
By Your Command: Extracting the User Actions

that Create Network Flows in Android

Shuwen Liu, Joseph P. Petitti, Yunsen Lei, Yu Liu, Craig A. Shue

Worcester Polytechnic Institute

{sliu9, jppetitti, ylei3, yliu25, cshue}@wpi.edu

Abstract—Given the complexity of modern systems, it can
be difficult for device defenders to pinpoint the user action
that precipitates a network connection. Mobile devices, such as
smartphones, further complicate analysis since they may have
diverse and ephemeral network connectivity and support users
in both personal and professional capacities. There are multiple
stakeholders associated with mobile devices, such as the end-user,
device owner, and each organization whose assets are accessed
via the device; however, none may be able to fully manage,
troubleshoot, or defend the device on their own.

In this work, we explore a set of techniques to determine the
root cause of each new network flow, such the button press or
gesture for user-initiated flows, associated with a mobile device.
We fuse the User Interface (UI) context with network flow data
to enhance network profiling on the Android operating system.
In doing so, we find that we can improve network profiling
by clearly linking user actions with network behavior. When
exploring effectiveness, the system enables allow-lists to reach
over 99% accuracy, even when user-specified destinations are
used.

I. INTRODUCTION

Mobile devices have varied and opportunistic network us-

age patterns, they are often personally-owned and used for

personal and professional purposes, and they are often vital in

modern organizations. These intertwined patterns complicate

efforts to manage the devices since no individual stakeholder

may have all the necessary technical knowledge or visibility

into the device to troubleshoot issues or enhance security.

IT system and network managers need visibility into end-

points to expedite problem diagnosis and reduce resource

usage and infrastructure costs [1]. However, even with detailed

logging infrastructure, the link between user actions and the

resulting behavior of a device may be unclear. When errors

occur, organizations need ways to localize the defect, which

can be more difficult when they do not own or have direct

access to the device. Further, proper security of mobile devices

is a concern since organizations need ways to ensure mobile

devices are not allowing adversaries a foothold into their

systems. Device owners and end users need to ensure a

device is protected without sacrificing their privacy. Further,

solutions in this space must avoid impractical requirements

(e.g., recompiling the Android kernel or gaining root access

to their device, which may incur its own security risks [2]),

which was a requirement in prior work [3], [4].

Since the network communication plays a key role in

troubleshooting performance or security concerns, an accurate

network sensor could help secure the devices in the network.

However, since mobile devices can connect to a wide range of

networks, it may be infeasible to ensure every network has in-

network sensors. Accordingly, we explore options to improve

network sensing on the mobile device end-point itself. Prior

work [5] shows it is applicable to implement software-defined

networking (SDN) tools as an effective network sensor on

endpoints running the Windows operating system. However,

while that prior work could leverage kernel device drivers

to perform its work, the mobile device space places greater

constraints on sensing software and access. In this work, we

explore SDN endpoint sensors that work within standard APIs

and permissions in Android devices.

This exploration leads to the research question: Can UI

interaction and network activity be used to successfully predict

and associate network flows with user actions on Android

devices? Mobile devices operating systems have isolation

techniques that may hinder such an association.

In the exploration, we make the following contributions:

• Create a UI-aware Endpoint Network Sensing System:

We create a new Android application, called APPJUDICA-

TOR, which leverages UI interaction and SDN principles

to determine whether network flows are legitimately user-

initiated (Section III).

• Characterize Network Profiling Potential for UI-

aware Systems: We explore APPJUDICATOR’s ability

to perform real-time network profiling and management

on Android devices. We enable dynamic allow-lists that

can leverage user actions to permit user-driven events.

We found that our system helps increase the accuracy of

allow lists for user-supplied destinations from less than

7% to over 99% (Section IV).

II. BACKGROUND AND RELATED WORK

Our approach is related to prior work in profiling Android

system and network characteristics, graphic user interfaces and

accessibility services, and end-point SDN techniques. We now

provide context and background in each of these areas.

A. Profiling Systems and Networks on Android

Prior work has shown the value of profiling communication

patterns on Android. ProfileDroid [6] characterized applica-

tion traffic and privacy concerns. They linked coarse-grained

user-level information with network flows to identify traffic

associated with advertising from primary application traffic.

Netsight [7] helped localize the root causes associated with





In our configuration, the built-in VPN API provides an

interface that can tunnel all traffic to APPJUDICATOR’s local

VPN server component. We further use the interface to build

two streams: 1) a VPNInputStream that intercepts packets

from applications and 2) a VPNOutputStream that allows

the module to transmit reply packets to the application. We

depict the sequence of the module’s actions in Figure 2. The

VPN service allows APPJUDICATOR to control the intercepted

packets and implement an SDN agent. If the SDN agent has

a table entry for the flow, it will deliver the packet as directed

by that table entry (step m in Figure 2). Otherwise, the agent

will initiate the OpenFlow elevation process (steps d through

i in Figure 2).

