perspective taken by (Gopalan et al., 2023),

but our approach is more general: it takes constraints into

account and can also be applied to reconstruct the results

in previous papers on omnipredictors (Gopalan et al., 2022;

2023). In particular, we overcome the limitation of (Gopalan

et al., 2023) that it falls short of fully explaining the initial

omnipredictors results in (Gopalan et al., 2022). Our ap-

proach is based on the following key lemma:

Lemma 3.1. Let D be a distribution over X × {0, 1} and

ε ≥ 0 be a parameter. Let T be a collection of constrained

loss minimization tasks and let C, C′ be classes of func-

tions c : X → ∆A. If a predictor p satisfies the following

two properties for every T ∈ T , then p is a (T , C, C′, ε)-
omnipredictor on D:

1. Let f0 be the loss function of T and (fj)j∈J be the

constraints of T . For every c ∈ C, there exists c′ ∈ C′

such that for every j ∈ {0} ∪ J ,

E
(x,y)∼Dp

E
a∼c′(x)

fj(x, a, y)

≤ E
(x,y)∼D

E
a∼c(x)

fj(x, a, y) + ε/3. (2)

2. For every c ∈ C′ and every j ∈ {0} ∪ J ,

E
(x,y)∼D

E
a∼c(x)

fj(x, a, y)

≤ E
(x,y)∼Dp

E
a∼c(x)

fj(x, a, y) + ε/3. (3)

Lemma 3.1 reduces the task of constructing an omnipredic-

tor to satisfying the conditions in (2) and (3). We prove
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Lemma 3.1 in Appendix C and show how to apply it to

construct omnipredictors for a variety of constrained loss

minimization tasks in Section 4. Lemma 3.1 allows us

to give short and streamlined proofs for all our results in

Section 4, and these results generalize previous results in

(Gopalan et al., 2022; 2023) as special cases.

4. Omnipredictors from Group Multiaccuracy

and Multicalibration

In this section, we apply Lemma 3.1 and show that we

can obtain omnipredictors for loss minimization tasks with

group objectives and constraints from group multiaccuracy

and/or multicalibration conditions. Here, we assume that

the individual set X is partitioned into t groups by a group

partition function g : X → [t] assigning a group index

g(x) ∈ [i] to every individual x ∈ X .

Definition 4.1. For a group partition g : X → [t], we say

an objective/constraint function f : X × A× {0, 1} → R

is a group objective/constraint if there exists f ′ : [t]×A×
{0, 1} → R such that f(x, a, y) = f ′(g(x), a, y) for every

(x, a, y) ∈ X ×A× {0, 1}.

Proofs for the results in this section are deferred to Ap-

pendix D. These results show that algorithms in previous

work for achieving multiaccuracy and multicalibration al-

low us to obtain omnipredictors even when constraints are

imposed on the loss minimization tasks. We discuss these

algorithms in more detail in Appendix G.

We start with a basic case where the objectives and con-

straints are convex and special, defined below. We use

∂f(x, a) to denote f(x, a, 1)− f(x, a, 0).

Definition 4.2. Let the action set A ⊆ R be an interval. We

say an objective/constraint function f : X×A×{0, 1} → R

is convex if f(x, ·, y) is convex for every fixed (x, y) ∈
X × {0, 1}. We say f is special w.r.t a group partition

g : X → [t] if there exist τ1, τ2 : [t] → [−1, 1] such that

∂f(x, a) = τ1(g(x)) + τ2(g(x))a.

Examples of convex and special group objectives when A =
[0, 1] include the ℓ1 loss f(x, a, y) = |a− y|/2, the squared

loss f(x, a, y) = (a− y)2/2, and group-wise combinations

of them (every group chooses either ℓ1 or squared loss).

As demonstrated in (Gopalan et al., 2023), loss functions

induced from generalized linear models are also special

after appropriate scaling. Examples of convex and special

constraints include all linear constraints, i.e., constraint

functions f for which there exist τ1, τ2 : [t] → [−1, 1] and

τ3, τ4 : [t] → R such that

f(x, a, y) = τ1(i)y + τ2(i)ay + τ3(i) + τ4(i)a (4)

for every (x, a, y) ∈ X ×A× {0, 1} where i := g(x). Lin-

ear constraints are general enough to express fairness con-

straints such as statistical parity, equal opportunity (equal

true positive rates), and equalized odds (equal true positive

rates and equal false positive rates) as follows. For every

group i ∈ [t], define ri := Pr[g(x) = i], r+i := Pr[g(x) =
i|y = 1], and r−i := Pr[g(x) = i|y = 0]. These fairness

constraints can be expressed as2

E[1(g(x) = i)c(x)] = ri E[c(x)],
(statistical parity)

E[1(g(x) = i)c(x)y] = r+i E[c(x)y],
(equal true positive rates)

E[1(g(x) = i)c(x)(1− y)] = r−i E[c(x)(1− y)].
(equal false positive rates)

Each of the above fairness constraints can be written as

E[f(x, c(x), y)] = 0 for an appropriate f satisfying (4).

For example, for statistical parity, we choose f as follows:

f(x, a, y) = 1(g(x) = i)a− ria. (statistical parity)

Moreover, we can express approximate fairness con-

straints as a combination of linear constraints because

|E[f(x, c(x), y)]| ≤ α is equivalent to E[f(x, c(x), y) −
α] ≤ 0 and E[−f(x, c(x), y)− α] ≤ 0.

For tasks with group objectives/constraints, we often choose

the class C′ in our definition of omnipredictors (Defini-

tion 2.1) to be Cp,g and Crand
p,g in the following definition:

Definition 4.3. For an action set A, a group partition func-

tion g : X → [t] and a predictor p : X → [0, 1], we define

Cp,g to be the class consisting of all functions c : X → A
such that there exists τ : [t] × [0, 1] → A satisfying

c(x) = τ(g(x), p(x)) for every x ∈ X . We define Crand
p,g

to be the class consisting of all functions c : X → ∆A

such that there exists τ : [t] × [0, 1] → ∆A satisfying

c(x) = τ(g(x), p(x)) for every x ∈ X .

We now state our omniprediction theorem for convex and

special constraints and objectives. In the theorems below,

we use D to denote an underlying distribution over X ×
{0, 1} and use C to denote a class of functions c : X → A.

Theorem 4.4. Let A = [0, 1] be an action set and let g :
X → [t] be a group partition. Let T be a class of tasks that

only have group constraints and group objectives that are all

convex and special. Let p be a predictor in GrpMAD(C, g,
ε/6)∩GrpCalD(g, ε/6) and define Cp,g as in Definition 4.3.

Then p is a (T , C, Cp,g, ε)-omnipredictor on D.

We remark that the convexity assumption in the theorem

above can be removed if we replace Cp,g with Crand
p,g (The-

orem D.9), in which case we can handle any finite action

2Here for simplicity we assume that we know ri, r
+

i
, r−

i
. These

quantities can be estimated from unlabeled data and a predictor
satisfying group calibration. It is also natural to compute and
store estimates for these quantities when we train an omnipredictor
before seeing downstream tasks because these estimates are helpful
for general tasks, not just for those with group fairness constraints
(see Appendix H).

8



Omnipredictors for Constrained Optimization

set A ⊆ [0, 1]. Once we construct an omnipredictor using

Theorem 4.4 (and other theorems in this section), we can

efficiently transform it into nearly optimal actions for any

task T ∈ T (see Appendix H). Theorem 4.4 generalizes

the results in (Gopalan et al., 2023) that hold in the single-

group unconstrained setting. Our following theorem deals

with general convex and Lipschitz group objectives and

constraints and it generalizes the results in (Gopalan et al.,

2022).

Definition 4.5. We say an objective/constraint function

f : X × A × {0, 1} → R is κ-Lipschitz if f(x, ·, y) is

κ-Lipschitz for every fixed (x, y) ∈ X × {0, 1}. We say f
has B-bounded difference if ∂f(x, a) ∈ [−B,B] for every

(x, a) ∈ X ×A.

Theorem 4.6. Let A = [0, 1] be an action set and let

g : X → [t] be a group partition. Let T be a class of

tasks that only have group objectives and group constraints

that are all convex and 1-Lipschitz and have 1-bounded

differences. Let p be a predictor in GrpMCD(C, g, ε/15) ∩
GrpCalD(g, ε/15) and define Cp,g as in Definition 4.3. Then

p is a (T , C, Cp,g, ε)-omnipredictor on D.

Finally, we consider general group constraints. These con-

straints allow us to constrain the entire distribution of c(x)
(e.g. constraints on Pr[c(x) ∈ A′] for A′ ⊆ A) and the

distribution of c(x) within each group (e.g. constraints on

Pr[c(x) ∈ A′, g(x) = i]).

Theorem 4.7. Let A be a finite non-empty action set and

let g : X → [t] be a group partition. Let T be a class

of tasks with group constraints and group objectives that

all have 1-bounded differences. Let p be a predictor in

GrpLMAD(C, g, ε/3)∩GrpCalD(g, ε/3) and define Crand
p,g as

in Definition 4.3. Then p is a (T , C, Crand
p,g , ε)-omnipredictor

on D.

We give counterexamples in Appendix I showing that

strengthening standard multiaccuracy and multicalibration

to their group-wise and/or level-set variants in the theorems

above is necessary.

5. Interaction between Group Fairness and

Loss Minimization

In this section we explain how we can use our omnipredic-

tors to get an additional property, which we call rank-

preserving. The intuition is that if we assume the predictor

p : X → [0, 1] describes an approximation to the true

probability Pr(x,y)∼D[y = 1], then we want individuals x
with higher p(x) to get higher action values, for real-valued

actions a ∈ R. This requirement can be thought of as a

fairness property, that individuals that are more likely to

succeed (within the same group) should get higher actions.

Definition 5.1. Let A ⊆ R be set of real-valued actions. We

say a transformation τ : [t]× [0, 1] → A is rank-preserving

if for all i ∈ [t] and v > v′ ∈ [0, 1] we have τ(i, v) ≥
τ(i, v′). Let p : X → [0, 1] be a predictor and g : X →
[t] be a group index function. We denote by rp-Cp,g the

set of all functions c ∈ Cp,g such that there exists a rank-

preserving transformation τ : [t] × [0, 1] → A satisfying

c(x) = τ(g(x), p(x)) for every x ∈ X .

