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1 Introduction

The vulnerability of a network is an important parameter to consider when building a
network. Different characteristics of the network can become vulnerable over time or attacked
from other forces. In a simple setting, we model a network as a graph where the vertices
represent our objects and the edges between the vertices represent connections between these
objects. These networks could be computer networks, but they could also represent power
stations and power lines, people and friendships, or departments in a company and workflow.

Generally, there are two things to consider when discussing the vulnerability of a network.
The first is the conditions that need to be satisfied in order for the network to be operational.
This is equivalent to considering what properties need to be satisfied in order to render our
network inoperable. The second consideration is what objects in our network tend to fail. In
certain applications, edges are prone to failure and in other applications vertices are prone
to failure.

One of the first examples of a network vulnerability measure is the connectivity of a
graph, which measures the minimum number of vertices (or edges) which can be removed
to disconnect the graph. This was also generalized to mixed removal where vertices are
removed first followed by edges [1]. Network vulnerability measures have recently been
generalized to include other graph properties, not just connectivity. Harary outlined the
idea of conditional connectivity, which provides a general framework for investigating the
vulnerability of networks based on different parameters [8]. In [4] the authors consider
the component order vertex connectivity (COVC) parameter, denoted /-@ﬁ’“)(G), which is the
minimum number of vertices which can be removed so that the order of all components
in the resulting graph are less than some predetermined value, k. A similar measure was
developed for edge removals (COEC), denoted )\Ek)(G), in [2], and more recently neighbor
removals were studied in [9] and [11]. Component order connectivity has many applications
including multiprocessor network vulnerability [3].

In this paper we extend this idea. Instead of a network being operational if there is a
component of order larger than a fixed value, k, we define the network to be operational if
there is a component with order greater than some proportion, 0 < r < 1, of the original
order. So as our networks become larger, we will need a component of larger order if the
network is to be in an operating state. This connectivity measure has been studied for planar
graphs with r = % for the purposes of VLSI circuit design [10], but we explore the measure
with 0 < r < 1 for simple graphs.

2 Definitions

Throughout the paper, we will assume that G = (V, E) is a simple graph with vertex set
V and edge set E. We will follow the standard graph theory notation found in [12].
Given a graph G define the following:

e Let V(G) be the set of vertices of G, and E(G) the set of edges of G.

e Let G — V' be the graph obtained from removing the vertices of V' C V(@) from G.
Similarly for edges define G — E’ for any set £’ C E(G).
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e Let |G| be the order of the graph, that is, the cardinality of the vertex set V(G).

We will assume throughout that 0 < r < 1 and n is a positive integer.

As indicated previously, we are concerned with what property makes our network oper-
ational and what elements of our graph are prone to failure. We will consider a network to
be operational if there is a sufficiently large component. This is formalized in the following
definition.

Definition 2.1. Given 0 < r < 1, we say a graph G of order n is in an operating state if at
least one component of GG has order greater than rn. Otherwise, we will say that G is in a
failure state.

We will consider vertex and edge removals separately. For vertex removal, if a graph G
is in an operating state, we want to find subsets of vertices whose removal renders our graph
inoperable. These subsets of vertices will be called vertezr failure sets.

Definition 2.2. Given a graph G = (V, F) and 0 < r < 1, a subset of vertices V' C V is a
vertex failure set if G — V' is in a failure state; that is, every component of G — V' has order
at most rn, where n = |V|.

The set of all vertex failure sets of G will be denoted COPVF(G). To measure the
vulnerability of the network, we need to find the smallest set of vertices which, when removed,
render our network inoperable. This will allow us to quantify the vulnerability of our network.

Definition 2.3. Given a graph G = (V,E) and 0 < r < 1, the Component Order Pro-
portion Vertex Connectivity of G, denoted CO}(G), is cardinality of the smallest set V' €
COPVF(G). If V! € COPVF(G) is of minimum cardinality, we will call V' a minimum

vertex failure set.

Now we can consider a similar vulnerability measure for networks where the edges are
prone to failure rather than the vertices.

Definition 2.4. Given a graph G = (V, E) and 0 < r < 1, a subset of edges £’ C E is an
edge failure set if G — E' is in a failure state; that is, every component of G — E’ has order
at most rn, where n = |V/|.

The set of all edge failure sets of G will be denoted COPEF(G). The cardinality of the
smallest set in COPEF(G) will be the measure of the networks vulnerability.

