Advanced Inverse Mapping of Cortical Circuits Using
Full-field Optogenetic Stimulation
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INTRODUCTION

Mapping cortex with sensory driven forward modeling is not possible in cases where sensation is lost, such as in
cortex representing a lost limb, or in the visual cortex of people with blindness. Yet to optimize naturalistic
perception from prosthetic inputs, matching the artificial stimulation to the existing cortical map is critical. It thus
remains a major scientific challenge to map sensory cortex in an individual who has lost all sensory input to any
given brain area. To that end, we have developed an innovative strategy for mapping visual space in the blind.

[VIDEOT] https://res.cloudinary.com/amuze-interactive/video/upload/ve_auto/v1685931640/infinity/C6-69-C9-5A-
22-5C-97-71-6F-A8-6F-8 A-9E-0C-5A-8D/Video/Healthy Vision Overview_nauljz.mp4



FULL-FIELD OPTOSTIMULATION AS TEST OF ART

[VIDEO] https://res.cloudinary.com/amuze-
interactive/image/upload/f auto,q auto/v1685891937/infinity/c6-69-c9-5a-22-5¢c-97-71-6f-a8-6f-8a-
9e-0c-5a-8d/image/optogenetic-stimulation-raw-data_imk5bb.mp4
Optogenetic stimulation of LGN afferents from awake NHP V1

[VIDEO] https://res.cloudinary.com/amuze-interactive/video/upload/ve auto/v1685920110/infinity/C6-69-C9-5A-
22-5C-97-71-6F-A8-6F-8A-9E-0C-5A-8D/Video/zemax_scatter model kc890r.mp4
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INVERSE-MAPPING AND PROSTHETIC STIMULATION
APPROACH

Conceptual approach to optogenetic inverse modeling of cor‘ucal functional archltecture in
the blind. A) By stimulating each point of the layer 4 LGN afferent map optogenetically, we
will evoke VSD responses: but only those points at the center of a layer 4 ON and OFF
afferent input domain will generate strong responses (other points will cancel or weaken due
to ON and OFF intermixing and splitting stimulation across OD columns). This map will not
indicate the contrast-sign of the columns, however. B) By conducting reverse-correlation
mapping with a optimized spatiotemporal optogenetic mapping stimuli, we will identify which
of these points share the same contrast-sign, though we will not yet know which population
indicates ON vs OFF to the NHP. C) Patterning (and other) clues will guide the mapping. For
example, because OFF columns are known to be more numerous than ON columns, we can
assign OFF vs ON contrast-signs if we determine a difference in numerosity. D) The
fundamental patterning and spacing of the ON and OFF columns will be used to determine
the OD organization. Further, because layer 4 afferent fields are oblong in the axis along the
OD columns , they have paired and mutually inhibitory ON and OFF columns sharing the
same retinotopic positions. They also run perpendicular to the ON and OFF stripes in Panel
C, which we can further exploit to determine the OD column map.
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A) A vertical line stimulus, presented at the fovea. B) Macknik lab preliminary data 1 of

intrinsic signal optical imaging of a 1 cm2 field in V1 recorded from an NHP. V1 activates to

the two edges of the vertical line segment as if they were individual stripes (one for each
edge of the line). Note that intrinsic signal (same physiological mechanisms as BOLD) does
not differentiate between ON and OFF responses, whereas our model will. C) A cartoon of
the hypothesized ON and OFF column activities within the Layer 4 LGN afferent map. D) If
we were to present a letter ‘A’ optogenetically—at the resolution of a typical New York Times

newspaper font—our model 1 suggests that the optogenetic stimulation would produce a
VSD pattern simulated in E).

V1 Optogenetic Stimulation




[VIDEO] https://res.cloudinary.com/amuze-
interactive/image/upload/f _auto,q_auto/v1685896105/infinity/c6-69-c9-5a-22-5¢-97-71-61-a8-6f-8a-
9e-0c-5a-8d/image/shapefromedges_ticlnk.mp4
Patterned inputs to targeted © and OD afferents will drive shape perception



PROSTHETIC CONTRAST GAIN CONTROL APPROACH

[VIDEOY] https://res.cloudinary.com/amuze-interactive/video/upload/ve_auto/v1685921098/infinity/C6-69-C9-5A-

22-5C-97-71-6F-A8-6F-8 A-9E-0C-5A-8D/Video/Bioluminescence Gain_Control Approach_tjl8pa.mp4
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AFFERENT REPLACEMENT TECHNIQUE (ART)

Targeted optostimulation of LGN afferents can replace natural inputs.