Our goal is to show that for a large class of optimization

problems T , the post-processing of the omnipredictor can

output an optimal solution that is also rank-preserving. We

achieve this by showing that for every problem T ∈ T ,

optDp
(T, rp-Cp,g, ε) ≤ optDp

(T, Cp,g, ε). (5)

Inequality (5) implies that when we solve a downstream

task using an omnipredictor, i.e., when we compute a solu-

tion in Cp,g ∩ solDp
(T, β′ + ε/3, 2ε/3) as in Definition 2.1,

we can search only within the class rp-Cp,g instead of the

entire class Cp,g. This would ensure that our final solution

is rank-preserving. Searching over rp-Cp,g can be imple-

mented efficiently by adding linear constraints (for the rank-

preserving requirement) to the linear/convex programming

in Appendix H.

In Appendix F we prove Lemma F.4 showing that (5) holds

for a class of optimization problems when the loss functions

and constraints satisfy certain monotonicity conditions, and

there is a single linear constraint per group i ∈ [t]. In

Lemma F.6 we prove a randomized version of (5), when

the constraints are independent of the outcome y. We re-

mark that some monotonicity requirements from the loss

functions and the constraints are necessary to promise a

rank-preserving optimal solution.
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A. Constraints Require Global Transformations

We give a simple example where the optimal action c(x) for a constrained loss minimization problem depends not only

on the single prediction p(x) but also on the predictions p(x′) for other individuals x′ ̸= x, assuming that the predictor p
agrees with the ground truth: p(x) = E[y|x]. Let X = {x1, x2} be a set of two individuals, and let D be a distribution

of (x, y) ∈ X × {0, 1} such that the marginal distribution of x is the uniform distribution over X , and for a predictor

p : X → [0, 1] we have ED[y|x = xi] = p(xi) for every i = 1, 2. Consider the problem of minimizing the expected

squared loss ED[(y − c(x))2] under a budget constraint ED[c(x)] ≤ 1/2 over action functions c : X → R. Defining

a1 := c(x1), a2 := c(x2), p1 := p(x1), p2 := p(x2), we can write the problem as minimizing

ED[(y − c(x))2] =
1

2
(p1(1− a1)

2 + (1− p1)(0− a1)
2) +

1

2
(p2(1− a2)

2 + (1− p2)(0− a2)
2)

=
1

2
p1(1− p1) +

1

2
p2(1− p2) +

1

2
(a1 − p1)

2 +
1

2
(a2 − p2)

2 (6)

under the constraint a1 + a2 ≤ 1 over the variables a1, a2. Note that the first two terms in the objective (6) are independent

of the actions a1, a2, so minimizing (6) is equivalent to minimizing the Euclidean distance from point (a1, a2) to point

(p1, p2). The optimal solution (a1, a2) is given by projecting the two dimensional point (p1, p2) onto the feasible region

(grey area in Figure 1). It is clear that a1 depends on both p1 and p2, and similarly a2 depends on both p1 and p2. It is

straightforward to generalize this example to more than two individuals where the optimal action for any individual depends

on the predictions for all the other individuals.

<latexit sha1_base64="Qx0ggXRrXkBhVGnOY4qxl+7+kp4="></latexit>

(p1, p2)
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(a1, a2)
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0
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1
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1

Figure 1. A simple constrained problem whose optimal solution has global dependence.

B. Proof of Equivalence in Multiaccuracy and Multicalibration Definitions

Below we state equivalent definitions of the notions in Section 2.3.

Equivalently to Definition 2.3, GrpMAD(H, g, ε) is the set of predictors p : X → [0, 1] satisfying the following for every

h ∈ H:
∑

i∈[t]

∣

∣

∣

∣

E
(x,y)∼D

[(y − p(x))h(x)1(g(x) = i)]

∣

∣

∣

∣

≤ ε.

Equivalently to Definition 2.4, GrpMCD(H, g, ε) is the set of predictors p : X → [0, 1] satisfying the following for every

h ∈ H:

∑

i∈[t]

∑

v∈range(p)

∣

∣

∣

∣

E
(x,y)∼D

[(y − p(x))h(x)1(g(x) = i, p(x) = v)]

∣

∣

∣

∣

≤ ε.

where the sum is over i ∈ [t] and v ∈ range(p).

Equivalently to Definition 2.5, GrpCalD(g, ε) is the set of predictors p : X → [0, 1] satisfying:

∑

i∈[t]

∑

v∈range(p)

∣

∣

∣

∣

E
(x,y)∼D

[(y − p(x))1(g(x) = i, p(x) = v)]

∣

∣

∣

∣

≤ ε.
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Equivalently to Definition 2.6, GrpLMA(H, g, ε) is the set of predictors p : X → [0, 1] satisfying the following for every

h ∈ H:
∑

i∈[t]

∑

a∈A

∣

∣

∣

∣

E
(x,y)∼D

[(y − p(x))1(g(x) = i, h(x) = a)]

∣

∣

∣

∣

≤ ε.

We prove the equivalence relationship for GrpMA. Similar proofs can be applied to other definitions.

Claim B.1. In Definition 2.3, a predictor p belongs to GrpMA(C, g, ε) if and only if

∑

i∈[t]

| E
(x,y)∼D

[(y − p(x))h(x)1(g(x) = i)]| ≤ ε for every h ∈ H. (7)

Proof. We first show that p ∈ GrpMA(C, g, ε) implies (7). For a fixed h ∈ H , we choose τ : [t] → [−1, 1] such that

τ(i) = sign

(

E
(x,y)∼D

[(y − p(x))h(x)1(g(x) = i)]

)

, (8)

where sign(v) = 1 if v ≥ 0, and sign(v) = −1 if v < 0. By our assumption p ∈ GrpMA(C, g, ε),

ε ≥ E
(x,y)∼D

[(y − p(x))h(x)τ(g(x))]

=
∑

i∈[t]

E
(x,y)∼D

[(y − p(x))h(x)1(g(x) = i)τ(i)]

=
∑

i∈[t]

| E
(x,y)∼D

[(y − p(x))h(x)1(g(x) = i)]|. (by (8))

This proves (7). Now we prove that (7) implies p ∈ GrpMA(C, g, ε). For any h ∈ H and τ : [t] → [−1, 1],

E
(x,y)∼D

[(y − p(x))h(x)τ(g(x))]

=
∑

i∈[t]

E
(x,y)∼D

[(y − p(x))h(x)1(g(x) = i)τ(i)]

≤
∑

i∈[t]

| E
(x,y)∼D

[(y − p(x))h(x)1(g(x) = i)]| (by τ(i) ∈ [−1, 1])

≤ ε. (by (7))

This proves p ∈ GrpMA(C, g, ε).

Remark B.2. The proof above can be adapted to show that if we restrict τ to only output values in {−1, 1} instead of [−1, 1],
we also get an equivalent definition of GrpMA, and this holds for other definitions in Section 2.3 as well.

C. Proof of Lemma 3.1

We restate and prove Lemma 3.1 below.

Lemma C.1. Let D be a distribution over X × {0, 1} and ε ≥ 0 be a parameter. Let T be a collection of constrained loss

minimization tasks and let C, C′ be classes of functions c : X → ∆A. If a predictor p satisfies the following two properties

for every T ∈ T , then p is a (T , C, C′, ε)-omnipredictor on D:

1. Let f0 be the loss function of T and (fj)j∈J be the constraints of T . For every c ∈ C, there exists c′ ∈ C′ such that for

every j ∈ {0} ∪ J ,

E
(x,y)∼Dp

E
a∼c′(x)

fj(x, a, y)

≤ E
(x,y)∼D

E
a∼c(x)

fj(x, a, y) + ε/3. (2)
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2. For every c ∈ C′ and every j ∈ {0} ∪ J ,

E
(x,y)∼D

E
a∼c(x)

fj(x, a, y)

≤ E
(x,y)∼Dp

E
a∼c(x)

fj(x, a, y) + ε/3. (3)

Proof. Fix an arbitrary task T ∈ T . Define β := optD(T, C, 0) and β′ := optDp
(T, C′, ε/3) as in Definition 2.1. By the

definition of β, for any β1 > β, there exists c ∈ C ∩ solD(T, β1, 0). By (2), there exists c′ ∈ C′ ∩ solDp
(T, β1 + ε/3, ε/3).

This implies that β′ ≤ β1 + ε/3, and thus β′ ≤ β + ε/3. Now we have β′ + ε/3 ≤ β + 2ε/3, and thus

C′ ∩ solDp
(T, β′ + ε/3, 2ε/3) ⊆ C′ ∩ solDp

(T, β + 2ε/3, 2ε/3). (9)

Inequality (3) implies that for any β2 ∈ R and ε′ ∈ R≥0, C′ ∩ solDp
(T, β2, ε

′) ⊆ solD(T, β2 + ε/3, ε′ + ε/3), and thus

C′ ∩ solDp
(T, β + 2ε/3, 2ε/3) ⊆ solD(T, β + ε, ε). (10)

Combining (9) and (10) completes the proof.

D. Proofs for Section 4

D.1. Proof of Theorem 4.4

Theorem 4.4. Let A = [0, 1] be an action set and let g : X → [t] be a group partition. Let T be a class of tasks that

only have group constraints and group objectives that are all convex and special. Let p be a predictor in GrpMAD(C, g,
ε/6) ∩ GrpCalD(g, ε/6) and define Cp,g as in Definition 4.3. Then p is a (T , C, Cp,g, ε)-omnipredictor on D.

We first prove three helper lemmas/claims below and then prove Theorem 4.4.

Claim D.1. For any predictor p : X → [0, 1], any function f : X ×A× {0, 1} → R and any c : X → A, we have

E
(x,y)∼D

f(x, c(x), y)− E
(x,y)∼Dp

f(x, c(x), y) = E
(x,y)∼D

[(y − p(x))∂f(x, c(x))], (11)

where ∂f(x, a) := f(x, a, 1)− f(x, a, 0) for every (x, a) ∈ X ×A.

Proof. The claim is proved by plugging the following equation into the left-hand side of (11).

f(x, c(x), y) = f(x, c(x), 0) + y ∂f(x, c(x)).

We get

E
(x,y)∼D

f(x, c(x), y)− E
(x,y)∼Dp

f(x, c(x), y)

= E
(x,y)∼D

[f(x, c(x), 0) + y ∂f(x, c(x))]− E
(x,y)∼Dp

[f(x, c(x), 0) + y ∂f(x, c(x))].