Definition 2.5. Given a graph G = (V, E) and 0 < r < 1, the Component Order Proportion
Edge Connectivity of G, denoted COZ(G), is cardinality of the smallest set £’ € COPEF(G).
If £ € COPEF(G) is of minimum cardinality, we will call E" a minimum edge failure set.

Note that for the special case when r = % the k-component order connectivity, x¥(G),
k-1
defined in [4] is equivalent to CO," (G) and the k-component edge connectivity, \*(G),
k-1

defined in [2] is equivalent to CO." (G).
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3 COPVC and COPEC in General Graph Classes

In this section, we outline how CO, and CO, work with several general graph classes
including paths, cycles, complete graphs, and complete bipartite graphs.

3.1 Vertex

For vertex removal in path graphs, we remove vertices so that the resulting graph will
be the disjoint union of the maximum number of large order failure components. This will
produce a failure state by removing the fewest vertices.

Theorem 3.1. If P, is a path graph of order n and 0 <r < 1 then

n
CO(P,)=|——|.
o(Fa) h'r’nj + 1J
Proof. Let P, = (V, F) be a path graph on n vertices defined in the standard way so that
vy and v, have degree 1 and v; is adjacent to v;; for all 1 < i < n.

Let V' = {v; € V :i=j(|rn] + 1) where j € Z*}. Note |V'| = Lﬁj

So P, —V'= G+ Gy+ ...+ Gy 41 where G; = P, except possibly Gy 4 which will
be a subgraph of P,,|. So P, — V' is the disjoint union of paths of length at most [rn].
Since each graph G; has order at most |rn], we know V' € COPVF(P,).

Next, we show that there is no smaller set in COPVF(F,). Assume there is a smaller set
V" € COPVF(P,) so that |V”| < |V’|. Since P, is a tree of maximum degree 2, every vertex
deletion creates at most one more component. Therefore, P, — V" is the disjoint union of

graphs G/, ..., va"| .1 (allowing empty graphs if necessary). Then we have that

n=|P|= V"l + Y |G| < V"I + [rn) (V"] + 1)

< V' + [rn] V|
<n.
So n < n, a contradiction. O
Note that if r = %, then
n n
(P = — |2 = ®F(p
CO(Fn) h((k —1)/n)n] + 1J M re(Fn)

as shown in Theorem 1 from [4].
Removing a vertex in a cycle of order n results in a path of order n — 1. Therefore, we
have the following immediate corollary.

Corollary 3.2. Forall0 <r <1,

CcoN(C,) = hr(n"__l)lj . 1J +1.
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Complete graphs are another class of graphs which are easy to understand since any
number of vertex removals will not disconnect our graph.

Theorem 3.3. For all0 <1r <1,
CO}(K,)=n—|rn].

Proof. Removing any j vertices from a complete graph on n vertices gives a complete graph
on n — j vertices. So a failure state for K, will be a complete graph on at most [rn|
vertices. So for V' to be in COPVF(K,), it must have at least n — |rn] vertices. So
CO}(K,) =n—|rn]. O

For complete bipartite graphs, we may produce a failure state by removing one of the
vertex sets or a portion of a vertex set.

Theorem 3.4. Assume a <b. For all0 <r <1,
CO;(K,p) =min{a,a +b— |rn]}.

Proof. Let K, = (V, E) have two parts, A = {ay,a9,...,a,} and B = {by,ba,...by}. Let
n = a + b. Notice that the deletion of any set of vertices will result in a complete bipartite
graph or a set of isolated vertices.

Case 1: Suppose rn > b. Since rn > b, a+b— |rn] < a. So let V' C A be a collection of
a+b—|rn| vertices. Notice |K,,—V’| = |rn] is a failure state, so V' € COPVF(K,;). There
are no sets of smaller order in COPVF(K,,), since if V" € COPVF(K,;) and |V"| < |V/|
then K, — V" is connected (since |V”| < a) and |K,, —V"| > |rn|. So V" ¢ COPVF(K,;)
and CO}(K,p) = a+b— |rn] in this case.

Case 2: Suppose rn < b. Consider removing A. Then K, — A is an empty graph with
b vertices and is in a failure state. For any subset V' C V with |V’'| < a we know K, — V'
is a complete bipartite graph with order a+b— |V'|. However, a4 b— |V’| > b and therefore,
K — V' can not be in a failure state. O

3.2 Edges

We now shift our focus to edge removal for paths, cycles, complete graphs, and complete
bipartite graphs.