Since TCP and UDP packets need different processing,

APPJUDICATOR divides packets and routes them to either

the TCPVPNService or the UDPVPNService. When a

connection is received in the TCPVPNService, it initiates

a connection to the remote system through a protected socket.

The protected socket designation ensures that the communi-

cation is not itself intercepted by our VPN service (and thus

creating a loop). Upon establishing the protected channel, the

TCPVPNService works as a translation device, stitching

together the connections between the local application and the

VPN service and the VPN service to the remote server (shown

as step n and o in Figure 2).

Finally, we need a mechanism to link packets back

to their associated application. We use the Android

ConnectivityManager API to identify the user ID (UID)

associated with the flow’s fields. Since each Android ap-

plication has a different UID, we can use the Android

PackageManager and the QUERY_ALL_PACKAGES per-

missions to determine the package name associated with the

UID. Accordingly, we can aggregate packets into flows using

the standard flow tuple (IPsrc, IPdest, protocol, Portsrc,

Portdest). To link the flow with a package, we first use

ConnectivityManager Android API to look up the UID

of the flow owner by (IPsrc, protocol, Portdest) information.

The PackageManager Android API further allows us to

obtain the package name and context for each UID. To support

SDN functionality, we use the flow tuple as the key in a

hash table combined with a queue data structure for packets

awaiting a verdict from the SDN controller.

B. Instrumenting the UI with Accessibility Services

The accessibility services and APIs on the Android platform

provide a way to gather data about UI events. These accessi-

bility services are designed to support alternative user inter-

actions, such as screen readers for individuals with impaired

vision. We leverage these services to correlate UI events with

networks flows to establish the origin for each network action.

We enable this service in our application by declar-

ing it in our application’s Manifest [23] file and spec-

ifying the BIND_ACCESSIBILITY_SERVICE and the

canRetrieveWindowContent permissions. Using the

intent-filter, we specify the scope of applications that

we monitor. In our prototype, we include all applications in

our scope but note that production deployment may tailor the

scope to achieve privacy goals. Given the potential privacy

and security implications of these permissions, the Android OS

itself provides a clear statement about the service’s capabilities

and the associated risks.

The accessibility services represent UI events as a

UI state change. Our application listens for all types

of UI events, including button presses, swipes, long

presses, and focus changes. For each event, we can ob-

tain a context description from the event object. With the

AccessibilityEvent.getSource() function, we can

extract more information about the layout hierarchy, includ-

ing information associated with parent and child widgets.

This function allows our system to identify text and la-

bels most closely associated with an action, allowing us

to create detailed context for an action. For example, for

the TYPE_VIEW_TEXT_SELECTION_CHANGED UI event

type, we can obtain the contents of an EditText UI ob-

ject, which often contains a user’s input. When these in-

puts contain an IP address, DNS host name, or URL, it

can aid correlation of network flows; otherwise, the data

can be ignored to preserve privacy. We further use the

FLAG_INCLUDE_NOT_IMPORTANT_VIEWS flag with ac-

cessibility services to obtain full visibility into the applica-

tion’s UI [23].

APPJUDICATOR obtains and stores all UI events in the scope

of monitoring on a per-application basis. When queried by the

SDN agent, the service provides the most recent events.

C. Fusing UI and Network Sensor Data via SDN

APPJUDICATOR implements a subset of the OpenFlow v1.0

specification. Since our software only operates on a single

device, it does not implement the full set of OpenFlow options.

We thus omit data about the data link layer headers, the

physical ports, or VLANs. As with traditional OpenFlow

agents, we allow wildcards in the rule match fields. Our SDN

agent finds the most specific matching rule and returns the

associated action to the VPN service to apply to any queued

or subsequent packets associated with the flow.

If the OpenFlow agent does not find a table match on the

packet received from VPNService, it elevates the packet to

the SDN controller, allowing the controller to profile the traffic

and provide direction on how to handle the packet. In our

prototype, we only implement the drop and forward actions,

which will discard or transmit packets, respectively. Future

work may support additional OpenFlow actions.