The distributions D,Dp are identical on the x part, therefore f(x, c(x), 0) cancels out. The distribution Dp is defined such

that y = 1 with probability p(x), which finishes the proof.

Lemma D.2. In the setting of Theorem 4.4, for every c ∈ C, there exists c′ ∈ Cp,g such that for every convex and special

group objective/constraint f : X ×A× {0, 1} → R, it holds that

E
(x,y)∼Dp

f(x, c′(x), y) ≤ E
(x,y)∼D

f(x, c(x), y) + ε/3.

Proof. By Claim D.1,

E
(x,y)∼D

f(x, c(x), y)− E
(x,y)∼Dp

f(x, c(x), y) = E
(x,y)∼D

[(y − p(x))∂f(x, c(x))]. (12)
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Since f is a special objective/constraint, there exist τ1, τ2 : [t] → [−1, 1] such that ∂f(x, c(x)) = τ1(g(x)) + τ2(g(x))c(x).
By our assumption that p ∈ GrpCal(g, ε/6), we have

E
(x,y)∼D

[(y − p(x))τ1(g(x))] ≥ −ε/6.

By our assumption that p ∈ GrpMA(C, g, ε/6), we have

E
(x,y)∼D

[(y − p(x))τ2(g(x))c(x)] ≥ −ε/6.

Combining them, we have

E
(x,y)∼D

[(y − p(x))∂f(x, c(x))] = E
(x,y)∼D

[(y − p(x))(τ1(g(x)) + τ2(g(x))c(x))] ≥ −ε/3. (13)

Finally, define τ such that τ(i, v) = E[c(x)|g(x) = i, p(x) = v] and define c′(x) = τ(g(x), p(x)). It is clear that c′ ∈ Cp,g .

Moreover, by the convexity of f , we have

E
(x,y)∼Dp

f(x, c′(x), y) ≤ E
(x,y)∼Dp

f(x, c(x), y).

Combining this with (12) and (13) completes the proof.

Lemma D.3. In the setting of Theorem 4.4, for every c ∈ Cp,g, for every convex and special group objective/constraint

f : X ×A× {0, 1} → R, it holds that

E
(x,y)∼D

f(x, c(x), y) ≤ E
(x,y)∼Dp

f(x, c(x), y) + ε/3.

Proof. By Claim D.1,

E
(x,y)∼D

f(x, c(x), y)− E
(x,y)∼Dp

f(x, c(x), y) = E
(x,y)∼D

[(y − p(x))∂f(x, c(x))]. (14)

Since f is convex and special, there exists τ : [t] × A → [−2, 2] such that ∂f(x, a) = τ(g(x), a). Since c ∈ Cp,g, there

exists τ ′ : X × [0, 1] → A such that c(x) = τ(g(x), p(x)). Therefore,

E
(x,y)∼D

[(y − p(x))∂f(x, c(x))] = E
(x,y)∼D

[(y − p(x))τ(g(x), τ ′(g(x), p(x)))] ≤ ε/3, (15)

where the last inequality holds by our assumption that p ∈ GrpCal(g, ε/6). Combining (14) and (15) completes the

proof.

Proof of Theorem 4.4. The proof is completed by applying Lemma 3.1 to the setting of Theorem 4.4 and observing that (2)

and (3) in Lemma 3.1 can be established by Lemma D.2 and Lemma D.3, respectively.

D.2. Proof of Theorem 4.6

Theorem 4.6. Let A = [0, 1] be an action set and let g : X → [t] be a group partition. Let T be a class of tasks that only

have group objectives and group constraints that are all convex and 1-Lipschitz and have 1-bounded differences. Let p be

a predictor in GrpMCD(C, g, ε/15) ∩ GrpCalD(g, ε/15) and define Cp,g as in Definition 4.3. Then p is a (T , C, Cp,g, ε)-
omnipredictor on D.

We first prove three helper lemmas below and then prove Theorem 4.6.

Lemma D.4 ((Gopalan et al., 2022)). Let c : X → R be a function. Let g : X → [t] be a group partition function. Let

f : X × R× {0, 1} → R be a convex 1-Lipschitz group objective/constraint (Definitions 4.1, 4.2 and 4.5). Define τ, τ ′ :
[t] → R such that τ(i) = E[y|g(x) = i] and τ ′(i) = E[c(x)|g(x) = i] for every i ∈ [t]. Assume that

∑

i∈[t] |E(x,y)∼D[(y−

τ(i))c(x)1(g(x) = i)]| ≤ ε. We have

E
(x,y)∼D

[f(x, τ ′(g(x)), y)] ≤ E
(x,y)∼D

[f(x, c(x), y)] + 2ε.
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Lemma D.4 is essentially Theorem 19 in (Gopalan et al., 2022). The only difference is that in (Gopalan et al., 2022), the

function f is not allowed to depend on x, whereas in Lemma D.4, we allow f to depend on the group index g(x) of x. The

proof in (Gopalan et al., 2022) can be used here without any essential change.

Lemma D.5. In the setting of Theorem 4.6, for every c ∈ C, there exists c′ ∈ Cp,g such that for every convex 1-Lipschitz

group objective/constraint f : X ×A× {0, 1} → R with 1-bounded difference, it holds that

E
(x,y)∼Dp

f0(x, c
′(x), y) ≤ E

(x,y)∼D
f0(x, c(x), y) + ε/3. (16)

Proof. We fix an arbitrary c ∈ C and define τ, τ ′ : [t] × [0, 1] → [0, 1] such that τ(i, v) = E[y|g(x) = i, p(x) = v] and

τ ′(i, v) = E[c(x)|g(x) = i, p(x) = v] for every (i, v) ∈ [t]× [0, 1].

By our assumption that p ∈ GrpCal(g, ε/15),

E
(x,y)∼D

|p(x)− τ(g(x), p(x))| ≤ ε/15.

By our assumption that p ∈ GrpMC(C, g, ε/15),
∑

i∈[t]

∑

v∈range(p)

| E
(x,y)∼D

[(y − p(x))c(x)1(g(x) = i, p(x) = v)]| ≤ ε/15.

Combining the inequalities above,

∑

i∈[t]

∑

v∈range(p)

| E
(x,y)∼D

[(y − τ(g(x), p(x)))c(x)1(g(x) = i, p(x) = v)]| ≤ 2ε/15.

Define c′ : X → A such that c′(x) = τ ′(g(x), p(x)) for every x ∈ X . Clearly, c′ ∈ Cp,g . Taking the groups in Lemma D.4

to be {x ∈ X : g(x) = i, p(x) = v} here for (i, v) ∈ [t]× range(p), we have

E
(x,y)∼D

f(x, c′(x), y) ≤ E
(x,y)∼D

f(x, c(x), y) + 4ε/15. (17)

By Claim D.1,

E
(x,y)∼D

f(x, c′(x), y)− E
(x,y)∼Dp

f(x, c′(x), y) = E
(x,y)∼D

[(y − p(x))∂f(x, c′(x))]. (18)

Since we assume that f is a group objective/constraint and it has 1-bounded difference, there exists τ ′′ : [t]×A× → [−1, 1]
such that ∂f(x, a) = τ ′′(g(x), a). By our definition c′(x) = τ ′(g(x), p(x)),

E
(x,y)∼D

[(y − p(x))∂f(x, c′(x))] = E
(x,y)∼D

[(y − p(x))τ ′′(g(x), τ ′(g(x), p(x)))].

By our assumption that p ∈ GrpCal(g, ε/15),

E
(x,y)∼D

[(y − p(x))τ ′′(g(x), τ ′(g(x), p(x)))] ≥ −ε/15. (19)

Combining (17), (18), and (19) proves (16).

Lemma D.6. In the setting of Theorem 4.6, for every c ∈ Cp,g, for every convex 1-Lipschitz group objective/constraint

f : X ×A× {0, 1} → R with 1-bounded difference, it holds that

E
(x,y)∼D

f(x, c(x), y) ≤ E
(x,y)∼Dp

f(x, c(x), y) + ε/3.

Proof. The proof is similar to the proof of Lemma D.3 and we omit the details. In the proof of Lemma D.3, we use the

assumption that p ∈ GrpCal(g, ε/6) and the fact that there exists τ : [t] × A → [−2, 2] such that ∂f(x, a) = τ(g(x), a).
For our f with 1-bounded difference, we can similarly take τ : [t] × A → [−1, 1] and use our assumption that p ∈
GrpCal(g, ε/15) ⊆ GrpCal(g, ε/3).

Proof of Theorem 4.6. The proof is completed by applying Lemma 3.1 to the setting of Theorem 4.6 and observing that (2)

and (3) in Lemma 3.1 can be established by Lemma D.5 and Lemma D.6, respectively.
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D.3. Proof of Theorem 4.7

Theorem 4.7. Let A be a finite non-empty action set and let g : X → [t] be a group partition. Let T be a class of tasks

with group constraints and group objectives that all have 1-bounded differences. Let p be a predictor in GrpLMAD(C,
g, ε/3) ∩ GrpCalD(g, ε/3) and define Crand

p,g as in Definition 4.3. Then p is a (T , C, Crand
p,g , ε)-omnipredictor on D.

We first prove two helper lemmas below and then prove Theorem 4.7.

Lemma D.7. In the setting of Theorem 4.7, for every c ∈ C, there exists c′ ∈ Crand
p,g such that for every group objec-

tive/constraint f : X ×A× {0, 1} → R with 1-bounded difference, it holds that

E
(x,y)∼Dp

E
a∼c′(x)

f(x, a, y) ≤ E
(x,y)∼D

f(x, c(x), y) + ε/3.

Proof. By Claim D.1,

E
(x,y)∼D

f(x, c(x), y)− E
(x,y)∼Dp

f(x, c(x), y) = E
(x,y)∼Dp

[(y − p(x))∂f(x, c(x))]. (20)

Since we assume that f is a group objective/constraint and it has 1-bounded difference, there exists τ : [t]×A → [−1, 1]
such that ∂f(x, a) = τ(g(x), a). By our assumption that p ∈ GrpLMA(C, g, ε/3),

E
(x,y)∼Dp

[(y − p(x))∂f(x, c(x))] = E
(x,y)∼Dp

[(y − p(x))τ(g(x), c(x)))] ≥ −ε/3. (21)

Combining (20) and (21), we have

E
(x,y)∼Dp

f(x, c(x), y) ≤ E
(x,y)∼D

f(x, c(x), y) + ε/3. (22)

Now we define τ ′ : [t]× [0, 1] → ∆A such that τ ′(i, v) is the conditional distribution of c(x) given g(x) = i and p(x) = v.