Theorem 3.5. For all0 <r <1, COL(P,) = Hr_;” .

Proof. Let P, = (V, E) be a defined as in Theorem 3.1 and label the edge incident to vertices
Vi, Vip1 as edge e;. .

Let E' = {e; € E : i = j|rn], where j € Z+}. Note |E'| = LﬁJ

So, P, — E' = G, + Gy + ... + G|g|41 where G; = P, except possibly G|gr|41 which
will be a subgraph of P,,|. So P, — E' is the disjoint union of paths of length at most [rn].
Since each graph G; has order at most [rn|, we know £’ € COPEF(G).

Next, we show that there is no smaller set in COPEF(G). Assume there is a smaller
set £” € COPEF(G) so that |E"| < |E’|. Since P, is a tree, every edge deletion creates at
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most one more component. Therefore, P, — E” is the disjoint union of graphs G/, ..., GT B4
(allowing empty graphs if necessary). Then we have that

n=|EP)|+1=>Y |EG)|+|E"|+1< ([rn] - )(|E"|+ 1)+ |E"] +1
< |rn]|E'|+1
<n.

So n < n, a contradiction. O

As in the vertex removal case, if r = %, then

CO'(P,) = L nl J = V—_IJ = 2\P(P,)

L((k = 1)/n)n] k—1
as shown in Example 4.2.2 from [2].
Again, since any edge removed from C,, will produce P,, we have the following:

Corollary 3.6. For all0 <r < 1,

CO'(C,) = Hr_n” +1.

Theorem 3.7. For any 0 <r <1, let n = p|rn] + q with 0 < g < |rn|. Then

coma- () A7) ()

Proof. First, we prove that for optimal £’ € COPEF(K,,), each component of K, — E’ is
a complete graph. Let G be a component of K, — E’ that is not complete. Let e be an
edge not present in E(G) whose vertices are in V(G). Since K, is complete, e € E(K,)
and so e € E'. Let E” = E' — {e}. Then note that the components of K,, — E” are the
same as K, — E' + e since the only difference is the edge e, which is contained within the
component GG. Since no components have their order changed, K, — E” is a failure state.
So E" € COPEF(K,) and |E"| < |E'|. So a failure set of smaller cardinality can always be
found if one of the components of E’ is not complete, thus, the removal of a minimum failure
set will produce a failure state whose components are all complete graphs.

Let Gy, Gy, - - - G denote the components of K, — E'. Assume G;, and G, have order

strictly less than |rn| and let [V (G;)| < |V(G;)|. Then consider a vertex v € V(G;). Let
E" C E(K,) be the same as E’ on all vertices v" # v, but contains the edges connecting v
to vertices in G; and has no edges connecting v to G;. Thus,
E" = (E' —{e € E' :vis incident to e}) U {(v,v') : v € V(G;)}. Now let G}, G5, -+ be the
components of G — E”. Then G} = Gy for k # 4,7,G; = G; — v, and G} = G; V {v} =~
Kiy(,)+1- Note that |G| < |rn] and |G} < [rn], so £ € COPEF(K,). Since E” is
derived from E’ by adding |V (G;)| — 1 edges from v to the other vertices in G; and deleting
the |V(G;)| edges from v to each vertex in G, we see |E"| = |E'| — [V(G,)| + |V(G;)| — 1
and so |E"| < |E’|. Therefore, if there exist two components in K,, — E’ with order less than
|rn], then there exists E” € COPEF(K,,) with strictly lesser cardinality than E’.

Therefore, if n = p|rn| + ¢ with 0 < g < |rn] our failure state will consist of p complete
graphs of order |rn| and a complete graph of order q. O
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The analysis of COL(K, ) is more involved. In [7] the authors consider the k-component
order edge connectivity of K, ;, denoted )\fj(K a,b), which is defined to be the minimum number

of edges that need to be removed so that all of the remaining components have order at most
k — 1. Therefore, if r = 21, then COL(K,p) = A (Kqp).

4 G(n,m)

We will now turn our attention to the family of graph G(n,m), the set of all graphs with
n vertices and m edges.

