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Abstract

We introduce a new measure of network vulnerability related to the order of the

largest component. This new connectivity measure considers a network to be opera-

tional if there is a component or order at least some fixed proportion, r, of the original
order. Thus, the network is in a failure state if all components are su�ciently small. In

this paper, we consider the parameters with vertex deletions as well as edge deletions

for particular graph classes. We also find the minimum values of the parameter for

graphs with a fixed size and order. We end with a discussion and some conjectures for

the maximum value of the parameter for graphs with a fixed size and order.
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1 Introduction

The vulnerability of a network is an important parameter to consider when building a
network. Di↵erent characteristics of the network can become vulnerable over time or attacked
from other forces. In a simple setting, we model a network as a graph where the vertices
represent our objects and the edges between the vertices represent connections between these
objects. These networks could be computer networks, but they could also represent power
stations and power lines, people and friendships, or departments in a company and workflow.

Generally, there are two things to consider when discussing the vulnerability of a network.
The first is the conditions that need to be satisfied in order for the network to be operational.
This is equivalent to considering what properties need to be satisfied in order to render our
network inoperable. The second consideration is what objects in our network tend to fail. In
certain applications, edges are prone to failure and in other applications vertices are prone
to failure.

One of the first examples of a network vulnerability measure is the connectivity of a
graph, which measures the minimum number of vertices (or edges) which can be removed
to disconnect the graph. This was also generalized to mixed removal where vertices are
removed first followed by edges [1]. Network vulnerability measures have recently been
generalized to include other graph properties, not just connectivity. Harary outlined the
idea of conditional connectivity, which provides a general framework for investigating the
vulnerability of networks based on di↵erent parameters [8]. In [4] the authors consider

the component order vertex connectivity (COVC) parameter, denoted (k)
c (G), which is the

minimum number of vertices which can be removed so that the order of all components
in the resulting graph are less than some predetermined value, k. A similar measure was
developed for edge removals (COEC), denoted �(k)

c (G), in [2], and more recently neighbor
removals were studied in [9] and [11]. Component order connectivity has many applications
including multiprocessor network vulnerability [3].

In this paper we extend this idea. Instead of a network being operational if there is a
component of order larger than a fixed value, k, we define the network to be operational if
there is a component with order greater than some proportion, 0 < r < 1, of the original
order. So as our networks become larger, we will need a component of larger order if the
network is to be in an operating state. This connectivity measure has been studied for planar
graphs with r = 1

2 for the purposes of VLSI circuit design [10], but we explore the measure
with 0 < r < 1 for simple graphs.

2 Definitions

Throughout the paper, we will assume that G = (V,E) is a simple graph with vertex set
V and edge set E. We will follow the standard graph theory notation found in [12].

Given a graph G define the following:

• Let V (G) be the set of vertices of G, and E(G) the set of edges of G.

• Let G � V 0 be the graph obtained from removing the vertices of V 0 ✓ V (G) from G.
Similarly for edges define G� E 0 for any set E 0 ✓ E(G).
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• Let |G| be the order of the graph, that is, the cardinality of the vertex set V (G).

We will assume throughout that 0 < r < 1 and n is a positive integer.
As indicated previously, we are concerned with what property makes our network oper-

ational and what elements of our graph are prone to failure. We will consider a network to
be operational if there is a su�ciently large component. This is formalized in the following
definition.

Definition 2.1. Given 0 < r < 1, we say a graph G of order n is in an operating state if at
least one component of G has order greater than rn. Otherwise, we will say that G is in a
failure state.

We will consider vertex and edge removals separately. For vertex removal, if a graph G
is in an operating state, we want to find subsets of vertices whose removal renders our graph
inoperable. These subsets of vertices will be called vertex failure sets.

Definition 2.2. Given a graph G = (V,E) and 0 < r < 1, a subset of vertices V 0 ✓ V is a
vertex failure set if G�V 0 is in a failure state; that is, every component of G�V 0 has order
at most rn, where n = |V |.

The set of all vertex failure sets of G will be denoted COPVF(G). To measure the
vulnerability of the network, we need to find the smallest set of vertices which, when removed,
render our network inoperable. This will allow us to quantify the vulnerability of our network.

Definition 2.3. Given a graph G = (V,E) and 0 < r < 1, the Component Order Pro-

portion Vertex Connectivity of G, denoted COr
v(G), is cardinality of the smallest set V 0 2

COPVF(G). If V 0 2 COPVF(G) is of minimum cardinality, we will call V 0 a minimum

vertex failure set.