We define c′ : X → ∆A such that c′(x) = τ ′(g(x), c(x)). Clearly, c′ ∈ Crand
p,g . Since f is a group objective/constraint, there

exists τ ′′ : [t]×A× {−1, 1} → R such that f(x, a, y) = τ ′′(g(x), a, y). Now we have

E
(x,y)∼Dp

f(x, c(x), y) = E[E[f(x, c(x), y)|g(x), p(x)]]

= E[E[τ ′′(g(x), c(x), y)|g(x), p(x)]]

= E
x

[

E
a∼τ ′(g(x),p(x)),y∼Ber(p(x))

[τ ′′(g(x), a, y)]

]

= E
(x,y)∼Dp

E
a∼c′(x)

[f(x, a, y)]. (23)

Combining (22) and (23) completes the proof.

Lemma D.8. In the setting of Theorem 4.7, for every c ∈ Crand
p,g , for every group objective/constraint f : X×A×{0, 1} → R

with 1-bounded difference, it holds that

E
(x,y)∼D

E
a∼c(x)

f(x, a, y) ≤ E
(x,y)∼Dp

E
a∼c(x)

f(x, a, y) + ε/3. (24)

Proof. By our assumption c ∈ Crand
p,g , there exists τ : [t] × [0, 1] → ∆A such that c(x) = τ(g(x), p(x)) for every x ∈ X .

Consider the joint distribution of (x, a, y) where (x, y) ∼ D and a ∼ c(x). This distribution can be equivalently defined as

follows. We first construct a function τ ′ : [t]× [0, 1] → A at random, where τ ′(i, v) ∈ A is drawn independently from the

distribution τ(i, v) ∈ ∆A for every (i, v) ∈ [t]× [0, 1]. We then draw (x, y) ∼ D and choose c(x) = τ ′(g(x), p(x)). This

equivalent construction also works when we replace D with Dp. Therefore, to prove (24), it suffices to prove that for every

τ ′ : [t]× [0, 1] → A,

E
(x,y)∼D

f(x, τ ′(g(x), p(x)), y) ≤ E
(x,y)∼Dp

f(x, τ ′(g(x), p(x)), y) + ε/3. (25)
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By Claim D.1,

E
(x,y)∼D

f(x, τ ′(g(x), p(x)), y)− E
(x,y)∼Dp

f(x, τ ′(g(x), p(x)), y)

= E
(x,y)∼D

[(y − p(x))∂f(x, τ ′(g(x), p(x)))]. (26)

Since we assume that f is a group objective/constraint and it has 1-bounded difference, there exists τ ′′ : [t]×A → [−1, 1]
such that ∂f(x, a) = τ ′′(g(x), a). Therefore,

E
(x,y)∼D

[(y − p(x))∂f(x, τ ′(g(x), p(x)))]

= E
(x,y)∼D

[(y − p(x))τ ′′(g(x), τ ′(g(x), p(x)))]

≤ ε/3, (27)

where the last inequality follows from our assumption p ∈ GrpCal(g, ε/3). Combining (26) and (27) proves (25).

Proof of Theorem 4.7. The proof is completed by applying Lemma 3.1 to the setting of Theorem 4.7 and observing that (2)

and (3) in Lemma 3.1 can be established by Lemma D.7 and Lemma D.8, respectively.

D.4. Variant of Theorem 4.4

Theorem D.9. Let D be a distribution over X×{0, 1}. Let A ⊆ [0, 1] be a finite action set. Let T be a class of tasks that only

have group constraints and group objectives that are all special. Let C be a class of functions c : X → A. Let p be a predictor

in GrpMAD(C, g, ε/6) ∩ GrpCalD(g, ε/6) and define Crand
p,g as in Definition 4.3. Then p is a (T , C, Crand

p,g , ε)-omnipredictor

on D.

We first prove two helper lemmas below and then prove Theorem D.9.

Lemma D.10. In the setting of Theorem D.9, for every c ∈ C, there exists c′ ∈ Crand
p,g such that for every special group

objective/constraint f : X ×A× {0, 1} → R, it holds that

E
(x,y)∼Dp

E
a∼c′(x)

f(x, a, y) ≤ E
(x,y)∼D

f(x, c(x), y) + ε/3.

Proof. Using the same argument as in the proof of Lemma D.2, we can show that

E
(x,y)∼Dp

f(x, c(x), y) ≤ E
(x,y)∼D

f(x, c(x), y) + ε/3.

This is the same as (22) as in the proof of Lemma D.7, and the rest of the proof follows the same argument as in the proof of

Lemma D.7.

Lemma D.11. In the setting of Theorem D.9, for every c ∈ Crand
p,g , for every special group objective/constraint f :

X ×A× {0, 1} → R, it holds that

E
(x,y)∼D

E
a∼c(x)

f(x, a, y) ≤ E
(x,y)∼Dp

E
a∼c(x)

f(x, a, y) + ε/3.

Proof. The proof follows from the same argument as the proof of Lemma D.8. In Lemma D.8, we use the assumption that

p ∈ GrpCal(g, ε/3) and that f has 1-bounded difference. Here we have the assumption that p ∈ GrpCal(g, ε/6), and since

we assume f is special and A ⊆ [0, 1], we know that f has 2-bounded difference.

Proof of Theorem D.9. The proof is completed by applying Lemma 3.1 to the setting of Theorem D.9 and observing that

(2) and (3) in Lemma 3.1 can be established by Lemma D.10 and Lemma D.11, respectively.
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E. Lipschitz Combination of Constraints

We show that all our omniprediction results in Section 4 can be extended to more general constrained loss minimization

tasks where we combine the constraints using a Lipschitz function. Specifically, we consider more general tasks where each

task T not only has an objective f0 : X ×A× {0, 1} → R and constraints fj : X ×A× {0, 1} for j ∈ [m], but also has a

combining function Γ : Rm → R. The task T corresponds to the following optimization problem:

minimize
c:X→A

E
(x,y)∼D

f0(x, c(x), y) (28)

s.t. Γ

(

E
(x,y)∼D

f1(x, c(x), y), . . . , E
(x,y)∼D

fm(x, c(x), y)

)

≤ 0.

The task in (1) can be viewed as a special case of (28) where Γ is the max function: Γ(r1, . . . , rm) = max(r1, . . . , rm).
For a task T in the form of (28), for β ∈ R and ε ∈ R≥0, we can again define solD(T, β, ε) to be the set of randomized

action functions c : X → ∆A satisfying

E
(x,y)∼D

E
a∼c(x)

f0(x, a, y) ≤ β, and

Γ

(

E
(x,y)∼D

E
a∼c(x)

f1(x, a, y), . . . , E
(x,y)∼D

E
a∼c(x)

fm(x, a, y)

)

≤ ε.

Correspondingly, for a class C consisting of functions c : X → ∆A, we define

optD(T, C, ε) := inf{β ∈ R : C ∩ solD(T, β, ε) ̸= ∅}.

We can then similarly define omnipredictors for these tasks in the same way as in Definition 2.1.

Here we focus on obtaining omnipredictors for tasks with Lipschitz combining functions Γ. We say Γ is κ-Lipschitz (in the

ℓ∞ norm) if |Γ(r1, . . . , rm)− Γ(r′1, . . . , r
′
m)| ≤ κmaxi∈[m] |ri − r′i|. For tasks with 1-Lipschitz combining functions, we

have the following analogue of Lemma 3.1:

Lemma E.1. Let T be a class of constrained loss minimization tasks each having a 1-Lipschitz combining function. Let C
and C′ be classes of action functions f : X → ∆A as in Definition 2.1. If a predictor p satisfies the following two properties

for every T ∈ T , then p is a (T , C, C′, ε)-omnipredictor:

1. Let f0 be the loss function of T and (fj)j∈J be the constraints of T . For every c ∈ C, there exists c′ ∈ C′ such that

E
(x,y)∼Dp

E
a∼c′(x)

f0(x, a, y) ≤ E
(x,y)∼D

E
a∼c(x)

f0(x, a, y) + ε/3, and (29)

∣

∣

∣
E

(x,y)∼Dp

E
a∼c′(x)

fj(x, a, y)− E
(x,y)∼D

E
a∼c(x)

fj(x, a, y)
∣

∣

∣
≤ ε/3 for every j ∈ J. (30)

2. For every c ∈ C′,

E
(x,y)∼D

E
a∼c(x)

f0(x, a, y) ≤ E
(x,y)∼Dp

E
a∼c(x)

f0(x, a, y) + ε/3, and (31)

∣

∣

∣
E

(x,y)∼D
E

a∼c(x)
fj(x, a, y)− E

(x,y)∼Dp

E
a∼c(x)

fj(x, a, y)
∣

∣

∣
≤ ε/3 for every j ∈ J. (32)

Lemma E.1 can be proved similarly to Lemma 3.1 using the observation that (30) implies the following by the 1-Lipschitz

assumption on Γ and an analogous observation for (32):

Γ

(

E
(x,y)∼Dp

E
a∼c′(x)

f1(x, a, y), . . . , E
(x,y)∼Dp

E
a∼c′(x)

fm(x, a, y)

)

≤ Γ

(

E
(x,y)∼D

E
a∼c(x)

f1(x, a, y), . . . , E
(x,y)∼D

E
a∼c(x)

fm(x, a, y)

)

+ ε/3.

We thus omit the proof of Lemma E.1. The only difference between Lemma E.1 and Lemma 3.1 in the requirements

needed for p to be an omnipredictor is the additional absolute values in (30) and (32). As all our proofs in Section 4 are
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through Lemma 3.1, they can be adapted to tasks with constraints combined by a Lipschitz function using Lemma E.1. The

absolute values in (30) and (32) only require us to make sure that for every constraint function f , both f and −f satisfy

the assumptions needed for our theorems in Section 4 (e.g. we need to replace ªconvexº by ªaffineº). Note that all linear

constraints f defined in (4) satisfy that both f and −f are convex and special. Ideas in this section can be applied to tasks

where the objective function is also a Lipschitz combination:

minimize
c:X→A

Γ′

(

E
(x,y)∼D

f ′
1(x, c(x), y), . . . , E

(x,y)∼D
f ′
m′(x, c(x), y)

)

s.t. Γ

(

E
(x,y)∼D

f1(x, c(x), y), . . . , E
(x,y)∼D

fm(x, c(x), y)

)

≤ 0.