Definition 4.1. Let G(n,m) = {G : |[V(G)| = n,|E(G)| = m} be the set of all graphs of
order n and size m for 0 < m < (g)

In this section, we will be concerned with finding the maximum and minimum values
of CO;(G) and COL(G) over all graphs G € G(n,m). Intuitively, a graph which achieves
this minimum value would be one of the most vulnerable networks we can construct with n
vertices and m edges. Similarly, a graph which achieves this maximum value would be one
of the least vulnerable networks we can construct with n vertices and m edges.

Definition 4.2. If G is a collection of graphs, then CO] (G) = r(r;ng COI(G).
S

Definition 4.3. If G is a collection of graphs, then CO”" (G) = max CO;(G).
€

We can define CO” (G) and CO’"(G) similarly. The following lemma gives bounds on
the number of edges that we can have in a failure state. In what follows, we can consider
a graph of order n and we define p to be the maximum number of failure components of

maximum order. Since a component of maximum order has order [rn|, p = LT"—MJ . We will
let ¢ denote the number of vertices which remain after we remove p pairwise disjoint sets of

|rn] vertices.

Lemma 4.4. Define nonnegative integers p and q so that n = |rn|p+q with 0 < g < |rn].
If G is in a failure state then |E(G)| < p(LTQ"J) + (9). In particular, there exists a graph that
is the mazimal size failure state which is the disjoint union of p copies of K., with one

copy of K.

Proof. Assume n = |rn|p + q. Let G be a graph with order n so that G is in a failure
state and there does not exist a graph G’ of order n which is also in a failure state so
that |E(G')| > |E(G)|. This means that G has the maximum number of edges possible to
be in a failure state. If G contains a component which is not a complete graph, then we
can add an edge into that component and G will remain in a failure state. Therefore, G
must be the union of components which are complete graphs of order at most [rn]. Assume
G=K, UK, U...UK,,_. Then |E(G)| is maximized when a1 = as = ... = a.—1 = |rn|
and a. = ¢. If this is not the case we have K, and K3, a < b < |rn|. However, if this is the
case, we note
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and so |E(K,—1)|+ |E(Kpy1)| > |E(K.)|+ |E(Kp)|. Therefore, G would not be maximal.
O]

4.1 CO; (G(n,m))

We will establish some basic properties of CO] (G(n,m)) for a fixed n which will be
used to find exact values for CO} (G(n,m)).

Since we will be considering the set G/(n, m + 1), in the following sections we will assume
m < (3) since if m = (}), then G(n,m + 1) = 0.

Lemma 4.5 (Basic properties of CO! (G(n,m))). Let n = p|rn] +q, 0 < ¢ < |[rn], and
let g (m) = CO;, (G(n,m)). Then the following hold:

(a) gl (m) is non-decreasing
(b) gy (m+1) =g, (m) <1
o

(c) g, (m) takes on the value O for 0 < m < p(V”J) +(9)

(d) The mazimum possible value g, (m) can take on is n — h”n_”JJ’ and g (m) always

takes on this value for some m.

Proof.

(a) Consider the graph G € G(n, m+1) where CO},(G) = g; (m+1). Then removing one
edge, e, from G clearly does not increase the vertex connectivity since any vertex set
whose removal creates a failure state in G will also create a failure state in G — e. So

gy (m) < gy (m+1).

(b) Consider G € G(n,m). Let D be a minimal component order proportion vertex con-
nectivity set of G. Now consider some G’ € G(n,m + 1) so that G’ = G + e. Assume
v € V(Q) is incident to e. Then D U {v} is a failure set for G’ since G’ — D —v is a
subgraph of G — D. Since g/ (m) is non-decreasing, 0 < g/ (m+1) — g, (m) < 1.
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(c) Consider the graph [U;_, K|,] U Ky, the maximal size failure state from Lemma 4.4.
Then this graph is already in a failure state. So by (a), g5 (m) = 0 for 0 < m <

p(‘3) + (3).
(d) Since g} (m) is non-decreasing, g, (m) achieves the greatest value when m = (}), i.e.

2
when G = K,,. So the maximum value of ¢}, (m) is CO}(K,) =n — Lﬁj

]

Now using the above lemma and Lemma 4.4, we can obtain a full characterization of
gr (m) =CO; (G(n,m)) for fixed n and r.

Theorem 4.6. Fizn and let 0 < k <n — |rn]. Define

s ()o() ()

where n —k = |rn]p’ + ¢ with 0 < ¢ < |rn].