Now we can consider a similar vulnerability measure for networks where the edges are
prone to failure rather than the vertices.

Definition 2.4. Given a graph G = (V,E) and 0 < r < 1, a subset of edges E 0 ✓ E is an
edge failure set if G� E 0 is in a failure state; that is, every component of G� E 0 has order
at most rn, where n = |V |.

The set of all edge failure sets of G will be denoted COPEF(G). The cardinality of the
smallest set in COPEF(G) will be the measure of the networks vulnerability.

Definition 2.5. Given a graph G = (V,E) and 0 < r < 1, the Component Order Proportion

Edge Connectivity of G, denoted COr
e(G), is cardinality of the smallest set E 0 2 COPEF(G).

If E 0 2 COPEF(G) is of minimum cardinality, we will call E 0 a minimum edge failure set.

Note that for the special case when r = k�1
n the k-component order connectivity, k

c (G),

defined in [4] is equivalent to CO
k�1
n

v (G) and the k-component edge connectivity, �k
c (G),

defined in [2] is equivalent to CO
k�1
n

e (G).
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3 COPVC and COPEC in General Graph Classes

In this section, we outline how COv and COe work with several general graph classes
including paths, cycles, complete graphs, and complete bipartite graphs.

3.1 Vertex

For vertex removal in path graphs, we remove vertices so that the resulting graph will
be the disjoint union of the maximum number of large order failure components. This will
produce a failure state by removing the fewest vertices.

Theorem 3.1. If Pn is a path graph of order n and 0 < r < 1 then

COr
v(Pn) =

�
n

brnc+ 1

⌫
.

Proof. Let Pn = (V,E) be a path graph on n vertices defined in the standard way so that
v1 and vn have degree 1 and vi is adjacent to vi+1 for all 1  i < n.

Let V 0 = {vi 2 V : i = j(brnc+ 1) where j 2 Z+}. Note |V 0| =
j

n
brnc+1

k
.

So Pn�V 0 = G1+G2+ . . .+G|V 0|+1 where Gi = Pbrnc except possibly G|V 0|+1 which will
be a subgraph of Pbrnc. So Pn � V 0 is the disjoint union of paths of length at most brnc.
Since each graph Gi has order at most brnc, we know V 0 2 COPVF(Pn).

Next, we show that there is no smaller set in COPVF(Pn). Assume there is a smaller set
V 00 2 COPVF(Pn) so that |V 00| < |V 0|. Since Pn is a tree of maximum degree 2, every vertex
deletion creates at most one more component. Therefore, Pn � V 00 is the disjoint union of
graphs G0

1, ..., G
0
|V 00|+1 (allowing empty graphs if necessary). Then we have that

n = |Pn| = |V 00|+
X

|G0
i|  |V 00|+ brnc(|V 00|+ 1)

< |V 0|+ brnc|V 0|
 n.

So n < n, a contradiction.

Note that if r = k�1
n , then

COr
v(Pn) =

�
n

b((k � 1)/n)nc+ 1

⌫
=

jn
k

k
= (k)

c (Pn)

as shown in Theorem 1 from [4].
Removing a vertex in a cycle of order n results in a path of order n � 1. Therefore, we

have the following immediate corollary.

Corollary 3.2. For all 0 < r < 1,

COr
v(Cn) =

�
n� 1

br(n� 1)c+ 1

⌫
+ 1.
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Complete graphs are another class of graphs which are easy to understand since any
number of vertex removals will not disconnect our graph.

Theorem 3.3. For all 0 < r < 1,

COr
v(Kn) = n� brnc.

Proof. Removing any j vertices from a complete graph on n vertices gives a complete graph
on n � j vertices. So a failure state for Kn will be a complete graph on at most brnc
vertices. So for V 0 to be in COPVF(Kn), it must have at least n � brnc vertices. So
COr

v(Kn) = n� brnc.

For complete bipartite graphs, we may produce a failure state by removing one of the
vertex sets or a portion of a vertex set.

Theorem 3.4. Assume a  b. For all 0 < r < 1,

COr
v(Ka,b) = min{a, a+ b� brnc}.

Proof. Let Ka,b = (V,E) have two parts, A = {a1, a2, . . . , aa} and B = {b1, b2, . . . bb}. Let
n = a + b. Notice that the deletion of any set of vertices will result in a complete bipartite
graph or a set of isolated vertices.