F. Rank-preserving Transformations of Omnipredictors

In this section we identify cases where we can ensure that our solutions to downstream tasks given an omnipredictor p is

rank-preserving (Definition 5.1). Specifically, we identify conditions under which (5) is satisfied.

Our results in this section focus on actions a ∈ [0, 1] and assume that the objective function is rank-preserving:

Definition F.1. Let g : X → [t] be a group partition function. We say an objective function f0 : X×[0, 1]×{0, 1} → [0, 1] is

rank-preserving (within groups), if there exists a function f : [t]×[0, 1]×{0, 1} such that for all x ∈ X, a ∈ [0, 1], y ∈ {0, 1},

we have f0(x, a, y) = f(g(x), a, y) and for every i ∈ [t] and a > a′ ∈ [0, 1],

f(i, a, 1) ≤ f(i, a′, 1)

f(i, a, 0) ≥ f(i, a′, 0).

Rank preserving a desired property which holds when the loss function represents the distance between the taken action and

the outcome. In particular, the ℓ1 loss and squared loss satisfy it, as well as every loss function of form f(x, a, y) = dist(a, y),
when dist is a distance function.

We also assume that the predictor p which we use to solve downstream tasks is monotone:

Definition F.2. Let D be a distribution over X × {0, 1} and let g : X → [t] be a group partition function. We say a

predictor p : X → [0, 1] is monotone w.r.t. D and g if for every i ∈ [t] and for every v, v′ ∈ [0, 1] satisfying v > v′, we have

E(x,y)∼D[y|p(x) = v, g(x) = i] ≥ E(x,y)∼D[y|p(x) = v′, g(x) = i].

This monotonicity requirement is satisfied if D = Dp. In Appendix F.1 we describe how to modify p using samples from D
to satisfy this requirement even when D is different from Dp.

We start with the simpler case, where we assume that the constraint combines functions that are fixed for each group:

Definition F.3. Let D be a distribution over X × {0, 1}. Let g : X → [t] be a group partition function. Let A be an action

set. Let σ1, . . . , σt : A× {0, 1} → R be functions. We say a constrained loss minimization task T as in (28) is compatible

with σ1, . . . , σt if T only has a single constraint of the form

Γ(ξ1, . . . , ξt) ≤ 0 (33)

for some function Γ : Rt → R where ξi := E(x,y)∼D[1(g(x) = i)σi(c(x), y)].

In the lemma below we establish (5) when each σi is restricted to the form σi(a, y) = α1y + α2a + α3ay for some

α1, α2, α3 ∈ R satisfying α2(α2 + α3) ≥ 0. The flexibility in the combining function Γ allows the constraint (33) to

express group fairness constraints such as statistical parity and equal opportunity even when each σi is restricted in this

special form.

Lemma F.4. Let D be a distribution over X × {0, 1}, and g : X → [t] be a group partition function. Let A = [0, 1] be the

action set, and let σ1, . . . , σt : A×{0, 1} → R be functions where each σi can be written as σi(a, y) = α1y+α2a+α3ay
for some α1, α2, α3 ∈ R satisfying α2(α2 + α3) ≥ 0. Let T be a task compatible with σ1, . . . , σk and assume its objective

function f0 : X ×A× {0, 1} → R is rank-preserving and convex. For a predictor p : X → [0, 1], assuming p is monotone

w.r.t. D and g (which is always satisfied when D = Dp), we have

optD(T, rp-Cp,g, ε) = optD(T, Cp,g, ε).
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Furthermore, given any deterministic c ∈ Cp,g, such that c(x) = τ(g(x), p(x)) for a transformation τ : [t] × V → A,

there exists an algorithm running in time polynomial in t, |V | , ε and outputting a transformation τ̃ : [t]× V → A that is

rank-preserving, and c′(x) = τ̃(g(x), p(x)) has the same objective value as c up to a factor of ε with high probability.

We remark that the requirement α2(α2 + α3) ≥ 0 cannot be removed. Without this requirement, it could be the case that

some functions in rp-Cp,g satisfy the constraint but none of them is rank-preserving. This highlights the importance of

picking appropriate loss functions and constraints if we want to achieve fair outcome.

Proof. We prove the claim by an iterative process, taking τ that is not rank-preserving on some inputs and correcting it.

Suppose τ is not rank-preserving, and there exists i ∈ [t], v, v′ ∈ V such that (τ(i, v)− τ(i, v′))(v − v′) < 0. We show a

local correction from τ to τ ′ such that τ ′ is rank-preserving on v, v′. The final transformation is created by fixing all such

violations. We denote

θ = Pr
(x,y)∼D

[p(x) = v|g(x) = i, p(x) ∈ {v, v′}] (34)

qv = E
(x,y)∼D

[y|g(x) = i, p(x) = v] (35)

qv′ = E
(x,y)∼D

[y|g(x) = i, p(x) = v′] (36)

Constraint value. Let us assume

θ|α2 + α3qv| ≤ (1− θ)|α2 + α3qv′ |. (37)

This is without loss of generality because otherwise we can switch the roles of v and v′, in which case θ and 1 − θ also

switch. Our goal is to update the values of τ(i, v) and τ(i, v′) so that they no longer violate the rank-preserving property

while keeping ξi defined below unchanged so that the constraint of T is still satisfied:

ξi := E
(x,y)∼D

[1(g(x) = i)σi(τ(g(x), p(x)), y)].

By our assumption, we can write σi as σi(a, y) = α1y + α2a + α3ay for α1, α2, α3 ∈ R satisfying α2(α2 + α3) ≥ 0.

We only change the values of τ(i, v) and τ(i, v′), so to keep ξi unchanged, it suffices to keep the following conditional

expectation unchanged:

E
(x,y)∼D

[σi(τ(g(x), p(x)), y)|g(x) = i, p(x) ∈ {v, v′}] (38)

= α1(θqv + (1− θ)qv′) + α2(θτ(i, v) + (1− θ)τ(i, v′)) + α3(θqvτ(i, v) + (1− θ)qv′τ(i, v′)). (39)

Simply switching between τ(i, v) and τ(i, v′) does not work, as the constraint can be violated. Instead, we set τ ′(i, v) =
τ(i, v′), and then we want to set τ ′(i, v′) to some value keeping the expectation in Equation (38) exactly the same. We

denote τ ′(i, v′) = z and look for z such that

α1(θqv + (1− θ)qv′) + α2(θτ(i, v
′) + (1− θ)z) + α3(θqvτ(i, v

′) + (1− θ)qv′z)

= α1(θqv + (1− θ)qv′) + α2(θτ(i, v) + (1− θ)τ(i, v′)) + α3(θqvτ(i, v) + (1− θ)qv′τ(i, v′))

That is,

z =
α2θ + α3θqv

α2(1− θ) + α3(1− θ)qv′

τ(i, v) +
α2(1− 2θ) + α3((1− θ)qv′ − θqv)

α2(1− θ) + α3(1− θ)qv′

τ(i, v′). (40)

We can only set τ ′(i, v′) to a value z ∈ [0, 1], so we need to check that the above expression is in this range. We can write

z = γτ(i, v) + (1− γ)τ(i, v′) for

γ =
α2θ + α3θqv

α2(1− θ) + α3(1− θ)qv′

=
θ

1− θ
·
α2 + α3qv
α2 + α3qv′

. (41)

We prove γ ∈ [0, 1] as follows, which implies z ∈ [0, 1] (as the range of τ is also [0, 1]). To prove γ ≥ 0, we know that

θ ∈ [0, 1], so we need to show that the second expression is also positive. From the lemma requirement, we have that

α2(α2 + α3) ≥ 0, together with qv, q
′
v ∈ [0, 1] we get that (α2 + qvα3)/(α2 + qv′α3) ≥ 0 and so γ ≥ 0. The fact γ ≤ 1

follows from (37).
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Objective. We are left with showing that the objective of T (i.e., expected value of f0) is not increased by the correction.

For simplicity of notations we denote ℓ0(v) = f0(x, τ(i, v), 0) and ℓ1(v) = f0(x, τ(i, v), 1) for some x with g(x) = i. The

values of ℓ0(v) and ℓ1(v) are independent of the actual choice of such x because f0 is a group constraint by Definition F.1.

Since the objective value is an expectation and therefore additive, it is enough to analyze the value for x such that

g(x) = i, p(x) ∈ {v, v′}. The original expected objective value for these x’s is

E
(x,y)∼D

[f0(x, τ(g(x), p(x)), y)|g(x) = i, p(x) ∈ {v, v′}]

= ℓ1(v)θqv + ℓ0(v)θ(1− qv)

+ ℓ1(v
′)(1− θ)qv′ + ℓ0(v

′)(1− θ)(1− qv′).

The same expectation with τ ′ is given by

E
(x,y)∼D

[f0(x, τ
′(g(x), p(x)), y)|g(x) = i, p(x) ∈ {v, v′}]

= ℓ1(v
′)θqv + ℓ0(v

′)θ(1− qv)

+ f0(i, z, 1)(1− θ)qv′ + f0(i, z, 0)(1− θ)(1− qv′)

≤ ℓ1(v
′)θqv + ℓ0(v

′)θ(1− qv)

+ (γℓ1(v) + (1− γ)ℓ1(v
′))(1− θ)qv′

+ (γℓ0(v) + (1− γ)ℓ0(v
′))(1− θ)(1− qv′).

The last inequality holds because of the convexity of f0. Taking the difference, we get

E
(x,y)∼D

[f0(x, τ(g(x), p(x), y)− f0(x, τ
′(g(x), p(x), y)|g(x) = i, p(x) ∈ {v, v′}]

≥ (ℓ1(v)− ℓ1(v
′))θqv + (ℓ0(v)− ℓ0(v

′))θ(1− qv)

+ γ(ℓ1(v
′)− ℓ1(v))(1− θ)qv′ + γ(ℓ0(v

′)− ℓ0(v))(1− θ)(1− qv′)

= (ℓ1(v)− ℓ1(v
′))(θqv − γ(1− θ)qv′)

+ (ℓ0(v
′)− ℓ0(v))(γ(1− θ)(1− qv′)− θ(1− qv)). (42)

We show that the expression above is nonnegative. We focus on the case where v > v′, and a similar argument applies

to the other case v < v′. By our assumption that τ(i, v), τ(i, v′) violate the rank-preserving property, we know that

τ(i, v′) ≥ τ(i, v). By our assumption that f0 is rank-preserving,

ℓ1(v)− ℓ1(v
′) = f0(i, τ(i, v), 1)− f0(i, τ(i, v

′), 1) ≥ 0,

ℓ0(v
′)− ℓ0(v) = f0(i, τ(i, v

′), 0)− f0(i, τ(i, v), 0) ≥ 0. (43)

By (41),

γ =
θ

1− θ
·
(α2 + α3)qv + α2(1− qv)

(α2 + α3)qv′ + α2(1− qv′)
.