Unlike the traditional OpenFlow PACKET_IN message

sent to an SDN controller, our agent provides additional

UI context. Our SDN agent queries the accessibility mod-

ule for UI information associated with the flow (Sec-

tion III-B). The UI events are attached in reverse-chronological

order. However, the agent filters some UI events, like

TYPE_VIEW_CONTENT_CHANGED, that are very frequent

and have limited utility to the controller. Accordingly, APPJU-

DICATOR elevates the types of UI events that are most likely to

reveal user intentions to controller. As reported in Section IV,





In Table I, we show the allow-list match rates for Termius,

Gmail, and YouTube. The accuracy rate stands for how much

legitimate traffic has been matched in the sensors. In these

scenarios, all traffic is legitimate: it is initiated by Appium to

replicate end-user behavior. Focusing on Gmail and YouTube,

we see that the IP Sensor has the lowest accuracy for these

applications. The result appears to be influenced by DNS load

balancing or the effects of content distribution network (CDN)

deployments. The DNS sensor’s accuracy is higher than 98.8%

for Gmail and YouTube, demonstrating the value of host

name matching rules. When examining the SSH client, we see

that the IP Sensor and the DNS sensor have lower accuracy,

matching around 6.6% to 6.9% of traffic. In contrast, our UI

sensor enables a match rate that is 99.1% at the controller. This

highlights the importance of understanding the user-specified

destinations when profiling traffic.

V. CONCLUSION

In this work, we propose and evaluate APPJUDICATOR, an

SDN system for mobile devices that associates UI elements

with network flows. With the ability to consult external SDN

controllers for assistance, the APPJUDICATOR tool can respond

to evolving threats while providing sufficient context for access

control decisions. This mechanism helps increase the accuracy

of allow lists for user-supplied destinations from less than 7%

to over 99%. We believe the work holds promise for further

exploration.

ACKNOWLEDGEMENTS

This material is based upon work supported by the National

Science Foundation under Grant No. 1651540.

REFERENCES

[1] Sematext, “Log analysis tutorial: What it is, why, and when devops use
it,” https://sematext.com/blog/log-analysis/, Sep 2020.

[2] Google, “Security risks with modified (rooted) Android versions,”
2020. [Online]. Available: https://support.google.com/accounts/answer/
9211246?hl=en

[3] J. Lee, M. Uddin, J. Tourrilhes, S. Sen, S. Banerjee, M. Arndt, K.-H.
Kim, and T. Nadeem, “meSDN: Mobile extension of SDN,” in Workshop

on Mobile Cloud Computing & Services, 2014.
[4] S. Hong, R. Baykov, L. Xu, S. Nadimpalli, and G. Gu, “Towards sdn-

defined programmable byod (bring your own device) security.” in NDSS,
2016.

[5] Z. Chuluundorj, C. R. Taylor, R. J. Walls, and C. A. Shue, “Can
the user help? leveraging user actions for network profiling,” in IEEE

International Conference on Software Defined Systems (SDS), 2021.
[6] X. Wei, L. Gomez, I. Neamtiu, and M. Faloutsos, “Profiledroid: Multi-

layer profiling of android applications,” in International Conference on

Mobile Computing and Networking, 2012.
[7] N. A. Handigol, Using packet histories to troubleshoot networks. Stan-

ford University, 2013.
[8] S. Burnett, L. Chen, D. A. Creager, M. Efimov, I. Grigorik, B. Jones,

H. V. Madhyastha, P. Papageorge, B. Rogan, C. Stahl et al., “Network
error logging: Client-side measurement of end-to-end web service re-
liability,” in USENIX Symposium on Networked Systems Design and

Implementation, 2020, pp. 985–998.
[9] H. Zhang, D. She, and Z. Qian, “Android root and its providers: A

double-edged sword,” in ACM Conference on Computer and Communi-

cations Security, 2015, pp. 1093–1104.
[10] G. Shirts, “Noroot firewall,” https://play.google.com/store/apps/details?

id=app.greyshirts.firewall&hl=en US&gl=US, 2020.
[11] M. Bokhorst, “Netguard - no-root firewall,” https://play.google.com/

store/apps/details?id=eu.faircode.netguard, 2021.

[12] A. Rao, J. Sherry, A. Legout, A. Krishnamurthy, W. Dabbous, and
D. Choffnes, “Meddle: middleboxes for increased transparency and
control of mobile traffic,” in Proceedings of the 2012 ACM conference

on CoNEXT student workshop, 2012, pp. 65–66.
[13] A. J. Slagell, Y. Li, and K. Luo, “Sharing network logs for computer

forensics: A new tool for the anonymization of netflow records,” in
Workshop of the IEEE International Conference on Security and Privacy

for Emerging Areas in Communication Networks, 2005.
[14] T. Sipola, A. Juvonen, and J. Lehtonen, “Anomaly detection from

network logs using diffusion maps,” in Engineering Applications of

Neural Networks. Springer, 2011, pp. 172–181.
[15] S. A. Hofmeyr, S. Forrest, and A. Somayaji, “Intrusion detection using

sequences of system calls,” Journal of computer security, vol. 6, no. 3,
pp. 151–180, 1998.