Case 1: Suppose rn � b. Since rn � b, a+ b�brnc  a. So let V 0 ✓ A be a collection of
a+b�brnc vertices. Notice |Ka,b�V 0| = brnc is a failure state, so V 0 2 COPVF(Ka,b). There
are no sets of smaller order in COPVF(Ka,b), since if V 00 2 COPVF(Ka,b) and |V 00| < |V 0|
then Ka,b�V 00 is connected (since |V 00| < a) and |Ka,b�V 00| > brnc. So V 00 /2 COPVF(Ka,b)
and COr

v(Ka,b) = a+ b� brnc in this case.
Case 2: Suppose rn < b. Consider removing A. Then K(a,b) � A is an empty graph with

b vertices and is in a failure state. For any subset V 0 ✓ V with |V 0| < a we know K(a,b) � V 0

is a complete bipartite graph with order a+ b� |V 0|. However, a+ b� |V 0| > b and therefore,
K(a,b) � V 0 can not be in a failure state.

3.2 Edges

We now shift our focus to edge removal for paths, cycles, complete graphs, and complete
bipartite graphs.

Theorem 3.5. For all 0 < r < 1, COr
e(Pn) =

j
n�1
brnc

k
.

Proof. Let Pn = (V,E) be a defined as in Theorem 3.1 and label the edge incident to vertices
vi, vi+1 as edge ei. .

Let E 0 = {ei 2 E : i = jbrnc, where j 2 Z+}. Note |E 0| =
j
n�1
brnc

k
.

So, Pn � E 0 = G1 + G2 + . . . + G|E0|+1 where Gi = Pbrnc except possibly G|E0|+1 which
will be a subgraph of Pbrnc. So Pn�E 0 is the disjoint union of paths of length at most brnc.
Since each graph Gi has order at most brnc, we know E 0 2 COPEF(G).

Next, we show that there is no smaller set in COPEF(G). Assume there is a smaller
set E 00 2 COPEF(G) so that |E 00| < |E 0|. Since Pn is a tree, every edge deletion creates at
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most one more component. Therefore, Pn�E 00 is the disjoint union of graphs G0
1, ..., G

0
|E00|+1

(allowing empty graphs if necessary). Then we have that

n = |E(Pn)|+ 1 =
X

|E(G0
i)|+ |E 00|+ 1  (brnc � 1)(|E 00|+ 1) + |E 00|+ 1

< brnc|E 0|+ 1

< n.

So n < n, a contradiction.

As in the vertex removal case, if r = k�1
n , then

COr
e(Pn) =

�
n� 1

b((k � 1)/n)nc

⌫
=

�
n� 1

k � 1

⌫
= �(k)

c (Pn)

as shown in Example 4.2.2 from [2].
Again, since any edge removed from Cn will produce Pn, we have the following:

Corollary 3.6. For all 0 < r < 1,

COr
e(Cn) =

�
n� 1

brnc

⌫
+ 1.

Theorem 3.7. For any 0 < r < 1, let n = pbrnc+ q with 0  q < brnc. Then

COr
e(Kn) =

✓
n

2

◆
� p

✓
brnc
2

◆
�

✓
q

2

◆
.

Proof. First, we prove that for optimal E 0 2 COPEF(Kn), each component of Kn � E 0 is
a complete graph. Let G be a component of Kn � E 0 that is not complete. Let e be an
edge not present in E(G) whose vertices are in V (G). Since Kn is complete, e 2 E(Kn)
and so e 2 E 0. Let E 00 = E 0 � {e}. Then note that the components of Kn � E 00 are the
same as Kn � E 0 + e since the only di↵erence is the edge e, which is contained within the
component G. Since no components have their order changed, Kn � E 00 is a failure state.
So E 00 2 COPEF(Kn) and |E 00| < |E 0|. So a failure set of smaller cardinality can always be
found if one of the components of E 0 is not complete, thus, the removal of a minimum failure
set will produce a failure state whose components are all complete graphs.