By our monotonicity assumption on p, we have qv ≥ qv′ . Using our assumption that α2(α2 + α3) ≥ 0 in the equation

above, we get
θ

1− θ

1− qv
1− qv′

≤ γ ≤
θ

1− θ

qv
qv′

.

Therefore,

θqv − γ(1− θ)qv′ ≥ 0.

γ(1− θ)(1− qv′)− θ(1− qv) ≥ 0. (44)

Plugging (43) and (44) into (42) proves that (42) is nonnegative. Therefore correcting τ does not increase the objective.

After preforming this step for every pair v, v′ that violate the rank-preserving property, the resulting transformation τ̃ is

rank-preserving.
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The correction described above uses the exact value of θ, qv, qv′ . In order to implement such algorithm in practice, we

approximate θ, qv, qv′ , and update τ based on our approximation. Using the approximation instead of the exact values can

reduce objective by the approximation error. The running time of the algorithm is polynomial in |V | , t, δ when δ is the

accuracy parameter.

The previous theorem modified a transformation τ into a rank-preserving one by ªcorrectingº its values for every violation.

Allowing the correction to be randomized, the theorem holds for a larger collection of constraints. In order to do so, we first

define rank-preserving for a randomized transformation.

Definition F.5. A randomized transformation τ : [0, 1]× [t] → ∆A for A = [0, 1] is rank-preserving within groups, if for

every i ∈ [t], v > v′ ∈ V and γ ∈ [0, 1],

Pr[τ(i, v) ≥ γ] ≥ Pr[τ(i, v′) ≥ γ].

Let p : X → [0, 1] be a predictor and g : X → [t] be a group index function. We denote by rp-Crand
p,g the set of all functions

c ∈ Crand
p,g such that there exists a rank-preserving transformation τ : [t]× [0, 1] → ∆A satisfying c(x) = τ(g(x), p(x)) for

every x ∈ X .

Lemma F.6. Let A ⊆ [0, 1] be a discrete action set, g : X → [t] be a group partition function, and T be a task with

constraints that are independent of the outcome. For a predictor p and a distribution D, assuming p is monotone w.r.t. D
and g (which is always satisfied when D = Dp), we have

optD(T, rp-Crand
p,g , ε) = optD(T, C

rand
p,g , ε).

Furthermore, given any c ∈ Crand
p,g , such that c(x) = τ(g(x), p(x)) for a transformation τ : [t] × V → A, there exists an

algorithm running in time polynomial in t, |V | , ε and outputting a randomized transformation τ̃ : [t] × V → A that is

rank-preserving, and c′(x) = τ̃(g(x), p(x)) has the same objective value as c up to a factor of ε with high probability.

Proof. The proof follows the same structure of the previous proof. Let τ be a randomized transformation, and assume that

there exists v > v′ such that τ is not rank-preserving on v, v′. We describe a single step in an iterative process, transforming

τ into τ ′.

Intuitively, we take the histogram of the values of τ on the input set {x ∈ X|g(x) = i, p(x) ∈ {v, v′}}, and assign v′ the

lower values in the histogram and v the upper ones.

We define

θ = Pr
(x,y)∈D

[p(x) = v|g(x) = i, p(x) ∈ {v, v′}] (45)

θa =θPr[τ(i, v) = a] + (1− θ) Pr[τ(i, v′) = a], ∀a ∈ A (46)

when the probability in the second definition is over the internal randomness of τ . For every a ∈ A, we define the function

u : A → [0, 1] indicating how much of θa is coming from τ(i, v). That is, for all a ∈ A if θ ̸= 0 we have

u(a) = θPr[τ(i, v) = a]/θa.

When θa = 0, u(a) can take any value in [0, 1]. Notice that by definition, Pr[τ(i, v′) = a] = θa(1− u(a))/(1− θ).

We define τ ′ by creating an analog function u′ : A → [0, 1], when u′ indicates if a certain outcome a ∈ A is in the upper

part of the histogram (and should be assigned to τ ′(i, v)) or lower part (and should be assigned to τ ′(i, v′)). Fractional

values u′(a) imply that a is in the middle of the histogram, i.e. assigned to both. For every a ∈ A let

u′(a) =











1 if
∑

a′≥a θa′ ≤ θ

0 if
∑

a′≤a θa′ ≤ 1− θ
1
θa

(

θ −
∑

a′>a θa′

)

otherwise.

(47)

We are now ready to define τ ′ to equal τ on all except (i, v), (i, v′), in which we have:

∀a ∈ A Pr[τ ′(i, v) = a] =
θau

′(a)

θ
(48)
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∀a ∈ A Pr[τ ′(i, v) = a] =
θa

1− θ
(1− u′(a)). (49)

Notice that τ ′ is rank-preserving on inputs (i, v), (i, v′) by definition.

We next show that τ ′ satisfies all of the constraints in the same way was τ . Let fj(i, a, y) = f(i, a) be any constraint that is

not a function of y. Then we have

E
(x,y)∼D

[f(i, τ(i, p(x)))] =
∑

a∈A

Pr
(x,y)∼D

[τ(i, p(x)) = a]f(i, a).

The transformations τ, τ ′ only differ on inputs (i, v), (i, v′), so it is enough to analyze the difference on these inputs. For

every a ∈ A,

Pr
(x,y)∼D

[τ(i, p(x)) = a|g(x) = i, p(x) ∈ {v, v′}] = θPr[τ(i, v) = a] + (1− θ) Pr[τ(i, v′) = a] = θa.

For the new transformation,

Pr
(x,y)∼D

[τ ′(i, p(x)) = a|g(x) = i, p(x) ∈ {v, v′}] = θPr[τ ′(i, v) = a] + (1− θ) Pr[τ ′(i, v′) = a]

= θ
θau

′(a)

θ
+ (1− θ)

θa
1− θ

(1− u′(a)) = θa.

Therefore, we get that E(x,y)∼D[f(i, τ(i, p(x)))] = E(x,y)∼D[f(i, τ
′(i, p(x)))].

We are left with proving that this correction does not increase the loss. We define qv, qv′ as in the previous proof.

qv = E
(x,y)∼D

[y|g(x)i, p(x) = v] (50)

qv′ = E
(x,y)∼D

[y|g(x)i, p(x) = v′]. (51)

The expected loss of τ on the relevant inputs:

E
(x,y)∈D

[f0(i, τ(i, x), y)|g(x) = i, p(x) ∈ {v, v′}]

= θ
∑

a∈A

Pr[τ(i, v) = a] (qvf0(i, a, 1) + (1− qv)f0(i, a, 0))

+ (1− θ)
∑

a∈A

Pr[τ(i, v′) = a] (qv′f0(i, a, 1) + (1− qv′)f0(i, a, 0))

=
∑

a∈A

f0(i, a, 1)θa (u(a)qv + (1− u(a))qv′)

+
∑

a∈A

f0(i, a, 0)θa (u(a)(1− qv) + (1− u(a))(1− qv′)) .

By definition, the loss of τ ′ is exactly the same only with u′ instead of u.

Comparing the two losses we get:

E
(x,y)∈D

[f0(i, τ(i, x), y)|g(x) = i, p(x) ∈ {v, v′}]− E
(x,y)∈D

[f0(i, τ
′(i, x), y)|g(x) = i, p(x) ∈ {v, v′}] (52)

=
∑

a∈A

θa(f0(i, a, 1)− f0(i, a, 0))(u(a)− u′(a))(qv − qv′). (53)

Denote γa = (u(a)− u′(a))(qv − qv′). From our assumption, qv ≥ qv′ . From the definition of u′(a), for every a ∈ A we

have
∑

a′≥a∈A

u′(a) ≥
∑

a′≥a∈A

u(a).
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Since
∑

a∈A u(a) =
∑

a∈A u′(a), we have that
∑

a γa = 0, and that there exists ã such that γa ≤ 0 for all a > ã, and

γa ≥ 0 for all a ≥ ã. Since the function f0 is rank preserving, we have that for every a > a′,

f0(i, a, 1)− f0(i, a, 0) ≤ f0(i, a
′, 1)− f0(i, a

′, 0).

Therefore,
∑

a,γa≤0

γa(f0(i, a, 1)− f0(i, a, 0)) ≤
∑

a,γa≥0

γa(f0(i, a, 1)− f0(i, a, 0)).

Which implies that
∑

a γa(f0(i, a, 1)− f0(i, a, 0)) ≥ 0 and the loss of τ ′ is at most the loss of τ .

The final transformation τ̃ is created by repeatedly applying the above step until τ̃ is rank-preserving. The process ends after

|V |2 such switching steps.

When performing the algorithm in practice we do not know u, θ, qv, qv′ exactly and need to approximate them at every step.

This adds an error to the algorithm.

F.1. Monotone predictor

In the following claim we show that a calibrated predictor with a discrete range can be modified to one that is monotone (as

in Definition F.2) with high probability, by merging small level sets and level sets that are close together. This claim only

holds for functions w with bounded range, although the rest of the section holds more generally. We remark that as long as

the hypothesis class H contains bounded functions h : X → [0, 1], then the claim below holds for all classes W defining

group or level-set calibration on Section 2.3. In case of group multi-accuracy or calibration with negative value of τ , the

claim below should be run on each part {x|g(x) = i} separately.

Claim F.7. Let V ⊂ [0, 1] be a discrete set, and let W be a class of functions w : X × [0, 1] → [0, 1] containing a function

fv(x, v
′) = 1(v = v′) for all v ∈ V . Let p : X → [0, 1] be a predictor with a discrete range V such that p ∈ GenMCD(W, ε).

Then there is an algorithm running in time O(|V |3 1
ε2δ

), uses O(|V |3 1
ε2δ

) samples, that with probability 1− δ outputs a

monotone predictor p′ ∈ GenMCD(W, 6ε).