Then
O (Gln,m)) = {0 i m < £10) |
koif f(k—1) <m < f(k).
Proof. Fix 0 < k < n — |rn]. We construct the graph G of order n with maximum size
such that CO!(G) = k. We partition the vertex set into two sets, A and B, with |A| = k
and |B| = n — k. Connect every vertex in A to every other vertex in G. Also, make the
induced subgraph on B, denoted G[B], to be the maximal size failure state as described in
Lemma 4.4. Clearly the removal of A will put G into a failure state since G — A = G[B]. If
we removed some vertex set V' with |[V’| = k from G, so that there is a vertex b € B in V',
then there must be at least one vertex u € A in G —V’. Then note that, since k < n— |rn],
|G —V'| > |rn]. But since u is connected to every vertex in G, it is also connected to every
vertex in G — V’. So the component u resides in is G — V" itself. But since |G — V'| > |rn],
G — V' is not a failure state. Thus, only removing A from G will put it into a failure state,
and CO;(G) = k.

For G, we can decompose the edge set of G into E(G) = E(A)U E(B) U E(A < B)
where E(A <> B) is the set of edges incident to one vertex in A and one vertex in B. Then
consider G’ with |E(G")| > |E(G)| and CO}(G") = k. Let A’ be the vertex failure set of G’
and B’ =V’ — A'. Then let E(G') = E(A")UE(B')U E(A" <+ B'). Since |E(G")| > |E(G)],
we have that |E(A")| + |E(B)| + |[E(A" + B')| > |E(A)| + |E(B)| + |E(A < B)|. But
since G[A] is a complete graph and every vertex of A is adjacent to every vertex of B, then
E(A") # E(A) and E(A’ <» B') # E(A < B). So E(B’) > E(B). This contradicts the fact
that G[B] is the failure state with the largest possible edge set. So no G’ of larger size exists
that satisfies COL(G") = k

The graph G constructed above will have size

f(k) = |E(G)] = k(n— k) + (l;) +p’(“§" J) + (qg)
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where n — k = |rn|p’ + ¢ with 0 < ¢ < [rn].

If m < f(0), then by Lemma 4.4 there exists a graph of size m which is already in a
failure state.

So if m > f(k), then CO} (G(n,m)) > k and since CO}, (G(n,m)) is non-decreasing
and can only differ by 1 as m increases, we know if m = f(k), CO} (G(n,m)) = k. This
holds for all k, so if f(k —1) <m < f(k) the CO}, (G(n,m)) = k.

0

It can be shown that Theorem 4.6 implies the following result, which allows for a more
straightforward computation of CO] (G(n,m)).

Theorem 4.7. Fiz n and define p,q € Z so that n = |rn|p + q with 0 < q¢ < |[rn]. Then
i—1
consider 0 < m < (3). Let A = p(LTZ"J) +(9), B=A+qplrn], and C;; = Z [lrn]?(p — )]+

t=1

(j—1)|rn|(p — i)+ B. Then label m as follows:
If 0 <m < A, then let f(m) = my.
If A+tplrn] <m < A+ (t+ 1)p|rn] for 0 <t <gq, then let f(m) = m,.
IfCi; <m < Cigjgny for 1 <i<p—1,1<j < |rn], then let f(m) =m;;.
If Cifrn) <m < Cigg for 1 <i <p—1, then let f(m) = my ).
If Cp1 < m, then let f(m)=my;.

Then we have that

t if f(m)
COT (Gln,m) = 4 = Dlrn) +j+q i fm)=miji<p—1

(p—1)|rn] +q if f(m) =my;,i=p.

my

4.2 CO" (G(n,m))

Now we will find the minimum value of CO. (G(n,m)) which considers edge removals
rather than vertex removals. Similar to Lemma 4.5, we will first establish some basic prop-
erties of COL (G(n,m)).

Lemma 4.8. (Basic properties of CO. (G(n,m))) Define non-negative integers p and q so
that n = [rn|p 4+ q with 0 < ¢ < |rn]. For a fized n, let g5 (m) = CO. (G(n,m)). Then
the following hold:

(a) gb (m) is non-decreasing
(b) g (m+1) =gz (m) <1

(c) g5 (m) takes on the value O for 0 < m < p(“;”) + (%)
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(d) The mazimum possible value of g7 (m) is (}) —p(Lg"J) —(9), and g7~ (m) always takes
on this value for some m.

Proof.