Let G1, G2, · · ·Gk denote the components of Kn � E 0. Assume Gi, and Gj have order
strictly less than brnc and let |V (Gi)|  |V (Gj)|. Then consider a vertex v 2 V (Gi). Let
E 00 ✓ E(Kn) be the same as E 0 on all vertices v0 6= v, but contains the edges connecting v
to vertices in Gi and has no edges connecting v to Gj. Thus,
E 00 = (E 0 � {e 2 E 0 : v is incident to e}) [ {(v, v0) : v0 2 V (Gi)}. Now let G0

1, G
0
2, · · · be the

components of G � E 00. Then G0
k = Gk for k 6= i, j,G0

i = Gi � v, and G0
j = Gj _ {v} '

K|V (Gj)|+1. Note that |G0
i| < brnc and |G0

j|  brnc, so E 00 2 COPEF(Kn). Since E 00 is
derived from E 0 by adding |V (Gi)|� 1 edges from v to the other vertices in Gi and deleting
the |V (Gj)| edges from v to each vertex in Gj, we see |E 00| = |E 0| � |V (Gj)| + |V (Gi)| � 1
and so |E 00| < |E 0|. Therefore, if there exist two components in Kn�E 0 with order less than
brnc, then there exists E 00 2 COPEF(Kn) with strictly lesser cardinality than E 0.

Therefore, if n = pbrnc+ q with 0  q < brnc our failure state will consist of p complete
graphs of order brnc and a complete graph of order q.
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The analysis of COr
e(Ka,b) is more involved. In [7] the authors consider the k-component

order edge connectivity ofKa,b, denoted �k
c (Ka,b), which is defined to be the minimum number

of edges that need to be removed so that all of the remaining components have order at most
k � 1. Therefore, if r = k�1

n , then COr
e(Ka,b) = �k

c (Ka,b).

4 G(n,m)

We will now turn our attention to the family of graph G(n,m), the set of all graphs with
n vertices and m edges.

Definition 4.1. Let G(n,m) = {G : |V (G)| = n, |E(G)| = m} be the set of all graphs of
order n and size m for 0  m 

�
n
2

�
.

In this section, we will be concerned with finding the maximum and minimum values
of COr

v(G) and COr
e(G) over all graphs G 2 G(n,m). Intuitively, a graph which achieves

this minimum value would be one of the most vulnerable networks we can construct with n
vertices and m edges. Similarly, a graph which achieves this maximum value would be one
of the least vulnerable networks we can construct with n vertices and m edges.

Definition 4.2. If G is a collection of graphs, then COr�
v (G) = min

G2G
COr

v(G).

Definition 4.3. If G is a collection of graphs, then COr+
v (G) = max

G2G
COr

v(G).

We can define COr�
e (G) and COr+

e (G) similarly. The following lemma gives bounds on
the number of edges that we can have in a failure state. In what follows, we can consider
a graph of order n and we define p to be the maximum number of failure components of

maximum order. Since a component of maximum order has order brnc, p =
j

n
brnc

k
. We will

let q denote the number of vertices which remain after we remove p pairwise disjoint sets of
brnc vertices.

Lemma 4.4. Define nonnegative integers p and q so that n = brncp+ q with 0  q < brnc.
If G is in a failure state then |E(G)|  p

�brnc
2

�
+
�
q
2

�
. In particular, there exists a graph that

is the maximal size failure state which is the disjoint union of p copies of Kbrnc with one

copy of Kq.

Proof. Assume n = brncp + q. Let G be a graph with order n so that G is in a failure
state and there does not exist a graph G0 of order n which is also in a failure state so
that |E(G0)| > |E(G)|. This means that G has the maximum number of edges possible to
be in a failure state. If G contains a component which is not a complete graph, then we
can add an edge into that component and G will remain in a failure state. Therefore, G
must be the union of components which are complete graphs of order at most brnc. Assume
G = Ka1 [Ka2 [ . . . [Kac . Then |E(G)| is maximized when a1 = a2 = . . . = ac�1 = brnc
and ac = q. If this is not the case we have Ka and Kb, a  b < brnc. However, if this is the
case, we note
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✓
b

2

◆
+

✓
a

2

◆
=

b2 � b

2
+

a2 � a

2

=
b2 + b

2
+

a2 � a

2
� b


✓
b+ 1

2

◆
+

a2 � a

2
� a

<

✓
b+ 1

2

◆
+

a2 � 3a+ 2

2

=

✓
b+ 1

2

◆
+

✓
a� 1

2

◆

and so |E(Ka�1)|+ |E(Kb+1)| > |E(Ka)|+ |E(Kb)|. Therefore, G would not be maximal.

4.1 COr�
v (G(n,m))

We will establish some basic properties of COr�
v (G(n,m)) for a fixed n which will be

used to find exact values for COr�
v (G(n,m)).