Proof. We describe a simple algorithm for merging the levels of p that are too close to each other or too small. We start by

looking at the partition of X defined by p, then merge parts that are too small or too close to each other. Let P = P1, . . . P|V |

be the partition of x defined by p.

The algorithm sample S of size O(|V |3 1
ε2δ

) of (x, y) ∼ D, and do:

1. While there exists a part Pi such that Pr(x,y)∈S [x ∈ Pi] <
2ε
|V | , merge Pi with its neighbor.

2. While there are Pi, Pj ∈ P such that

∣

∣

∣

∣

E
(x,y)∈S

[y|x ∈ Pi]− E
(x,y)∈S

[y|x ∈ Pj ]

∣

∣

∣

∣

<
2ε

|V |
,

merge Pi, Pj .

3. Set p′ : X → [0, 1] by choosing for every part x ∈ Pi the value E(x′,y′)∈S [y
′|x′ ∈ Pi].

From Claim J.1, by taking O(|V |3 1
ε2δ

), with probability 1 − δ/2 the algorithm approximates Pr(x,y)∼D[p(x) = v] up

to an error of ε
|V | . After the first step of the algorithm, each Pi has size at least ε

|V | . Therefore, from Claim J.1 the

algorithm approximates E(x,y)∈S [y|x ∈ Pi] up to an additive error of ε
|V | with probability 1− δ/2 for all parts. Assuming

all approximations are correct, the predictor p′ is monotone. Therefore, p′ is monotone with probability at least 1− δ.

To prove the generalized calibration, we first use the function fv ∈ W and get that for every v ∈ V ,

∣

∣

∣

∣

E
(x,y)∼D

[(y − v)1(p(x) = v)]

∣

∣

∣

∣

≤ ε, (54)

25



Omnipredictors for Constrained Optimization

Assume that the algorithm skips Item 2, and only preforms merging for small sets and asigns new values. Let p′′ be this

predictor. Then for p′′ we have,
∣

∣

∣

∣

E
(x,y)∼D

[(y − p′′(x))w(x, v)]

∣

∣

∣

∣

≤

∣

∣

∣

∣

E
(x,y)∼D

[(y − p′′(x))w(x, v)] + E
(x,y)∼D

[(p′′(x)− p(x))w(x, v)]

∣

∣

∣

∣

≤ ε+

∣

∣

∣

∣

E
(x,y)∼D

[(p′′(x)− p(x))w(x, v)]

∣

∣

∣

∣

≤ ε+

∣

∣

∣

∣

∣

∣

Pr
(x,y)∼D

[p(x) in small Pi] +
∑

large Pi

E
(x,y)∼D

[(p′′(x)− p(x))w(x, v)1(x ∈ Pi)]

∣

∣

∣

∣

∣

∣

≤ 3ε+

∣

∣

∣

∣

∣

∣

∑

large Pi

E
(x,y)∼D

[(p′′(x)− p(x))1(x ∈ Pi)]

∣

∣

∣

∣

∣

∣

≤ 3ε+

∣

∣

∣

∣

E
(x,y)∼D

[(y − v)1(p(x) = v)]

∣

∣

∣

∣

+
∑

large Pi

∣

∣

∣

∣

E
(x,y)∼D

[(y − v)1(p′′(x) = v)]

∣

∣

∣

∣

. (55)

Where large Pi’s are those that the algorithm does not merge in Item 1. From Equation (54), the first expectation is bounded

by ε. From the paragraph above, with probability at least 1−δ/2 the we have
∣

∣E(x,y)∈S [y|x ∈ Pi]− E(x,y)∼D[y|x ∈ Pi]
∣

∣ ≤

ε/ |V | for all large partitions Pi. Together we get
∣

∣E(x,y)∼D[(y − p′′(x))w(x, v)]
∣

∣ ≤ 5ε.

Our monotone predictor p′ has an extra step in Item 2, in which the algorithm merges parts Pi, Pj . The algorithm only

merges parts in which the expected value of y, E[y|x ∈ Pi] is within distance ε
V

. Therefore, even if we preform |V | merges,

we have that

E
(x,y)∼D

[|p′(x)− p′′(x)|] ≤ ε.

Substituting p′(x) instead of p′′(x) on equation Equation (55) can only increase the expected value by ε.

G. Algorithms for Multiaccuracy and Multicalibration

The computational and sample complexity of learning a multiaccuracy/multicalibrated predictor w.r.t. a function class C using

i.i.d. data points from the true distribution D depends on the complexity and structure of the class C. In (HÂebert-Johnson

et al., 2018), the authors show that the task can be efficiently reduced to weak agnostic learning for C (Kalai et al., 2008;

Feldman, 2010). This implies that the sample and computational complexity of learning a multicalibrated predictor cannot

be much larger than weak agnostic learning. Hu et al. (2022a) concretely characterize the sample complexity of learning

a multiaccurate/multicalibrated predictor in terms of the fat-shattering dimension of C (Kearns & Schapire, 1990), and

they also study the sample complexity of multiaccuracy/multicalibration with additional realizability assumptions about

D, which is a setting further explored by Hu & Peale (2023) (results in our paper do not require any assumption on D).

Gopalan et al. (2023) propose and implement algorithms for calibrated multiaccuracy and demonstrate their efficiency

compared to achieving multicalibration. Many of our results in this paper require group multiaccuracy/multicalibration,

and such a predictor can be obtained by first learning a multiaccurate/multicalibrated predictor w.r.t. C on each group

and then combining. Some of our results in this paper require group level-set multiaccuracy. This can be equivalently

viewed as multiaccuracy w.r.t. a larger class C(g) of binary functions c′ : X → {−1, 1} such that there exist c ∈ C and

τ : [t]×A → {−1, 1} satisfying c′(x) = τ(g(x), c(x)) for every x ∈ X . The complexity of C(g) depends on the complexity

of C and the group partition g.

H. Optimization Algorithms on the Simulated Distribution

An omnipredictor p, as in Definition 2.1, allows us to solve downstream tasks T ∈ T on the true distribution D by solving

the task on the simulated distribution Dp. In this section, we show very efficient algorithms for solving the task on the

simulated distribution for all the settings we consider in Section 4.

Specifically, in Definition 2.1, we define β′ := optDp
(T, C′, ε/3) ∈ R. Suppose the objective of T is f0 : X × A ×
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{0, 1} → R and the constraints of T are fj : X × A × {0, 1} → R for every j ∈ J . The task of finding a solution in

C′ ∩ solDp
(T, β′ + ε/3, 2ε/3) is to solve the following optimization problem approximately:

minimize
c∈C′

E
(x,y)∼Dp

E
a∼c(x)

f0(x, a, y) (56)

s.t. E
(x,y)∼Dp

E
a∼c(x)

fj(x, a, y) ≤ 0 for every j ∈ J.

In Theorems 4.4 and 4.6, the action set A is the interval [0, 1], and the objective f0 and the constraints fj are convex group

objective/constraints. That is, for every j ∈ {0} ∪ J , there exists f ′
j : [t] × A × {0, 1} → R such that fj(x, a, y) =

f ′
j(g(x), a, y) for every (x, a, y) ∈ X ×A× {0, 1}, and the function f ′

j(i, ·, y) is convex for every i ∈ [t] and y ∈ {0, 1}.

Moreover, the class C′ is the class Cp,g in Definition 4.3, i.e., C′ consists of all functions c : X → A such that there exists

τ : [t] × [0, 1] → A satisfying c(x) = τ(g(x), p(x)) for every x ∈ X . Thus, (56) becomes the following equivalent

problem:

minimize
τ :[t]×[0,1]→[0,1]

E
(x,y)∼Dp

f ′
0(g(x), τ(g(x), p(x)), y) (57)

s.t. E
(x,y)∼Dp

f ′
j(g(x), τ(g(x), p(x)), y) ≤ ε/3 for every j ∈ J.

Let V := range(p) denote the range of p. Since the functions c ∈ C in Theorem 4.4 and Theorem 4.6 output bounded

values c(x) ∈ A = [0, 1], we can always make sure that V is finite and has size O(1/ε′) when we require p to be (C, g, ε′)-
multiaccurate and/or (C, g, ε′)-multicalibrated because discretizing the values p(x) to multiples of ε′/2 can only increase

the group multiaccuracy/multicalibration error by at most ε′/2. Let prob(i, v) denote Pr(x,y)∼Dp
[g(x) = i, p(x) = v]. The

optimization problem (57) above is equivalent to

minimize
τ :[t]×V→[0,1]

∑

i∈[t]

∑

v∈V

prob(i, v)
(

vf ′
0(i, τ(i, v), 1) + (1− v)f ′

0(i, τ(i, v), 0)
)

(58)

s.t.
∑

i∈[t]

∑

v∈V

prob(i, v)
(

vf ′
j(i, τ(i, v), 1) + (1− v)f ′

j(i, τ(i, v), 0)
)

≤ ε/3 for every j ∈ J.

Suppose for now that we know the probabilities prob(i, v). The optimization problem (58) above is a convex program with

size O(t |V | · |J |) and thus can be solved efficiently assuming that we can efficiently compute f ′
j for every j ∈ {0} ∪ J and

its sub-gradient. When we do not know prob(i, v), we can estimate it to sufficient accuracy using i.i.d. data points from

the marginal distribution of x in (x, y) ∼ Dp, which is the same marginal distribution of x in (x, y) ∼ D. Thus these data

points are exactly unlabeled data points from the true distribution D. By standard concentration results (e.g. Claim J.1),

using n = O(ε−2
1 (|V |t + log(1/δ))) data points we can compute an estimate est(i, v) for each prob(i, v) such that with

probability at least 1− δ,
∑

i∈[t]

∑

v∈V

|est(i, v)− prob(i, v)| ≤ ε1/3.

The computation of these estimates est is independent of the actual loss minimization task. Thus it can be done when we

train the omnipredictor p, in which case no data is needed when solving a downstream task using p and these estimates.

In Theorems 4.7 and D.9, the action set A is a finite set, and the objective f0 and the constraints fj are group objec-

tive/constraints. The class C′ is the class Crand
p,g , i.e., C′ consists of all functions c : X → ∆A such that there exists

τ : [t] × [0, 1] → ∆A satisfying c(x) = τ(g(x), p(x)) for every x ∈ X . Thus, (56) becomes the following equivalent

problem:

minimize
τ :[t]×[0,1]→∆A

E
(x,y)∼Dp

E
a∼τ(g(x),p(x))

f ′
0(g(x), a, y) (59)

s.t. E
(x,y)∼Dp

E
a∼τ(g(x),p(x))

f ′
j(g(x), a, y) ≤ ε/3 for every j ∈ J.