[16] A. Lanzi, D. Balzarotti, C. Kruegel, M. Christodorescu, and E. Kirda,
“Accessminer: using system-centric models for malware protection,” in
ACM Conference on Computer and Communications Security, 2010.

[17] W. Yang, X. Xiao, B. Andow, S. Li, T. Xie, and W. Enck, “Appcon-
text: Differentiating malicious and benign mobile app behaviors using
context,” in 2015 IEEE/ACM 37th IEEE International Conference on

Software Engineering, vol. 1. IEEE, 2015, pp. 303–313.
[18] Z. Yang, M. Yang, Y. Zhang, G. Gu, P. Ning, and X. S. Wang,

“Appintent: Analyzing sensitive data transmission in android for privacy
leakage detection,” in Proceedings of the 2013 ACM SIGSAC conference

on Computer & communications security, 2013, pp. 1043–1054.
[19] X. Wang, X. Qin, M. B. Hosseini, R. Slavin, T. D. Breaux, and J. Niu,

“Guileak: Tracing privacy policy claims on user input data for android
applications,” in Proceedings of the 40th International Conference on

Software Engineering, 2018, pp. 37–47.
[20] C. Zheng, S. Zhu, S. Dai, G. Gu, X. Gong, X. Han, and W. Zou, “Smart-

droid: an automatic system for revealing ui-based trigger conditions in
android applications,” in ACM Workshop on Security and Privacy in

Smartphones and Mobile Devices, 2012, pp. 93–104.
[21] Android Studio, “Ui/application exerciser monkey,” https://developer.

android.com/studio/test/monkey, 2020.
[22] J. Foundation, “Appium: Automation for apps,” https://appium.io/docs/

en/2.0/, 2021.
[23] Android Studio Devs., “Create your own accessibility service,” https:

//developer.android.com/guide/topics/ui/accessibility/service, 2019.
[24] Z. Chuluundorj, S. Liu, and C. A. Shue, “Generating stateful policies

for iot device security with cross-device sensors,” in IEEE International

Conference on Network of the Future (NoF), 2022.
[25] D. Levin, M. Canini, S. Schmid, and A. Feldmann, “Incremental

sdn deployment in enterprise networks,” ACM SIGCOMM Computer

Communication Review, vol. 43, no. 4, pp. 473–474, 2013.
[26] C. Lorenz, D. Hock, J. Scherer, R. Durner, W. Kellerer, S. Gebert,

N. Gray, T. Zinner, and P. Tran-Gia, “An sdn/nfv-enabled enterprise
network architecture offering fine-grained security policy enforcement,”
IEEE communications magazine, vol. 55, no. 3, pp. 217–223, 2017.

[27] M. E. Najd and C. A. Shue, “Deepcontext: An openflow-compatible,
host-based sdn for enterprise networks,” in 2017 IEEE 42nd Conference

on Local Computer Networks (LCN). IEEE, 2017, pp. 112–119.
[28] Y. Lei and C. A. Shue, “Detecting root-level endpoint sensor compro-

mises with correlated activity,” in International Conference on Security

and Privacy in Communication Systems. Springer, 2019, pp. 273–286.
[29] N. Feamster, “Outsourcing home network security,” in ACM SIGCOMM

Workshop on Home Networks, 2010, pp. 37–42.
[30] C. R. Taylor, C. A. Shue, and M. E. Najd, “Whole home proxies:

Bringing enterprise-grade security to residential networks,” in IEEE

International Conference on Communications, 2016.
[31] Y. Liu, C. R. Taylor, and C. A. Shue, “Authenticating endpoints and

vetting connections in residential networks,” in 2019 International

Conference on Computing, Networking and Communications (ICNC).
IEEE, 2019, pp. 136–140.

[32] C. R. Taylor, D. C. MacFarland, D. R. Smestad, and C. A. Shue,
“Contextual, flow-based access control with scalable host-based sdn
techniques,” in IEEE INFOCOM, 2016.

[33] S. Demetriou, N. Zhang, Y. Lee, X. Wang, C. A. Gunter, X. Zhou,
and M. Grace, “Hanguard: Sdn-driven protection of smart home wifi
devices from malicious mobile apps,” in ACM Conference on Security

and Privacy in Wireless and Mobile Networks, 2017.
[34] SimilarWeb, “Top websites ranking,” https://www.similarweb.com/top-

websites/, 2023.