Since we will be considering the set G(n,m+1), in the following sections we will assume
m <

�
n
2

�
since if m =

�
n
2

�
, then G(n,m+ 1) = ;.

Lemma 4.5 (Basic properties of COr�
v (G(n,m))). Let n = pbrnc + q, 0  q < brnc, and

let gr
�

v (m) = COr�
v (G(n,m)). Then the following hold:

(a) gr
�

v (m) is non-decreasing

(b) gr
�

v (m+ 1)� gr
�

v (m)  1

(c) gr
�

v (m) takes on the value 0 for 0  m  p
�brnc

2

�
+
�
q
2

�

(d) The maximum possible value gr
�

v (m) can take on is n �
j

n
brnc

k
, and gr

�
v (m) always

takes on this value for some m.

Proof.

(a) Consider the graph G 2 G(n,m+1) where COr
v(G) = gr

�
v (m+1). Then removing one

edge, e, from G clearly does not increase the vertex connectivity since any vertex set
whose removal creates a failure state in G will also create a failure state in G� e. So
gr

�
v (m)  gr

�
v (m+ 1).

(b) Consider G 2 G(n,m). Let D be a minimal component order proportion vertex con-
nectivity set of G. Now consider some G0 2 G(n,m + 1) so that G0 = G + e. Assume
v 2 V (G) is incident to e. Then D [ {v} is a failure set for G0 since G0 �D � v is a
subgraph of G�D. Since gr

�
v (m) is non-decreasing, 0  gr

�
v (m+ 1)� gr

�
v (m)  1.
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(c) Consider the graph [[p
i=1Kbrnc] [Kq, the maximal size failure state from Lemma 4.4.

Then this graph is already in a failure state. So by (a), gr
�

v (m) = 0 for 0  m 
p
�brnc

2

�
+
�
q
2

�
.

(d) Since gr
�

v (m) is non-decreasing, gr
�

v (m) achieves the greatest value when m =
�
n
2

�
, i.e.

when G = Kn. So the maximum value of gr
�

v (m) is COr
v(Kn) = n�

j
n

brnc

k
.

Now using the above lemma and Lemma 4.4, we can obtain a full characterization of
gr

�
v (m) = COr�

v (G(n,m)) for fixed n and r.

Theorem 4.6. Fix n and let 0  k  n� brnc. Define

f(k) = k(n� k) +

✓
k

2

◆
+ p0

✓
brnc
2

◆
+

✓
q0

2

◆

where n� k = brncp0 + q0 with 0  q0 < brnc.
Then

COr�

v (G(n,m)) =

(
0 if m  f(0)

k if f(k � 1) < m  f(k).
.

Proof. Fix 0  k < n � brnc. We construct the graph G of order n with maximum size
such that COr

v(G) = k. We partition the vertex set into two sets, A and B, with |A| = k
and |B| = n � k. Connect every vertex in A to every other vertex in G. Also, make the
induced subgraph on B, denoted G[B], to be the maximal size failure state as described in
Lemma 4.4. Clearly the removal of A will put G into a failure state since G�A = G[B]. If
we removed some vertex set V 0 with |V 0| = k from G, so that there is a vertex b 2 B in V 0,
then there must be at least one vertex u 2 A in G�V 0. Then note that, since k < n�brnc,
|G� V 0| > brnc. But since u is connected to every vertex in G, it is also connected to every
vertex in G� V 0. So the component u resides in is G� V 0 itself. But since |G� V 0| > brnc,
G� V 0 is not a failure state. Thus, only removing A from G will put it into a failure state,
and COr

v(G) = k.
For G, we can decompose the edge set of G into E(G) = E(A) [ E(B) [ E(A $ B)

where E(A $ B) is the set of edges incident to one vertex in A and one vertex in B. Then
consider G0 with |E(G0)| > |E(G)| and COr

v(G
0) = k. Let A0 be the vertex failure set of G0

and B0 = V 0 �A0. Then let E(G0) = E(A0) [E(B0) [E(A0 $ B0). Since |E(G0)| > |E(G)|,
we have that |E(A0)| + |E(B0)| + |E(A0 $ B0)| > |E(A)| + |E(B)| + |E(A $ B)|. But
since G[A] is a complete graph and every vertex of A is adjacent to every vertex of B, then
E(A0) ⇧ E(A) and E(A0 $ B0) ⇧ E(A $ B). So E(B0) > E(B). This contradicts the fact
that G[B] is the failure state with the largest possible edge set. So no G0 of larger size exists
that satisfies COr