(a) Consider the graph G € G(n, m+1) that achieves g/ (m-+1). Then removing one edge
from G clearly does not increase the edge connectivity since the same edge set that
creates a failure state in G creates a failure state in G —e. So g/ (m) < g, (m+1).

(b) Consider G € G(n,m). Then let D be a minimal component order proportion edge
connectivity set of G. Now consider some G’ € G(n, m + 1) so that G’ = G + e. Then
DU{e} is a failure set for G’ since G'— D —e = G—D. Since g/ (m) is non-decreasing,
0<gf (m+1)—gf (m) <L

(c) Follows directly from Lemma 4.4.

(d) Since g is non-decreasing, K, achieves the greatest value of g7 (). Since the maximum
failure state is [Ul_, K] U K,, we have that the maximum value of g7 (m) is () —

p() - (2). 2
]

We can now find a simple closed form for CO. (G(n,m)).

Theorem 4.9. Fiz n, let g0 (m) = COL (G(n,m)), and let n = |rn|p + q, with 0 < ¢ <
|rn]. Then

0 it m < p("7) + (9

m — p(VZ”J) — (‘2’) otherwise

ge (m) = {

Proof. The first case of this piecewise function follows from Lemma 4.8(c). If m > p(LT; J) +

(9), then we can write m = p(“;” J) + (9) +i for i > 0. Let Gy denote the maximal size failure
state as described in Lemma 4.4. Now if |E(G)| = m, then if we remove j < i edges we are
left with a graph G’ = G — E’ with |E(G")| > |E(Go)|, and so G’ cannot be a failure state.
So CO? (G (n,m)) > i.

Now we construct a sequence of graphs recursively: let G; = G;,_1 + e;_1 and G} =
G+ eg, where e;_; is an arbitrary edge not in GG;_; and G| is again the maximal size failure
state. Then COL(G;) = 1 since Gy is a maximal size failure state. Further, if we assume
COL(G;—1) = 1—1, then COL(G;) < COL(G;—e;—1)+1 =i. However we know COL(G;) > i,
and thus, COL(G;) =i and CO. (G(n,m)) =i in this case.

O

4.3 CO (G(n,m)) and CO." (G(n,m))

Working with CO!" (G(n,m)) and CO!" (G(n,m)) is considerably more difficult than
the minimum functions, and full characterizations of the functions were not found. In this
section we present our results as well as the routes of attack and conjectures concerning these
functions.
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4.3.1 CO (G(n,m))

Similar to the minimum value, CO! (G(n,m)) we have the following properties for our
maximum function. These follow a similar argument found in Lemma 4.5.

Lemma 4.10 (Basic properties of CO?" (G(n,m))). Let n = |rn]p+q, 0 < ¢ < |rn], and
let g7 (m) = CO~" (G(n,m)). Then the following hold:

(a) g-" (m) is non-decreasing
(b) gy (m+1) =g (m) <1

(¢) The mazimum possible value g (m) can take on is n— |rn], and ¢ (m) always takes
on this value for some m.

It is clear that if m < |rn|, then we are already in a failure state since the largest
connected component could have at most m+1 < |rn] vertices. Also, if (5)—[rn] <m < (3)

then CO”" (G(n,m)) = n—|rn|. So we have bounds on the tails of CO”" (G (n,m)) as follows:

0 if m < |rn]
COr (G(n,m)) = ? if [rn] <m<(3) - |rn]
n—lrnl, if () =[] <m<(}).

However, the case when [rn] < m < (Z) — |rn] is not as straight forward because the

particular failure state structure is unknown. We do not know if the failure state would
consist of a small number of components with a few edges in each component or a single
large component with more edges.

Another way to approach the problem may be to consider what the minimum number
of edges a graph can have if we want to fix CO}(G) = k. This could give us a way to find
CO"" (G(n,m)), however we were unsuccessful with this approach.

4.3.2 COI" (G(n,m))

As in the preceding section, we once again have the following list of simple properties.
The proof is essentially identical to Lemma 4.8.

Lemma 4.11 (Basic properties of CO’" (G(n,m))). Let n = |rn|p+q, 0 < ¢ < |rn], and
let g (m) = COZ" (G(n,m)). Then the following hold:

(a) g=" (m) is non-decreasing.
(b) gi' (m+1) —g." (m) < 1.