HARDWARE DEVELOPMENT

[VIDEOY] https://res.cloudinary.com/amuze-interactive/video/upload/ve_auto/v1685929736/infinity/C6-69-C9-5A-
22-5C-97-71-6F-A8-6F-8 A-9E-0C-5A-8D/Video/Monkey Rig development p8upbi.mp4
[VIDEOY] https://res.cloudinary.com/amuze-interactive/video/upload/ve _auto/v1685929762/infinity/C6-69-C9-5A-
22-5C-97-71-6F-A8-6F-8A-9E-0C-5A-8D/Video/Neurophotonics Movie compressed ab6xSu.mp4

[VIDEOY] https://res.cloudinary.com/amuze-
interactive/image/upload/f auto,q auto/v1685930317/infinity/c6-69-c9-5a-22-5¢c-97-71-6f-a8-6f-8a-
9e-0c-5a-8d/image/neurophotonics vo3q9h.mp4
Coplanar emitter/detector dyad nanophotonic chip with 128 um pitch

[VIDEO] https://res.cloudinary.com/amuze-
interactive/image/upload/f auto,q auto/v1685930996/infinity/c6-69-c9-5a-22-5¢-97-71-6f-a8-6f-8a-
9e-0c-5a-8d/image/chamber_twjm7k.mp4

Preclinical NHP development of surgical implant methods and materials

[VIDEO] https://res.cloudinary.com/amuze-
interactive/image/upload/f _auto,q auto/v1685931228/infinity/c6-69-c9-5a-22-5¢-97-71-6f-a8-6f-8a-
9e-0c-5a-8d/image/human_implant_hardware iebwrv.mp4
Human implant hardware derives from the NHP hardware and materials we developed, to
position the photonics chip against the foveal V1 cortex, while receiving real-time input and
control from the eye-tracking glasses.
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TRANSCRIPT



ABSTRACT

The development of optogenetic technology for the restoration of vision in blind patients has gained significant attention in recent years. The
Optogenetic Brain System (OBServ) is an integrated nanophotonic implantable device that aims to restore foveal vision in the blind by mimicking
naturalistic visual input patterns. By transducing lateral geniculate nucleus (LGN) neurons with light-sensitive proteins, the system can
optogenetically stimulate these purely glutamatergic inputs without unwanted co-activation of inhibitory neurons, resulting in maximal contrast
sensitivity. This system is designed to function by optimally activating optogenetically transduced LGN afferents entering the primary visual
cortex (V1), driven by a fully-implantable coplanar neurophotonic emitter-detector array, that reads out activity from cortical cells transduced with
genetically encoded bioluminescence genes. By targeting spatially localized LGN synaptic boutons that have been mapped and identified for their
specific function, naturalistic vision can be restored by providing a pattern of stimulation that mimics natural visual input. Here we show evidence
suggesting that mapping of ON/OFF fields can be partially achieved using full field stimulation of the LGN bouton field, to result in interdigitated
stripes of V1 activation derived from the mutual antagonism of ON/OFF submodules shared by the same hypercolumn: The full-field stimulation
is suppressed along the border of ON and OFF columns that interact with each other in the upper layers of cortex (i.e. because they occupy the
same hypercolumn), whereas the fully activated stripes indicate the border zones between ON/OFF columns of neighboring hypercolumns.
OBServ will target specific submodules within targeted hypercolumns to account for rapidly changing cortical activity and gain control with a
real-time cortical read-out mechanism. This is achieved by reading-out a multi-colored array of genetically-encoded and transduced
bioluminescent calcium responses in V1 neurons, which can achieve single-cell resolution. OBServ will track eye movements in the blind patients
to account for oculomotor effects by adjusting the contemporaneous stimulation of the LGN boutons to mimic the effects eye movements. This
prosthetic technology does not cross the pia mater of the brain and holds the promise of restoring vision in the blind at the highest attainable

acuity, with maximal contrast sensitivity.