v(G
0) = k

The graph G constructed above will have size

f(k) = |E(G)| = k(n� k) +

✓
k

2

◆
+ p0

✓
brnc
2

◆
+

✓
q0

2

◆
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where n� k = brncp0 + q0 with 0  q0 < brnc.
If m < f(0), then by Lemma 4.4 there exists a graph of size m which is already in a

failure state.
So if m > f(k), then COr�

v (G(n,m)) > k and since COr�
v (G(n,m)) is non-decreasing

and can only di↵er by 1 as m increases, we know if m = f(k), COr�
v (G(n,m)) = k. This

holds for all k, so if f(k � 1) < m  f(k) the COr�
v (G(n,m)) = k.

It can be shown that Theorem 4.6 implies the following result, which allows for a more
straightforward computation of COr�

v (G(n,m)).

Theorem 4.7. Fix n and define p, q 2 Z so that n = brncp + q with 0  q < brnc. Then

consider 0  m 
�
n
2

�
. Let A = p

�brnc
2

�
+
�
q
2

�
, B = A+qpbrnc, and Ci,j =

i�1X

t=1

[brnc2(p� t)]+

(j � 1)brnc(p� i) + B. Then label m as follows:

If 0  m  A, then let f(m) = m0.

If A+ tpbrnc < m  A+ (t+ 1)pbrnc for 0 < t  q, then let f(m) = mt.

If Ci,j < m  Ci,(j+1) for 1  i  p� 1, 1  j < brnc, then let f(m) = mi,j.

If Ci,brnc < m  Ci+1,1 for 1  i  p� 1, then let f(m) = mi,brnc.

If Cp,1  m, then let f(m) = mp,1.

Then we have that

COr�

v (G(n,m)) =

8
><

>:

t if f(m) = mt

(i� 1)brnc+ j + q if f(m) = mi,j, i  p� 1

(p� 1)brnc+ q if f(m) = mi,j, i = p.

4.2 COr�
e (G(n,m))

Now we will find the minimum value of COr�
e (G(n,m)) which considers edge removals

rather than vertex removals. Similar to Lemma 4.5, we will first establish some basic prop-
erties of COr�

e (G(n,m)).

Lemma 4.8. (Basic properties of COr�
e (G(n,m))) Define non-negative integers p and q so

that n = brncp + q with 0  q < brnc. For a fixed n, let gr
�

e (m) = COr�
e (G(n,m)). Then

the following hold:

(a) gr
�

e (m) is non-decreasing

(b) gr
�

e (m+ 1)� gr
�

e (m)  1

(c) gr
�

e (m) takes on the value 0 for 0  m  p
�brnc

2

�
+
�
q
2

�
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(d) The maximum possible value of gr
�

e (m) is
�
n
2

�
� p

�brnc
2

�
�
�
q
2

�
, and gr

�
e (m) always takes

on this value for some m.

Proof.

(a) Consider the graph G 2 G(n,m+1) that achieves gr
�

e (m+1). Then removing one edge
from G clearly does not increase the edge connectivity since the same edge set that
creates a failure state in G creates a failure state in G� e. So gr

�
e (m)  gr

�
e (m+ 1).

(b) Consider G 2 G(n,m). Then let D be a minimal component order proportion edge
connectivity set of G. Now consider some G0 2 G(n,m+ 1) so that G0 = G+ e. Then
D[{e} is a failure set for G0 since G0�D�e = G�D. Since gr

�
e (m) is non-decreasing,

0  gr
�

e (m+ 1)� gr
�

e (m)  1.

(c) Follows directly from Lemma 4.4.

(d) Since g is non-decreasing, Kn achieves the greatest value of gr
�

e (). Since the maximum
failure state is [[p

i=1Kbrnc] [Kq, we have that the maximum value of gr
�

e (m) is
�
n
2

�
�

p
�brnc

2

�
�

�
q
2

�
.

We can now find a simple closed form for COr�
e (G(n,m)).