. . r+ . (n rn rt
(¢c) The mazimum possible value g (m) can take on is () — p(L2J) — (9), and g (m)
always takes on this value for some m.
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For edge remove, it is also clear that we can figure out the tails as follows:

0 if m < [rn]
COL (Gn,m)) =7 if [rn) <m < (3)
() = (p(5) + (@) it m=(3).
If there are enough edges to guarantee that any subgraph of G will contain p disjoint

copies of K|, and a disjoint K, then we know CO" (G(n,m)) = (2) — (p(LZ"J) + (g))

which is the maximum value possible for CO”" (G(n,m)). However, this may not happen for
very many values of m. For example, assume m = (72‘) —2and G = K,,—{ej, ea} where e; and
ey are vertex disjoint edges. Consider the case when |rn| = n—1. Then there is no subgraph
of G which contains K, = K,_;. Therefore, the failure state of G would be K|,,) —e; and

we would have to remove n — 2 edges, not (;) — <p(LT2”J) + (g)) = (Zi) — (”51) =n-—1

4.3.3 Bounds

Since a general formula for CO’" (G(n,m)) was not found, we would like to bound the
function. Given a formula for a general class of graphs immediately gives a lower bound. As

an example, Theorem 3.5 states that COL(P,) = Hr—;” and so CO’" (G(n,m)) > Lﬁj

However, this method does not give a meaningful upper bound.
In the case of 7 = 3, we attempt to find an upper bound on the CO’" (G(n,m)) value
by employing a method that looks at bipartite subgraphs in the complement of a graph. We
begin with a conjecture about the failure state of a graph that achieves the maximum edge

removal connectivity for its graph class.

Conjecture 4.12. Let r = % and let n be a multiple of k. The there exists G € G(n,m) so

that COé/k(G) = COé/k+(G(n, m)) and the failure state of G can be written as the union of
k components of order 3.

In the case n = 2, this conjecture is equivalent to the statement that one of the failure
states of GG is such that the vertices of the components partitions GG into two vertex sets of
equal cardinality.

This conjecture is fruitful when coupled with lower bounds for the largest bipartite sub-
graph of a graph GG. Since an edge failure set can be seen as a bipartite graph, minimizing
an edge failure set in G is dual to finding the largest bipartite graph in the complement, G.
We can then apply a lower bound to the complement graph class G(n,m), which gives an
upper bound for G(n, m).

Definition 4.13. Let G be a graph. We define the function b(G) to be the size of the
largest bipartite subgraph of G. For fixed m, we define the function b(m) = ming b(G),
where G € G(n,m).

The functions b(m) and b(G) have been previously studied. Some results are summarized
below:
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Theorem 4.14 (Bounds on the Bipartite Function). Let G € G(n,m). Then

o b(m) Eer @W /5]

v

e b(G) > 3(m+ 3n) in the case that G has no isolated points. [6]

vV
N |+ DN =

e H(G) (m+ 3(n—1)) in the case that G is a connected graph. [6]

These bounds could be used to provide an upper bound for COY 7 (G(n,m)) as outlined
in the next conjecture.

Conjecture 4.15. Let n be even. Then C’O;/ﬁ(G(n,m)) <z4In

Idea: Let m = (;) — m. Then from Conjecture 4.12, let G € G(n,m) be such that G

has maximal CO? value and has a failure state of two components of equal order. For
simplicity, we will assume that G' has no isolated vertices. Let C},Cy be these components.
Then consider the subgraph H consisting of the vertices of C', Cy and the edges between the
components. Then the number of edges is precisely coy 2(G).

Then since H is a bipartite subgraph of G, COi/Q(G) = |E(H)| < b(G).

Now, we define H to be the bipartite complement of B; that is, subgraph consisting of
vertex sets (' and (5, with edges connecting the two sets only when an edge is absent in H.

Since each bipartite component has order 7, for any bipartite subgraph B,

|E(B)| = ”IZ — |E(B)|, where B is the bipartite complement. Then substituting this for the
|E(B)| term in the definition of b(G), we obtain b(G) = maxpcq [”72 — ‘E(B)‘] But this is

simply 2 — b(G), and COY*(G) < b(G) = 2 — b(Q).

We now apply the second Erdés bound from Theorem 4.14 to b(G). We obtain the final
inequality, COY2" (G(n, m)) < %2 —s(m+3n) =2+

If G has [ isolated points, we can repeat the previous argument with the isolated points
removed and consider 7 = n — [. The upper bound of % + ™ will still hold, as long as [ is

12
even.
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