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ABSTRACT .

Ultra-large mesoscopic imaging advances in the cortex open new pathways to
develop neuroprosthetics to restore foveal vision in blind patients. Using
targeted optogenetic activation, an optical prosthetic can focally stimulate
spatially localized lateral geniculate nucleus (LGN) synaptic boutons within the
primary visual cortex (V1). If we localize a cluster within a specific
hypercolumn’s input layer, we will find that activation of a subset of these
boutons is perceptually fungible with the activation of a different subset of
boutons from the same hypercolumn input module. By transducing these LGN
neurons with light-sensitive proteins, they are now sensitive to light and we
can optogenetically stimulate them in a pattern mimicking naturalistic visual
input. Optogenetic targeting of these purely glutamatergic inputs is free from
unwanted co-activation of inhibitory neurons (a common problem in
electrode-based prosthetic devices, which result in diminished contrast
perception). We must prosthetically account for rapidly changing cortical
activity and gain control, so our system integrates a real-time cortical read-out
mechanism to continually assess and provide feedback to modify stimulation
levels, just as the natural visual system does. We accomplish this by reading-
out a multi-colored array of genetically-encoded and transduced
bioluminescent calcium responses in V1 neurons. This hyperspectral array of
colors can achieve single-cell resolution. By tracking eye movements in the
blind patients, we will account for oculomotor effects by adjusting the
contemporaneous stimulation of the LGN boutons to mimic the effects of
natural vision, including those from eye movements. This system, called the
Optogenetic Brain System (OBServ), is designed to function by optimally
activating visual responses in V1 from a fully-implantable coplanar emitter
array coupled with a video camera and a bioluminescent read-out system. It
follows that if we stimulate the LGN input modules in the same pattern as
natural vision, the recipient should perceive naturalistic prosthetic vision. As
such, the system holds the promise of restoring vision in the blind at the
highest attainable acuity, with maximal contrast sensitivity, using an integrated
nanophotonic implantable device that receives eye-tracked video input from a
head-mounted video camera, using relatively non-invasive prosthetic
technology that does not cross the pia mater of the brain.

PATIENTS AND THE NEED FOR FOVEAL RESTORATION B

* No current therapy restores high-acuity foveal vision due to
catastrophic damage
 totheeye
* to the optic nerve
* to retinal ganglion cells (RGCs)
* More than 200 Million people suffer from foveal vision loss:
* macular degeneration
* traumatic ocular injury
 glaucoma

THREE PREMISES FOR FOVEAL RESTORATION D

1. Restoring fovea vision is the primary goal
 Patients with foveal islands of sparing do well
* Failing to fix the fovea = blindness (< 20/200 vision)
2. Successful prosthetic stimulation of the smallest visible object could
serve as the building block for any visual stimulus
 Asin natural vision
3. We must stimulate with naturalistic synaptic spatiotemporal precision
* Synaptic precision of avoids unwanted targets
* Leverages existing circuits
 Optimizes resolution
* Optimizes Signal/Noise

CURRENT ELECTRODES CANNOT ACHIEVE THESE GOALS]

e Electric fields (Es) Cannot Precisely Select Targets (smallest r > 100 puM)
>4 million times larger than synaptic boutons
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APPROACH

LGN afferent maps determine V1 maps. A) OD and OO columns. B,C) RF model
B
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Proof-of-concept for optogenetic stimulation of LGN afferents from awake NHP V1
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Prosthetic contract gain control can be achieved through bioluminescent readout
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Bioluminescent Brainbow Labeling Allows Spatiochromatic Mapping
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Solution: Coplanar emitter/detector dyad nanophotonic chip with 128 um pitch
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Human implant hardware derives from the NHP hardware and materials we
developed, to position the photonics chip against the foveal V1 cortex, while
receiving real-time input and control from the eye-tracking glasses.
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CONCLUSIONS

Our proposed solution to restoring vision arises from the premises that
true restoration will require synaptic prosthetic stimulation at the
highest attainable resolution of the natural visual system. If achieved, by
optogenetically stimulating the isolated afferent inputs to V1 for each
individual input dimension, the downstream visual system will respond
as if the inputs were natural, with naturalistic perception as the
outcome. The system requires a breakthrough nanophotonic coplanar
emitter/detector chip that individually targets the specific isolated of OO
and OD LGN input columns within the V1 hypercolumns map in the
foveal region to be restored (the island of sparing). Prosthetic contrast
gain control is provided through feedback to the emitter using
spatiochromatic bioluminescent recording of cortical responses.
Advanced surgical methods and materials have been developed to work
in conjunction with live eye-tracking of the visual scene, to modify the
visual inputs to the brain in real-time.
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