Theorem 4.9. Fix n, let gr
�

e (m) = COr�
e (G(n,m)), and let n = brncp + q, with 0  q <

brnc. Then

gr
�

e (m) =

⇢
0 if m  p

�brnc
2

�
+
�
q
2

�

m� p
�brnc

2

�
�
�
q
2

�
otherwise

Proof. The first case of this piecewise function follows from Lemma 4.8(c). If m > p
�brnc

2

�
+�

q
2

�
, then we can write m = p

�brnc
2

�
+
�
q
2

�
+ i for i > 0. Let G0 denote the maximal size failure

state as described in Lemma 4.4. Now if |E(G)| = m, then if we remove j < i edges we are
left with a graph G0 = G� E 0 with |E(G0)| > |E(G0)|, and so G0 cannot be a failure state.
So COr�

v (G(n,m)) � i.
Now we construct a sequence of graphs recursively: let Gi = Gi�1 + ei�1 and G1 =

G0+ e0, where ei�1 is an arbitrary edge not in Gi�1 and G0 is again the maximal size failure
state. Then COr

e(G1) = 1 since G0 is a maximal size failure state. Further, if we assume
COr

e(Gi�1) = i�1, then COr
e(Gi)  COr

e(Gi�ei�1)+1 = i. However we know COr
e(Gi) � i,

and thus, COr
e(Gi) = i and COr�

e (G(n,m)) = i in this case.

4.3 COr+
v (G(n,m)) and COr+

e (G(n,m))

Working with COr+
v (G(n,m)) and COr+

e (G(n,m)) is considerably more di�cult than
the minimum functions, and full characterizations of the functions were not found. In this
section we present our results as well as the routes of attack and conjectures concerning these
functions.
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4.3.1 COr+
v (G(n,m))

Similar to the minimum value, COr�
v (G(n,m)) we have the following properties for our

maximum function. These follow a similar argument found in Lemma 4.5.

Lemma 4.10 (Basic properties of COr+
v (G(n,m))). Let n = brncp + q, 0  q < brnc, and

let gr
+

v (m) = COr+
v (G(n,m)). Then the following hold:

(a) gr
+

v (m) is non-decreasing

(b) gr
+

v (m+ 1)� gr
+

v (m)  1

(c) The maximum possible value gr
+

v (m) can take on is n�brnc, and gr
+

v (m) always takes
on this value for some m.

It is clear that if m < brnc, then we are already in a failure state since the largest
connected component could have at mostm+1  brnc vertices. Also, if

�
n
2

�
�brnc < m 

�
n
2

�

then COr+
v (G(n,m)) = n�brnc. So we have bounds on the tails of COr+

v (G(n,m)) as follows:

COr+

v (G(n,m)) =

8
><

>:

0 if m < brnc
? if brnc  m 

�
n
2

�
� brnc

n� brnc, if
�
n
2

�
� brnc < m 

�
n
2

�
.

However, the case when brnc  m 
�
n
2

�
� brnc is not as straight forward because the

particular failure state structure is unknown. We do not know if the failure state would
consist of a small number of components with a few edges in each component or a single
large component with more edges.

Another way to approach the problem may be to consider what the minimum number
of edges a graph can have if we want to fix COr

v(G) = k. This could give us a way to find
COr+

v (G(n,m)), however we were unsuccessful with this approach.

4.3.2 COr+
e (G(n,m))

As in the preceding section, we once again have the following list of simple properties.
The proof is essentially identical to Lemma 4.8.

Lemma 4.11 (Basic properties of COr+
e (G(n,m))). Let n = brncp + q, 0  q < brnc, and

let gr
+

e (m) = COr+
e (G(n,m)). Then the following hold:

(a) gr
+

e (m) is non-decreasing.

(b) gr
+

e (m+ 1)� gr
+

e (m)  1.

(c) The maximum possible value gr
+

e (m) can take on is
�
n
2

�
� p

�brnc
2

�
�

�
q
2

�
, and gr

+

e (m)
always takes on this value for some m.
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For edge remove, it is also clear that we can figure out the tails as follows:

COr+

e (G(n,m)) =

8
>><

>>:

0 if m < brnc
? if brnc  m <

�
n
2

�
�
n
2

�
�

⇣
p
�brnc

2

�
+
�
q
2

�⌘
if m =

�
n
2

�
.