Defining V and prob(i, v) as before and using τ ′(i, v, a) to denote the probability mass on a ∈ A in τ(i, v), the optimization

problem (59) above is equivalent to the following:

minimize
τ ′:[t]×V×A→R

∑

i∈[t]

∑

v∈V

∑

a∈A

prob(i, v)τ ′(i, v, a)
(

vf ′
0(i, a, 1) + (1− v)f ′

0(i, a, 0)
)

(60)
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s.t.
∑

i∈[t]

∑

v∈V

∑

a∈A

prob(i, v)τ ′(i, v, a)
(

vf ′
j(i, a, 1) + (1− v)f ′

j(i, a, 0)
)

≤ ε/3, ∀j ∈ J,

∑

a∈A

τ ′(i, v, a) = 1, ∀(i, v) ∈ [t]× V,

τ ′(i, v, a) ≥ 0, ∀(i, v, a) ∈ [t]× V ×A.

This optimization problem (60) is a linear program of size O(t |V | · |A| · |J |) and thus can be solved efficiently.

I. Counterexamples

I.1. Group Multiaccuracy is Necessary

We show that the group multiaccuracy and group calibration assumptions in Theorem 4.4 cannot be replaced by standard

(non-group-wise) multicalibration.

Claim I.1. Let A = [0, 1] be an action set. There exists a non-empty set X over individuals, a group partition function

g : X → [t], a distribution D over X × {0, 1}, a task T , a class C of functions c : X → A, a predictor p : X → [0, 1]
with the following properties. The task T has the ℓ1 objective f0(x, a, y) = |a− y| and linear constraints (as in (4)). The

predictor p belongs to MC(C, 0) ∩ Cal(0). However, p is not a ({T}, C, Cp,g, ε)-omnipredictor for sufficiently small ε > 0.

Proof. We assume that X = {x1, x2, x3, x4} and (x, y) ∼ D can be sampled by first drawing x from the uniform

distribution over X , and then drawing y ∼ Ber(p∗(x)) for

p∗(x) =



















0.5, if x = x1,

0.5, if x = x2,

0, if x = x3,

1, if x = x4.

The function class C consists of a single function c defined by

c(x) =











0.75, x = x1,

0.25, x = x2,

0, x ∈ {x3, x4}.

The groups are defined by

g(x) =

{

1, x ∈ {x1, x3},

2, x ∈ {x2, x4}.

The constraints fj of the task T are defined by

f1(x, a, y) = 1(i = 1)0.375− 1(i = 1)a

f2(x, a, y) = −1(i = 1)0.375 + 1(i = 1)a

f3(x, a, y) = 1(i = 2)0.125− 1(i = 2)a

f4(x, a, y) = −1(i = 2)0.125 + 1(i = 2)a

That is, they require that E[c(x)|g(x) = 1] = 0.375,E[c(x)|g(x) = 2] = 0.125. We can easily see that c satisfies the

constraint:

E
x
[c(x)|g(x) = 1] = 0.75 · 0.5 = 0.375,

E
x
[c(x)|g(x) = 2] = 0.25 · 0.5 = 0.125.
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We choose p : X → [0, 1] to be the constant function satisfying p(x) = 0.5 for all x ∈ X . We show that p ∈
MC(C, 0) ∩ Cal(0). We start from calibration:

E
(x,y)∼D

[y] = 0.5 = E
(x,y)∼D

[p(x)].

Now we show multicalibration with respect to c ∈ C:

E
(x,y)∼D

[c(x) · (y − p(x))]

= E
(x,y)∼D

[c(x) · (y − 0.5)]

= 0.25 (0.75(0.5− 0.5) + 0.25(0.5− 0.5) + 0 · (0− 0.5) + 0 · (1− 0.5))) = 0.

The objective value of c is:

β := optD(T, C, 0)

= E
(x,y)∼D

[f0(i, c(x), y)]

= 0.125 (|1− 0.75|+ |0− 0.75|+ |1− 0.25|+ |0− 0.25|) + 0.25 (|0, 0|+ |1, 0|)

= 0.125 (2 · 0.25 + 2 · 0.75) + 0.25 = 0.25 + 0.25

= 0.5.

Since p is a constant function, any c′ ∈ Cp,g must satisfy c′(x1) = c′(x3) and c′(x2) = c′(x4) because g(x1) = g(x3)
and g(x2) = g(x4). To satisfy the constraints up to a small error ε, c′ must be close to assigning 0.375 to x1 and x3, and

assigning 0.125 to x2 and x4. We calculate the loss for this c′:

E
(x,y)∼D

[f0(i, c
′(x), y)] = 0.125 (|1− 0.375|+ |0− 0.375|+ |1− 0.125|+ |0− 0.125|)

+ 0.25 (|0− 0.325|+ |1− 0.125|)

= 0.125 (0.625 + 0.375 + 0.125 + 0.875) + 0.25 (0.375 + 0.875)

= 0.25 + 0.25 · 1.25

= 0.5625

> β.

This implies that for small enough ε, we have Cp,g ∩ solD(T, β + ε, ε) = ∅, and thus p cannot be a ({T}, C, Cp,g, ε)-
omnipredictor.

I.2. Group Level-Set Multiaccuracy is Necessary

We show an example task with non-convex constraints and a non-special objective, and thus none of our Theorems 4.4, 4.6

and D.9 could be applied to the example. Theorem 4.7 is applicable, but it requires group level-set multiaccuracy. Below

we show that for this task group multicalibration is indeed not enough and the level-set variant is necessary to guarantee

omniprediction.

Claim I.2. Let A = [0, 1] be an action set. There exists a non-empty set X over individuals, a group partition function

g : X → [t], a distribution D over X × {0, 1}, a task T , a class C of functions c : X → A, a predictor p : X → [0, 1] with

the following properties. The task T only has group constraints and objectives with 1-bounded differences. The predictor p
belongs to GrpMCD(C, g, 0) ∩ GrpCalD(g, 0). However, p is not a ({T}, C, Crand

p,g , ε)-omnipredictor for sufficiently small

ε > 0.

Proof. Let X = {x1, x2, x3} and let g : X → [t] be the trivial group partition that assigns every individual x ∈ X to the

same group g(x) = 1. The distribution D is defined by first choosing x ∈ X uniformly at random, and then choosing

y ∼ Ber(p∗(x)) for

p∗(x) =











0.25, x = x1,

1, x = x2,

0.25, x = x3.
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The function class C contains only a single function C = {c} defined by:

c(x) =











0.1, x = x1,

0.2, x = x2,

0.3, x = x3.

We choose the objective f0 of T to be the cubic loss: f0(x, a, y) = |a− y|3. We choose the collection of constraints fj of T
to be

f1(x, a, y) = 1(a = 0.1)−
1

3

f2(x, a, y) = −1(a = 0.1) +
1

3

f3(x, a, y) = 1(a = 0.2)−
1

3

f4(x, a, y) = −1(a = 0.2) +
1

3

f5(x, a, y) = 1(a = 0.3)−
1

3

f6(x, a, y) = −1(a = 0.3) +
1

3

For an action function c′ : X → A to satisfy these constraints exactly, it must satisfy

Pr
(x,y)∼D

[c′(x) = a] = 1/3 for every a ∈ {0.1, 0.2, 0.3} .

It is clear that the only function c ∈ C satisfies the constraints. The objective value achieved by c is

β := optD(T, C, 0) = E
(x,y)∼D

[f0(x, c(x), y)]

=
∑

j

Pr[x = xj ]

(

E
(x,y)∼D

[y|x ∈ Uj ]|1− cj |
3 + (1− E

(x,y)∼D
[y|x ∈ Uj ])|cj |

3

)

=
1

3

(

1

4
(0.9)3 +

3

4
(0.1)3 + 1(0.8)3 + 0(0.2)3 +

1

4
(0.7)3 +

3

4
(0.3)3

)

= 0.267.

The predictor p : X → [0, 1] defined by p(x) = 0.5 for all x ∈ X . We show that p ∈ GrpMCD(C, g, 0) ∩ GrpCalD(g, 0).
We show it, starting from calibration:

E
(x,y)∼D

[y] = 0.5 = E
(x,y)∼D

[p(x)].

For group multicalibration with respect to c ∈ C:

E
(x,y)∼D

[c(x) (y − p(x))] =
1

3

(

−
1

10
·
1

4
+

2

10
·
1

2
−

3

10
·
1

4

)

= 0

Since both p and g are constant functions, any c′ ∈ Crand
p,g has to give all x ∈ X the same distribution c(x) of actions. To

satisfy the constraints up to a small error ε, c′(x) must be close to the uniform distribution over {0.1, 0.2, 0, 3} for every x.

When c′(x) is this uniform distribution for every x, we have

E
(x,y)∼D

E
a∼c(x)

[f0(x, a, y)] =
∑

b∈{0,1},a∈{0.1,0.2,0.3}

Pr
(x,y)∼D

[y = b, c(x) = a] |y − a|3

=
1

2
·
1

3

(

(0.9)3 + (0.1)3 + (0.8)3 + (0.2)3 + (0.7)3 + (0.3)3
)
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= 0.27

> β.

Therefore, for small enough ε > 0, we have Crand
p,g ∩ solD(T, β + ε, ε) = ∅, and thus p cannot be a ({T}, C, Crand

p,g , ε)-
omnipredictor.

J. Helper Claims

The following claim is a standard result (see e.g. (Canonne, 2020, Theorem 1)):

Claim J.1. Let Z be a non-empty set partitioned into Z(1), . . . , Z(m). For ε, δ ∈ (0, 1/2) and an integer n ≥ W (ε−2(m+
log(1/δ))) for a sufficiently large absolute constant W > 0, let z1, . . . , zn ∈ Z be n data points drawn i.i.d. from any

distribution D over Z. Then with probability at least 1− δ, the following inequality holds:

m
∑

j=1

∣

∣

∣

∣

∣

1

n

n
∑

i=1

1(zi ∈ Z(j))− Pr
z∼D

[z ∈ Z(j)]

∣

∣

∣

∣

∣

≤ ε.
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