If there are enough edges to guarantee that any subgraph of G will contain p disjoint

copies of Kbrnc and a disjoint Kq, then we know COr+
e (G(n,m)) =

�
n
2

�
�

⇣
p
�brnc

2

�
+
�
q
2

�⌘

which is the maximum value possible for COr+
e (G(n,m)). However, this may not happen for

very many values ofm. For example, assumem =
�
n
2

�
�2 and G = Kn�{e1, e2} where e1 and

e2 are vertex disjoint edges. Consider the case when brnc = n�1. Then there is no subgraph
of G which contains Kbrnc = Kn�1. Therefore, the failure state of G would be Kbrnc� e1 and

we would have to remove n� 2 edges, not
�
n
2

�
�

⇣
p
�brnc

2

�
+
�
q
2

�⌘
=

�
n
2

�
�
�
n�1
2

�
= n� 1.

4.3.3 Bounds

Since a general formula for COr+
e (G(n,m)) was not found, we would like to bound the

function. Given a formula for a general class of graphs immediately gives a lower bound. As

an example, Theorem 3.5 states that COr
e(Pn) =

j
n�1
brnc

k
and so COr+

e (G(n,m)) �
j
n�1
brnc

k
.

However, this method does not give a meaningful upper bound.
In the case of r = 1

2 , we attempt to find an upper bound on the COr+
e (G(n,m)) value

by employing a method that looks at bipartite subgraphs in the complement of a graph. We
begin with a conjecture about the failure state of a graph that achieves the maximum edge
removal connectivity for its graph class.

Conjecture 4.12. Let r = 1
k and let n be a multiple of k. The there exists G 2 G(n,m) so

that CO1/k
e (G) = CO1/k+

e (G(n,m)) and the failure state of G can be written as the union of

k components of order
n
k .

In the case n = 2, this conjecture is equivalent to the statement that one of the failure
states of G is such that the vertices of the components partitions G into two vertex sets of
equal cardinality.

This conjecture is fruitful when coupled with lower bounds for the largest bipartite sub-
graph of a graph G. Since an edge failure set can be seen as a bipartite graph, minimizing
an edge failure set in G is dual to finding the largest bipartite graph in the complement, G.
We can then apply a lower bound to the complement graph class G(n,m), which gives an
upper bound for G(n,m).

Definition 4.13. Let G be a graph. We define the function b(G) to be the size of the
largest bipartite subgraph of G. For fixed m, we define the function b(m) = minG b(G),
where G 2 G(n,m).

The functions b(m) and b(G) have been previously studied. Some results are summarized
below:
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Theorem 4.14 (Bounds on the Bipartite Function). Let G 2 G(n,m). Then

• b(m) �
l
1
2m+

p
8m+1�1

8

m
. [5]

• b(G) � 1
2(m+ 1

3n) in the case that G has no isolated points. [6]

• b(G) � 1
2(m+ 1

2(n� 1)) in the case that G is a connected graph. [6]

These bounds could be used to provide an upper bound for CO1/2+
e (G(n,m)) as outlined

in the next conjecture.

Conjecture 4.15. Let n be even. Then CO1/2+
e (G(n,m))  m

2 + 7n
12 .

Idea: Let m̄ =
�
n
2

�
� m. Then from Conjecture 4.12, let G 2 G(n,m) be such that G

has maximal CO1/2
e value and has a failure state of two components of equal order. For

simplicity, we will assume that G has no isolated vertices. Let C1, C2 be these components.
Then consider the subgraph H consisting of the vertices of C1, C2 and the edges between the
components. Then the number of edges is precisely CO1/2

e (G).

Then since H is a bipartite subgraph of G, CO1/2
e (G) = |E(H)|  b(G).

Now, we define H̄ to be the bipartite complement of B; that is, subgraph consisting of
vertex sets C1 and C2, with edges connecting the two sets only when an edge is absent in H.

Since each bipartite component has order n
2 , for any bipartite subgraph B,

|E(B)| = n2

4 � |E(B̄)|, where B̄ is the bipartite complement. Then substituting this for the

|E(B)| term in the definition of b(G), we obtain b(G) = maxB⇢G

h
n2

4 �
��E(B̄)

��
i
. But this is

simply n2

2 � b(Ḡ), and CO1/2
e (G)  b(G) = n2

4 � b(Ḡ).
We now apply the second Erdös bound from Theorem 4.14 to b(Ḡ). We obtain the final

inequality, CO1/2+

e (G(n,m))  n2

4 � 1
2(m̄+ 1

3n) =
m
2 + 7n

12 .
If G has l isolated points, we can repeat the previous argument with the isolated points

removed and consider ñ = n � l. The upper bound of m
2 + 7n

12 will still hold, as long as l is
even.
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